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A B S T R A C T

Graph convolutional networks (GCNs) have been increasingly used to predict the state of health (SOH) and
remaining useful life (RUL) of batteries. However, conventional GCNs have limitations. Firstly, the correlation
between features and the SOH or RUL is not considered. Secondly, temporal relationships among features
are not considered when projecting aggregated temporal features into another dimensional space. To address
these issues, two types of undirected graphs are introduced to simultaneously consider the correlation among
features and the correlation between features and the SOH or RUL. A conditional GCN is built to analyze
these graphs. A dual spectral graph convolutional operation is introduced to analyze the topological structures
of these graphs. Additionally, a dilated convolutional operation is integrated with the conditional GCN to
consider the temporal correlation among the aggregated features. Two battery datasets are used to evaluate
the effectiveness of the proposed method. Experimental results show that the proposed method outperforms
other machine learning methods reported in the literature.

1. Introduction

1.1. Background

Lithium-ion batteries have been increasingly adopted as an energy
resource for electric vehicles (EVs), drones, and portable electronics
due to their high electricity density, lightweight, long lifetime, and low
self-discharge rate (Cui, Gao, Mao, & Wang, 2022; Liu, Wu, Zhang, &
Chen, 2014; Xi, Wang, Fu, & Mi, 2022). Over the past decades, many
efforts have been made in the design of lithium-ion batteries to improve
energy efficiency (Guo, Song, & Chen, 2009; Wang & Cao, 2008).
However, similar to other engineered systems, the performance of
lithium-ion batteries will deteriorate over time, also known as battery
aging, due to physical and chemical changes as a result of daily usage
and operations (He, Williard, Chen, & Pecht, 2014; Lee, Kim, & Lee,
2022). The battery aging problem may result in catastrophic failures
such as fire hazards and outbursts. As a result, it is critical to estimate
the state of health (SOH) and predict the remaining useful life (RUL)
of batteries (Chao & Chen, 2011).

Over the past few years, data-driven methods have shown supe-
rior performance for SOH and RUL predictions of lithium-ion batter-
ies (Khaleghi et al., 2022; Shen, Sadoughi, Li, Wang, & Hu, 2020; Wang,
Zhao, Yang, & Tsui, 2017). Data-driven SOH and RUL prediction meth-
ods can be classified into two categories: filter-based approaches and
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machine-learning approaches. The filter-based approaches incorporate
the extended Kalman filter (EKF) (Nian, Shuzhi, & Xiongwen, 2021),
unscented Kalman filter (UKF) (Zhang, Tu, et al., 2022), Lebesgue-
sampling-based EKF (Niu, Wang, Liu, & Zhang, 2021), and particle
filter (PF) (Zhang et al., 2021). For instance, Chen, Hu, Gui, and Zou
(2014) used an unscented Kalman filter to predict the SOH and RUL of
batteries. The proposed filter-based method included the internal resis-
tance in the model parameters, the internal resistance was employed
to infer the future degradation trajectory. The simulation results have
demonstrated that the UKF achieved an accurate prediction of SOH,
and its relative error rate is less than 4%. Yan et al. (2018) intro-
duced the Lebesgue-sampling Kalman filter to reduce the computational
cost in SOH predictions. The proposed filter dramatically reduced the
computation time and cost. The experimental results indicated that
the proposed filter reduced computational cost and delivered a precise
estimation of the SOH. Dong, Chen, Wei, and Ling (2018) introduced
a particle filter model to predict the SOH of batteries. The particle
filter was combined with Brownian motion to simulate the dynamic
changes during the degradation process. The accuracy and efficiency
of the method were demonstrated by testing it on several lithium-ion
batteries that were in a defective stage. The results of the experiments
have shown that the particle filter achieved accurate RUL and SOH
predictions.
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One of the advantages of filter-based methods is their self-correction
capabilities, however, these methods have limitations in dealing with
large volumes of data (Lee, Kwon, & Lee, 2023; Park, Lee, Kim, Park, &
Kim, 2020; Wei, Dong, & Chen, 2017). To address this issue, machine
learning methods (Greenbank & Howey, 2023; Luo, Fang, Deng, &
Tian, 2022) especially deep learning methods (Chang, Wang, Jiang,
& Wu, 2021; Xu, Yang, Fei, Huang, & Tsui, 2021), such as convolu-
tional neural network (CNN) (Al-Dulaimi, Zabihi, Asif, & Mohammadi,
2019; Ma et al., 2023), recurrent neural network (RNN) (Lu, Xiong,
Tian, Wang, Hsu, Tsou, Sun, & Li, 2022), gated recurrent network
(GRU) (Ungurean, Micea, & Carstoiu, 2020), long short term memory
(LSTM) (Wei, 2023; Xia, Song, Zheng, Pan, & Xi, 2020; Zhang, Jiang,
et al., 2022), bidirectional LSTM (Guo, Wang, Yao, Fu, & Ning, 2023),
and bidirectional GRU (Zhang et al., 2023), have been utilized to
predict SOH and RUL, where the parameters of these methods can be
trained and tuned with backpropagation (Ma, Yao, Liu, & Tang, 2022)
or metaheuristics (Raskar & Nema, 2022; Zamfirache, Precup, Roman,
& Petriu, 2022). For instance, Li et al. (2022) presented a hybrid deep
learning approach, where one-dimensional CNN was integrated with
LSTM to identify features related to battery degradation phenomenon,
and Kolmogorov–Smirnov test was implemented to infer the prior
distribution of hyperparameters used in the presented hybrid deep
learning approach. Eddahech, Briat, Bertrand, Delétage, and Vinassa
(2012) proposed an RNN-based model to estimate the SOH of a high
electricity density battery cell. The RNN was implemented to track the
degradation trajectory of several batteries in hybrid EV and EV usage.
Cheng, Wang, and He (2021) integrated the empirical mode decom-
position (EMD) approach with a LSTM network for accurate SOH and
RUL predictions of batteries. The voltage and current measurements
were fed into a LSTM model for SOH predictions, and the predicted
SOH was fed into the EMD approach to eliminate the randomness
brought by the capacity regeneration phenomenon so that the RUL
of a battery can be predicted precisely. Duong and Raghavan (2018)
combined a metaheuristic optimization approach with particle filtering
methods to address the problem of sample degeneracy, thus enhancing
the RUL prediction performance for lithium-ion batteries. Experimental
results have demonstrated that the proposed method outperforms tradi-
tional metaheuristic approaches, such as the optimized particle filtering
method.

One of the issues with the aforementioned deep learning methods
is that they are not effective in revealing feature correlations. Such a
correlation can be used to identify and aggregate features with high
affinity and similarity to enhance the precision and robustness of a
predictive model (Li, Zhao, Sun, Yan, & Chen, 2020; Wei & Wu, 2023).
To reveal this correlation, undirected graphs have been increasingly
used in current literature (Wei, Wu, & Terpenny, 2023), where the
graph nodes represent feature vectors and the graph edges denote
the similarity or affinity between features. To handle these undirected
graphs more effectively, the Graph Convolutional Network (GCN) is
increasingly used to predict the RUL of complex systems, due to its
ability to leverage the topology of undirected graphs and provide better
insights into data correlation (Wang, Cao, Xu, & Liu, 2022). For exam-
ple, Wei and Wu (2022b) proposed an optimization model to build
an undirected graph by simultaneously minimizing the graph density
and maximizing the graph entropy. The GCN was adopted to handle
the constructed graph and predict the SOH and RUL of lithium-ion
batteries. The experimental results have shown that the GCN enables
accurate predictions of SOH and RUL for batteries. Similarly, Li, Zhao,
Sun, Yan, and Chen (2021) constructed multiple undirected graphs
to represent the sensor and feature correlations in condition monitor-
ing data collected from aircraft engines. The GCN was employed to
handle these constructed undirected graphs and predict RUL for the
engines. Numerical studies have demonstrated the capabilities of GCNs
in dealing with these undirected graphs.

1.2. Research gap

While the effectiveness of GCNs in predicting RUL has been demon-
strated, two issues remain to be addressed to enhance their robustness
and precision. Firstly, the undirected graphs are usually constructed to
represent the correlation among features. However, these graphs are
not able to reveal the correlation between features and SOH or RUL.
Revealing the correlation between features and SOH or RUL can help
identify the most significant features that directly impact SOH or RUL.
By understanding this correlation, predictive models can prioritize the
important features during the prediction process, resulting in improved
accuracy (Wei, Wu, & Terpenny, 2021). Most of the current methods
are unable to consider this correlation because true SOH and RUL
data are only available during training instead of testing. Secondly,
traditional GCNs typically stack several spectral graph convolutional
layers, where each layer performs two operations: aggregation and pro-
jection. The features with high affinity or similarity are first aggregated
based on a pre-constructed undirected graph, and then the aggregated
features are projected onto another higher-dimensional space. While
the feature correlation can be effectively considered through the re-
peated aggregation of similar features, traditional GCNs do not take
into account the temporal correlation of these aggregated features. To
address these issues, this work introduced a conditional GCN with a
dilated convolution operation. To address the first issue, this work
constructed two types of undirected graphs. The first type of graphs
(denoted as 1) was used to consider the correlation among features,
and the second type of graphs (denoted as 2) was used to consider
the correlation between features and SOH/RUL. Two feature spaces
were extracted from the two types of graphs, respectively. Then, a KL-
divergence was used to minimize the distance between two feature
spaces so that the feature space extracted from 1 can approximate the
feature space extracted from 2. Therefore, even without the SOH/RUL,
the correlation between the features and SOH/RUL can be taken into
account when the feature space extracted from 1 is used for testing.
To address the second issue, this work implemented the dilated convo-
lutional operation to consider temporal correlations after aggregating
similar features in GCNs. The dilated convolutional operation was
implemented for two primary reasons. First, the condition monitoring
data collected for battery health management is a time series. The
dilated convolutional operation in the temporal convolutional network
(TCN) is designed to deal with time series data, making it capable of
capturing long-term dependencies in time series data compared to GRU
or LSTM (Zhen, Fang, Zhao, Ge, & Xiao, 2022). Second, the dilated
convolutional operation can expand the receptive field of convolutional
layers without significantly increasing the number of parameters (Bai,
Kolter, & Koltun, 2018). This capability ensures that the proposed
method is less susceptible to overfitting, which is particularly cru-
cial when dealing with limited battery health data. The constraint of
having limited battery health data is a common challenge in real-
world applications due to the high cost and time-consuming nature of
battery testing and monitoring. The major contributions of this work
are outlined below:

• Two types of undirected graphs, denoted as 1 and 2, were
constructed. 1 was used to capture correlations among features,
while 2 was used to capture correlations between features and
SOH/RUL.

• The KL-divergence was introduced to minimize the distance be-
tween two feature spaces extracted from the two types of graphs
so that the feature space extracted from 1 can approximate the
feature space extracted from 2.

