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A subcomplex X ≤ C of a simplicial complex is strongly rigid if every locally 
injective, simplicial map X → C is the restriction of a unique automorphism of C. 
Aramayona and the second author proved that the curve complex of an orientable 
surface can be exhausted by finite strongly rigid sets. The Hatcher sphere complex is 
an analog of the curve complex for isotopy classes of essential spheres in a connect 
sum of n copies of S1 × S2. We show that there is an exhaustion of the sphere 
complex by finite strongly rigid sets for all n ≥ 3 and that when n = 2 the sphere 
complex does not have finite rigid sets.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY-NC license (http://creativecommons .org /licenses /by -nc /4 .0/).

1. Introduction

The curve complex C(S) of a surface S is the flag simplicial complex whose k-simplicies are sets of k + 1
isotopy classes of pairwise disjoint essential non-peripheral simple closed curves. This complex has been used 
extensively to study the mapping class group, since this group acts on C(S) by simplicial automorphisms. 
In fact, this action of the (extended) mapping class group typically defines an isomorphism to the full 
group of automorphisms [18,20,23], and more generally its locally injective simplicial self maps [27,15]. This 
“rigidity” of C(S) is an important tool in studying the mapping class group and its subgroups, and has 
seen vast generalizations to similar rigidity phenomena for many other complexes. For example, Brendle-
Margalit [4] and McLeay [26] prove very general rigidity results that simultaneously apply to numerous 
complexes, and deduce implications for the structure of normal subgroups of mapping class groups; and in 
a different direction, Disarlo, Koberda, and de la Nuez Gonzalez [5] investigate and interpret a variety of 

* Corresponding author.
E-mail addresses: edgar.bering@sjsu.edu (E.A. Bering), cjl12@rice.edu (C.J. Leininger).

https://doi.org/10.1016/j.topol.2024.108862
0166-8641/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://
creativecommons .org /licenses /by -nc /4 .0/).

https://doi.org/10.1016/j.topol.2024.108862
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2024.108862&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
mailto:edgar.bering@sjsu.edu
mailto:cjl12@rice.edu
https://doi.org/10.1016/j.topol.2024.108862
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


2 E.A. Bering, C.J. Leininger / Topology and its Applications 347 (2024) 108862

rigidity phenomena in model theoretic terms; see the references in these works for many others. The complex 
C(S) is rather unwieldy, being infinite diameter and locally infinite, but Aramayona and the second author 
showed this rigid nature is entirely encoded in a finite subcomplex [2]. More precisely, there is a finite 
subcomplex X ⊆ C(S) such that every locally injective, simplicial map X → C(S) is the restriction of a 
unique element of Aut(C(S)). Such a subcomplex is called strongly rigid, and in subsequent work, Aramayona 
and the second author demonstrated that C(S) can be exhausted by a sequence of nested, strongly rigid 
subcomplexes C(S) = ∪nXn [3]. Since these two results, many other complexes associated to surfaces have 
similarly been shown to have (exhaustions by) finite rigid sets [14,16,17,25,24,12,28,29].

In a long-running analogy between mapping class groups of surfaces and outer automorphisms of free 
groups, several complexes have been introduced to play an analogous role to the curve complex. The most 
topological of these is the sphere complex S(Mn,0) of Mn,0 = #nS

1 × S2, the connect sum of n copies of 
S1×S2: a simplicial complex whose k-simplicies are sets of k+1 isotopy classes of pairwise disjoint essential 
non-peripheral embedded 2-spheres in Mn,0 [9]. The mapping class group Mod(Mn,0) surjects Out(Fn) [21, 
Théorème III] with finite kernel. Since its introduction the sphere complex has played a role analogous to 
the curve complex in studying homological properties of Out(Fn) and Aut(Fn) [7,10]. Beyond homology the 
sphere complex has analogous geometry: it is hyperbolic [8,13] and this geometry has played a vital role 
in the study of the geometry of Out(Fn), see Vogtmann’s survey [30]. For the purposes of this article, we 
note that the sphere complex is simplicially rigid: Aramayona and Souto prove that for n ≥ 3 the group 
Aut(S(Mn,0)) is isomorphic to Out(Fn) [1]. Motivated by the analogy between the curve complex and the 
sphere complex, we establish the existence of finite strongly rigid sets in the sphere complex of a connect 
sum of copies of S1 × S2.

Theorem 1. For n ≥ 3, there exists a finite strongly rigid simplicial complex X ⊆ S(Mn,0); that is, for any 
locally injective, simplicial map f : X → S(Mn,0) there exists a unique element φ ∈ Aut(S(Mn,0)) such that

f = φ|X .

