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ABSTRACT 
 

WRF-MODEL PERFORMANCE FOR WIND POWER FORECASTING IN THE 
COAST RANGES OF CENTRAL CALIFORNIA 

 
by Kevin T. Clifford 

 
This study describes the verification of modeled low-level atmospheric conditions 

in the complex terrain surrounding the Altamont Pass wind farm near Livermore, 

California, USA.  The Weather Research and Forecasting model (WRF) was used to (1) 

simulate the Coast Range near-surface winds, and (2) simulate low-level flow and 

available wind power in the Altamont Pass.  Standard statistical verifications were 

performed against low-level wind speed observations at seventeen sites.  Available wind 

power was calculated using equivalent wind speed and was evaluated for six areas within 

Altamont Pass.  The overall results include good model performance for the regional 

near-surface winds, acceptable to good model performance for the Altamont Pass low-

level winds, and good model performance for Altamont Pass capacity factor simulations.  

More specifically, while modeled hour-to-hour variance was not exact, WRF-modeled 

wind speeds were close to those observed.  Combined with agreement between both 

modeled and observed wind direction and atmospheric stability, WRF modeled capacity 

factors were within the range of observed capacity factors in 93 % of the instances.  

Therefore, WRF modeled winds and derived wind power can be used as a wind power 

forecasting tool for Altamont Pass and possibly other coastal complex terrain regions. 
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1.  Introduction 

With ever increasing energy needs, US grid-connected wind power capacity has 

increased tenfold since the 1980s (Wiser and Bolinger 2008).  This fast growing power 

source across the world and the United States has become available in part from wind 

power production in complex terrain due to flow enhancement and channeling by the 

topographic features (Gazzilli et al. 2001).  California is one of the leading regions of the 

world for wind power production, with several large wind farms located in the California 

Coast Ranges, including Altamont Pass (Sezgen et al. 1998).  However, before wind 

power generated at these locations can be integrated into the power network, accurate 

estimates of its potential contribution are necessary to ensure efficient utilization (Brown 

et al. 1984).  Therefore, accurate atmospheric modeling within complex terrain is 

essential for forecasting wind power production.  

The California Coast Ranges, with elevations extending to 1300 m above mean 

sea level (MSL), create a topographic barrier separating the Pacific Ocean from 

California’s low elevation Central Valley (Zaremba and Carroll 1999).  From late-spring 

through mid-fall (LSMF), the eastern Pacific subtropical high-pressure region juxtaposes 

a thermal low pressure region over California’s Central Valley, synoptically inducing 

onshore flow of stable marine air (Fosberg and Schroeder 1966; Burk and Thompson 

1996).  Daytime warming coupled with these synoptic conditions also creates a highly 

baroclinic marine inversion, leading to low-level jet formation near the coastal margin 

(Burk and Thompson 1996; Archer and Jacobson 2005).  When the low-level flow is 

funneled into the San Francisco Bay and the marine air is forced over and through the 
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rugged Coast Ranges, sea breeze and mountain circulations couple to enhance near-

surface wind speeds (Fosberg and Schroeder 1966; Burk and Thompson 1996; Zaremba 

and Carroll 1999), thus leading to increased available wind power in this region.  There 

are three dynamically forced mountain circulations of stable air that can enhance wind 

speeds and available wind power in the Coast Ranges.  They are flow acceleration due to 

the vertical compression of air, gap flow acceleration, and atmospheric wave formation.  

The most consistent effect of mountainous terrain on atmospheric dynamics is the 

increased wind speed found at the mountain ridge crest.  The vertical compression of air 

over a ridgeline causes acceleration of the airflow as it moves past the ridge crest, locally 

enhancing low-level wind speeds (Barry 1992).  Increased frictional drag caused by 

mountain ruggedness slightly reduces wind speeds; however, crest wind speeds are still 

higher than the background flow even with the increased friction (Barry 1992).  

Gap flow acceleration occurs through mountain passes that topographically 

channel flow in the gap-axis direction (Whiteman 2000).  Synoptic scale pressure 

differences cause air to flow across the mountain barrier toward the lower pressure lee 

side.  In the presence of mountain passes, air is funneled into and through the terrain 

gaps, removing it from geostrophic balance and causing wind speed acceleration along 

the pressure gradient (Doran and Zhong 2000).  These low-level jets occur most 

frequently in LSMF afternoons and evenings and can result in wind speeds greater than 

15 m s-1 (Doran and Zhong 2000; Jaramillo and Borja 2004; Sharp and Mass 2004).   

As stable air flows over a mountain range, energy is radiated away from the 

barrier by internal gravity waves (Doyle and Smith 2003).  Whether this energy 
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propagates vertically or horizontally depends on the mountain barrier, wind speed, and 

atmospheric stability (Doyle and Smith 2003; Zangl 2003).  Generally, gravity waves 

cause energy radiation and wind speed maxima near the mountain ridge crest and lee side 

slope surfaces (Zangl 2003).  Theoretically, for this to occur the Froude number 

(Fr=Na/U; N is the Brunt Vaisala Frequency, a is the mountain half-width, and U is the 

horizontal wind speed) must approximately equal 1.0 (Zangl 2003).  In the case of 

California’s Coast Ranges, a Froude number of approximately 1.0 is possible during 

typical LSMF synoptic conditions.  Given the range’s narrow width and the onshore flow 

of stable marine air, for the correct background wind speed, gravity waves can further 

enhance wind speeds at the ridgeline crest and lee side slopes by 3 to 5 m s-1 (Zangl 

2003).  

Combining these three dynamically-forced circulations through a mountain pass 

results in the highest sustained wind speeds (Zangl 2003; Gaberšek and Durran 2004; 

Gaberšek and Durran 2006).  Zangl (2003), and Gaberšek and Durran (2004) show that if 

the conditions for gravity wave formation are met, air descends through the gap, 

converting potential energy to kinetic energy and enhancing wind speeds by 7 m s-1 at the 

pass exit.  Furthermore, because of surface frictional effects, a west to northwest synoptic 

wind direction relative to the gap axis results in the highest wind speed enhancement 

(Gaberšek and Durran 2006).  These wind directions are commonly seen during typical 

LSMF synoptic conditions along the Coast Ranges (Burk and Thompson 1996).  

Combining these synoptic wind conditions with the high probability for gravity wave 
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formation, the Coast Ranges are ideal for dynamically-enhanced winds and increased 

wind power production.  
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2.  Wind Power Forecast Modeling 

Simulating wind power relies on several key diagnostic equations that combine 

several atmospheric parameters.  The power (Watts) of wind flow at speed U (m s-1) 

through a wind turbine’s rotor area A (m2) can be estimated by  

, (1) 

where ρ (kg m-3) is air density, which depends on atmospheric pressure and temperature 

(Jaramillo and Borja 2004).  Wind power fluctuations are more dependent on the varying 

rotor area wind speed than atmospheric density, which varies little in time.  