• The dilated convolutional operation was implemented after ag-
gregating similar features in GCNs to increase the receptive field
of convolutional layers, thereby allowing for considering the tem-
poral correlation among the aggregated features.
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The remaining sections of this paper are organized in the fol-
lowing manner. Section 2 introduces the proposed conditional graph
convolutional network with dilated convolution operations. Section 3
utilizes the NASA battery dataset to demonstrate the effectiveness of the
proposed method, and Section 4 uses the Oxford battery degradation
dataset to further demonstrate the efficiency of the proposed method.
Section 5 concludes with a summary of this work and an examination
of future work.

2. Conditional graph convolutional network with dilated convo-
lutional operations

In this section, the conditional GCN with the dilated convolutional
operations is introduced. Specifically, two types of undirected graphs
are constructed in Section 2.1: standard undirected graphs and condi-
tional undirected graphs. Next, in Section 2.2, the dual spectral graph
convolution operation is presented, which is designed to deal with the
topological structures of these graphs. Then, in Section 2.3, the dilated
convolution operation is introduced. Finally, in Section 2.4, the train-
ing procedure for the conditional GCN with the dilated convolutional
operation is outlined.

2.1. Constructing undirected graphs

In the field of battery health management, the most commonly used
condition monitoring data include voltage, current, and temperature.
Although numerous studies utilize both charge and discharge cycle
data to estimate SOH and predict RUL, the availability of condition
monitoring data during charge cycles is limited. Therefore, in this
work, only condition monitoring data from discharge cycles was used
for SOH estimations and RUL predictions. To capture the degradation
trajectory of a battery, this work extracts several temporal features
from each discharge cycle. These features include time to reach the
minimum voltage, time discharged under constant or variable current
modes, time to reach the maximum temperature, voltage decrease rate,
and temperature increase rate. These features have been proven to be
successful in estimating SOH and predicting RUL (Audin et al., 2021;
Wei & Wu, 2022b).

Constructing undirected graphs involves initializing two types of
graphs: standard undirected graphs and conditional undirected graphs.
Standard undirected graphs are used to consider the correlation among
features, while conditional undirected graphs are used to consider the
correlation between features and SOH or RUL. The standard undirected
graphs is the first graph set, denoted as 1, consist of two graphs: the
positively connected graph G1,+ and the negatively connected graph
G1,−. Mathematically, 1 can be represented as 1 = {G1,+,G1,−}. To
construct the graph G1,+ and the graph G1,−, this work first selects two
different temporal feature vectors, 𝐟𝑖,𝑘 ∈ R1×𝑇𝑖 and 𝐟𝑖,𝑘′ ∈ R1×𝑇𝑖 , from the
extracted temporal feature matrix 𝐅𝑖 ∈ R𝐾×𝑇𝑖 . Then their covariance is
calculated, denoted as 𝒸1

𝑘,𝑘′ , which can be defined using Eq. (1). In the
equation, 𝐾 represents the number of extracted temporal features, 𝑇𝑖
denotes the number of discharge cycles of battery cell 𝑖, 𝑓𝑖,𝑗,𝑘 and 𝑓𝑖,𝑗,𝑘′
refers to the 𝑘th and 𝑘′th feature of the feature matrix 𝐅𝑖 for battery
cell 𝑖 in discharge cycle 𝑗, 𝑁 represents the number of battery cells,
and 𝑓..𝑘 and 𝑓..𝑘′ represents the expectation of the 𝑘th and 𝑘′th feature
of the feature matrix. It is worth noting that covariance is utilized
to determine edges because it can assist in identifying positively and
negatively correlated features. Positively correlated features refer to
those with the same monotonicity, while negatively correlated features
represent those with different monotonicity. By identifying features
with the same or different monotonicity and aggregating them in spec-
tral graph convolutional operations, it can be guaranteed that features
with the same monotonicity are summed together, and features with
different monotonicity are subtracted from each other. In this way, the

monotonicity of the aggregated features can be maximized, potentially
improving prediction performance.

𝒸1
𝑘,𝑘′ =

1
∑𝑁
𝑖=1 𝑇𝑖

𝑁
∑

𝑖=1

𝑇𝑖
∑

𝑗=1
(𝑓𝑖,𝑗,𝑘 − 𝑓..𝑘)(𝑓𝑖,𝑗,𝑘′ − 𝑓..𝑘′ ) (1)

Then, the edge in the graph G1,+ and the graph G1,− can be determined
by using Eq. (2), where 𝜖1 denotes a non-negative threshold for deter-
mining the edge. If the covariance 𝒸1

𝑘,𝑘′ is positive and greater than
𝜖1, a positive edge between the feature node 𝑘 and the feature node
𝑘′ in the graph G1,+ is added, and the corresponding edge 𝑒1,+𝑘,𝑘′ in the
graph G1,+ between these two nodes is assigned as 1. If the covariance
𝒸1
𝑘,𝑘′ is negative and less than −𝜖1, a negative edge between the feature

node 𝑘 and the feature node 𝑘′ in the graph G1,− is added, and the
corresponding edge 𝑒1,−𝑘,𝑘′ between these two nodes is assigned as −1.

𝑒1,+𝑘,𝑘′ =

{

1 if 𝒸1
𝑘,𝑘′ > 𝜖1,

0 otherwise.
and 𝑒1,−𝑘,𝑘′ =

{

0 otherwise,
−1 if 𝒸1

𝑘,𝑘′ < −𝜖1.
(2)

The graph construction process will be repeated
(𝐾
2

)

times until all
combinations of two features in the feature matrix have been examined.
The constructed graphs G1,+ and G1,− are respectively represented as
G1,+ = {V1,E1,+,𝐅𝑖} and G1,− = {V1,E1,−,𝐅𝑖}, where V1 refers to a
set of feature nodes and 𝐅𝑖 represents the extracted feature matrix.
Moreover, E1,+ and E1,− refer to sets of edges for the graph G1,+. and
the graph G1,−, respectively.

The conditional undirected graphs 2 also consist of two graphs:
the positively connected graph G2,+ and the negatively connected graph
G2,−. Mathematically, 2 is the second graph set and can be represented
as 2 = {G2,+,G2,−}. To initialize the graph G2,+ and the graph G2,−, a
conditional feature matrix 𝐂𝑖 ∈ R(𝐾+1)×𝑇𝑖 is firstly constructed, where
𝐂𝑖 =

[

𝐅𝑖, 𝐲𝑖
]

and 𝐲𝑖 refers to a time series vector of SOH or RUL. Similar
to the step used to build the first graph set 1, two different vectors
𝐜𝑖,𝑘 and 𝐜𝑖,𝑘′ are selected from the conditional feature matrix 𝐂𝑖 and
examine their covariance 𝒸2

𝑘,𝑘′ . Then, the edges in the graph G2,+ and
the graph G2,− can be determined using Eq. (3), where 𝜖2 represents a
non-negative threshold for edge determination. If the covariance 𝒸2

𝑘,𝑘′
is positive and greater than 𝜖2, a positive edge between node 𝑘 and
node 𝑘′ in the graph G2,+ is added, and the corresponding edge 𝑒2,+𝑘,𝑘′
in G2,+ is assigned a value of 1. If the covariance 𝒸2

𝑘,𝑘′ is negative and
less than −𝜖2, a negative edge between node 𝑘 and node 𝑘′ in the graph
G2,− is added, the corresponding edge 𝑒2,−𝑘,𝑘′ between these two nodes is
assigned a value of −1.

𝑒2,+𝑘,𝑘′ =

{

1 if 𝒸2
𝑘,𝑘′ > 𝜖2,

0 otherwise.
and 𝑒2,−𝑘,𝑘′ =

{

0 otherwise,
−1 if 𝒸2

𝑘,𝑘′ < −𝜖2.
(3)

The graph construction process will be repeated
(𝐾+1

2

)

times until all
combinations of two vectors in the conditional feature matrix 𝐂𝑖 have
been examined. The constructed graphs G2,+ and G2,− are respectively
represented as G2,+ = {V2,E2,+,𝐂𝑖} and G2,− = {V2,E2,−,𝐂𝑖}, where
V2 refers to a set of nodes, and 𝐂𝑖 represents the conditional feature
matrix. Moreover, E2,+ and E2,− refer to sets of edges for the graph
G2,+ and the graph G2,−, respectively.

2.2. Dual spectral graph convolutional operation

To utilize the topological structures of the first graph set 1 and the
second graph set 2, the dual spectral graph convolutional operation is
introduced to handle 1 and 2, respectively. The dual spectral graph
convolutional operation performed on the graph set 𝑛 can be written
as Eq. (4), where 𝑛 = 1 refers to the first graph set 1 and 𝑛 = 2 refers
to the second graph set 2. In this equation, 𝐅(𝜔)

𝑖 ∈ R𝐾×𝜏 refers to the
𝜔th sampled temporal feature matrix using a sliding window with a
step length of one and a window length of 𝜏; 𝐂(𝜔)

𝑖 ∈ R(𝐾+1)×𝜏 refers
to the 𝜔th sampled conditional feature matrix using a sliding window
with a step length of one and a window length of 𝜏; ℱ and ℱ −1 denote
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the Fourier transform and its inverse transform; 𝐠𝑛 represents the graph
filter from the graph set 𝑛;  is a set that refers to + or −, therefore,
𝑔𝑛,+ and 𝑔𝑛,− respectively denote the graph filter from the graph G𝑛,+
and the graph G𝑛,−, and || represents the concatenation operator.

𝐠𝑛
(

◦𝑛

)

𝐗𝑖 = ||


𝑠 ℱ −1 (ℱ

(

𝑔𝑛,𝑠
)

⊙ℱ
(

𝐗𝑖
))

𝐗𝑖 = 𝐅(𝜔)
𝑖 , if 𝑛 = 1; 𝐗𝑖 = 𝐂(𝜔)

𝑖 , if 𝑛 = 2; 𝑠 = + and −
(4)

The graph Fourier transform for the graph filter 𝑔𝑛,𝑠 can be represented
as 𝑈𝑇

𝑛,𝑠𝑔𝑛,𝑠, where 𝑈𝑛,𝑠 refers to the eigenvectors of the Laplacian matri-
ces. The graph Fourier transform for the sampled matrix can be written
as 𝑈𝑇

𝑛,𝑠𝐗𝑖. By substituting the eigenvector 𝑈𝑛,𝑠 into Eq. (4), Eq. (5) can
be obtained, where 𝛬𝑛,𝑠 is the vector that stores the eigenvalues of
the Laplacian matrix, and 𝜓𝑛,𝑠 represents a collection of parameters
provided by the graph filter 𝑔𝑛,𝑠.

||


𝑠 𝑈𝑛,𝑠

(

𝑈𝑇
𝑛,𝑠𝑔𝑛,𝑠 ⊙ 𝑈

𝑇
𝑛,𝑠𝐗𝑖

)

= ||


𝑠 𝑈𝑛,𝑠𝑔

𝜓𝑛,𝑠
𝑛,𝑠 (𝛬𝑛,𝑠)𝑈𝑇

𝑛,𝑠𝐗𝑖 (5)

For the graph G𝑛,𝑠, the normalized Laplacian matrix ℒ𝑛,𝑠 is given by
Eq. (6), where 𝐈 is the identity matrix; A𝑛,𝑠 denotes the adjacency matrix
of the graph G𝑛,𝑠, and the elements of this adjacency matrix are derived
from the edge set E𝑛,𝑠.

