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ABSTRACT 
 

THE INVESTIGATION OF THE UNC-6/NETRIN AND UNC-40/DCC-MEDIATED 
SYNAPTIC PARTNER RECOGNITION PATHWAY 

 
by Kelli Benedetti 

 
Organisms receive, process, and respond to environmental cues via intricate 

neural circuits that form during development.  Proper development of neuronal circuits is 

therefore critical to brain function.  To form these circuits, a neuron must first extend its 

axons to the appropriate target.  After reaching this target region, it must recognize its 

correct synaptic partners from multiple incorrect partners and form appropriate synapses.  

It is well understood how axons reach their target regions, but little is known about how 

neurons select the correct partners once there, a process called synaptic partner 

recognition (SPR).  Our work aims to elucidate the genetic programs that specify correct 

SPR in sensory circuits in the nematode Caenorhabditis elegans.  We used the 

fluorescent trans-synaptic marker, Neuroligin 1-mediated GFP Reconstitution Across 

Synaptic Partners (NLG-1 GRASP).  Using this marker, we discovered a role for an 

UNC-6/Netrin and UNC-40/DCC-mediated axon guidance pathway gene that functions 

in SPR.  Interestingly, synaptic component localization in mutants of this gene is normal, 

indicating that the reduced SPR is not the result of a secondary defect in cell polarity or 

protein trafficking.  Finally, we found that this gene functions in the UNC-6/Netrin and 

UNC-40/DCC SPR pathway previously described by our laboratory.  Most remarkably, 

we found that this new gene’s function in the SPR pathway is molecularly distinct from 

its previously characterized signaling pathways.   The characterization of the novel role 

of this gene may give insights into the mechanism of sensory circuit formation.
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INTRODUCTION 

Neurons relay information to each other through specialized structures called 

synapses.  Chemical synapses are junctions formed between presynaptic and postsynaptic 

neurons that allow information to be transferred directionally.   Information is transmitted 

in the form of neurotransmitters that are secreted by the presynaptic neuron.  These 

neurotransmitters move across the presynaptic cleft and subsequently bind to receptors 

located at postsynaptic sites, eliciting the proper response from the postsynaptic cells.     

Neurons are connected via synapses into functional units called circuits that 

mediate perception, thought and behavior.  Much like an electrical circuit, neurons are 

connected to each other to transmit signals necessary for proper function of the nervous 

system.  These circuits are formed during development, creating simple or intricate 

connections between neurons.  An example is the mammalian olfactory circuit in which 

sensory neurons, called olfactory receptor neurons, sense specific odorants and form 

synapses with appropriate interneurons in a region of the brain called the olfactory bulb.  

These signals are eventually carried to the olfactory cortex via interneurons called mitral 

cells (Brennan and Keverne, 1997).  Failure to form a neural circuit correctly results in a 

failure of neural function.  For instance, a failure of the olfactory sensory neurons to form 

synapses with appropriate interneurons would result in failure to sense the corresponding 

odorant.   However, widespread defects in neural circuit formation could result in more 

serious functional deficits and have been linked with neurological disorders, such as 
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autism and schizophrenia.   Therefore, it is critical to understand how neural circuit 

formation is accomplished during development. 

To form a neural circuit, neurons must identify their correct synaptic partners, a 

process called synaptic partner recognition (SPR).   Early in development, neurons extend 

long cellular extensions called neurites into target regions containing the correct synaptic 

partners.   However, these regions usually contain many other neurites.  Electron 

micrograph reconstruction studies in invertebrates and vertebrates have shown that 

neurons can distinguish their appropriate synaptic partners, despite contacting many other 

cells (Shen and Scheiffele, 2010).  Thus, it is critical that neurites recognize and form 

synapses with only the correct partners.  This reliable process allows for proper neural 

circuit formation during development.  However, the molecular mechanisms underlying 

SPR are poorly understood.   

To understand SPR, we study the genetic model organism Caenorhabditis 

elegans.  C. elegans is a microscopic, free-living nematode that is an excellent model for 

studying genetics.  Not only is the entire genome sequenced, but there are various 

molecular tools, including cell-specific promoters for genes and cell-specific RNAi.  

Additionally, C. elegans is an excellent model in which to address questions about neural 

development.  C. elegans has only 302 neurons, connected by 7000 synapses.  In 

comparison, the human brain has approximately one hundred billion neurons connected 

by trillions of synapses.  Thus, this model allows for feasible studies of specific neuronal 

interactions.  Another important feature of C. elegans is that the morphology of the 

synapses and the components localized to the synapses are largely conserved in 
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vertebrates, making it an ideal model for neuroscience research (Shen et al., 2004; Zhen 

and Jin, 1999).  However, arguably the best feature of C. elegans for use in neuroscience 

research is that the entire synaptic connectivity has been mapped through decades of 

electron micrograph (EM) reconstruction (White et al., 1976; White et al., 1986).  This 

has allowed us to study the genetics of SPR between specific cells that have been 

previously shown to form synapses with each other. 

To study the molecular signals that mediate SPR, we have employed a transgenic 

fluorescent synaptic marker called Neuroligin-1 (NLG-1) Green Fluorescent Protein 

(GFP) Reconstitution Across Synaptic Partners, or NLG-1 GRASP.  Previously, the only 

way to study SPR was through electron microscopy.  Therefore these studies could only 

be performed on sections of fixed specimens.  Additionally, analysis of a single animal 

with electron microscopy is time-consuming, requiring months to years to analyze a 

single animal.  To create a much more rapid assay that can be performed in live animals, 

we developed NLG-1 GRASP (Feinberg et al., 2008).  This marker is based on split GFP.   