Previously it was believed that the wind speed at the center of the rotor area, i.e., 

hub-height wind speed, was sufficient for determining the rotor area average wind speed.  

However, Wharton and Lundquist (2010) showed that shear across the rotor caused by 

vertically varying atmospheric stability can have significant effects on wind power 

production.  For example, hub-height wind speeds overestimate the rotor-averaged 

velocity by 1 m s-1 or more during stable conditions, while there is little to no 

overestimation in neutral or convective conditions.  Using stability proxies such as 

horizontal turbulence intensity and turbulent kinetic energy, in combination with 

equivalent wind speed, reduces errors introduced by hub-height wind speed.  Horizontal 

turbulence intensity,  

 (2) 

is used to estimate boundary layer stability by dividing the wind speed standard deviation 



6 

 

(σu; m s-1) by the mean horizontal wind speed (U) at height z (m) (Wharton and 

Lundquist 2010).  High IU values indicate more convective conditions, while low IU 

values indicate more stable flow (Table 1).  Turbulent Kinetic Energy (TKE) is another 

stability proxy and is defined by 

, (3) 

where , , and  are the average of the square of the wind speed turbulence in the 

u, v, and w directions (Wharton and Lundquist 2010).  Assuming turbulence is isotropic 

in the u, v, and w directions; IU and TKE are related by 

 . (4) 

IU can then be used to infer a more accurate rotor average wind speed by calculating 

equivalent wind speed (Uequiv; m s-1), 

, (5) 

where H is the turbine hub-height (m), r is the rotor area radius (m), and UI(z) is the true  

TABLE 1. Stability classes and wind shear for horizontal turbulence 
intensity (IU) and turbulent kinetic energy (TKE) (adapted from Wharton 
and Lundquist 2010). 

Stability Class IU TKE Shear in Rotor Area 
Strongly Stable IU < 0.08 TKE < 0.4 Highest 

Stable 0.08 < IU < 0.10 0.4 < TKE < 0.6 High 
Neutral 0.10 < IU < 0.20 0.6 < TKE < 1.0 Neutral 

Convective 0.20 < IU < 0.30 1.0 < TKE < 1.4 Low 
Strongly Convective IU > 0.30 TKE > 1.4 Little to None 
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flux wind speed at height z (m) (Wagner et al. 2009; Wharton and Lundquist 2010).  UI(z) 

is calculated using the derivation of the average energy flux,  

, (6) 

which includes turbulence and wind shear in the rotor area average wind speed (Wagner 

et al. 2009; Wharton and Lundquist 2010). 

Wind turbines maximize their power production at their power output rating, PR 

(Watts) (Jaramillo and Borja 2004; Wharton and Lundquist 2010).  However, this amount 

of power can only be delivered if the wind turbine is working at maximum capacity.  The 

fraction of maximum power production at a given time is determined by the capacity 

factor,  

 , (7) 

where P (Watts) is the actual power output (Jaramillo and Borja 2004).  P is determined 

either by using equation (1) multiplied by several mechanical performance corrections, or 

by using a power curve supplied by the wind turbine manufacturer.  Typically, modern 

wind turbines in the U.S. have an annual CF of 35 percent, with the most efficient 

turbines achieving an annual CF of 48 percent (Wiser and Bolinger 2009).  From 

equations (1), (5), and (7), the variables that affect CF are wind speed and atmospheric 

stability.  Therefore, any wind power forecasting approach for power network planning 

must be able to accurately simulate atmospheric stability and wind speed in the lower 

atmospheric boundary layer (Wharton and Lundquist 2010).  
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Wind power forecasting relies on the predictability of atmospheric dynamics.  

Therefore, modeling systems that can accurately depict future atmospheric conditions are 

the most valuable resource for wind power forecasting.  Evaluating model accuracy is 

accomplished by comparing simulated and observed atmospheric conditions at the same 

time.  However, observations are point recordings, while model simulations represent 

spatial means determined by a model’s horizontal and vertical grid spacing (Hanna and 

Yang 2001).  Thus, differences are expected between observed and simulated conditions 

simply due to the differences of time and volume averages that each represents (Hanna 

and Yang 2001).  

Many of the topographic features and atmospheric behaviors within complex 

terrain occur on a smaller spatial scale than the commonly used synoptic-scale 

forecasting models can simulate, resulting in limited near-surface model accuracy (Reid 

and Turner 2001).  However, higher resolution mesoscale models, such as the Weather 

Research and Forecasting model (WRF, Skamarock et al. 2010), are better suited for 

resolving the near-surface atmospheric behavior in complex terrain (Rife et al. 2004; 

Žagar et al. 2006; Jimenez et al. 2010).  It has previously been shown that WRF’s cross-

mountain flow modeling with respect to blocking, channeling, orography, and thermal 

forcing all correlate to observations at an acceptable level of accuracy (Rife et al. 2004; 

Žagar et al. 2006; Jimenez et al. 2010).  WRF best handles complex terrain dynamics for 

cross-mountain flow at well-exposed mountaintops, whereas inner-mountain valleys and 

basins prove to be the most difficult to accurately simulate (Žagar et al. 2006). 
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Given these findings, this study was conducted to assess the accuracy and 

potential of WRF as a wind power forecasting tool by: (1) simulating the Coast Range 

near-surface winds; and (2) simulating low-level flow and available wind power within 

Altamont Pass.  
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3.  Model Setup and Experiment Design 

Given WRF’s ability to accurately model boundary layer dynamics in complex 

terrain (Rife et al. 2004; Žagar et al. 2006; Jimenez et al. 2010), a series of five case study 

forecasts were conducted during near ideal high wind power producing LSMF synoptic 

conditions to test WRF wind power modeling accuracy in Altamont Pass near Livermore, 

California, USA.  The Altamont Pass wind farm is one of the world’s largest and is 

nestled in the Diablo Range, a section of California’s Coast Ranges 60 km east of San 

Francisco.  The 300 m MSL Altamont Pass is in a highly complex area of topography, 

with the 600 to 1300 m  MSL Diablo Range to the north and south, 500 m MSL Las 

Trampas hills and 180 m MSL Livermore Valley to the west, and the 0 m MSL northern 

San Joaquin Valley to the east (Figs. 1 and 2).  Chaparral-type vegetation comprised of 

mostly open grassland with intermittent oak woodland covers the region.  Combined with 

low intensity residential and agricultural land use, there are few substantial windbreaks 

upwind and within Altamont Pass.  

a. Model Configuration 

The mesoscale WRF modeling system (version 3.2; Skamarock et al. 2010) was 

configured with three domains using two-way nesting to attain a horizontal resolution of 
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1 km over the study area.  The outermost domain centered over California is 1300 x 1300 

km2 with a horizontal grid resolution of 9 km (Fig. 1).  The intermediate domain centered 

over Central California has a horizontal grid resolution of 3 km.  Finally, the third 

domain with 1 km horizontal resolution was nested over the San Francisco Bay Area.  