ℒ𝑛,𝑠 = 𝐈 −𝐷−1∕2
𝑛,𝑠 A𝑛,𝑠𝐷

−1∕2
𝑛,𝑠 (6)

Moreover, 𝐷𝑛,𝑠 refers to the degree matrix of A𝑛,𝑠; the diagonal entry
of the degree matrix can be written as Eq. (7), where 𝑒1,+𝑘,𝑘′ and 𝑒1,−𝑘,𝑘′ are
obtained from Eq. (2); and 𝑒2,+𝑘,𝑘′ and 𝑒2,−𝑘,𝑘′ are obtained from Eq. (3).
{

𝑑1,+𝑘,𝑘′ =
∑𝐾
𝑘′=1 𝑒

1,−
𝑘,𝑘′ and 𝑑1,−𝑘,𝑘′ =

∑𝐾
𝑘′=1 |𝑒

1,−
𝑘,𝑘′ |

𝑑2,+𝑘,𝑘′ =
∑𝐾+1
𝑘′=1 𝑒

2,+
𝑘,𝑘′ and 𝑑2,−𝑘,𝑘′ =

∑𝐾+1
𝑘′=1 |𝑒

2,−
𝑘,𝑘′ |

(7)

Because the Laplacian matrix ℒ𝑛,𝑠 is a real and symmetric in nature,
the eigendecomposition of this Laplacian matrix can be expressed as
Eq. (8).

ℒ𝑛,𝑠 = 𝑈𝑛,𝑠𝛬𝑛,𝑠𝑈
−1
𝑛,𝑠 = 𝑈𝑛,𝑠𝛬𝑛,𝑠𝑈

𝑇
𝑛,𝑠 (8)

By inserting Eq. (8) into Eq. (5), Eq. (9) can be derived.

𝐠𝑛
(

◦𝑛

)

𝐗𝑖 = ||


𝑠 𝑔

𝜓𝑛,𝑠
𝑛,𝑠 (ℒ𝑛,𝑠)𝐗𝑖 (9)

Previous research indicated that the first-order Chebyshev polynomials
is capable of reducing the computational cost of the spectral graph
convolution (Hammond, Vandergheynst, & Gribonval, 2011). By using
the Chebyshev polynomials, Eq. (9) can be rewritten as Eq. (10), where
𝒞𝑝 is the 𝑝th order Chebyshev polynomial; ℒ̃𝑛,𝑠 represents the scaled
Laplacian matrix.

||


𝑠

( 1
∑

𝑝=0
𝜓𝑝𝑛,𝑠𝒞𝑝(ℒ̃𝑛,𝑠)𝐗𝑖

)

= ||


𝑠

((

𝜓𝑛,𝑠
(

𝐷−1∕2
𝑛,𝑠 A𝑛,𝑠𝐷

−1∕2
𝑛,𝑠 + 𝐈

))

𝐗𝑖
)

(10)

To enable a feature to aggregate its adjacent features along with itself,
this work incorporates a self-connection in the positively connected
graphs G𝑛,+ for all 𝑛. The updated adjacency matrix can be denoted
as Ã𝑛,𝑠 = A𝑛,𝑠 + 𝐈 when 𝑠 = +, and Ã𝑛,𝑠 = A𝑛,𝑠 when 𝑠 = −. In this work,
a self-connection is not included in the negatively connected graphs
G𝑛,− for all 𝑛 because the self-aggregation process is already completed
in G𝑛,+. Next, 𝜓𝑛,𝑠 is rewritten in a matrix format, and the dual graph
convolutional operations can be expressed as Eq. (11).

𝐠𝑛
(

◦𝑛

)

𝐗𝑖 = ||


𝑠 Â𝑛,𝑠𝐗𝑖𝛹𝑛,𝑠 (11)

In Eq. (10), Â𝑛,𝑠 can be written as 𝐷̃−1∕2
𝑛,𝑠 Ã𝑛,𝑠𝐷̃

−1∕2
𝑛,𝑠 , where 𝐷̃𝑛,𝑠 denotes

the degree matrix of the updated adjacency matrix Ã𝑛,𝑠. Additionally,
𝛹𝑛,𝑠 ∈ R𝜏×𝜏′ represents the graph filter parameters in matrix format.
The dual spectral graph convolutional layer is introduced based on
the dual spectral convolutional operation in Eq. (11). To enhance the
robustness of this layer, a bias weight vector 𝐛𝑛,𝑠 and an activation
function 𝜎 is incorporated. The output of a single dual spectral graph

convolutional layer is expressed as Eq. (12), where 𝜎 represents the
activation function and 𝐛𝑛,𝑠 denotes the bias weight vector.

||


𝑠 𝐇𝑛,𝑠

𝑖 = ||


𝑠 𝜎(Â𝑛,𝑠𝐗𝑖𝛹𝑛,𝑠 + 𝐛𝑛,𝑠) (12)

In summary, there are two graph sets (1 and 2) are initialized, each
consisting of two graphs when 𝑛 = 1, 2 and 𝑠 = +,−. The dual spectral
graph convolutional operation is then performed on each graph set.
As a result, there will be four outputs generated by the proposed
dual spectral graph convolutional operation. These outputs can be
mathematically represented as 𝐇1,+

𝑖 , 𝐇1,−
𝑖 , 𝐇2,+

𝑖 , and 𝐇2,−
𝑖 .

Fig. 1 shows an example of the introduced dual spectral graph
convolutional operation for the graph sets 1 and 2 with one single
layer for the purpose of illustration. First of all, two different vectors
are selected from the feature matrix 𝐅𝑖 to examine their covariance.
The edges of the graph G1,+ and the graph G1,− in the graph set 1 are
determined based on the covariance and the threshold 𝜖1. Likewise, two
different vectors are selected from the conditional feature matrix 𝐂𝑖 to
examine their covariance. The edges of the graph G2,+ and the graph
G2,− in the graph set 2 are determined based on the covariance and
the threshold 𝜖2. Next, the dual spectral graph convolution operation is
utilized twice to respectively handle the topological structure of the
graphs in the graph set 1 and the graph set 2. For the positively
connected graph G𝑛,+, ∀𝑛, a positive self-connected adjacency matrix
Ã𝑛,+, ∀𝑛, is generated, and all the vectors in the sampled feature matrix
or the sampled conditional feature matrix are aggregated and projected
based on the constructed matrix Ã𝑛,+, ∀𝑛. With respect to the negatively
correlated graph G𝑛,−, ∀𝑛, a negative adjacency matrix Ã𝑛,−, ∀𝑛, is
generated, and all the vectors in the sampled feature matrix or the
sampled conditional feature matrix are aggregated and projected based
on the matrix Ã𝑛,−, ∀𝑛. The outputs after performing the proposed dual
spectral graph convolutional operation are denoted as 𝐇1,+

𝑖 , 𝐇1,−
𝑖 , 𝐇2,+

𝑖 ,
and 𝐇2,−

𝑖 .

2.3. Dilated convolutional operation

The dilated convolutional operation is the most critical component
of the temporal convolutional network, which has been demonstrated
to outperform canonical recurrent neural networks such as RNN and
LSTM in revealing temporal correlations in time series data (Bai et al.,
2018). Therefore, the dilated convolutional operation is employed to
more effectively consider the temporal correlation of the aggregated
and projected features 𝐇1,+

𝑖 , 𝐇1,−
𝑖 , 𝐇2,+

𝑖 , and 𝐇2,−
𝑖 after performing the

proposed dual spectral graph convolutional operation. The dilated con-
volutional operation is similar to the typical convolutional operation
that uses filter matrices sweeping over the entire input matrix. The
output of the dilated convolutional operation D can be mathematically
represented as Eq. (13), where 𝐇𝑛,𝑠

𝑖,𝛾 is the 𝛾-th part of the resulting
tensors 𝐇𝑛,𝑠

𝑖 from the dual spectral graph convolutional operation. If 𝑛 =
1, 𝐇𝑛,𝑠

𝑖,𝛾 ∈ R𝐹×𝐾 ; if 𝑛 = 2, 𝐇𝑛,𝑠
𝑖,𝛾 ∈ R𝐹×(𝐾+1). Here, 𝐾 is the total number

of columns in the extracted feature matrix, 𝐹 refers to the filter size of
the dilated convolutional operation, ℎ(𝛾)𝑎,𝑏 represents one element in the
matrix 𝐇𝑛,𝑠

𝑖,𝛾 , 𝑤𝑎,𝑏,𝛿 is one of the weight elements in the 𝛿-th filter matrix,
and 𝐷 represents the dilation factor. This work sets 𝛿 = 1,… , 𝛥, where
𝛥 refers to the number of filters provided in the dilated convolutional
operation, and sets 𝛾 = 1,… , 𝛤 , where 𝛤 = 𝜏′ +𝐹 −1 refers to the total
number of input matrices multiplied by the filter matrices. Therefore,
the output of the dilated convolutional operation is a 𝛤 -by-𝛥 matrix.

(𝐇𝑛,𝑠
𝑖,𝛾 ⊛𝐷 D) ∶= 𝑜𝛾,𝛿 =

∑

𝑎

∑

𝑏
ℎ(𝛾)𝑎,𝑏 ⋅𝑤𝑎,𝑏,𝛿 (13)

Moreover, the dilated convolutional filter matrix is a matrix with
sparsity, which can be mathematically represented as Eq. (14), where
the weight is trainable if 𝑏 = 1 + 𝜋 ⋅ 𝐷 and 𝜋 = 1,… ,𝛱 , otherwise
the weight is not trainable and equals zero constantly. In addition,
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Fig. 1. The dual spectral graph convolutional operation for the graph set 1 and 2 with one single layer.

Fig. 2. (a) Two dilated convolutional operations with dilation factors 𝐷 = 1, 2 and filter size 𝐹 = 3, 5; (b) Details about the second dilated convolutional operation; (c) The
architecture of multiple dilated convolutional operations.

the relation between the dilation factor 𝐷 and the filter size 𝐹 can be
mathematically represented as 1 +𝛱 ⋅𝐷 = 𝐹 ;

𝑤𝑎,𝑏,𝛿 =

{

𝑤𝑎,𝑏,𝛿 if 𝑏 = 1 + 𝜋 ⋅𝐷,
0 otherwise.