The molecule is split into two fragments: one containing beta sheets 1-10 of GFP and a 

second containing only beta sheet 11 of GFP.  The split GFP fragments are tethered to the 

extracellular domain of NLG-1, a transmembrane protein that localizes to both pre- and 

postsynaptic sites in C. elegans.  The fragments can be expressed in pre- and postsynaptic 

neurons of interest using cell-specific promoters.   When synapses between specific 

neurons are formed, the GFP fragments reconstitute and fluoresce.  However, if the 

correct partners fail to form a synapse, fluorescence is lost (Feinberg et al., 2008).  

Importantly, our previous studies indicate that this marker does not generate ectopic 
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synapses (Park et al., 2011).  Thus, NLG-1 GRASP allows instant identification of 

correct SPR in specific neural circuits in live animals.   

In this study, we test the molecules that mediate SPR between PHB sensory 

neurons, which are responsible for sensing noxious liquids, and AVA interneurons, which 

control backward movement of the worm in response to contact with such liquids.  This 

interaction is an excellent model for SPR because the PHB sensory neurons faithfully 

form synapses with AVA interneurons despite contacting approximately 30 other neurons 

(Hall and Russell, 1991; White et al., 1986). 

There are two types of synapses: terminal synapses, which form between the 

termini of pre- and postsynaptic neurites, and en passant synapses, which form between 

parallel pre- and postsynaptic neurites.  Vertebrates form both types of synapses, while C. 

elegans primarily forms en passant synapses.   In both cases, the correct synaptic partner 

must be among the neurites that a presynaptic neuron contacts for an appropriate synapse 

to form.  To visualize neurite contact between our neurons of interest, we cell-specifically 

express a cytosolic red fluorophore called mCherry in pre- and postsynaptic neurons to 

completely label the neurites.  This allows for contact to be assessed.  Once proper 

contact is confirmed, synaptic intensity can be studied. 

Previously, we uncovered a novel role for a conserved receptor-ligand pair in SPR 

using NLG-1 GRASP technology (Park et al., 2011).  UNC-6 is the C. elegans homolog 

of the vertebrate protein Netrin, while UNC-40 is the C. elegans DCC (Deleted in 

Colorectal Cancer) homolog.  UNC-6/Netrin is a diffusible, secreted ligand related to 

vertebrate Laminin proteins, whereas UNC-40/DCC is a transmembrane receptor that is 
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part of the Immunoglobulin Superfamily (IgSF) of proteins.  UNC-6/Netrin and UNC-

40/DCC are a very well-studied receptor-ligand pair, characterized extensively for their 

earlier roles in neural circuit formation (Moore et al., 2007; Tessier-Lavigne and 

Goodman, 1996).  These roles include cell migration, axon guidance, and targeting of 

synaptic components.  UNC-6/Netrin has an attractive cue for cells expressing UNC-

40/DCC.  Axons expressing UNC-40/DCC grow towards increasing concentrations of 

UNC-6/Netrin (Dickson, 2002; Serafini et al., 1994).  Conversely, axons expressing the 

UNC-5/UNC5 receptor with or without UNC-40/DCC are repelled by UNC-6/Netrin 

(Hedgecock et al., 1990).   

Our group found severe and highly penetrant defects in SPR in both unc-6/Netrin 

and unc-40/DCC mutant animals, indicating that both genes are required for PHB-to-

AVA SPR.  Further, we found that UNC-6/Netrin and UNC-40/DCC function in a 

juxtacrine manner, with UNC-40/DCC expressed presynaptically and UNC-6/Netrin 

expressed postsynaptically, to mediate SPR between PHB and AVA neurons (Park et al.  

2011). 

Our next goal was to identify additional molecules in the UNC-6/Netrin and 

UNC-40/DCC pathway that mediate SPR.  Several other molecules have been placed in 

the canonical Netrin/DCC-mediated axon guidance pathway, including co-receptors 

SDN-1/Syndecan and GPN-1/Glypican (Fox and Zinn, 2005; Johnson et al., 2006), both 

of the Heparan Sulfate Proteoglycan (HSPG) proteins, upstream cues from MIG-2/Rho, 

VAB-8/Kinesin, UNC-73/Trio (Levy-Strumpf and Culotti, 2007), CLR-1, and the 
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downstream effectors CED-10/Rac1, UNC-34/Enabled (Gitai et al., 2003), UNC-

115/abLIM (Lundquist et al., 1998), and NCK-1/Nck1 (Li et al., 2002).   

We tested 35 candidate molecules for roles in SPR utilizing the NLG-1 GRASP 

marker in mutant worms.  We found that the most highly penetrant and severe SPR 

defects were found in clr-1, for clear mutant 1, animals.  CLR-1 is a receptor protein 

tyrosine phosphatase (RPTP), previously studied for its role in fluid regulation in the 

pseudocoelom (Kokel et al., 1998) and repulsion of UNC-6/Netrin and UNC-40/DCC-

mediated axon guidance (Chang et al., 2004).   

Receptor protein tyrosine phosphatases (RPTPs) have been studied for their 

important roles in neuronal morphogenesis in both invertebrates and vertebrates.  