The topographic data were obtained from the U.S. Geological Survey (USGS) global 

one-third arc-second dataset.  A WRF configuration of 52 terrain-following hydrostatic 

pressure levels, with 18 levels below 300 m above ground level (AGL), and a top level of 

50 hPa, was used in the vertical for all three domains. 

 
FIG. 1. Spatial configuration of domains, for the WRF simulation: three domains two-
way nested with 9, 3, and 1 km horizontal resolution.  Station locations are shown for 
the innermost domain.  The comparison sites used for WRF evaluation are from the 
RAWS (triangles), METAR (circles), CARB (squares), CWOP (stars), and LLNL 
(diamonds) observation networks. 
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The physics parameterizations used within WRF were chosen from a host of 

available options.  The longwave and shortwave radiation schemes are based on Mlawer 

et al. (1997) and Dudhia (1989), respectively.  A version of the Kain and Fritsch (1990, 

1993) scheme was used for the cumulus scheme parameterization.  The Mellor-Yamada-

Janjic planetary boundary layer parameterization (Janjic 2003) was used for all three 

domains.  The Ferrier microphysics scheme (Rogers et al. 2001) was used.  Finally, a 

four-layer land surface model based on the Monin-Obukhov similarity theory (Janjic 

1996) was used.  The 1 km USGS land use/land cover system was used to determine the 

surface physical properties (Anderson et al. 1976). 

 
 

FIG. 2. Areas 1 - 6 of the Altamont Pass wind farm, near Livermore, California bordered 
by the Las Trampas Hills and Livermore Valley to the west, the Diablo Range to the 
north and south, and northern San Joaquin Valley to the east.  Typical LSMF conditions 
promote westerly flow to funnel over and through the pass, resulting in wind speed 
enhancement from the pass crest extending to the lee side. 

Livermore 
Valley 

Southern  
Diablo Range 

Central 
Valley 

Northern 
Diablo Range 
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Initial and boundary conditions were obtained for each of the five case studies 

from the 0000 UTC 12 km horizontal-resolution North American Mesoscale model 

(NAM 218) forecasts, as would be done in an operational setting.  The WRF model is 

initialized as a cold-start at 0000 UTC for each of the five cases and run for 84 hours, 

updating the boundary conditions every three hours and recording data every hour.  

b. Synoptic Overview 

Five 84-hour wind power forecasts using WRF were produced for the July 6 to 

August 8 2010 time period (Table 2).  In all cases, the eastern Pacific subtropical surface 

high-pressure region was located several hundred kilometers off the North American 

west coast, with a thermal low-pressure region over the southwestern Great Basin.  The 

exact location of the high- and low-pressure regions fluctuated throughout this time 

period, but the resulting surface pressure gradients were predominantly oriented east-west 

across Central California with NW to SW synoptic surface wind directions.  Notable 

periods of a strong onshore pressure gradient were July 20, 26, 30, and August 4 and 5.  

A patchy to dense marine layer was usually found along the California coastline that 

typically intruded well inland during the night hours, and retreated back to the coast 

during the morning hours.  There were little to no high- or mid-level clouds during all 

five cases.  A 500 hPa ridge with an axis aligned along the North American west coast 

TABLE 2. Beginning and ending dates of WRF forecast case studies. 
Case Beginning Date Ending Date 

1 0000 UTC 6 July 2010 1200 UTC 9 July 2010 
2 0000 UTC 18 July 2010 1200 UTC 21 July 2010 
3 0000 UTC 24 July 2010 1200 UTC 27 July 2010 
4 0000 UTC 29 July 2010 1200 UTC 1August 2010 
5 0000 UTC 4 August 2010 1200 UTC 7 August 2010 
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also existed throughout this time period; however its exact strength and location 

fluctuated more so than the surface high pressure region.  There were two instances of 

negatively tilted 500 hPa troughs sweeping over the study area (July 20 and August 5 - 

6), but did little to affect near-surface atmospheric behavior.  More commonly 300 hPa 

and 250 hPa jets ahead of upper level troughs resulted in increased wind speeds 

throughout the atmospheric column (July 26 - 27 and July 29 - August 1).  

c. Observational Data and Statistical Comparisons 

The observational dataset used for model evaluation in the five case model runs 

was a combination of several quality-controlled sources, for a total of 17 comparison 

sites.  Wind speed, wind direction, temperature, relative humidity, and sea-level pressure 

data were provided by nine Remote Automated Weather System (RAWS), 

Meteorological Aviation Report (METAR), California Air Resource Board (CARB), and 

Citizen Weather Observer Program (CWOP) meteorological towers (Fig. 1 and Table 3).  

Secondly, wind speed, wind direction, air temperature, air density, atmospheric pressure, 

and relative humidity data were provided by two of the Lawrence Livermore National 

Laboratories (LLNL) meteorological towers (Fig. 1 and Table 4).  Lastly, an Altamont 

Pass wind power company provided hub-height wind speed, wind speed standard 

deviation, wind direction, and wind direction standard deviation data from six 

meteorological towers, as well as daily wind power production for each of their wind 

turbines (Fig. 2).  WRF model values for all of the comparisons were extracted using a 

bilinear interpolation method.  



15 

 

 

 

TABLE 3. Station information for RAWS, METAR, CWOP, and 
CARB observation sites. 