(14)

Fig. 2 shows an example of two continuous dilated convolutional
operations for illustration purposes. The first dilated convolutional
operation has the dilation factor 𝐷1 = 1 and the filter size 𝐹1 = 3; and
the second dilated convolutional operation has the dilation factor 𝐷2 =
3 and the filter size 𝐹2 = 5. The first dilated convolutional operation
is performed on the tensors 𝐇𝑛,𝑠

𝑖 ,∀𝑛, 𝑠 generated by the dual spectral
graph convolutional operations. After performing the first dilated con-
volutional operations, the ReLU activation function and the dropout
function are adopted, then the resulting tensor can be represented as
𝐎𝑛,𝑠
𝑖,1 ∈ R𝛤1×𝛥1 , where 𝛥1 refers to the amount of filters in the first dilated

convolutional layer and 𝛤1 is the reduced time length after performing
the first dilated convolutional operation and 𝛤1 equals 𝜏′ + 𝐹1 − 1.
Next, the second dilated convolutional operation is performed on the
tensor 𝐎𝑛,𝑠

𝑖,1 ,∀𝑛, 𝑠 generated by the first dilated convolutional operation.
After performing the second dilated convolutional operations, the ReLU
activation function and the dropout function are implemented, then
the resulting tensor can be represented as 𝐎𝑛,𝑠

𝑖,2 ∈ R𝛤2×𝛥2 . Here, 𝛥2
refers to the amount of filters in the second dilated convolutional
operation and 𝛤2 is the reduced time length after performing the second
dilated convolutional operation and 𝛤2 equals 𝛤1 + 𝐹2 − 1. Next, 𝐎𝑛,+

𝑖,𝒞
and 𝐎𝑛,−

𝑖,𝒞 are concatenated as a vector 𝐎𝑛
𝑖 for all 𝑛, which can be

mathematically written as Eq. (15), where 𝒞 represents the number
of dilated convolutional operations has been used.

𝐎𝑛
𝑖 = ||


𝑠 𝐎𝑛,𝑠

𝑖,𝒞 , 𝑠 = + and − (15)

2.4. Training the condition graph convolutional network with dilated con-
volutional operations

In summary, the proposed method initializes two sets of graphs: the
undirected graph set 1 and the conditional undirected graph set 2.

Each graph set consists of two undirected graphs representing positively
and negatively connected graphs. The purpose of 1 is to consider the
correlation among features, while 2 considers the correlation between
features and SOH or RUL. To handle the topological structures of these
two graph sets, the method introduces the dual spectral graph convo-
lutional operation and adopts the dilated convolutional operation. The
dual spectral graph convolutional operation is applied to 1 and 2, and
the resulting tensors for the battery unit 𝑖 are denoted as 𝐎1

𝑖 and 𝐎2
𝑖 ,

respectively. The dilated convolutional operation allows effective con-
sideration of the temporal correlation among the aggregated features
provided by the dual spectral graph convolutional operation. To train
the proposed conditional GCN with dilated convolutional operation, the
resulting tensors 𝐎𝑛

𝑖 for all 𝑛 are flattened and passed through a fully
connected (FC) layer for SOH estimations and RUL predictions. This
process can be mathematically represented as Eq. (16),

𝑦̂(𝜔)𝑖,𝑛 = 𝜎
(

𝐖𝑛𝐎𝑛
𝑖 + 𝐛𝑛

)

, 𝑛 = 1, 2 (16)

where 𝑦̂(𝜔)𝑖,𝑛 refers to the estimated SOH or predicted RUL provided by
the 𝑛th graph set for battery unit 𝑖 in the 𝜔th sample, 𝜎 is the activation
function, 𝐖𝑛 denotes the weight matrix of the FC layer for the 𝑛th graph
set, and 𝐛𝑛 denotes the bias vector of the FC layer for the 𝑛th graph set.
Therefore, the training loss 1 for the first graph set 1 and the training
loss 2 for the second graph set 2 can be written as shown in Eq. (17),
where 𝐼 refers to the total number of battery units used for training,
and 𝛺 denotes the total number of discharge cycles used for training.

1 =
𝐼
∑

𝑖=1

𝛺
∑

𝜔=1

1
𝐼 ×𝛺

(

𝑦̂(𝜔)𝑖,1 − 𝑦(𝜔)𝑖

)2
, 2 =

𝐼
∑

𝑖=1

𝛺
∑

𝜔=1

1
𝐼 ×𝛺

(

𝑦̂(𝜔)𝑖,2 − 𝑦(𝜔)𝑖

)2

(17)

The dual spectral graph convolutional operation performed on the
second graph set 2 involves the SOH and RUL in the conditional
feature matrix. While the second graph set 2 can be used for training,
it cannot be used for predicting because the true SOH and RUL are not
available during prediction. Therefore, only the first graph set 1 can be
used for prediction. To leverage the correlation between features and
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SOH or RUL from the second graph set 2 during prediction, this work
introduces a KL-divergence loss to minimize the divergence between 𝐎1

𝑖
and 𝐎2

𝑖 , which can be written as Eq. (18).

𝐾𝐿 =
𝐼
∑

𝑖=1

𝛺
∑

𝜔=1
KL

(

𝑝𝛹1
(

𝐎1
𝑖 |𝐅

(𝜔)
𝑖

)

||𝑝𝛹2
(

𝐎2
𝑖 |𝐂

(𝜔)
𝑖

))

(18)

In this equation, 𝑝𝛹1 (𝐎
1
𝑖 |𝐅

(𝜔)
𝑖 ) represents the probability distribution

of 𝐎1
𝑖 given the sampled feature matrix 𝐅(𝜔)

𝑖 . Here, 𝛹1 denotes the
collection of parameters in the first dual spectral graph convolutional
operation with dilated convolutional operation performed on the first
graph set 1. Similarly, 𝑝𝛹2 (𝐎

2
𝑖 |𝐂

(𝜔)
𝑖 ) denotes the probability distribu-

tion of 𝐎2
𝑖 given the sampled conditional feature matrix 𝐂(𝜔)

𝑖 , where
𝛹2 represents the collection of parameters in the second dual spectral
graph convolutional operation with dilated convolutional operation
performed on the second graph set 2. Since it is infeasible to directly
determine the conditional distribution of 𝐎1

𝑖 and 𝐎2
𝑖 , it is commonly as-

sumed that these two distributions in the KL-divergence follow normal
distributions (Kusner, Paige, & Hernández-Lobato, 2017; Wei & Wu,
2022a). This assumption can be written as Eq. (19), where 𝜇1𝑖,𝜔 and
𝛴1
𝑖,𝜔 represent the resulting tensors from the first dilated convolutional

operation and are used to sample 𝐎1
𝑖 , referring to the mean and

variance of 𝐎1
𝑖 . Similarly, 𝜇2𝑖,𝜔 and 𝛴2

𝑖,𝜔 represent the resulting tensors
from the second dilated convolutional operation and are used to sample
𝐎2
𝑖 , referring to the mean and variance of 𝐎2

𝑖 .

𝑝𝛹1 (𝐎
1
𝑖 |𝐅

(𝜔)
𝑖 ) ∼ 

(

𝐎1
𝑖 ;𝜇

1
𝑖,𝜔, 𝛴

1
𝑖,𝜔

)

𝑝𝛹2 (𝐎
2
𝑖 |𝐂

(𝜔)
𝑖 ) ∼ 

(

𝐎2
𝑖 ;𝜇

2
𝑖,𝜔, 𝛴

2
𝑖,𝜔

)

(19)

By utilizing the reparameterization trick (Huang, Wu, Wang, & Tan,
2013; Kingma & Welling, 2013), the KL-divergence can be expressed
as Eq. (20), where 𝒹 represents the dimensionality of the learned
deep-level representations, and 𝑡𝑟(⋅) indicates the trace of a matrix.

KL =
𝐼
∑

𝑖=1

𝛺
∑

𝜔=1

1
2

(

𝑡𝑟
[

(

𝛴2
𝑖,𝜔

)−1
𝛴1
𝑖,𝜔

]

+
(

𝜇2
𝑖,𝜔 − 𝜇1

𝑖,𝜔

)𝑇 (
𝛴2
𝑖,𝜔

)−1 (
𝜇2
𝑖,𝜔 − 𝜇1

𝑖,𝜔

)

−𝒹 − log
(

|𝛴2
𝑖,𝜔|∕|𝛴

1
𝑖,𝜔|

))

(20)

Then, the overall training loss consists of a triplet loss, which includes
a KL-divergence loss and two prediction losses. The triplet loss can be
represented as Eq. (21).

𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = 1 + 2 + KL (21)

Next, the obtained training loss is utilized to train the proposed method.
The training process of the proposed method involves two training
steps. In the first training step, the collection of parameters 𝛹1 and 𝛹2
in the first and second spectral graph convolutional operations with
dilated convolutional operation, as well as the parameters in the FC
layers, can be updated using the gradient descent method. The updating
process can be described as Eq. (22), where 𝛼 represents the learning
rate.
(

𝛹𝑛,𝐖𝑛,𝐛𝑛
)

←
(

𝛹𝑛,𝐖𝑛,𝐛𝑛
)

−𝛼 ⋅
(∇𝑡𝑟𝑖𝑝𝑙𝑒𝑡

∇𝛹𝑛
,
∇𝑡𝑟𝑖𝑝𝑙𝑒𝑡
∇𝐖𝑛

,
∇𝑡𝑟𝑖𝑝𝑙𝑒𝑡
∇𝐛𝑛

)

,∀𝑛 (22)

In the second training step, the single training loss 1 is used and
the learned 𝛹1 from the first training step is used to retrain the
parameters 𝐖𝑛 and 𝐛𝑛 in the corresponding FC layer. This process can
be mathematically represented as Eq. (23).
(

𝐖𝑛,𝐛𝑛
)

←
(

𝐖𝑛,𝐛𝑛
)

− 𝛼 ⋅
(∇𝑡𝑟𝑖𝑝𝑙𝑒𝑡

∇𝐖𝑛
,
∇𝑡𝑟𝑖𝑝𝑙𝑒𝑡
∇𝐛𝑛

)

, 𝑛 = 1 (23)

After completing the training process, the trained first spectral graph
convolutional operation with dilated convolutional operations and the
retrained FC layer are used to estimate the SOH and predict the RUL
of batteries.

In summary, the proposed method employs two dual spectral graph
convolutional networks with dilated convolutional operations. The in-
puts of the first dual spectral graph convolutional network include

temporal features extracted from the condition monitoring data and
the initialized graph set 1, while its output is a predicted SOH/RUL.
The inputs of the second dual spectral graph convolutional network are
the extracted temporal features, SOH/RUL, and the initialized graph
set 2, yielding another predicted SOH/RUL as the output. During the
training process, both dual spectral graph convolutional networks with
dilated convolutional operations are used to minimize prediction errors
and reduce the distance between the two feature spaces extracted from
these networks using the triplet training loss. In contrast, during the
testing phase, only the first dual spectral graph convolutional network
with dilated convolutional operations is used for SOH/RUL predictions.