However, unlike the well-studied receptor tyrosine kinases (RTKs), the mechanisms by 

which these receptors function are poorly understood.  Additionally, the molecular 

pathways have not been thoroughly elucidated.   RPTPs have been studied for their in 

vivo roles in axon outgrowth and guidance, as well as in neuromuscular junction (NMJ) 

growth (Johnson and Van Vactor, 2003).   LAR is a RPTP that has been studied in detail 

in Drosophila for its various roles in neural development.   LAR is required for motor 

neurons in intersegmental nerve b to be guided to the correct muscles (Krueger et al., 

1996).   Also, LAR determines the size and strength of larval NMJs (Kaufmann et al., 

2002).   In the visual system, LAR is required for photoreceptor cells to defasciculate in 

order to target to the appropriate lamina (Clandinin et al., 2001), and LAR is required for 

correct targeting of the R7 photoreceptor neurons into the deep M6 layer of the medulla 

(Clandinin and Zipursky, 2002).  Studying RPTPs further will help elucidate their 
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mechanism of function, as well as help construct signaling pathways that mediate proper 

neural development.   

CLR-1 is a RPTP with typical RPTP domains.  There is one cysteine rich, one 

Immunoglobulin (Ig), and two Fibronectin type III (FnIII) extracellular domains.   In 

addition, there is a transmembrane domain, and two intracellular phosphatase domains: 

one catalytic, one inactive.  CLR-1 was initially studied for its role in inhibition of EGL-

15, the C. elegans homolog of the fibroblast growth factor receptor (FGFR), in the 

hypodermis (Kokel et al., 1998).  Later, it was studied for its role in inhibition of the 

UNC-40/DCC axon guidance pathway in AVM touch-receptor neurons (Chang et al., 

2004).   AVM neurons are guided ventrally by the secreted UNC-6/Netrin ligand, which 

binds the UNC-40/DCC transmembrane receptor to mediate attraction to the ventral 

nerve cord, as well as by the secreted SLT-1/Slit ligand, which binds the SAX-3/Robo 

IgSF transmembrane receptor to mediate repulsion from the dorsal region.   clr-1 single 

mutants do not have AVA axon guidance defects, but double-mutants with sax-3 or slt-1 

have a dramatic increase in the penetrance of axon guidance defects over sax-3 or slt-1 

single mutants, suggesting that CLR-1 negatively regulates UNC-40/DCC signaling 

during axon guidance (Chang et al., 2004).   However, with regards to neural circuit 

formation, CLR-1 has only been studied previously for its role in axon guidance.  In this 

study, we demonstrate a novel role for CLR-1 in SPR. 

In this study, we find that CLR-1 functions with UNC-6/Netrin and UNC-40/DCC 

in SPR.  However instead of antagonizing the function of UNC-40/DCC as it does in 

axon guidance, CLR-1 functions as a positive signal to UNC-40/DCC to mediate SPR.  
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Additionally, we identify the defect in clr-1 mutants as being specifically in SPR and not 

a secondary consequence of defects in polarity or protein targeting.  We also find that 

many molecules that function with CLR-1 and other RPTPs do not have a conserved role 

in the CLR-1-mediated SPR pathway, likely indicating that this is a new signaling 

pathway.  We hope that the characterization of this novel role for CLR-1 in SPR will give 

valuable insights into the molecular mechanisms of sensory neural circuit formation. 
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EXPERIMENTAL PROCEDURES 

Strains and genetics 

Wild-type strains were C. elegans var. Bristol, strain N2.  All strains (unless 

otherwise noted) contain the integrated pnlp-1::mCherry (10 ng/µl), pflp-18::mCherry (5 

ng/µl), pgpa-6::nlg-1::spGFP1-10 (60 ng/µl), pflp-18::nlg-1::spGFP11 (30 ng/µl), and 

podr-1::RFP (20 ng/µl) transgene wyIs157 IV.  All strains were raised on OP50 

Escherichia coli-seeded NGM plates at 20°C and were maintained according to standard 

C. elegans methods (Brenner, 1974).  Mutant strains used in this study include clr-

1(e1745ts) II, unc-40(e271) I, unc-6(ev400) X, bar-1(ga80) X, egl-15(n484) X, lin-

10(e1439) I, ina-1(gm39) III, and wyIs157 IV (Park et al., 2011).  The extrachromosomal 

transgenic array used for presynaptic and postsynaptic localization in wild type and clr-1 

was wyEx2309 in Figure 2A-D (pnlp-1::mCherry::rab-3 (1 ng/µl), pflp-18::nlg-1::YFP 

(30 ng/µl), punc-122::RFP (30 ng/µl)).  Figure 2I-L was iyEx84 (pgpa-6::syd-2::YFP (30 

ng/µl), punc-122::RFP (20 ng/µl)), in wild type and clr-1.  In wild type and clr-1, Figure 

2E-H was iyEx83 (pgpa-6::GFP::elks-1 (30 ng/µl), punc-122::RFP (20 ng/µl)), and in 

wild type, clr-1 in Figure 2M-P was iyEx82 (pflp-18::nlg-1::YFP (30 ng/µl), pnlp-

1::mCherry::rab-3 (0.5 ng/µl), punc-122::RFP (20 ng/µl)).   

Fluorescent microscopy 
 

Images were taken of live C. elegans worms using a Carl Zeiss Axio Imager.A1 

fluorescent microscope at 630X magnification.  All micrographs were taken at the larval 

4 (L4) stage, except for the synaptic component experiments, for which they were taken 

at the larval 2 (L2) stage.  To anesthetize worms, a 2:1 ratio of 0.3 M 2,3-butanedione 
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monoxime (BDM) to 10 mM levamisole solution was utilized, which did not influence 

SPR phenotypes.   