We also show that the sphere complex can be exhausted by finite strongly rigid sets.

Theorem 2. For n ≥ 3, there exists a nested family of finite strongly rigid simplicial complexes Xj ⊆ S(Mn,0)
such that

S(Mn,0) = ∪jXj .

Our proofs of Theorems 1 and 2 start by constructing an exhaustion of S(Mn,0) by sets that are ge-
ometrically rigid: every locally injective simplical map is the restriction of the action of some element 
of Mod(Mn,0), and any two such elements induce the same element of Out(Fn). In Section 5 we com-
bine this uniqueness with the exhaustion to produce a new proof of Aramayona and Souto’s isomorphism 
Out(Fn) ∼= Aut(S(Mn,0)). We conclude strong rigidity by using this isomorphism.

The restriction n ≥ 3 is necessary. While S(M2,0) is related to the Farey graph, which has finite rigid 
sets, each separating sphere in M2,0 determines a unique triangle of S(M2,0) attached to the natural Farey-
subgraph (often called a fin). We show that these fins are an obstruction to the existence of rigid sets and 
we use them to prove a negative result.

Theorem 3. The sphere complex S(M2,0) does not contain any finite rigid subcomplex.

Remark 4. To clarify, a rigid subcomplex of a simplicial complex is one for which any locally injective 
simplicial map back into the complex extends to an automorphism. If that automorphism is unique, then 
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the subcomplex is strongly rigid. If the complex in question is a sphere complex of a manifold and the 
automorphism is realized by a homeomorphism, then the subcomplex is geometrically rigid.

The exposition is as follows. Section 2 fixes notation and introduces the necessary facts about sphere 
complexes of punctured 3–spheres and pants decompositions. Section 3 introduces our “seed” finite strongly 
rigid set and proves that it is geometrically rigid. Building from this set Section 4 constructs an exhaustion 
of the sphere complex by geometrically rigid sets. Section 5 upgrades geometric rigidity to strong rigidity 
by exploiting the exhaustion, completing the proofs of Theorems 1 and 2. Finally, the setting of n = 2 is 
treated in Section 6.

Acknowledgments
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suggesting we determine strong rigidity, and an anonymous referee for suggestions that improved the expo-
sition. EB also thanks Shaked Bader for a helpful conversation, Rice University for hospitality when this 
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2. Building blocks

The sphere complex is a flag complex, so we will focus on the 1-skeleton. In keeping with tradition in the 
area, unless specified when we say sphere S in M we mean isotopy class of essential (S does not bound a 
3-ball), non-peripheral (S is not isotopic into ∂M) smoothly embedded sphere in M , or a representative of 
the isotopy class, with the context indicating which is intended.

Notation. Let Mn,s denote the connect sum of S3 with n copies of S1 × S2 and with s disjoint open balls 
removed.

While this article is focused on S(Mn,0), along the way we will also need to understand certain other 
S(Mn,s). In both cases, the elementary building blocks are parallels of those in the surface setting.

Definition 5. Any manifold homeomorphic to M0,3 is called a pair of pants.

Definition 6. A maximal collection of disjoint spheres P ⊆ S(Mn,s)(0) is called a pants decomposition. Each 
connected component of Mn,s \ P is the interior of a pair of pants.

The following definition and lemma parallel the surface case.

Definition 7 ([2, Definition 2.2]). Let X ⊂ S(Mn,s) be a subcomplex. Two spheres α, β ∈ X(0) that intersect 
essentially have X-detectable intersection if there are two pants decompositions Pα, Pβ ⊂ X(0) such that

α ∈ Pα, β ∈ Pβ , and Pα − α = Pβ − β.

In this case N(α ∪ β) = M0,4.

Lemma 8 ([2, Lemma 2.3]). Let X ⊂ S(Mn,s) be a subcomplex and suppose that f : X → S(Mn,s) is a locally 
injective simplicial map. If a, b ∈ X(0) have X-detectable intersection then f(a), f(b) have f(X)-detectable 
intersection, and hence a closed regular neighborhood N (f(a) ∪ f(b)) ∼= M0,4.
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Proof. Let Pa, Pb ⊂ X(0) be the pants decompositions detecting the intersection of a and b. Since f is 
locally injective and simplicial, f(Pa) and f(Pb) are again pants decompositions. Moreover, f preserves 
membership and set equality, so f(Pa) and f(Pb) detect the intersection of f(a) and f(b). �

In order to build strongly rigid sets we capitalize on subcomplexes of S(Mn,0) coming from punctured 
3-spheres, M0,s. The sphere complex of a punctured 3-sphere S(M0,s) is finite and admits a purely combi-
natorial description, due to the following.