Fig. 3 illustrates the two steps used to train the conditional GCN.
In the first training step, condition monitoring data is used to initialize
two graph sets, 1 and 2. 1 captures the correlation among features,
while 2 reflects the correlation between features and the SOH or RUL.
For each graph set, the proposed dual spectral graph convolutional
operation is employed to aggregate data with high similarity, resulting
in four tensors: 𝐇1,+

𝑖 , 𝐇1,−
𝑖 , 𝐇2,+

𝑖 , and 𝐇2,−
𝑖 . These four tensors are sub-

sequently fed into the dilated convolutional operation to consider the
temporal correlation of the aggregated data, resulting in another four
tensors: 𝐎1,+

𝑖,𝒞 , 𝐎1,−
𝑖,𝒞 , 𝐎2,+

𝑖,𝒞 , and 𝐎2,−
𝑖,𝒞 . Next, 𝐎1,+

𝑖,𝒞 and 𝐎1,−
𝑖,𝒞 are concatenated

into a single vector, and 𝐎2,+
𝑖,𝒞 and 𝐎2,−

𝑖,𝒞 are also concatenated into
another single vector to aggregate the information from both positive
and negative graphs in each graph set. Next, these two single vectors
are used to generate 𝜇1𝑖,𝜔, 𝛴1

𝑖,𝜔 to sample 𝐎1
𝑖 , and generate 𝜇2𝑖,𝜔, 𝛴2

𝑖,𝜔
to sample 𝐎2

𝑖 . The sampled 𝐎1
𝑖 and 𝐎2

𝑖 are then fed into two different
FC layers to obtain the predicted SOH or RUL, which are 𝑦̂(𝜔)𝑖,1 and 𝑦̂(𝜔)𝑖,2 .
The triplet loss is employed to train the entire framework and update
all trainable parameters, including two prediction losses and one KL-
divergence loss. In the second training step, all parameters in the dual
spectral graph convolutional operation with the dilated convolutional
operation for 1 are frozen and transferred. Only the first prediction
loss, 1, is used to retrain the parameters in the corresponding FC layer.
During prediction, only the trained dual spectral graph convolutional
operation with the dilated convolutional operation for 1 and the
retrained FC layer are used to make SOH and RUL predictions.

3. Case study I

3.1. Data description

The battery dataset released by the NASA Ames Prognostics Center
of Excellence (PCoE) (Saha & Goebel, 2007) was ued to demonstrate
the effectiveness of the conditional GCN. This dataset includes three
subsets. Subset 1 includes condition monitoring data collected from
four lithium-ion batteries (Battery No. 5, No. 6, No. 7, and No. 18),
subset 2 includes data obtained from four batteries (Battery No. 29,
No. 30, No. 31, No. 32), and subset 3 includes data obtained from
three batteries (Battery No. 25, No. 26, and No. 27). These lithium-
ion batteries underwent three distinct operational conditions: charging,
discharging, and impedance. In the charging and discharging cycles,
current, voltage, and temperature data were collected. For all three
subsets, the charging process was executed using a Constant Current
(CC) mode at a rate of 1.5 A until the voltage reached 4.2 V, and then
switched to a Constant Voltage (CV) mode until the current dropped
below 20 mA.

For subset 1, the discharge process was performed with a CC mode
of 2 A until the voltage of the batteries reached 2.7 V for Battery No. 5,
2.5 V for Battery No. 6, 2.2 V for Battery No. 7, and 2.5 V for Battery
No. 18. For subset 2, the discharge procedure was performed at a CC
level of 4 A until the voltage reached 2.0 V, 2.2 V, 2.5 V, and 2.7 V for
Batteries No. 29, No. 30, No. 31, and No. 32, respectively. This work
used the data collected during the discharge cycles only. Fig. 4 shows
voltage, current, and temperature readings during the discharge cycles
of Battery No. 5.
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Fig. 3. Two training steps used to train the proposed conditional graph convolutional network with dilated convolutional operations.

Fig. 4. The voltage, current, and temperature measurements over time in discharge cycles for battery No. 5.

Fig. 5. (a) shows a part of the measured voltage in the first discharge cycle for battery No. 25; (b) shows a part of the measured squared waved current in the first discharge
cycle for battery No. 25; (c) shows the measured temperature with respect to different discharge cycles for battery No. 25.

For subset 3, the discharge process was performed under a square
wave loading profile with a frequency of 0.05 Hz and an amplitude of
4 A, with a duty cycle of 50%. The process continued until the voltage
reduced to 2.0 V, 2.2 V, 2.5 V, and 2.7 V for batteries No. 25, No.
26, and No. 27, respectively. Fig. 5(a) shows a part of the measured
voltage in the first discharge cycle for battery No. 25; Fig. 5(b) shows
a part of the measured squared waved current in the first discharge
cycle for battery No. 25; Fig. 5(c) shows the measured temperature with
respect to different discharge cycles for battery No. 25. From this figure,
it can be observed that the voltage does not monotonically decrease
due to the 0.05 Hz square wave loading profile, and such a loading
profile may bring some randomness and difficulty in SOH estimations.
In addition, it can also be observed that the trajectory of the measured
data alternates with the increase in the number of discharge cycles.
For example, as depicted in Fig. 5(c), the time required to reach the
maximum temperature in the initial discharge cycles is longer than the
time needed to reach the maximum temperature in 20 discharge cycles.
Therefore, the extracted temporal features can still be utilized when
predicting.

Table 1 shows the operating conditions for three different subsets in
charge and discharge cycles and the corresponding battery indices. In
summary, subset 1 and subset 2 performed the discharging process un-
der a constant loading profile, and subset 3 performed the discharging
process under a square wave loading profile. In addition, with respect
to all the battery datasets, the charging process was conducted under a
CC mode.

The rate of degradation of lithium-ion batteries increased through
repeated cycles of charging and discharging, leading to capacity loss or
capacity fading. Fig. 6 shows the degradation trajectories of capacity
for batteries in three battery subsets. With respect to batteries listed
in subset 1, run-to-failure tests were conducted, where the experiments
ended under the condition that the battery capacity decreased by 30%.
The capacity of these batteries was 2 Ahr at its peak, with an end-of-
life (EOL) capacity of 1.4 Ahr. With respect to batteries listed in subset
2, run-to-failure tests were conducted, where the experiments were
terminated under the condition that the battery capacity decreased by
15%. The capacity of these batteries was 2 Ahr at its peak, with an
end-of-life capacity of 1.7 Ahr. In this case study, the SOH is estimated
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Table 1
The operating conditions for three different datasets in charge and discharge cycles and the corresponding battery indices.

Subset no. Charging Discharging Battery index

1 CC mode at 1.5 A Constant load at 2 A Battery No. 5, No. 6, No. 7, No. 18
2 CC mode at 1.5 A Constant load at 4 A Battery No. 29, No. 30, No. 31, No. 32
3 CC mode at 1.5 A Square wave load of 4 A amplitude Battery No. 25, No. 26, No. 27

Fig. 6. The degradation trajectories of capacity for batteries in three battery subsets.

and the RUL is predicted for batteries in subset 1 and subset 2, and
the SOH is estimated only for batteries in subset 3 because run-to-
failure tests were not conducted on batteries in subset 3. Moreover,
four-fold cross-validation was performed for the batteries in subset 1
and subset 2, while three-fold cross-validation was performed for the
batteries in subset 3 to thoroughly evaluate the effectiveness of the
proposed method on these batteries.

3.2. Feature extraction and network structure

In real-world applications, condition monitoring data in charge
cycles are often not available. Therefore, we extracted features from
voltage, current, and temperature measurements collected during dis-
charge cycles only. These features include the time to reach minimum
voltage, discharge duration under constant or variable current condi-
tions, time to reach maximum temperature, voltage decrease rate, and
temperature increase rate. These features have been demonstrated to be
effective in tracking the capacity trajectory of a battery (Audin et al.,
2021; Wei & Wu, 2022b). For example, the voltage decrease rate is
calculated as the voltage drop divided by the discharge time, while the
temperature increase rate is determined by dividing the temperature
increment by the discharge time.

Next, the extracted features were fed into the conditional GCN with
dilated convolutional operations to estimate the SOH and RUL. The
details on the network structure and hyperparameters used in the case
study for all three battery subsets are provided in Table 2. These hyper-
parameters were determined using the grid search method. As shown
in this table, Batch refers to the batch size of 100. 𝐾 = 5 represents
the number of extracted features. 𝜏 = 20 represents the window size
of the sampling window. 𝜏′ = 100 refers to the dimensionality after
projection in the dual spectral graph convolutional operation. 𝛤𝑖 and
𝛤𝑗 respectively refer to the reduced time length after performing the
𝑖th and the 𝑗th dilated convolutional operations. In addition to these
aforementioned parameters, the filter sizes in the dilated convolutional
layers are 𝐹1 = 𝐹2 = 𝐹3 = 10. The amount of filters in the dilated
convolutional layers are 𝛥1 = 𝛥2 = 𝛥3 = 100, and the dilation factors
are 𝐷1 = 1, 𝐷2 = 2, and 𝐷3 = 4. Moreover, the learning rate is set
as 5 × 10−3, the threshold level 𝜖 is set as zero for simplification, and
the Adam optimizer is adopted to train the proposed conditional graph
convolutional network with dilated convolutional operation.

3.3. SOH estimation

Fig. 7 shows the SOH estimations for Battery No. 5, No. 6, No. 7,
and No. 18 in subset 1, and Battery No. 29, No. 30, No. 31, and No.
32 in subset 2. The SOH estimations for batteries in subset 1 start from
the 20th discharge cycle since subset 1 has more discharge cycles. The
SOH estimations for batteries in subset 2 start from the 5th discharge
cycle since subset 2 has fewer discharge cycles. From Fig. 7, it can be
observed that the proposed method is capable of estimating the SOH of
lithium-ion batteries with high accuracy. For example, for Battery No.
5, the estimated SOH matches the true SOH of 0.915 when 31 discharge
cycles have been observed. Likewise, during the 20th discharge cycle
of Battery No. 29, the estimated SOH is 0.906, matching closely with
the true SOH of 0.907.

Fig. 8 shows the SOH estimations for Battery No. 25, No. 26, and
No. 27 in subset 3. The SOH estimations for batteries in subset 3
start from the 5th discharge cycles since these batteries have fewer
discharge cycles. Fig. 8 shows that the proposed method accurately
estimates the SOH of batteries subjected to the square wave load in
discharge cycles. For example, when 10 discharge cycles have been
observed, the estimated SOH for Battery No. 25 is 0.895, while the
actual SOH is 0.914. Although there is a gap between the estimated
SOH trajectory and the true SOH trajectory for Battery No. 25 and
Battery No. 27, the proposed method is still capable of tracking the
fluctuation of the trajectories for these two batteries. There are two
reasons for the estimation error. The first reason is that the square wave
load in discharge cycles introduces randomness in SOH estimations.
The second reason is that the experiments on these batteries terminated
at the very early degradation stage, as a result, this subset provides
limited training data.