Station 
ID Station Name 

Station 
Elev. 
(m) 

Data 
Available 

AGL Elev. 
of Variable 

(m) 
Air Temperature 2 

Relative Humidity 2 
Wind Speed 6 

AAT Altamont 
Reservoir 

RAWS 

437 

Wind Direction 6 
Sea Level Pressure 0 
Air Temperature 2 

Relative Humidity 2 
Wind Speed 10 

HWD Hayward Air 
Terminal 

14 

Wind Direction 10 
Air Temperature 2 

Relative Humidity 2 
Wind Speed 10 

LTR Las Trampas 
RAWS 

536 

Wind Direction 10 
Sea Level Pressure 0 
Air Temperature 2 

Relative Humidity 2 
Wind Speed 10 

LVK Livermore 
Municipal 

Airport 

121 

Wind Direction 10 
Air Temperature 2 

Relative Humidity 2 
Wind Speed 6 

LVM Mallory 
Ridge  

RAWS 

594 

Wind Direction 6 
Sea Level Pressure 0 
Air Temperature 2 

Relative Humidity 2 
Wind Speed 10 

MTH Mountain 
House  
CWOP 

24 

Wind Direction 10 
Sea Level Pressure 0 
Air Temperature 2 

Relative Humidity 2 
Wind Speed 10 

SCK Stockton 
Metropolitan 

Airport 

9 

Wind Direction 10 
Sea Level Pressure 0 
Air Temperature 2 

Wind Speed 10 

TRY 
 

Tracy Airport 
CARB 

 

60 
 

Wind Direction 10 
Air Temperature 2 

Relative Humidity 2 
Wind Speed 10 

VAQ Vaquero 
Reservoir 

RAWS 

335 

Wind Direction 10 
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The traditional statistical measures used in model performance evaluation are 

mean absolute error,  

 ,    (8) 

root mean square error,  

 ,    (9) 

and anomaly correlation,  

 ,   (10) 

where F represents the forecast value and A represents the observed value (Reid and 

Turner 2001; Rife et al. 2004; Žagar et al. 2006; Jimenez et al. 2010).  MAE and RMSE  

TABLE 4. Station information for LLNL observation sites. 
Station 

ID 
Station Name Station 

Elev.  
(m) 

Data  
Available 

AGL Elev. 
of Variable 

(m) 
Sea Level Pressure 0 

Air Density 10 
Air Temperature 2, 10, 23, 52 

Relative Humidity 2, 10, 23, 52 
Air Pressure 10, 23, 52 
Wind Speed 10, 23, 52 

Wind Speed σ 10, 23, 52 

LNL LLNL - 
Livermore 

174 

Wind Direction 10, 23, 52 
Sea Level Pressure 0 
Surface Heat Flux 0 

Air Density 10 
Air Temperature 2, 10, 23, 52 

Relative Humidity 2, 10, 23, 52 
Air Pressure 10, 23, 52 
Wind Speed 10, 23, 52 

Wind Speed σ 10, 23, 52 

S3H LLNL -  
Site 300 

387 

Wind Direction 10, 23, 52 
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can vary significantly across a large geographic region and thus a threshold of acceptable 

predictability can be difficult to establish.  However, MAE and RMSE values provide a 

range in which the different simulations can vary from observations for smaller 

geographic regions.  For this analysis, WRF model performance for wind speed MAE 

and RMSE values under 3.0, 2.5, and 2.0 m s-1 are considered acceptable, good, and 

excellent, respectively (Table 5).  ACC provides an apt matching standard across a 

model’s entire domain no matter its geographic size.  Although it is generally understood 

that correlations between simulated and observed flows are lowest in regions of highest 

terrain complexity, an ACC of 0.5 is the lowest threshold for an acceptable forecast (Reid 

and Turner 2001).  For this analysis, WRF model performance for wind speed ACC 

values over 0.50, 0.60, and 0.75 are considered acceptable, good, and excellent, 

respectively (Table 5). 

Statistical calculations were done for the whole 84-hour model run as well as 

individual 24-hour periods. Day One, Two, and Three statistical values represent the first, 

second, and third 24 hours of each model run, while Day Four statistical values represent 

the last 12 hours.  While the accuracy of the entire 84 hour model run is important, Day 

One and Day Two model accuracy is much more critical for energy planning (Bathurst et 

al. 2002; Kariniotakis et al. 2004), and these results are highlighted.  

TABLE 5. Modeled Wind Speed Statistical Performance Grades. 
Grade MAE  

(m s-1) 
RMSE  
(m s-1) 

ACC  
(unitless) 

Poor > 3.0 > 3.0 < 0.50 
Acceptable < 3.0 < 3.0 > 0.50 

Good < 2.5 < 2.5 > 0.60 
Excellent < 2.0 < 2.0 > 0.75 
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4.  Results and Discussion  

a. Near-Surface Wind Field   

The five WRF model runs were evaluated against observations for the near-

surface wind field at the eleven sites listed in Tables 2 and 3.  Model accuracy for 6 and 

10 m AGL wind speed was evaluated using MAE, RMSE, and ACC (equations 8–10).  

The average 84-hour wind speed MAE was 2.5, 2.2, 2.2, 2.2, and 2.0 m s-1 for each of the 

five cases, respectively (Fig. 3).  The average 84-hour wind speed RMSE was 2.9, 2.5, 

2.6, 2.6, and 2.4 m s-1 for each of the five cases, respectively (Fig. 4).  The average 84-

hour wind speed ACC was 0.45, 0.58, 0.60, 0.50, and 0.56 for each of the five cases, 

respectively (Fig. 5).  Additional analysis of MAE reveals that the 84-hour, Day One, and 

Day Two wind speed MAEs were less than 2.0 m s-1 in 60, 58, and 56 percent of the 

instances, respectively (Fig. 3).  The 84-hour, Day One, and Day Two wind speed MAEs 

were less than 2.5 m s-1 in 81, 67, and 72 percent of the instances, respectively.  

Furthermore, additional analysis of wind speed RMSE reveals the 84-hour, Day One, and 

Day Two wind speed RMSEs were less than 2.0 m s-1 in 42, 36, and 45 percent of the 

instances, respectively (Fig. 4).  The 84-hour, Day One, and Day Two wind speed RMSE 

were less than 2.5 m s-1 in 66, 43, and 63 percent of the instances, respectively. 

WRF-modeled wind direction was evaluated for the same eleven comparison 

sites.  Over the five cases simulated, WRF-modeled and observed wind directions were in 

good agreement (Fig. 6).  Interestingly, the LTR, VAQ, and AAT sites, which are all 

located in the most complex terrain of the eleven comparison sites, exhibited the highest 
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FIG. 3. Wind speed MAE statistic plots for the five LSMF case studies at the 
eleven near-surface flow observation sites.  

 

agreements.  This may be due to terrain channeling and thermally driven circulations 

through Altamont Pass, making the wind direction less variable compared to sites in 

relatively flat terrain. 

Analysis of WRF-modeled temperature, relative humidity, and sea-level pressure 

over all five cases, yield ACCs results of over 0.70, 0.60, and 0.65, respectively.   

   Case 4   Case 3 

 

  Case 2 

 

  Case 5 

 c) 

 a) 
 

 b) 

 

  Case 1 

d) 
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FIG. 4. Wind speed RMSE statistic plots for the five LSMF case studies at the 
eleven near-surface flow observation sites.  