Phenotypic quantification 
 

NIH ImageJ software (Abramoff, 2004) was used to quantify data from images.  

This data included PHB-AVA NLG-1 GRASP intensity, pnlp-1::mCherry::rab-3 

intensity, PHB-AVA neurite contact, and NLG-1 GRASP synaptic length.  The 

remaining methods described were based on methods we previously used (Park et al., 

2011).  Intensity for NLG-1 GRASP, mCherry::RAB-3, GFP::ELKS-1, SYD-2::YFP, 

and NLG-1::YFP was determined by outlining each group of puncta and measuring the 

intensity at each pixel.  To adjust for differences in background fluorescence, the 

background intensity was approximated by determining the minimum intensity value in a 

region adjacent to the puncta.  This value was then subtracted from the intensity for each 

pixel.  Then, the sum of the adjusted values was calculated.  Median intensity values were 

normalized to wild-type levels measured on the same day and under the same 

microscope.   

Statistical analysis 

Median values for relative intensity were compared by a Wilcox u-test, which 

compares the medians of two independent groups.  If more than one u-test was conducted 

for a group of data presented in the same experiment, the p-values were adjusted for 

multiple comparisons by the Hochberg method.  The Hochberg method is a standard 

procedure used to adjust for the tendency to reject incorrectly a null hypothesis when 

multiple comparisons are made.  The Hochberg method can only conservatively increase 
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p-values.  Results are reported in the form of p-values in the figures in this thesis (*p < 

0.05, ** p < 0.01, *** p < 0.001, NS p > 0.05), and exact p-values are given in Table 1 

rather than error bars.  Error bars are not utilized since intensity readings are not based on 

a normal distribution, which is required to employ error bars.   
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RESULTS 

clr-1 mutants have defective synaptic partner recognition (SPR) 

For this study, we utilized Neuroligin-1 GFP-Reconstitution Across Synaptic 

Partners (NLG-1 GRASP) to label synapses in vivo between the two PHB sensory 

neurons and the two AVA interneurons. We also used cytosolic mCherry to label neurite 

contact as a means to assay SPR in mutant animals.  Previously, these markers were 

integrated into the genome to create the marker strain wyIs157 and this strain was used to 

discover a novel UNC-6/Netrin and UNC-40/DCC-mediated SPR pathway (Park et al., 

2011).  To identify genes that function in this process, we tested 35 different molecules 

that are directly or indirectly implicated in UNC-6/Netrin and UNC-40/DCC-mediated 

neuronal cell migration and/or axon guidance pathways.  We crossed the strain wyIs157 

into these 35 candidate mutant strains.  Several molecules, including the canonical UNC-

6/Netrin and UNC-40/DCC-mediated axon guidance and cell migration pathway 

members UNC-115/abLIM, UNC-5/UNC5, UNC-129/TGFβ, AGE-1/PI3K, and CLEC-

38 displayed no abnormal SPR phenotypes (Park et al., 2011).  However, clr-1, which 

encodes a transmembrane receptor protein tyrosine phosphatase (RPTP), had highly 

penetrant, very severe defects in SPR.  In clr-1(e1745) II mutants, which contain a 

temperature-sensitive allele that deactivates the catalytic phosphatase domain, neurite 

contact was not defective, but NLG-1 GRASP signal was reduced to 15% of wild-type 

levels (Figure 1G, H, Q).  This is a defect similar to that in unc-6/Netrin and unc-40/DCC 

mutants.  In our previous studies, we found that NLG-1 GRASP intensity in unc-6/Netrin 

and unc-40/DCC mutants was 45-55% of wild type, a highly significant difference.  This 
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indicates that like UNC-6/Netrin and UNC-40/DCC, CLR-1 promotes SPR pathway 

function.  This contrasts with CLR-1’s function in axon guidance, which is to antagonize 

UNC-6/Netrin and UNC-40/DCC function (Chang et al., 2004). 

CLR-1 functions in the UNC-6/Netrin and UNC-40/DCC-mediated SPR pathway 

Since clr-1 mutants have a highly penetrant and very severe SPR defect, we 

wanted to determine whether CLR-1 functions in the UNC-6/Netrin and UNC-40/DCC-

mediated SPR pathway or in a parallel SPR pathway.  We constructed double mutants 

between clr-1(e1745) II and unc-6(ev400) X and clr-1(e1745) II and unc-40(e271) I.  

Both the unc-6 and unc-40 mutations tested are caused by null alleles.  If the defect in 

NLG-1 GRASP signal in the double mutants is not significantly different from the defect 

in clr-1 mutants, then these genes likely function in the same pathway.  However, if the 

defect in the double mutants is significantly more defective than in the clr-1 single 

mutants, then the genes likely function in parallel pathways to mediate SPR.  We found 

in both clr-1; unc-6 and in clr-1; unc-40 double mutants that NLG-1 GRASP signal is not 

significantly different from that in clr-1 single mutants, indicating that CLR-1 functions 

in the same pathway as UNC-6/Netrin and UNC-40/DCC to mediate SPR (Figure 1Q).  