To further illustrate the performance of the conditional GCN with
dilated convolutional operations, an ablation study was conducted.
Table 3 lists the methods used in this ablation study: CGCN-DCO refers
to the proposed method, GCN-DCO represents the graph convolutional
network with dilated convolutional operations, and CGCN denotes the
conditional graph convolutional network. The comparison between
CGCN-DCO and GCN-DCO aims to demonstrate the effectiveness of the
proposed conditional graphs, while the comparison between CGCN-
DCO and CGCN aims to showcase the effectiveness of the dilated
convolutional operation. It should be noted that the conditional graphs
should not be used in the testing phase because they include SOH/RUL
information, which is not available during testing. In addition to this
ablation study, a comparative study was also conducted to show that
the proposed method outperforms other deep learning methods, such
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Table 2
Hyperparameters and network structure utilized in this case study for SOH estimations and RUL predictions.

Layer order Description Connected to Output dimensions

1 1st Input layer – Batch × 𝐾 × 𝜏
2 2nd Input layer – Batch × (𝐾 + 1) × 𝜏
3 1st Dual graph convolutional layer 1st Input layer Batch × 2 × 𝐾 × 𝜏′

4 2nd Dual graph convolutional layer 2nd Input layer Batch × 2 × (𝐾 + 1) × 𝜏′

5–7 1st Dilated convolutional layer 1st Dual graph convolutional layer Batch × 2 × 𝛥𝑖 × 𝛤𝑖
8–10 2nd Dilated convolutional layer 2nd Dual graph convolutional layer Batch × 2 × 𝛥𝑖 × 𝛤𝑖
11 1st Flatten layer 1st Dilated convolutional layer Batch × 2𝛥𝑖𝛤𝑖 (𝑖 = 3)
12 2nd Flatten layer 2nd Dilated convolutional layer Batch × 2𝛥𝑖𝛤𝑖 (𝑗 = 3)
13 1st Fully connected layer 1st Flatten layer Batch × 1
14 2nd Fully connected layer 2nd Flatten layer Batch × 1

Fig. 7. The SOH estimation results for Battery No. 5, No. 6, No. 7, No. 18 in subset 1 and Battery No. 29, No. 30, No. 31, No. 32 in subset 2.

Fig. 8. The SOH estimation results for Battery No. 25, No. 26, and No. 27 in Dataset 3.

Table 3
Methods used in this ablation study for SOH estimations.

Method symbol Method description

CGCN-DCO Conditional graph convolutional network with dilated convolutional operations (Proposed)
GCN-DCO Graph convolutional network with dilated convolutional operations
CGCN Conditional graph convolutional network

as Transformer, MGCN (multi-receptive field GCN), and CNN+LSTM
(convolutional neural network with long-short term memory).

Table 4 lists the RMSE (Root Mean Squared Error), MAE (Mean
Absolute Error), MSE (Mean Squared Error), MedAE (Median Absolute
Error), and R2-score (R-squared score) for SOH estimations across all
batteries in three subsets, utilizing the methods presented in Table 3
and other deep learning methods. It can be concluded from this table
that the proposed conditional graphs and the dilated convolutional
operation can enhance the SOH estimation performance of the graph
convolutional network. For instance, the average MAE of the CGCN-
DCO method for all batteries is 0.0078. In contrast, the average MAE
for CGCN and GCN-DCO for all batteries is 0.02228 and 0.01926,

respectively. By employing the proposed conditional graphs and the
dilated convolutional operation, the average prediction RMSE can be
reduced by up to 73.5%, and the average R2-score can increase by up to
29.4%. Furthermore, as indicated in Table 4, the proposed method also
outperforms other deep learning methods. For instance, the average
RMSE for the proposed method across all batteries is 0.00913, while the
average RMSE for Transformer, MGCN, and CNN+LSTM are 0.08039,
0.01254, and 0.127, respectively.

Fig. 9 shows a spider plot of five evaluation metrics used to assess
the SOH estimation performance of the methods employed in the abla-
tion study. These evaluation metrics include RMSE, MAE, MSE, MedAE,
and R2-score. Based on this figure, it can also be concluded that both



Expert Systems With Applications 238 (2024) 122041

10

Y. Wei and D. Wu

Table 4
The RMSE, MAE, MedAE, MSE, and R2-score of SOH estimations for all batteries in three subsets with using methods in Table 3 and other deep learning methods.

Methods Metrics Subset 1 Subset 2 Subset 3 AVG

No. 5 No. 6 No. 7 No. 18 No. 29 No. 30 No. 31 No. 32 No. 25 No. 26 No. 27

CGCN-DCO

RMSE(10−2) 0.228 0.513 0.501 0.711 0.480 0.980 0.567 1.274 1.686 1.941 1.157 0.913
MAE(10−2) 0.164 0.355 0.460 0.553 0.406 0.864 0.489 1.243 1.566 1.346 1.129 0.780
MedAE(10−2) 0.120 0.220 0.475 0.477 0.433 0.881 0.466 1.259 1.542 1.146 1.166 0.744
MSE(10−2) 0.001 0.003 0.003 0.005 0.002 0.010 0.003 0.016 0.028 0.038 0.013 0.011
R2-score 1.000 0.999 1.000 0.995 0.996 0.990 0.983 0.997 0.817 0.922 0.918 0.965

CGCN

RMSE(10−2) 0.857 1.420 1.724 1.152 2.090 1.162 2.592 2.803 2.208 21.68 0.923 3.510
MAE(10−2) 0.630 1.054 1.339 0.924 1.665 1.011 2.152 2.251 1.741 10.95 0.795 2.228
MedAE(10−2) 0.435 0.747 1.155 0.764 1.607 1.029 1.853 1.855 1.412 3.835 0.684 1.398
MSE(10−2) 0.007 0.020 0.030 0.013 0.044 0.013 0.067 0.079 0.049 4.701 0.009 0.457
R2-score 0.997 0.992 0.973 0.985 0.761 0.966 0.484 0.795 0.634 0.188 0.436 0.746

GCN-DCO

RMSE(10−2) 0.279 0.572 0.532 0.714 0.806 1.033 0.562 1.051 2.545 21.96 2.047 2.918
MAE(10−2) 0.227 0.408 0.478 0.576 0.650 0.927 0.495 1.031 2.146 12.25 2.000 1.926
MedAE(10−2) 0.200 0.326 0.466 0.483 0.605 0.842 0.417 1.000 2.312 5.928 2.009 1.326
MSE(10−2) 0.001 0.003 0.003 0.005 0.006 0.011 0.003 0.011 0.065 4.823 0.042 0.452
R2-score 1.000 0.999 0.999 0.995 0.970 0.989 0.973 0.999 −0.02 −0.16 0.838 0.781

Transformer

RMSE(10−2) 4.520 4.410 25.03 4.856 7.857 4.049 2.069 1.931 2.618 23.05 8.035 8.039
MAE(10−2) 3.618 3.496 16.61 3.877 4.603 3.491 1.826 1.590 2.244 18.24 7.348 6.086
MedAE(10−2) 2.751 2.933 13.26 3.224 2.064 3.176 1.723 1.272 2.202 11.58 6.390 4.598
MSE(10−2) 0.204 0.194 6.266 0.236 0.617 0.164 0.043 0.037 0.069 5.311 0.646 1.253
R2-score 0.888 0.918 0.668 0.908 0.360 0.312 0.803 0.881 −0.46 0.269 −0.20 0.486

MGCN

RMSE(10−2) 0.659 1.395 1.689 1.268 0.491 1.159 0.472 1.049 1.675 2.292 1.645 1.254
MAE(10−2) 0.538 1.034 1.343 1.018 0.416 1.118 0.416 1.034 1.552 1.544 1.627 1.058
MedAE(10−2) 0.478 0.701 1.096 0.934 0.384 1.139 0.418 1.012 1.517 1.080 1.639 0.945
MSE(10−2) 0.004 0.019 0.029 0.016 0.002 0.013 0.002 0.011 0.028 0.053 0.027 0.019
R2-score 0.998 0.992 0.988 0.981 0.997 0.997 0.992 0.999 0.820 0.871 0.926 0.960

CNN+LSTM

RMSE(10−2) 7.249 4.558 30.62 13.28 12.62 2.371 2.181 5.478 9.216 13.70 31.49 12.07
MAE(10−2) 6.047 3.554 30.24 11.85 12.45 1.939 1.556 5.324 8.975 10.02 31.44 11.22
MedAE(10−2) 7.420 3.085 31.42 11.17 12.77 1.634 1.266 5.663 8.899 7.505 31.23 11.10
MSE(10−2) 0.526 0.208 9.374 1.762 1.592 0.056 0.048 0.300 0.849 1.878 9.918 2.410
R2-score 0.880 0.943 0.816 0.726 0.973 0.844 0.665 0.953 −0.61 0.261 −0.04 0.583

Fig. 9. The spider plot of five evaluation metrics are used to evaluate the SOH estimation performance of the methods used in this ablation study.

the proposed conditional graph and the use of dilated convolutional
operations can improve prediction performance across all evaluation
metrics. For example, in the first subset of batteries, the proposed
CGCN-DCO achieves a MedAE of 0.00383, while the MedAE for GCN-
DCO and CGCN is 0.00422 and 0.00987, respectively. Furthermore, in
the second subset of batteries, the R2 Score of the proposed CGCN-
DCO is 0.89677, whereas the R2-scores of GCN-DCO and CGCN are
0.89572 and 0.18335, respectively. In addition, a two-sample t-test
was conducted to demonstrate that the proposed conditional graph and
dilated convolutional operations can statistically improve prediction
performance. The two-sample t-test indicates that the 𝑝-value for the
hypothesis test, with the null hypothesis stating that the average RMSE
of the proposed CGCN-DCO is equal to or greater than the average
RMSE of CGCN, is 0.086 at a significance level of 0.1. Similarly, the
𝑝-value for the hypothesis test, with the null hypothesis stating that the
average RMSE of the proposed CGCN-DCO is equal to or greater than
the average RMSE of GCN-DCO, is 0.095 at a significance level of 0.1.
This implies that the confidence level for rejecting the null hypothesis is
greater than 0.9, indicating that the proposed method can significantly
reduce prediction errors.

In addition, a comparison of the proposed CGCN-DCO with other
methods reported in the literature was also conducted. Table 5 shows
the RMSE of the SOH estimation of the proposed method (CGCN-DCO),
graph convolutional network with dual attention mechanism (GCN-
DA), multiple Gaussian regression models (MGP), logic regression with
Gaussian process regression (LRGP), gradient boosting decision tree
(GBDT), and Gaussian process (GP), and health index informed at-
tention model (HIIA). Based on the RMSE of the SOH estimation
presented in this table, it can be concluded that the proposed method
(CGCN-DCO) exhibits superior performance compared to previously
established methods. For instance, the average RMSE of the proposed
method is 0.0049, whereas the average RMSE of other methods doc-
umented in the literature ranges between 0.0135 and 0.0493, further
highlighting the effectiveness of the proposed method.