 

Additionally, over the five cases, MAE results were near 2.0 K, 10 percent, and 2 hPa for 

temperature, relative humidity and surface pressure respectively; while RMSE results 

were near 2.5 K, 12 percent, and 2.5 hPa, respectively (not shown). 

Over all five cases, WRF performance was best at LNL and SCK, with low wind 

speed MAEs and RMSEs, and high ACCs. This is to be expected as both sites are  
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FIG. 5. Wind speed ACC statistic plots for the five LSMF case studies at the 
eleven near-surface flow observation sites.  

 

located in flat, non-complex terrain; however, given their locations west and east of 

Altamont Pass, their model accuracy is quite beneficial.  Highly accurate wind speed, 

wind direction, temperature, and pressure gradient forecasts across the pass could 

possibly be used in future regional wind and wind power forecasts. 
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FIG. 6. Modeled versus observed wind direction for the five LSMF case studies at the 
eleven near-surface flow observation sites 
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Over all five cases, WRF performance was the poorest at sites LVM and MTH, 

with high wind speed MAEs, RMSEs, and low ACCs.  Possible explanations for the poor 

model performance at these sites can be linked to their location.  The LVM 

meteorological tower is atop a very exposed ridgeline that can be subject to sporadic 

wind gusts and rapidly changing wind directions.  These can be difficult to model in 

terms of intensity and timing.  This result disagrees with the Žagar et al. (2006) findings 

that suggest ridgeline locations are better modeled when compared to other locales within 

complex terrain.  

The MTH meteorological tower is located immediately downwind of Altamont 

Pass, and it is possible that when highly stable air crosses the pass, a hydraulic jump 

occurs in the lee near MTH.  If WRF does not resolve the location of the hydraulic jump 

perfectly, then correlations between modeled and observed conditions suffer.  It appears 

WRF did not accurately simulate these sporadic wind variations at these two locations, 

leading to poor statistical performance at these sites.  

While model accuracy is linked to terrain complexity, WRF performance was not 

greatly degraded at those sites in highly complex terrain.  WRF-modeled winds at the 

VAQ and AAT sites, which are at the northern and southern ends of Altamont Pass, show 

acceptable to good performance.  AAT wind speed ACC fluctuated above and below the 

level of acceptable correlation, while VAQ wind speed ACC was typically near 0.0 for all 

five cases.  However, AAT and VAQ exhibited wind speed MAE and RMSE values 

similar to the other comparison sites in much less complex terrain.  In addition, WRF-

modeled and observed wind directions were in very good agreement at these comparison 
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sites.  While modeled hour-to-hour variance was not exact, WRF-modeled wind speeds 

were similar to those observed, with accurate wind direction simulation.  In summation, 

WRF performance was good for the near-surface wind field simulation.  

b. Altamont Pass Wind Field 

Statistical analysis of hub-height winds in Altamont Pass was performed for the 

six Areas in Fig. 2. At these sites, the average 84-hour wind speed MAE was 2.7, 2.5, 2.7, 

2.3 and 2.4 m s-1 for each of the five cases, respectively (Fig. 7a, d, g, j, and m).  The 

average 84-hour wind speed RMSE was 3.3, 3.1, 3.3, 3.3 and 2.9 m s-1 for each of the 

five cases, respectively (Fig. 7b, e, h, k, and n).  The average 84-hour wind speed ACC 

for Areas 1 and 2 was -0.10, 0.28, 0.45, 0.45, and 0.49 for each of the five cases, 

respectively (Fig. 7c, f, i, l, and o); while the average 84-hour wind speed ACC for Areas 

3 through 6 was 0.58, 0.57, 0.66, 0.45, and 0.65 for each of the five cases, respectively 

(Fig. 7c, f, i, l, and o). 

Across all six Areas for all five cases, the Day One and Day Two wind speed 

MAEs were less than the 84-hour wind speed MAE in 60 and 57 percent of the instances, 

respectively.  Day One wind speed MAEs were less than 2.0, 2.5, and 3.0 m s-1 in 37, 57, 

and 87 percent of the instances, respectively.  Day Two wind speed MAEs were less than 

2.0, 2.5, and 3.0 m s-1 in 20, 53, and 67 percent of the instances, respectively.  The Day 

One and Day Two wind speed RMSEs were less than the 84-hour wind speed RMSE in 

60 and 47 percent of the instances, respectively.  Day One wind speed RMSEs were less 

than 2.0, 2.5, and 3.0 m s-1 in 17, 47, and 70 percent of the instances, respectively.  Day  
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FIG. 7. Hub-height wind speed MAE, RMSE, and ACC performance for the 
five LSMF case studies at the six Altamont Pass observation areas.  
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Two wind speed RMSEs were less than 2.0, 2.5, and 3.0 m s-1 in 20, 37, and 47 percent 

of the instances, respectively.  Excluding Areas 1 and 2, the Day One and Day Two wind 

speed ACCs were above 0.5 in 75 percent of the instances.  While in several of the cases, 

the 84-hour wind speed ACC for several Areas was below the acceptable threshold, Day 

One and Day Two wind speed ACCs were above 0.5 in 66 and 33 percent of the 

instances, respectively.  For those cases whose 84-hour wind speed ACC was above the 

acceptable threshold, Day One and Day Two had a wind speed ACC at or above the 84-

hour ACC in 47 and 80 percent of the instances, respectively. 

 

FIG. 8. Modeled versus observed hub-height wind direction for the five LSMF case 
studies at the six Altamont Pass observation areas. 
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WRF-modeled and observed wind directions were in very good agreement at five 

of the six Areas (Fig. 8).  WRF simulated wind direction predominantly fell within a W 

to SW range, with an average of WSW.  Observed wind direction predominantly came 

from W to SW, with an average of WSW.  WRF also simulated the same W to SW wind 

direction range for Area 4.  However, observations show winds almost equally from all 

directions, with some favoring of the NW to NE directions.  After further investigation, it 

was determined that the local terrain and nearby wind turbines create some wrap around 

effects, skewing the recorded wind direction.  These types of errors are not adjustable in 

 

FIG. 9. Modeled versus observed turbulence intensity for the five LSMF case studies at 
the six Altamont Pass observation areas.  Horizontal and vertical lines indicate stable 
(dotted), neutral (solid), and convective (dash-dotted) atmospheric conditions.  
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the WRF model.  Because of this it is believed that Area 3 wind direction could be used 

as proxy for Area 4.  