To confirm our findings, we made animals that were heterozygous for each gene as well 

as trans-heterozygous for each gene combination.  We produced and tested the 

heterozygotes, clr-1(e1745)/+ II, unc-6(ev400)/+ X, unc-40(e271)/+ I, and the trans-

heterozygotes, clr-1(e1745)/+ II; unc-6(ev400)/+ X, and clr-1(e1745)/+ II; unc-

40(e271)/+ I.  Each single heterozygote should have had wild-type NLG-1 GRASP levels 

since each lesion is caused by a recessive allele, and indeed we found that each single 
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gene heterozygote had wild-type NLG-1 GRASP intensity (Figure 1Q).  A more severe 

defect in NLG-1 GRASP signal in trans-heterozygotes, as compared to wild-type 

animals, would indicate that CLR-1 functions in the same pathway as UNC-6/Netrin and 

UNC-40/DCC.  This would likely be due to a reduction in gene product at two points in 

the pathway.  Indeed, the trans-heterozygotes for clr-1 and unc-6/Netrin and clr-1 and 

unc-40/DCC had severe defects in NLG-1 GRASP signal, again supporting a role for 

CLR-1 in the UNC-6/Netrin and UNC-40/DCC SPR pathway (Figure 1Q).  Thus, CLR-1 

likely functions in the same pathway as UNC-6/Netrin and UNC-40/DCC to mediate 

SPR. 
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Figure 1. clr-1 mutants display defective SPR and CLR-1 functions in the UNC-
6/Netrin and UNC-40/DCC-mediated SPR pathway.   
(A) Schematic and (B, C, D) micrographs of a wild-type animal.  (B) mCherry labels 
PHB and AVA neurite adhesion, and is specifically pPHB::mCherry, pAVA::mCherry.  
(C) The NLG-1 GRASP signal indicates synapses between PHB and AVA neurons, and 
is specifically pPHBnlg-1::spGFP1-10, pAVAnlg-1::spGFP11. (D) Merged image.   (E) 
Schematic and (F, G, H) micrographs of a clr-1 mutant.  (E, G) The NLG-1 GRASP 
signal is highly reduced.  (K) Merge.   (I) Schematic and (J, K, L) micrographs of an unc-
6 mutant animal.   (I, K) The reduced NLG-1 GRASP signal is similar to that in unc-40 
animals (M, O).   (J, N) Defects in PHB and AVA neurite contact are also similar.   (L, P) 
Merged image.   (D, H, L, P) Yellow scale bar, 2 µm.  (Q) Quantification of reduction in 
NLG-1 GRASP fluorescence in clr-1, unc-6 and unc-40 mutants using NIH ImageJ.   For 
wild type n=94, clr-1 n=80, unc-6 n=87, and unc-40 n=85 animals.   ***p< 0.001, u-test.   
For wild type and clr-1, p=1.6’10-9, wild type and unc-6, p=1.0’10-5, wild type and unc-
40, p=1.0’10-7.  For unc-6 and unc-40, p=5.8’10-1.   P-values were adjusted for multiple 
comparisons using the Hochberg method.   Quantification of contact defects between 
PHB and AVA neurites using NIH ImageJ (data not shown in graph, but displayed in 
micrographs F, J, N, schematics E, I, M). The same animals for NLG-1 GRASP analysis 
were used.  For unc-6 and unc-40: ***p< 0.001, for clr-1: NS, p>0.05, t-test.  For wild 
type and clr-1, p=9.0’10-1.  For wild-type and unc-6, p=2.4’10-18.  For wild-type and 
unc-40, p=2.4’10-18.  For double mutant analysis, wild type n=40, clr-1 n=80, unc-6; clr-
1 n=20, unc-40; clr-1 n=32 animals.  NS, p>0.05, ***p<0.001, **p<0.01, u-test.  For clr-
1 and unc-6; clr-1, p=5.4’10-2.  For wild type and unc-6; clr-1, p=7.8’10-4.  For clr-1 and 
unc-40; clr-1, p=3.8’10-1.  For wild type and unc-40; clr-1, p=4.2’10-3.  For heterozygote 
analysis, wild type n=40, clr-1/+ n=38, unc-6/+ n=39, unc-40/+ n=24.  NS, p>0.05, u-
test.  For wild type and clr-1/+, p=1.7’10-1.  For wild type and unc-6/+, p=8.7’10-1.  For 
wild type and unc-40/+, p=3.8’10-1.  For trans-heterozygote analysis, wild type n=40, 
unc-6/+; clr-1/+ n=38, unc-40/+; clr-1/+ n=10.  ***p< 0.001, **p<0.001 u-test.  For 
wild type and unc-6/+; clr-1/+, p=4.3’10-4.  For wild type and unc-40/+; clr-1/+, 
p=4.0’10-3.   
 
Synaptic components are properly localized in clr-1 mutants 

We propose that defects in synaptogenesis in clr-1 mutants could indicate a 

failure in SPR.   Another possible explanation is that CLR-1 specifies localization of 

presynaptic components to the correct region of the PHB neurite.  Such a role was 

observed for UNC-6/Netrin and UNC-40/DCC in AIY interneurons (Colón-Ramos et 

al., 2007) Thus, the failure to form PHB-to-AVA synapses in the clr-1 mutants could be 

a secondary consequence of improper localization of synaptic components.  However, 
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UNC-6/Netrin and UNC-40/DCC had no such role in PHB (Park et al., 2011).  If CLR-1 

did play a role in localizing presynaptic components, we would predict a loss of 

presynaptic and/or postsynaptic components in the region of contact between the PHB 

and AVA neurites.  To test this hypothesis, we assayed several well-characterized 

synaptic and vesicle markers in the clr-1 mutant background.  We crossed strains 

containing the presynaptic vesicle trafficking marker mCherry::RAB-3 expressed in 