3.4. RUL prediction

In this section, the effectiveness of the proposed method in predict-
ing RUL for subsets 1 and 2 is demonstrated. Because the number of
cycles for each battery in subset 3 is very small, subset 3 does not have
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Table 5
The RMSE of the SOH estimation of the proposed method and other methods reported in the literature.

Battery CGCN-DCO CGCN GCN-DCO GCN-DA (Wei &
Wu, 2022b)

MGP (Zheng &
Deng, 2019)

LRGP (Yu, 2018) GBT (Qin, Zhao,
& Liu, 2022)

GP (Yu, 2018) HIIA (Wei,
2023)

No. 5 0.0023 0.0086 0.0028 0.0139 0.0096 0.0168 0.0192 0.0751 0.0165
No. 6 0.0051 0.0142 0.0057 0.0136 0.0167 0.0292 0.0281 0.0406 0.0153
No. 7 0.0050 0.0172 0.0053 0.0104 0.0129 – 0.0157 – 0.0089
No. 18 0.0071 0.0115 0.0071 0.0162 0.0228 0.0169 – 0.0323 0.0139

Average 0.0049 0.0129 0.0052 0.0135 0.0155 0.0210 0.0210 0.0493 0.0136

Fig. 10. The box plot of RUL prediction results for batteries in subset 1 and subset 2.

sufficient data to perform RUL predictions. For example, the number of
discharge cycles for subset 3 is only 28, compared to over 100 for subset
1 and 40 for subset 2. Fig. 10 shows the box plot of RUL prediction
results for Battery No. 5, No. 6, No. 7, No. 18 in subset 1 and Battery
No. 29, No. 30, No. 31, No. 32 in subset 2. Based on this figure, it
can be observed that the proposed method achieved high prediction
accuracy because the predicted RUL aligns with the true RUL, and the
range of the box plot includes the true RUL. It should be noted that the
RUL prediction accuracy is not very high in comparison with the SOH
prediction accuracy. This is because RUL predictions involve predicting
the future end-of-life (EOL) of a battery, which can be very challenging.
In addition, in this case study, the dataset is relatively small since each
subset includes data collected from only four batteries.

Moreover, an ablation study was conducted to demonstrate the
effectiveness of the proposed conditional graphs and the use of the
dilated convolutional operation. In addition to this ablation study,
a comparative study was also conducted to show that the proposed
method outperforms other deep learning methods. Table 6 shows the
RMSE, MAE, MSE, MedAE, and R2-score for the RUL prediction using
methods listed in Table 3 and other deep learning methods. From
this table, it can be concluded that both the proposed conditional
graphs and the dilated convolutional operation improve the RUL pre-
diction performance. For example, the average prediction RMSE of
the proposed method is 10.45, while the average RMSE of the CGCN
and GCN-DCO is 16.32 and 11.18, respectively. In addition, based on
Table 6, it can also be observed that the proposed method outperforms
other deep learning methods. For instance, the average MAE of the
proposed method is 9.15, whereas the average MAE of Transformer,
MGCN, and CNN+LSTM is 10.06, 9.65, and 11.13, respectively.

Fig. 11 shows the spider plot of five evaluation metrics used to
assess the RUL prediction performance of the methods employed in
this ablation study. These evaluation metrics include RMSE, MAE, MSE,
MedAE, and R2-score. Based on this figure, it can also be concluded
that both the proposed conditional graph and the use of dilated con-
volutional operations can improve RUL prediction performance across
all evaluation metrics. For example, in the first subset of batteries, the
proposed CGCN-DCO achieves a R2-score of 0.51, whereas the R2 Score
for CGCN and GCN-DCO are −0.19 and 0.46, respectively. Furthermore,
in the second subset of batteries, the MedAE of the proposed CGCN-
DCO is 3.48, while the MedAE of CGCN and GCN-DCO are 4.35 and
3.84, respectively.

To further demonstrate the effectiveness of the proposed method,
a comparison was conducted between the proposed CGCN-DCO and
other methods reported in the literature. Table 7 provides the RMSEs
in the RUL predictions for the proposed method CGCN-DCO, GCN-DCO,
CGCN, logic regression with Gaussian process (LRGP), Gaussian process
(GP), LSTM, and LSTM with dual attention mechanisms (LSTM-DA).
Based on the table, it can be concluded that the proposed CGCN-
DCO outperforms other methods. For instance, the average RMSE of
the proposed method is 16.84, while the average RMSE of the other
methods ranges from 17.07 to 30.27.

4. Case study II

4.1. Data description

The proposed method is also demonstrated on the Oxford bat-
tery degradation dataset (Birkl, 2017). The Oxford battery dataset
includes eight lithium-ion battery cells, each with a maximum capacity
of 740 mAh. These battery cells underwent repeated charging and
discharging operations, during which current, voltage, and temperature
data were collected. The charging and discharging cycles exposed these
battery cells to a CC and CV charging profile, followed by a drive
cycle discharging profile. More details about this dataset can be found
in Birkl, Roberts, McTurk, Bruce, and Howey (2017). Similar to the bat-
teries in the NASA dataset, the capacity of these battery cells decreased
as the number of charging and discharging cycles increased. Fig. 12
displays the degradation trajectories of capacity and capacity fade for
all the battery cells. For all battery cells in the Oxford battery dataset,
run-to-failure tests were conducted, and End-of-Life (EOL) was reached
when the capacity decreased by 15%. Additionally, an eight-fold cross-
validation was performed to thoroughly evaluate the efficacy of the
proposed method for all eight battery cells. In both SOH estimations
and RUL predictions, the extracted features and network structure are
the same as those used in the first case study. The only difference is
that the number of filters in the dilated convolutional layers is set to
10, and the learning rate is set to 10−4.

4.2. SOH estimation

Fig. 13 displays the SOH estimations for all battery cells in the
Oxford battery dataset. The initial estimation point for these battery
cells is 10 cycles. From Fig. 13, it can be concluded that the proposed
method is capable of estimating the SOH of lithium-ion batteries with
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Table 6
The RMSE, MAE, MedAE, MSE, and R2-score of RUL predictions for batteries in subset 1 and subset 2 with using methods in Table 3 and other deep learning methods.

Methods Metrics Subset 1 Subset 2 AVG

No. 5 No. 6 No. 7 No. 18 No. 29 No. 30 No. 31 No. 32

CGCN-DCO

RMSE 12.31 16.94 28.40 9.85 3.84 1.49 4.95 5.78 10.45
MAE 11.89 14.01 24.21 9.18 3.32 1.37 4.39 4.81 9.15
MedAE 12.38 11.13 24.57 8.98 2.72 1.61 4.33 3.88 8.70
MSE 151.5 286.9 806.7 96.94 14.74 2.23 24.54 33.43 177.1
R2-score 0.994 0.982 0.989 0.976 0.988 0.975 0.980 0.970 0.982

CGCN

RMSE 21.41 21.07 55.58 12.07 3.53 4.44 5.55 6.90 16.32
MAE 20.19 17.21 50.30 10.35 2.95 4.14 4.66 6.01 14.48
MedAE 21.00 14.89 57.50 8.36 2.18 4.27 4.60 5.37 14.77
MSE 458.4 444.0 3089 145.6 12.48 19.68 30.80 47.57 531.0
R2-score 0.974 0.967 0.935 0.693 0.988 0.918 0.980 0.974 0.929

GCN-DCO

RMSE 12.37 18.56 33.16 7.49 3.85 1.56 5.30 7.14 11.18
MAE 11.93 15.06 28.56 6.83 3.25 1.43 4.58 6.14 9.72
MedAE 12.27 10.19 30.60 6.77 2.50 1.34 4.69 5.39 9.22
MSE 153.1 344.3 1099 56.03 14.82 2.43 28.11 50.96 218.7
R2-score 0.994 0.985 0.989 0.980 0.983 0.979 0.972 0.960 0.980

Transformer

RMSE 18.47 17.56 28.43 7.29 8.86 5.03 5.53 4.03 11.90
MAE 15.72 13.60 25.08 6.56 7.22 4.53 4.72 3.06 10.06
MedAE 14.89 8.39 18.86 6.09 6.17 4.91 4.41 2.00 8.22
MSE 341.1 308.2 808.5 53.17 78.53 25.27 30.62 16.27 207.7
R2-score 0.993 0.968 0.984 0.975 0.443 0.780 0.835 0.962 0.867

MGCN

RMSE 12.94 19.25 30.02 8.92 3.81 1.80 5.31 6.72 11.10
MAE 12.66 15.98 25.57 7.76 3.19 1.70 4.56 5.81 9.65
MedAE 12.98 13.31 27.34 8.92 2.47 1.87 4.73 4.95 9.57
MSE 167.3 370.6 901.0 79.59 14.53 3.25 28.21 45.14 201.2
R2-score 0.996 0.986 0.990 0.967 0.985 0.987 0.979 0.967 0.982

CNN+LSTM

RMSE 15.13 14.93 35.93 12.06 6.52 5.17 8.02 5.61 12.92
MAE 14.26 11.16 31.78 11.32 5.39 5.02 6.28 3.87 11.13
MedAE 14.07 5.36 34.09 10.29 5.75 4.73 4.89 2.02 10.15
MSE 228.8 222.9 1291 145.4 42.45 26.74 64.26 31.48 256.7
R2-score 0.982 0.990 0.998 0.973 0.978 0.945 0.953 0.928 0.968

Fig. 11. The spider plot of five evaluation metrics are used to evaluate the RUL prediction performance of the methods used in this ablation study.

Table 7
The RMSE of the RUL prediction of the proposed method and other methods reported in the literature.

CGCN-DCO CGCN GCN-DCO LRGP (Yu, 2018) GP (Yu, 2018) LSTM (Wei & Wu, 2022b) LSTM-DA (Wei & Wu, 2022b)

Battery No. 5 12.23 21.28 12.30 16.60 40.70 27.52 32.56
Battery No. 6 16.88 21.02 18.47 21.10 29.50 40.20 42.00
Battery No. 7 28.31 55.36 33.03 – – 33.62 33.01
Battery No. 18 9.92 11.98 7.56 13.50 20.60 6.46 8.97

Average 16.84 27.41 17.84 17.07 30.27 26.950 29.135

high precision, as the estimated SOH aligns closely with the true
SOH. For example, regarding battery Cell 1, both the true SOH and
the estimated SOH are 0.915 when 12 discharge cycles have been
observed.