Lemma 9. A sphere S in M0,s is determined by the partition of ∂M0,s induced by the connected components 
of M0,s \ S.

Proof. Suppose a, b are two spheres in M that induce the same partition of ∂M0,s into two sets. Both of the 
sets are non-empty and contain at least two components, since by our definition spheres are essential. The 
closures of each of the two connected components of M0,s\a are homeomorphic to a corresponding connected 
component of M0,s\b via a homeomorphism that is identity on ∂M0,s and takes the a boundary components 
to the b boundary components. After possibly composing with a Dehn twist in b these homeomorphisms can 
be extended to a homeomorphism h : M0,s → M0,s such that h(a) = b and h is the identity on ∂M0,s. Since 
H2(M0,s) is generated by the classes of the boundary spheres, h∗ : H2(M0,s) → H2(M0,s) is the identity. 
Moreover, M0,s is simply connected, so the Hurewicz homomorphism is an isomorphism; by the naturality 
of the Hurewicz isomorphism we conclude h� : π2(M0,s) → π2(M0,s) is the identity. Thus a is homotopic to 
b, and by Laudenbach’s theorem [21, Théorème I] we conclude that a is in fact isotopic to b. �
Notation. We use [s] to denote the set of connected components of ∂M0,s, thought of in a fixed bijection 
with the set {1, . . . , s}.

By Lemma 9, each vertex of S(M0,s) corresponds to a two-piece partition of [s] where each piece has size 
at least 2. For brevity we refer to the cardinality of the smaller partition piece determined by a sphere S as 
the size of S.

Lemma 10. The natural map Mod(M0,s) → Aut(S(M0,s)) is a surjection.

Proof. If s ≤ 3, the complex S(M0,s) is empty or a singleton and the result is trivial. The complex 
S(M0,4) is a disconnected 3-vertex graph and it is easy to construct homeomorphisms of M0,4 that generate 
Aut(S(M0,4)). So we suppose s ≥ 5.

The vertices of S(M0,s) are partitioned by size. Each sphere of size greater than 2 is determined uniquely 
by the set of size 2 spheres disjoint from it, hence Aut(S(M0,s)) 
 Aut(S2(M0,s)), where S2(M0,s) is the 
induced subcomplex spanned by size 2 spheres.

The 1-skeleton S2(M0,s)(1) is the graph whose vertices are 2-element subsets of [s] and edges are between 
disjoint sets—this is known in the literature as the Kneser graph K(s, 2). In turn, K(s, 2) is the complement 
of the line graph L(Ks), where Ks is the complete graph on vertex set [s]. Since s ≥ 5, the Whitney 
isomorphism theorem implies that Aut(S2(M0,s)) 
 Aut(Ks) [19]. The group Aut(Ks) 
 Aut([s]), the 
symmetric group on [s], thus Aut(S2(M0,s)) 
 Aut([s]). Moreover this isomorphism is given by the action of 
Aut([s]) on 2-element subsets of [s], and so is compatible with the natural actions of Mod(M0,s) on S2(M0,s)
and [s]. The natural action of Mod(M0,s) on ∂M0,s clearly surjects Aut([s]), this completes the proof. �

An easy consequence is the following.

Corollary 11. If N ∼= M0,n ∼= N ′ and φ : S(N) → S(N ′) is any simplicial isomorphism, then there exists a 
homeomorphism h : N → N ′ so that h(z) = f(z) for every sphere z ∈ S(N). �
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Fig. 1. The configuration of intersecting spheres in M0,6 considered in the proof of Lemma 12.

The following observation relies on Lemma 9 and is a useful combinatorial criterion for distinguishing 
among spheres in a pair of nicely arranged M0,4-submanifolds of some Mn,s.

Lemma 12. Suppose a, b, c ⊂ Mn,s are spheres such that b ∩ c = ∅ and b and c both essentially intersect a
exactly once, and every component of ∂N (a ∪ b ∪ c) is either essential or peripheral. Let b′ ⊆ N (a ∪ b) be the 
sphere not isotopic to a or b and similarly define c′ ⊆ N (a ∪ c). Then b′ and c′ intersect, and both intersect 
b and c. (Note that b′ and c′ are unique by Lemma 9.)