PHB, the active zone markers GFP::ELKS-1 or SYD-2::YFP expressed in PHB, and the 

postsynaptic marker NLG-1::YFP expressed in AVA, into clr-1 mutants (Park et al., 

2011).  Interestingly, we found that clr-1 mutants do not have differences in any of these 

synaptic markers as compared to wild type (Figure 2Q).  Specifically, we found that the 

presynaptic vesicle marker mCherry::RAB-3 and the presynaptic active zone markers 

SYD-2/Liprin-α::YFP and GFP::ELKS-1 are properly localized to the synaptogenic 

region of PHB in clr-1 mutants.   Similarly the postsynaptic marker NLG-1::YFP also 

was consistently localized to the region of AVA that forms synapses with PHB neurons.  

This is consistent with our previous findings for unc-6/Netrin and unc-40/DCC mutants 

(Park et al., 2011), and suggests that the SPR defect we observe in clr-1 mutants is a 

primary defect resulting from improper recognition of correct synaptic partners.   
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Figure 2. Vesicle trafficking, active zone, and postsynaptic components localize to 
the correct subcellular compartment in clr-1 mutants.   
(A, B, E, F, I, J, M, N) Wild type, (C, D, G, H, K, L, O, P) clr-1 are labeled with the 
presynaptic vesicle trafficking marker mCherry::RAB-3 (A-D), active zone 
markers SYD-2::YFP (I-L) or GFP::ELKS-1 (E-H) expressed in PHB neurons or the 
postsynaptic marker NLG-1::YFP (M-P) expressed in AVA neurons. (B, D, F, H, J, L, N, 
P) Yellow scale bars: 2 µm.  (A-D) Presynaptic vesicle trafficking components are 
unaltered in clr-1 mutant animals, localizing to the distal region of the PHB axon, where 
synapses form (boxed in white). (E-L) Presynaptic active zone components (M-P) and 
postsynaptic specializations in the preanal ganglion are also unaltered in clr-1 mutant 
animals, localizing to the distal region of the PHB or AVA axon where synapses are 
normally form (boxed in white). (Q) Quantification of pre- or postsynaptic marker 
fluorescence intensity using NIH ImageJ indicates no significant difference among wild 
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type and clr-1 mutant animals.  For mCherry::RAB-3, wild type n=40, clr-1 n=24.  
For SYD-2::YFP, wild type n= 40, clr-1 n=40.  For GFP::ELKS-1, wild type n=40, clr-1 
n=40 .  For NLG-1::YFP, wild type n=40, clr-1 n=41.  NS, not significant, p>0.05, u-test.  
P-values were adjusted for multiple comparisons using the Hochberg method. 
 
Molecules that function with CLR-1 or with RPTPs in other pathways do not 

mediate SPR 

We hypothesized that molecules that act with RPTPs in other biological pathways 

may also act with CLR-1 in SPR.  To answer this question, and to further elucidate the 

pathway(s) mediating SPR, we tested various molecules known to act with CLR-1 or 

other RPTPs in other developmental pathways.  We tested EGL-15/FGFR because CLR-

1 inhibits EGL-15/FGFR in the hypodermis to regulate fluid balance (Kokel et al., 1998), 

and we tested three proteins known to function with RPTPs in other developmental 

pathways: BAR-1/β-catenin, INA-1/α-integrin, and LIN-10/PDZ.  None of these mutants 

displayed defects in SPR (Figure 3U).  This suggests that EGL-15/FGFR, BAR-1/β-

catenin, INA-1/α-integrin, and LIN-10/PDZ do not function with CLR-1 in SPR.  

Interestingly, this suggests that we have identified a novel RPTP signaling pathway. 
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Figure 3. RPTP pathway mutants exhibit no defects in SPR.   
Quantification (U) of NLG-1 GRASP intensity for bar-1, egl-15, ina-1, lin-10 mutants.  
Molecules that function with RPTPs, bar-1, egl-15, ina-1, and lin-10, have normal NLG-
1 GRASP intensities, indicating that SPR is molecularly distinct from previously studied 
RPTP signaling pathways.  Wild-type n = 40-50, bar-1 n = 35, egl-15 n=80, ina-1 n = 
41, lin-10 n= 41 animals.  NS, not significant, u-test.  P-values were adjusted for multiple 
comparisons using the Hochberg method.  (A, E, I, M, Q) Schematics, (C, G, K, O, 
S) micrographs of normal PHB-AVA NLG-1 GRASP signal, (B, F, J, N, R) cytosolic 
mCherry labeling normal PHB and AVA neurite contact, and (D, H, L, P, T) merged 
images.  (A-D) Wild type, (E-H) bar-1, (I-L) egl-15 (M-P) ina-1, (Q-T) and lin-10 
animal.  Yellow scale bar: 2 µm. 
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DISCUSSION 

Synaptic partner recognition (SPR) is a necessary step in neural circuit formation.  