WRF-modeled TKE was converted to IU using equation (6) to compare against 

observed IU recorded at the six Altamont Pass Areas (Fig. 9).  Following the stability 

classes assigned to IU values (Table 1), WRF simulations have a tendency towards 

strongly stable to slightly neutral conditions (0.05< IU <0.12) for all Areas, while 

observed atmospheric stability varied for each Area.  For Areas 1, 3, and 6, observations 

were in good agreement with WRF, as they typically experienced strongly-stable to 

stable conditions (0.04< IU <0.10).  In Areas 2, 4, and 5, stable to neutral conditions 

(0.08< IU <0.18) were much more prevalent. 

Over all five cases, WRF-modeled wind speed exhibited the highest agreement 

with observations at Area 5.  The 84-hour, Day One, and Day Two wind speed ACCs 

were all above 0.6 in four of the cases, two of which were above 0.75.  Area 5 MAE and 

RMSE were also consistently near or below the 84-hour case average.  A possible 

explanation for good model performance in this location is its very close proximity to a 

WRF model grid point, resulting in very little point interpolation representativeness error.  

Additionally, WRF-modeled wind speed statistical performance at Areas 3, 4, and 

6 were good as well.  Combined with good agreement between both modeled and 

observed wind direction and atmospheric stability, the good to excellent model 

performance at these four Areas are promising for a future wind forecasting.  

Over all five cases, Areas 1 and 2 consistently exhibited the lowest ACCs.  

However, Areas 1 and 2 showed very good agreement between modeled and observed 
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wind direction and IU (Fig. 8 and 9).  Furthermore, their wind speed MAEs and RMSEs 

were near the case average and in some instances lower (Fig. 7).  Located at the western 

front of Altamont Pass where local topography is the steepest, WRF slightly smoothes 

out the terrain and therefore characterizes the hub-height above ground level at a lower 

elevation.  While the hour-to-hour variance might not be well simulated at Areas 1 and 2, 

WRF-modeled winds were similar to those observed.  

It is also worth mentioning that Day Three and Day Four WRF performance was 

generally acceptable to good (Fig. 7).  While not as accurate as Day One and Day Two, 

WRF-modeled winds during this time period generally were within an acceptable range 

of the observed conditions.  Therefore, their solutions could be used for forecasts longer 

in range than 48 hours.  In summation, WRF performance for wind simulations at the 

Altamont Pass Areas 1 and 2 were acceptable. 

c. Wind Power Modeling 

WRF-modeled winds and TKE were used to determine wind power production in 

Altamont Pass. Equations (4), (5), and (6) were used to determine rotor area equivalent 

wind speeds, and equations (1) and (7) were used to determine the capacity factor (CF).  

A typical LSMF day for Altamont Pass winds and wind power are shown in Figs. 10-17.  

The series begins on 24 July 1100 local time (LT), and ends 25 July 1100 LT, and 

exhibits an average Froude number of 1.03, with a Froude number slightly less than 1.0 

during the evening and night hours.  WRF-modeled and observed winds across the 

Altamont Pass region during this time frame are in good to excellent agreement, with a 

MAE of 2.4 m s-1, a RMSE of 2.8 m s-1 and an ACC of 0.74 (not shown). 
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FIG. 10. WRF-modeled near surface flow in Altamont Pass, 1100 LT 24 July 2010. 
Elevation contoured every 100 m starting at 0 m MSL (white).  (a) Hub-height 
equivalent winds.  Wind barbs, 10 m s-1; half barb, 5 m s-1.  Winds > 6 m s-1 are 
shaded in increments of 2 m s-1.  (b) Hub-height CF.  CFs > 0.5 are shaded in 
increments of 0.1.  Dashed line marks location of the western edge of the Altamont 
Pass ridgeline. 

 

 

 
FIG. 11. WRF-modeled near surface flow in Altamont Pass, 1400 LT 24 July 2010. 
Elevation contoured every 100 m starting at 0 m MSL (white).  (a) Hub-height 
equivalent winds.  Wind barbs, 10 m s-1; half barb, 5 m s-1.  Winds > 6 m s-1 are 
shaded in increments of 2 m s-1.  (b) Hub-height CF.  CFs > 0.5 are shaded in 
increments of 0.1.  Dashed line marks location of the western edge of the Altamont 
Pass ridgeline. 
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FIG. 12. WRF-modeled near surface flow in Altamont Pass, 1700 LT 24 July 2010. 
Elevation contoured every 100 m starting at 0 m MSL (white).  (a) Hub-height 
equivalent winds.  Wind barbs, 10 m s-1; half barb, 5 m s-1.  Winds > 6 m s-1 are 
shaded in increments of 2 m s-1.  (b) Hub-height CF.  CFs > 0.5 are shaded in 
increments of 0.1.  Dashed line marks location of the western edge of the Altamont 
Pass ridgeline. 

 

 

 
FIG. 13. WRF-modeled near surface flow in Altamont Pass, 2000 LT 24 July 2010. 
Elevation contoured every 100 m starting at 0 m MSL (white).  (a) Hub-height 
equivalent winds.  Wind barbs, 10 m s-1; half barb, 5 m s-1.  Winds > 6 m s-1 are 
shaded in increments of 2 m s-1.  (b) Hub-height CF.  CFs > 0.5 are shaded in 
increments of 0.1.  Dashed line marks location of the western edge of the Altamont 
Pass ridgeline. 
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FIG. 14. WRF-modeled near surface flow in Altamont Pass, 2300 LT 24 July 2010. 
Elevation contoured every 100 m starting at 0 m MSL (white).  (a) Hub-height 
equivalent winds.  Wind barbs, 10 m s-1; half barb, 5 m s-1.  Winds > 6 m s-1 are 
shaded in increments of 2 m s-1.  (b) Hub-height CF.  CFs > 0.5 are shaded in 
increments of 0.1.  Dashed line marks location of the western edge of the Altamont 
Pass ridgeline. 

 
 

 

 
FIG. 15. WRF-modeled near surface flow in Altamont Pass, 0200 LT 25 July 2010. 
Elevation contoured every 100 m starting at 0 m MSL (white).  (a) Hub-height 
equivalent winds.  Wind barbs, 10 m s-1; half barb, 5 m s-1.  Winds > 6 m s-1 are 
shaded in increments of 2 m s-1.  (b) Hub-height CF.  CFs > 0.5 are shaded in 
increments of 0.1.  Dashed line marks location of the western edge of the Altamont 
Pass ridgeline.  
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FIG. 16. WRF-modeled near surface flow in Altamont Pass, 0500 LT 25 July 2010. 
Elevation contoured every 100 m starting at 0 m MSL (white).  (a) Hub-height 
equivalent winds.  Wind barbs, 10 m s-1; half barb, 5 m s-1.  Winds > 6 m s-1 are 
shaded in increments of 2 m s-1.  (b) Hub-height CF.  CFs > 0.5 are shaded in 
increments of 0.1.  Dashed line marks location of the western edge of the Altamont 
Pass ridgeline. 