Proof. Observe that N (a ∪ b ∪ c) ∼= M0,6, and since each boundary sphere is essential or peripheral in Mn,s, 
the inclusion N (a ∪ b ∪ c) → Mn,s preserves intersection. Fix an identification of ∂M0,6 with [6] = {1, . . . 6}. 
By Lemma 9 the spheres are determined by the partition of [6], and we identify each sphere with one of its 
partition pieces. Up to a choice of boundary identification we have a = {1, 2, 3}, b = {1, 6} and c = {3, 4}. 
The boundary ∂N(a ∪b) consists of the spheres {1}, {6}, {2, 3}, and {4, 5}. By again appealing to Lemma 9
applied to N(a ∪ b) we deduce b′ = {1, 4, 5} and similarly c′ = {3, 5, 6}, see Fig. 1. The lemma follows since 
spheres in M0,s intersect if and only if the partitions they define are not nested. �

3. The finite strongly rigid set

In this section we construct a particular set of spheres that we will later prove is strongly rigid for 
S(Mn,0) when n ≥ 3 (which we continue to assume to be the case until Section 6). In this section we will 
show that every locally injective simplicial map from our set comes from the action of some h ∈ Mod(Mn,0). 
An example of this construction when n = 3 is shown in Fig. 4.

Let Y be a maximal collection of disjoint spheres whose union is non-separating, and N ◦(Y ) an open 
regular neighborhood so that

Mn,0 \ N ◦(Y ) ∼= M0,2n

and let Z ⊂ S(Mn,0) be the set of all spheres in N = Mn,0 \ N ◦(Y ), so that Z = S(N). There is a labeling 
of the components of ∂N by elements of Y so that S ⊂ ∂N is labeled by A ∈ Y if S is isotopic to Y via the 
inclusion N ⊂ Mn,0 (thus, each element of Y appears as exactly two labels). Given a component S ⊂ ∂N , 
let δ(S) ∈ Y denote its label.

Let X0 be the subcomplex induced by Y ∪ Z. Note that X0 decomposes as the join of subcomplexes 
induced by Y and Z. In particular, for any permutation of Y , there exists an automorphism of X0 which is 
the identity on Z and effects the given permutation on Y . Consequently, X0 is not rigid.
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Suppose f : X0 → S(Mn,0) is a locally injective, simplicial map. Each intersecting pair of spheres in Z is 
X0-detectable, so as a consequence of Lemma 8 the submanifold of Mn,0 filled by f(Z) is connected. Since 
f is locally injective and simplicial, f(X0) decomposes as a join of f(Y ) and f(X0). Thus, f(Y ) is a set 
of n non-separating spheres, N ′ = Mn,0 \ N ◦(f(Y )) ∼= M0,2n, and S(N ′) = f(Z). As with N , there is a 
labeling of the components of ∂N ′ by elements of f(Y ), and we similarly write δ(S) ∈ f(Y ) for the label 
on the component S ⊂ ∂N ′.

By Corollary 11 there is a homeomorphism h : N → N ′ such that for each z ∈ Z, h(z) = f(z). Now 
observe that if

δ(h(S)) = f(δ(S)), (1)

for every component S ⊂ ∂N , then h : N → N ′ can be extended to a homeomorphism ĥ : Mn,0 → Mn,0
which induces f , and we would be done. There is no reason that Eq. (1) should hold, however, but we will 
shortly show that by adding some additional spheres, it does.

Given an essential disk D in N with ∂D ⊂ S, where S ⊂ ∂N is a component, we note that the regular 
neighborhood of D∪S is a pair of pants we denote P (S, D). The boundary of the pants, ∂P (S, D), consists 
of S together with two other spheres.

For each sphere A ∈ Y , let A+, A− ⊂ ∂N be the boundary components labeled by A. Consider an 
essential sphere a in Mn,0 that intersects A essentially in a single simple closed curve and is disjoint from 
every other sphere in Y . This intersection is X0–detectable and a ∩N is a union of two disjoint, essential 
disks, D+, D−, with ∂D+ ⊂ A+ and ∂D− ⊂ A−. Say that a is good for A if there is a decomposition

∂P (A+, D+) ∪ ∂P (A−, D−) = A+ ∪A− ∪ S1 ∪ S2 ∪ S3 ∪ S4,

into distinct spheres where S1, S2 are peripheral. After an isotopy, we may assume that S1, S2 ⊂ ∂N , and 
we do so. We write

∂0(A, a) = A+ ∪A− ∪ S1 ∪ S2 ⊂ ∂N,

and

∂(A, a) = ∂0(A, a) ∪ S3 ∪ S4.