Utilizing NLG-1 GRASP technology, we previously uncovered the role of the conserved 

UNC-6/Netrin and UNC-40/DCC ligand-receptor pair in SPR between PHB sensory 

neurons and AVA interneurons in C. elegans (Park et al., 2011).  Using NLG-1 GRASP, 

our group has found that SPR is achieved through limiting amounts of UNC-6/Netrin 

secreted by postsynaptic AVA neurons, which interact in a juxtacrine manner with UNC-

40/DCC in the presynaptic PHB neurons.  In this study, we discovered a novel role for 

the RPTP CLR-1 in promoting PHB-to-AVA SPR in the UNC-6/Netrin and UNC-

40/DCC pathway.  Additionally, we revealed a novel mechanism for CLR-1, since it was 

previously found to antagonize UNC-6/Netrin and UNC-40/DCC-mediated pathways in 

earlier neural circuit formation steps.  We also found that CLR-1 has a primary role in 

SPR and does not affect synaptic component localization.  Finally, we discovered that 

molecules that function with RPTPs in other biological pathways are not conserved in the 

CLR-1-mediated SPR pathway, indicating that this is a new RPTP-signaling pathway. 

CLR-1 is required for SPR 

CLR-1 has been previously studied for regulating fluid balance in the hypodermis 

(Kokel et al., 1998), as well as in axon guidance in AVM touch-receptor neurons (Chang 

et al., 2004).  Here, we suggest a novel role for CLR-1 in PHB sensory neuron to AVA 

interneuron SPR, a final step of neural circuit formation.  The role of CLR-1 in SPR is 

particularly interesting because we previously found that PHB to AVA neurite contact in 

unc-6/Netrin and unc-40/DCC mutants was 80% of wild-type neurite contact, a highly 
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significant decrease as compared to wild-type (p<0.001) (Park et al., 2011).  In contrast, 

clr-1 mutants do not have significant defects in neurite adhesion (Table 1).  This suggests 

that although the PHB and AVA neurites are able to properly adhere, these neurons 

cannot recognize each other as correct partners with which to establish synaptic 

connections.   
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Table 1. Summary of statistical analysis.  
 
P-values for all statistical tests performed in this work. 

 

CLR-1 functions in the UNC-6/Netrin and UNC-40/DCC-mediated SPR pathway 

Through double mutant and trans-heterozygote analysis, we found that CLR-1 

likely functions in the same UNC-6/Netrin and UNC-40/DCC-mediated SPR pathway 

that we previously identified (Park et al., 2011).  We had hypothesized that CLR-1 would 

function in the UNC-6/Netrin and UNC-40/DCC pathway because of previous studies 

that placed CLR-1 as an upstream repressor of the receptor-ligand pair in axon guidance 

of touch-receptor neurons AVM (Chang et al., 2004).  However, we found an opposite 

mechanistic role of CLR-1 in the SPR pathway, as CLR-1 promotes UNC-6/Netrin and 

Figure 
Number

Figure 
Letter

Genotypes compared
Statistical 

Test
 p-value

1 Q wild type and clr-1 u-test 1.6E-09
1 Q wild type and unc-6 u-test 1.0E-05
1 Q wild type and unc-40 u-test 1.0E-07
1 Q wild type and unc-6; clr-1 u-test 7.8E-04
1 Q unc-6 and unc-6; clr-1 u-test 2.6E-01
1 Q clr-1 and unc-6; clr-1 u-test 5.4E-02
1 Q wild type and unc-40; clr-1 u-test 4.2E-03
1 Q unc-40 and unc-40; clr-1 u-test 4.4E-04
1 Q clr-1 and unc-40; clr-1 u-test 3.8E-01
1 Q wild type and clr-1/+ u-test 1.7E-01
1 Q wild type and unc-6/+ u-test 8.7E-01
1 Q wild type and unc-40/+ u-test 3.8E-01
1 Q wild type and unc-6/+; clr-1/+ u-test 4.3E-04
1 Q wild type and unc-40/+; clr-1/+ u-test 4.0E-03

1 wild type and clr-1 t-test 9.0E-01
1 wild type and unc-6 t-test 2.4E-18
1 wild type and unc-40 t-test 2.4E-18

2 Q wild type; mCherry::rab-3, clr-1; mCherry::rab-3 u-test 9.1E-01
2 Q wild type; syd-2::YFP and clr-1; syd-2::YFP u-test 5.4E-01
2 Q wild type; GFP::elks-1 and clr-1; GFP::elks-1 u-test 5.0E-01
2 Q wild type; nlg-1::YFP and clr-1; nlg-1::YFP u-test 9.5E-01

3 U wild type and bar-1 u-test 5.9E-01
3 U wild type and egl-15 u-test 7.3E-02
3 U wild type and ina-1 u-test 9.4E-01
3 U wild type and lin-10 u-test 7.3E-01
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UNC-40/DCC-mediated SPR.  Not only did we find a novel role for CLR-1 in SPR, but 

we also found a novel mechanism by which CLR-1 functions.   