 
 

 
FIG. 17. WRF-modeled near surface flow in Altamont Pass, 1100 LT 25 July 2010. 
Elevation contoured every 100 m starting at 0 m MSL (white).  (a) Hub-height 
equivalent winds.  Wind barbs, 10 m s-1; half barb, 5 m s-1.  Winds > 6 m s-1 are 
shaded in increments of 2 m s-1.  (b) Hub-height CF.  CFs > 0.5 are shaded in 
increments of 0.1.  Dashed line marks location of the western edge of the Altamont 
Pass ridgeline. 
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Winds decrease through the morning hours before reaching a minimum in the 

early afternoon (1300 LT), with a similar decrease in CF as regional values drop below 

0.50 (Figs. 10 and 11).  By 1700 LT winds increase by 2-5 m s-1, resulting in an increase 

in CF of 0.2-0.3 (Fig. 12).  The greatest increases in winds through Altamont Pass occur 

between 1700 and 2000 LT when regional winds are up to 15 m s-1 after an additional 4-6 

m s-1 increase (Fig. 13).  Wind power ramps during this period with most of Altamont 

Pass within a CF of 0.9 or greater and a large area achieving a CF of 1.0 (Fig. 13).  Wind 

speed and wind power peak near 2300 LT before decreasing through the late night and 

early morning hours (Figs. 14 and 15).  By 0200 LT, wind speeds are similar in strength 

to the 2000 LT winds and continue to decrease through the morning hours until winds are 

again light at 1100 LT the following day (Figs. 15-17).   Wind power follows a similar 

trend during this period.  In total, WRF model results show Altamont Pass in a CF of 0.5 

or greater for 16 hours of a LSMF day with at least six of the hours, during the late 

afternoon into evening, achieving a near optimal CF.   

Wind directions through Altamont Pass remain relatively constant (Figs. 10-17). 

The NW to W wind directions upwind consistently turn to WSW as they cross the pass 

before typically turning back W to NW direction in the downwind Central Valley, 

regardless of the exact surface pressure gradient orientation.  

Due to the hilly bottom of Altamont Pass, flow enhancements such as vertical 

compression of air over a ridge, gap flow acceleration, and atmospheric wave formation 

can occur in combination during LMSF synoptic conditions, resulting in high levels of 

available wind power.  Given a modeled Froude number near and slightly below 1.0, it 
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appears WRF models these enhancements as it simulates an area of accelerated wind 

speed from the pass crest extending to the pass exit.  Because of a possible hydraulic 

jump at pass exit, accelerated wind speeds do not extend deeply into the Central Valley, 

especially during the night hours.  It is also worth mentioning WRF’s simulation of the 

lee side eddy at the northern end of the Altamont Pass exit near MTH.  As WRF 

simulates the stable air intrusion over the low ridge and through the pass, mixing heights 

quickly rise at the pass exit causing horizontal and vertical eddies.  The scattered nature 

of flow near MTH can be difficult to predict and could account for poor model 

performance at this location.  These results match the findings of Gaberšek and Durran 

(2004) with regards to wind direction as well as the findings by Zangl (2003) and 

Gaberšek and Durran (2004) with regards to wind speed enhancement.  

d. Wind Power Modeling Performance 

Modeled hourly wind power was calculated from WRF-modeled winds and TKE 

using equations (1), (4), (5), (6), and (7) and summed for 24-hour periods to determine 

daily CF values for the six Altamont Pass Areas.  Day One, Day Two, and Day Three 

performances of modeled daily CF were then compared to observed CF values for 

individual wind turbines within the same areas as well as daily averages for each area.  

Area 1 modeled daily CFs consistently under-predicted the observed area average (Figs. 

18-22a).  Area 3 modeled daily CFs consistently over-predicted the observed area 

average (Figs. 18-22c).  Modeled daily CFs in Areas 2, 4, 5, and 6 were generally near or 

within one standard deviation of the observed area averages for all cases (Figs. 18–22 b, 

d, e, and f).  
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FIG. 18. Case 1 modeled daily CF (triangles), nearby turbine daily CF (Xs), area 
average observed daily CF (diamonds), and observed CF standard deviations for the 
six Altamont Pass observation Areas.  For each panel, the first, second, and third 
vertical lines of data represent comparisons between observations and Day One, Day 
Two, and Day Three model output, respectively. 
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FIG. 19. Case 2 modeled daily CF (triangles), nearby turbine daily CF (Xs), area 
average observed daily CF (diamonds), and observed CF standard deviations for the 
six Altamont Pass observation Areas.  For each panel, the first, second, and third 
vertical lines of data represent comparisons between observations and Day One, Day 
Two, and Day Three model output, respectively. 
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FIG. 20. Case 3 modeled daily CF (triangles), nearby turbine daily CF (Xs), area 
average observed daily CF (diamonds), and observed CF standard deviations for the 
six Altamont Pass observation Areas.  For each panel, the first, second, and third 
vertical lines of data represent comparisons between observations and Day One, Day 
Two, and Day Three model output, respectively. 
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FIG. 21. Case 4 modeled daily CF (triangles), nearby turbine daily CF (Xs), area 
average observed daily CF (diamonds), and observed CF standard deviations for the 
six Altamont Pass observation Areas.  For each panel, the first, second, and third 
vertical lines of data represent comparisons between observations and Day One, Day 
Two, and Day Three model output, respectively. 
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FIG. 22. Case 5 modeled daily CF (triangles), nearby turbine daily CF (Xs), area 
average observed daily CF (diamonds), and observed CF standard deviations for the 
six Altamont Pass observation Areas.  For each panel, the first, second, and third 
vertical lines of data represent comparisons between observations and Day One, Day 
Two, and Day Three model output, respectively. 
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Analyses of model performance for the individual day periods reveal more 

promising results; with Day One modeled CF results always within the observed CF 

range (Table 6a).  Furthermore, Day One modeled CFs were within one standard 

deviation of the observed Area averages in 66 percent of the instances, and over (under) 

predicted daily CF in 17 (17) percent of the instances.  Day Two modeled CFs were 

within the observed CF range in 90 percent of the instances.  Furthermore, Day Two 

modeled CFs were within one standard deviation of the observed Area averages in 53 

percent of the instances, and over (under) predicted daily CF in 30 (17) percent of the 

instances.  Lastly, Day Three modeled CFs were also within the observed CF range in 90 

percent of the instances.  Furthermore, modeled CFs were within one standard deviation 

of the observed Area averages in 36 percent of the instances, and over (under) predicted 

wind power production in 47 (17) percent of instances. 