Similar to the first case study, an ablation study and a comparative
study were also conducted to demonstrate the effectiveness of the
proposed method. Table 8 shows the RMSE, MAE, MSE, MedAE, and
R2-score of SOH estimations for all battery cells in the Oxford battery

dataset. From this table, it can be observed that the proposed method
outperforms the methods listed in Table 3 and other deep learning
methods. For example, the average SOH estimation RMSE of the pro-
posed method is 0.0150. In comparison, the average SOH estimation
RMSE of Transformer and MGCN is 0.0235 and 0.0294, respectively.
Moreover, the average R2-score of the proposed method is 0.9672.
However, the average R2-score of other deep learning methods in this
table ranges from 0.8093 to 0.9658.
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Fig. 12. The degradation trajectories of capacity and capacity fade for battery cells in the Oxford battery degradation dataset..

Fig. 13. The SOH estimations for all battery cells in the Oxford battery dataset.

Table 8
The RMSE, MAE, MSE, MedAE, and R2-score of SOH estimations for all battery cells in the Oxford battery dataset.

Methods Metrics Battery index AVG

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8

CGCN-DCO

RMSE 0.0097 0.0335 0.0156 0.0049 0.0213 0.0080 0.0140 0.0131 0.0150
MAE 0.0079 0.0232 0.0145 0.0037 0.0067 0.0067 0.0131 0.0120 0.0110
MedAE 0.0071 0.0069 0.0146 0.0030 0.0026 0.0049 0.0127 0.0120 0.0080
MSE 0.0001 0.0011 0.0002 0.0000 0.0005 0.0001 0.0002 0.0002 0.0003
R2-score 0.9928 0.9075 0.9908 0.9933 0.8967 0.9921 0.9898 0.9746 0.9672

CGCN

RMSE 0.0135 0.0339 0.0167 0.0063 0.0205 0.0062 0.0138 0.0131 0.0155
MAE 0.0113 0.0235 0.0154 0.0050 0.0077 0.0048 0.0129 0.0120 0.0116
MedAE 0.0102 0.0077 0.0174 0.0042 0.0035 0.0039 0.0131 0.0119 0.0090
MSE 0.0002 0.0012 0.0003 0.0000 0.0004 0.0000 0.0002 0.0002 0.0003
R2-score 0.9937 0.9063 0.9914 0.9860 0.9010 0.9883 0.9858 0.9739 0.9658

GCN-DCO

RMSE 0.0102 0.0334 0.0162 0.0055 0.0216 0.0065 0.0140 0.0133 0.0151
MAE 0.0087 0.0231 0.0151 0.0039 0.0061 0.0060 0.0131 0.0122 0.0110
MedAE 0.0087 0.0071 0.0155 0.0031 0.0019 0.0060 0.0128 0.0123 0.0084
MSE 0.0001 0.0011 0.0003 0.0000 0.0005 0.0000 0.0002 0.0002 0.0003
R2-score 0.9906 0.9077 0.9907 0.9907 0.8828 0.9957 0.9900 0.9743 0.9653

Transformer

RMSE 0.0150 0.0374 0.0179 0.0298 0.0307 0.0258 0.0150 0.0167 0.0235
MAE 0.0106 0.0242 0.0135 0.0248 0.0221 0.0239 0.0128 0.0132 0.0181
MedAE 0.0069 0.0128 0.0111 0.0214 0.0171 0.0247 0.0116 0.0106 0.0145
MSE 0.0002 0.0014 0.0003 0.0009 0.0009 0.0007 0.0002 0.0003 0.0006
R2-score 0.9431 0.7276 0.9340 0.9168 0.7257 0.9587 0.9549 0.9763 0.8921

MGCN

RMSE 0.0356 0.0316 0.0104 0.0163 0.0323 0.0130 0.0378 0.0583 0.0294
MAE 0.0243 0.0249 0.0079 0.0113 0.0132 0.0110 0.0301 0.0454 0.0210
MedAE 0.0173 0.0202 0.0059 0.0068 0.0070 0.0108 0.0262 0.0403 0.0168
MSE 0.0013 0.0010 0.0001 0.0003 0.0010 0.0002 0.0014 0.0034 0.0011
R2-score 0.8260 0.7894 0.9687 0.9234 0.6432 0.9451 0.7430 0.6356 0.8093

CNN+LSTM

RMSE 0.0211 0.0353 0.0396 0.0269 0.0492 0.0204 0.0285 0.0211 0.0303
MAE 0.0176 0.0271 0.0360 0.0200 0.0208 0.0152 0.0264 0.0160 0.0224
MedAE 0.0158 0.0207 0.0378 0.0142 0.0137 0.0107 0.0253 0.0124 0.0188
MSE 0.0004 0.0012 0.0016 0.0007 0.0024 0.0004 0.0008 0.0004 0.0010
R2-score 0.9348 0.8568 0.9606 0.9284 0.2772 0.8978 0.9461 0.8945 0.8370
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Fig. 14. The box plot of RUL prediction results and prediction errors for battery cells in the Oxford battery dataset.

Table 9
The RMSE, MAE, MSE, MedAE, and R2-score of RUL predictions for all battery cells in the Oxford battery dataset.

Methods Metrics Battery index AVG

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8

CGCN-DCO

RMSE 1.846 2.896 3.054 4.342 4.330 1.752 7.828 1.822 3.484
MAE 1.674 2.783 2.875 3.928 4.303 1.700 7.079 1.412 3.219
MedAE 1.672 2.474 2.971 3.890 4.321 1.629 6.244 1.215 3.052
MSE 3.408 8.384 9.326 18.85 18.75 3.068 61.28 3.319 15.80
R2-score 0.988 0.998 0.960 0.999 0.999 0.998 0.998 0.999 0.992

CGCN

RMSE 2.049 2.973 2.867 4.414 4.398 1.728 7.788 1.933 3.519
MAE 1.864 2.791 2.683 3.879 4.355 1.682 7.080 1.552 3.236
MedAE 2.000 2.446 2.742 3.796 4.267 1.649 6.395 1.473 3.096
MSE 4.200 8.839 8.220 19.49 19.34 2.987 60.66 3.736 15.93
R2-score 0.990 0.998 0.963 0.999 0.999 0.999 0.998 0.999 0.993

GCN-DCO

RMSE 1.660 3.062 3.827 4.564 4.383 1.715 7.807 2.046 3.633
MAE 1.422 2.951 3.691 4.151 4.343 1.674 7.121 1.564 3.365
MedAE 1.392 2.815 3.769 4.236 4.285 1.552 6.198 1.509 3.219
MSE 2.756 9.376 14.65 20.83 19.21 2.940 60.95 4.188 16.86
R2-score 0.993 0.999 0.960 0.999 0.999 0.999 0.998 0.999 0.993

Transformer

RMSE 5.119 3.597 8.511 4.850 4.211 3.846 7.706 6.402 5.530
MAE 4.161 3.265 7.072 3.446 3.904 2.803 6.877 5.103 4.579
MedAE 2.354 3.268 6.360 1.368 3.394 2.514 6.323 4.227 3.726
MSE 26.20 12.94 72.44 23.52 17.73 14.79 59.38 40.99 33.50
R2-score 0.918 0.978 0.931 0.981 0.988 0.987 0.998 0.996 0.972

MGCN

RMSE 1.282 1.047 4.460 3.645 1.247 3.310 10.30 7.693 4.123
MAE 0.940 0.899 4.172 3.325 1.137 3.255 9.781 7.473 3.873
MedAE 0.508 0.702 3.622 3.319 1.035 3.261 9.453 7.436 3.667
MSE 1.642 1.096 19.89 13.29 1.554 10.95 106.2 59.18 26.72
R2-score 0.996 0.999 0.988 1.000 0.998 0.998 0.999 0.999 0.997

CNN+LSTM

RMSE 3.476 4.006 5.146 4.423 4.155 2.883 8.923 4.870 4.735
MAE 2.743 3.627 4.260 4.012 3.752 2.595 7.088 3.436 3.939
MedAE 2.313 4.057 3.367 4.515 4.279 2.884 4.928 1.430 3.472
MSE 12.08 16.05 26.48 19.56 17.27 8.311 79.63 23.72 25.39
R2-score 0.934 0.938 0.968 0.935 0.949 0.947 0.937 0.936 0.943

4.3. RUL prediction

Fig. 14 shows the box plot of RUL prediction results and prediction
errors for battery cells in the Oxford battery dataset. From this figure,
it can be concluded that the proposed method has a relatively high
prediction accuracy, as the mean of the predicted RUL aligns with the
true RUL, and the majority of prediction errors range from −5 to 5
cycles. It is worth noting that the RUL prediction performance is better
than the RUL prediction performance in the first case study for two
primary reasons. First, there are more battery cells included in this
case study, leading to increased prediction performance. Second, the
degradation trajectories of these battery cells are close to each other,
therefore reducing the difficulties in RUL predictions.

Similar to the first case study, an ablation study was conducted to
demonstrate the effectiveness of the proposed conditional graphs and
the use of the dilated convolutional operation. A comparative study was
also conducted to show that the proposed method outperforms other
deep learning methods. Table 9 displays the RMSE, MAE, MSE, MedAE,
and R2-score for RUL prediction using methods listed in Table 3 and
other deep learning methods. Based on this table, it can be observed

that both the proposed conditional graphs and the dilated convolu-
tional operation improve RUL prediction performance. For example,
the average RUL prediction RMSE of the proposed method is 3.484. In
contrast, the average RUL prediction RMSE of the CGCN and GCN-DCO
is 3.519 and 3.633, respectively. From Table 9, it can be concluded that
the proposed method outperforms other deep learning methods. As an
example, the average prediction MAE of the proposed method is 3.219.
In comparison, the average prediction MAE of Transformer, MGCN, and
CNN+LSTM ranges from 3.873 to 4.579.

5. Conclusions and future work

In this work, two types of undirected graphs were introduced. The
first type of graphs (1) was used to consider the correlation among
features, while the second type of graphs (2) was used to consider the
correlation between features and SOH/RUL. Two feature spaces were
extracted from the two types of graphs, respectively. KL-divergence
was then adopted to minimize the distance between the two feature
spaces, allowing the feature space extracted from 1 to approximate
the feature space extracted from 2. Even without SOH/RUL, the
correlation between the features and SOH/RUL can be taken into
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account when the feature space extracted from 1 is used for testing.
Additionally, the dilated convolutional operations were implemented
after aggregating similar features in GCN, allowing one to consider
the temporal correlation among the aggregated features. To evaluate
the effectiveness of the proposed method, two battery datasets (i.e.,
NASA and Oxford battery datasets) were used, where the current,
voltage, and temperature data in discharge cycles were used to predict
the SOH and RUL. Experimental results have demonstrated that the
proposed method outperforms other methods, such as the Transformer
encoder, multi-receptive field GCN, and convolutional neural network
with long short-term memory, in terms of RMSE, MAE, MedAE, MSE,
and R2-score. Furthermore, the experimental results have shown that
the proposed method outperforms other machine learning methods
reported in the literature. In the future, we will take into account the
underlying physics of battery aging in the proposed method.
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