A vital step in understanding the role of CLR-1 in the UNC-6/Netrin and UNC-

40/DCC-mediated SPR pathway is to determine the cell(s) in which CLR-1 functions.  If 

CLR-1 functions in presynaptic PHB sensory neurons, it may, like UNC-40/DCC, bind 

UNC-6/Netrin secreted from postsynaptic AVA interneurons (Figure 4a).  From our 

previous studies, we found that UNC-6/Netrin is secreted in limiting amounts from AVA 

(Park et al., 2011), which is also shown in this model.  Alternately, if CLR-1 is expressed 

by postsynaptic AVA interneurons, CLR-1 could possibly bind secreted UNC-6/Netrin 

and present it across the synaptic cleft to UNC-40/DCC receptors expressed by 

presynaptic PHB sensory neurons, possibly recruiting postsynaptic components in AVA 

to completely transmit the signal (Figure 4b). This hypothesis is supported by previous 

studies on the Netrin-G ligand NGL-3 that forms trans-synaptic adhesions with the RPTP 

LAR in order to regulate excitatory synapses in vertebrates (Kwon et al., 2010).  We 

would further define the role of CLR-1 by determining its subcellular localization.  UNC-

6/Netrin is localized only to synaptic sites, whereas UNC-40/DCC is localized to the 

entire PHB axon length that contacts AVA (Park et al., 2011).  Because UNC-6/Netrin is 

a limiting factor and assuming that CLR-1 functions similar to UNC-40/DCC, CLR-1 

may also be localized to the region of neurite contact, binding UNC-6/Netrin only at 

synaptogenic sites.  Co-localization experiments with UNC-6/Netrin and UNC-40/DCC 

could show if CLR-1 functions directly with these proteins at a specific site on the 
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neurons.  This will further characterize the role of CLR-1 in the UNC-6/Netrin and UNC-

40/DCC-mediated SPR pathway.  
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Figure 4. UNC-6/Netrin, UNC-40/DCC, and CLR-1 mediate SPR between 
presynaptic PHB sensory neurons and postsynaptic AVA interneurons.   
In the first model (A), UNC-6 secreted from AVA interneurons binds either CLR-1 or 
UNC-40 expressed in PHB neurons to direct SPR.  Limiting amounts of UNC-6 bind 
only a subset of CLR-1 or UNC-40 receptors in PHB, inducing a recognition event, 
resulting in synaptogenesis between the PHB and AVA neurons.  In the second model 
(B), UNC-6 secreted from AVA interneurons binds CLR-1 also expressed by AVA 
interneurons, presenting UNC-6 across the synaptic cleft to UNC-40 expressed in PHB, 
inducing a recognition event between PHB and AVA neurons.   
 
Incorrect SPR in clr-1 mutants is the result of a primary recognition defect and not 

due to incorrect synaptic component localization 

We found that in clr-1 mutants, vesicle trafficking, active zone, and postsynaptic 

fluorescent markers are properly localized to the synaptogenic regions at the distal end of 

each appropriate axon.  This finding is similar to that found previously in unc-6/Netrin 

and unc-40/DCC mutants (Park et al., 2011).  Interestingly, this contrasts with a finding 

by Colón-Ramos and colleagues (2007), in which AIY interneurons express UNC-

40/DCC that binds UNC-6/Netrin secreted from non-neuronal, glia-like sheath cells to 

mediate the transport of presynaptic components to the neurite.  Our work indicates that 

the SPR pathway may occur downstream of the synaptic component localization 

pathway.   These findings were remarkable because they confirmed that the decrease in 

NLG-1 GRASP signal in the clr-1 mutants was not due to defects in protein trafficking or 

neuronal polarity.   Instead, the defect is likely to result from a failure to identify the 

neurons with which to form synapses. 
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The CLR-1 SPR pathway is distinct from previously described RPTP pathways 

To fully characterize the CLR-1 mediated SPR pathway, we would need to 

discover additional molecules that function in the pathway.  We attempted to do this by 

testing several candidates that have been found to act with RPTPs in other biological 

pathways, including EGL-15/FGFR, which is inhibited by CLR-1 in regulating fluid 

balance (Kokel et al., 1998), as well as BAR-1/β-catenin, INA-1/α-integrin (Natarajan et 

al., 2001), and LIN-10/PDZ (Kawachi et al., 1999).  Interestingly, we found that none of 

these proteins are conserved in the CLR-1-mediated SPR pathway (Figure 4Q).  This 

result is exciting because this RPTP-signaling pathway is a novel one, previously 

unidentified.  Also, this is the first evidence that CLR-1 can function independent of 

EGL-15/FGFR.  In order to further elucidate the SPR pathway, a forward genetic 

suppressor screen of CLR-1 may prove fruitful in discovering new molecules that 

function with CLR-1 in mediating SPR.  

Implications of SPR in understanding proper brain function 

SPR is one of the final steps in neural circuit formation.  First, cell bodies migrate 

to their proper position.  Second, axons projected from neurons are guided by proteins 

called growth cues, which are normally secreted from non-neuronal guidepost cells.  

Third, synaptic components are properly localized to synaptogenic regions on the 

neurons.  Next, a recognition event between correct synaptic partners occurs (SPR).  Last, 

synapses are formed between correct neuronal partners.  Very little work has been 

performed on the molecular mechanisms that mediate SPR.  Identifying the molecules 

that mediate correct SPR will help elucidate this intricate process by which neurons 
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correctly select other neurons with whom to form synapses.  We have uncovered novel 

roles of UNC-6/Netrin, UNC-40/DCC, and CLR-1 in mediating SPR.  Correct neural 

circuitry is vital because neural circuits are responsible for everything we do, think, and 

perceive.  Incorrect recognition events between neurons will cause faulty wiring of these 

circuits and could have disastrous results.  Previous research has implicated improper 

neural circuit formation, due to defects in SPR or synaptogenesis, in autism spectrum 

disorders or ASDs (Durand et al., 2007; Garber, 2007).  Understanding which molecules 

are responsible for correct SPR and the mechanism by which they function could uncover 

what proteins to target with drugs and therapies in patients that have disorders caused by 

defects in these processes, as well as learn how the brain and possibly the entire nervous 

system function normally.    
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