TABLE 6. Modeled CF Performance. 
a. All Areas 

Time 
Period 

Within Observed 
Range 

Within 1σ of 
Observed Average 

Over-
Predicted 

Under-
Predicted 

Day 1 100% 66% 17% 17% 
Day 2 90% 53% 30% 17% 
Day 3 90% 36% 47% 17% 

b. Excluding Areas 1 and 2 
Time 

Period 
Within Observed 

Range 
Within 1σ of 

Observed Average 
Over-

Predicted 
Under-

Predicted 
Day 1 100% 75% 25% 0% 
Day 2 95% 55% 45% 0% 
Day 3 90% 25% 75% 0% 

c. Excluding Areas 1 and 3 
Time 

Period 
Within Observed 

Range 
Within 1σ of 

Observed Average 
Over-

Predicted 
Under-

Predicted 
Day 1 100% 90% 10% 0% 
Day 2 95% 75% 25% 0% 
Day 3 90% 50% 50% 0% 
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It was previously noted that Areas 1 and 2 exhibited lower accuracy wind speed 

performance when compared to the other four Altamont Pass Areas.  When removing 

their results from the group statistics, daily CF performance improved (Table 6b). 

Overall, Day One, Day Two, and Day Three for Areas 3 through 6 showed modeled daily 

CFs within one standard deviation of the observed Area averages in 75, 55, and 25 

percent of the instances, respectively.  However, occurrences of daily CF over prediction 

increased, but occurrence of daily CF under prediction dropped to zero.  

It was also previously noted that there was consistent under and over prediction of 

daily CF in Areas 1 and 3 (Figs. 18 - 22). Removing these results from the group 

statistics yields higher model performance improvements (Table 6c).  Overall, Day One, 

Day Two, and Day Three for Ares 2, 4, 5, and 6 showed modeled daily CFs within one 

standard deviation of the observed Area averages in 90, 75, and 50 percent of the 

instances, respectively.  Additionally, occurrences of daily CF over prediction were 

reduced in Day One and Day Two, while occurrences of daily CF under prediction in 

Day One, Day Two, and Day Three were reduced to zero.  

Although modeled daily CFs were not exact, Day One and Day Two values were 

predominantly within one standard deviation of the observed Area average.  Furthermore, 

when including Day Three values, there were only 6 out of 90 instances in which the 

modeled daily CF was outside the observed range.  It is possible that the interpolation 

sites for each Altamont Pass Area may be better at representing the high or low end of the 

wind power production spectrum rather than the average.  When ignoring the Areas 

whose model results exposed possible interpolation site deficiencies or consistent low 
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model accuracy, WRF can model daily CFs in Altamont Pass at a high level of accuracy. 

It is also apparent that there was a tendency for increased modeled daily CF over 

prediction with longer lead time forecasts.  In these cases, the level of over prediction 

was relatively consistent; and with consistencies model biases can be calculated and 

potentially used for adjusting the longer-range forecasts.  

Additionally, wind power derived solely from WRF-modeled hub-height winds, 

i.e. no rotor area wind and stability shear corrections, was evaluated (not shown).  It was 

found that using Wharton and Lundquist’s (2010) Uequiv for calculating wind power 

instead of only hub-height wind speeds resulted in 3 to 9 percent more accurate modeled 

daily CFs.  While this is only a significant increase at a p-value of 0.3, it could lead to 

substantial improvements in efficient energy planning. 
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5. Summary and Conclusions 

Efficient utilization of wind power at a given time requires accurate estimates of 

its potential contribution to the power network.  Effective renewable energy planning 

requires a strong meteorological basis because accurate wind power forecasts heavily rely 

on accurate modeling of atmospheric dynamics, especially boundary layer winds and 

atmospheric stability.  When considering that many wind farms are located within 

complex terrain, it can be a major challenge to accurately simulate the highly complex 

local atmospheric circulations.  Given WRF’s proven ability to more accurately model 

boundary layer dynamics in complex terrain, a series of five case study forecasts were 

conducted to test WRF model performance for the Altamont Pass wind farm near 

Livermore, California, USA.  The WRF model was configured with three domains using 

two-way nesting to reach a horizontal resolution of 1 km over the region, with 52 vertical 

hydrostatic pressure levels, 18 of which were below 300 m AGL.  Furthermore, using 

equivalent wind speed, wind power was calculated.  

Modeled conditions were then compared to observations, and the overall results 

indicate good model performance for the regional near-surface winds, acceptable to good 

model performance for the Altamont Pass low-level winds, and good model performance 

for Altamont Pass capacity factor simulations.  Moreover, while modeled hour-to-hour 

variance was not exact, WRF-modeled wind speeds were close to those observed.  More 

importantly the magnitude of model error is relatively small compared to the average 

local wind speeds.  Combined with good agreement between both modeled and observed 

wind direction and atmospheric stability, modeled capacity factors were within the 
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observed range in 93 percent of the instances.  Furthermore, Day One and Day Two daily 

CF forecasts were predominantly within one standard deviation of each Area’s observed 

average.  Therefore, WRF modeled winds and derived wind power can be used as a wind 

power forecasting tool for Altamont Pass and potentially other coastal complex terrain 

regions. 

Sources of error in the WRF model forecasts can generally be linked to errors fed 

into the WRF model boundaries by NAM.  However, internal model errors do arise for a 

host of different reasons, and some model runs were much more accurate than others.  

However, as confirmed by this analysis, the first 48 hours of each model run generally 

exhibit good performance.  While five case studies were evaluated, in order to establish a 

more robust conclusion more model runs and evaluations should be performed.  

Furthermore, with more studies conducted, model biases can be determined and adjusted 

for, as in any forecasting tool.  Given the preliminary results that WRF can aptly simulate 

regional atmospheric conditions, WRF is now used as a real-time forecasting system at 

San José State University. 
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APPENDIX A  

Acronyms 

ACC  Anomaly Correlation 

AGL  Above Ground Level 

CARB  California Air Resource Board 

CF  Capacity Factor 

CWOP  Citizen Weather Observer Program 

LLNL  Lawrence Livermore National Laboratories 

LSMF  Late Spring through Mid Fall season 

LT  Local Time 

MAE  Mean Absolute Error 

METAR METeorological Terminal Air Report 

MSL  above Mean Sea Level 

NAM  North American Mesoscale Model 

RAWS  Remote Automated Weather System 

RMSE  Root Mean Square Error 

USGS  U.S. Geologic Survey 

UTC  Universal Time Coordinated 

WRF  Weather Research and Forecasting Model 
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