For each A ∈ Y , let a′, a′′ be two disjoint spheres that are good for A so that

∂(A, a′) ∩ ∂(A, a′′) = A+ ∪A−,

and let X be the union of X0, together with such a good pair a′, a′′ for every A ∈ Y . This is possible as 
long as n ≥ 3, see Figs. 2 and 3.

Lemma 13. If f : X → S(Mn,0) is any locally injective, simplicial map and h : N → N ′ is the homeomor-
phism defined by the restriction f |X0 as above, then for every component S ⊂ ∂N , we have δ(h(S)) =
f(δ(S)).

Proof. Fix A ∈ Y and let A+, A− be the components of ∂N with δ(A+) = δ(A−) = A. Let a′, a′′ ∈ X be 
the two spheres that are good for A and write

∂0(A, a′) = A+ ∪A− ∪ S′
1 ∪ S′

2 and ∂0(A, a′′) = A+ ∪A− ∪ S′′
1 ∪ S′′

2 .
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A−A+

B−

B+ C−

C+

Fig. 2. A good sphere (red) for the boundary spheres labeled A, with the spheres Si in yellow, inside M0,6. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

A−A+

B−

B+ C−

C+

Fig. 3. A pair of good spheres (red and blue) for the boundary sphere labeled A inside M0,6.

We let Z0(A, a′) ⊂ Z be the set of all spheres in Z that are disjoint from ∂(A, a′). Observe that f(a′)
is a sphere that essentially intersects f(A) (since the essential intersection of A and a′ is X–detectable). 
Therefore, we note

• f(a′) cannot be isotoped into N ′, and
• f(a′) is also disjoint from f(Z0(A, a′)) = h(Z0(A, a′)).

From these two conditions, the only boundary components of N ′ that f(a′) can essentially intersect are 
h(∂0(A, a′)). Therefore, the two components labeled f(A) are necessarily contained in h(∂0(A, a′)). By 
similar reasoning, we deduce that the two components labeled f(A) are also contained in h(∂0(A, a′′)). 
Since

h(∂0(A, a′)) ∩ h(∂0(A, a′′)) = h(∂0(A ∩ a′) ∩ ∂0(A, a′′))

= h(A+ ∪A−)

= h(A+) ∪ h(A−),

it follows that δ(h(A+)) = f(A) = f(δ(A+)) and δ(h(A−)) = f(A) = f(δ(A−)). Since A ∈ Y was arbitrary, 
this completes the proof. �
Proposition 14. The set X constructed in this section is geometrically rigid.
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C+

A−A+

B−

B+ C−

Fig. 4. A view of the rigid sphere system for M3,0, rendered in M0,6 with boundary sphere identifications. The good pair disks are 
color-coded to indicate the identification.

Proof. Given a locally injective, simplicial map f : X → S(Mn,0), let h : N → N ′ be the homeomorphism 
defined by f |X0 . By Lemma 13, h extends to a homeomorphism ĥ : Mn,0 → Mn,0 that agrees with f on 
X0. Now fix A ∈ Y and consider the corresponding good spheres a′, a′′ ∈ X. Let PA, Pa′ ⊂ X be pants 
decompositions with A ∈ PA, a′ ∈ Pa′ , and P0 = PA \ A = Pa′ \ a ⊂ X0. Since h and f agree on X0, it 
follows that ĥ and f agree on each component of PA. Hence f(a′) is a sphere other than ĥ(A) contained in 
N(ĥ(A) ∪ ĥ(a′)), the M0,4 component of Mn,0 \ P0. Similarly f(a′′) is a sphere other than ĥ(A) contained 
in N(ĥ(A) ∪ ĥ(a′′)). Let e′ ⊂ N(A ∪ a′) be the non-peripheral sphere other than A and a′ and similarly 
define e′′ ⊂ N(A ∪ a′′). By Lemma 12, e′ and e′′ intersect and both intersect a′ and a′′. Thus ĥ(e′) and 
ĥ(e′′) intersect and both intersect ĥ(a′) and ĥ(a′′). Since f is locally injective and a′ and a′′ are disjoint, 
we conclude that ĥ(e′) 
= f(a′) and ĥ(e′′) 
= f(a′′). The only remaining possibility is that ĥ(a′) = f(a′) and 
ĥ(a′′) = f(a′′), as required. �
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4. Exhaustion by strongly rigid sets

We move from one geometrically rigid set to an exhaustion of S(Mn,0) by such sets by developing a notion 
of rigid expansion that loosely parallels Hernández Hernández’ definition of a rigid expansion of a subgraph 
of the curve graph of a surface [11, pg. 198]. Specifically, we apply an iterative procedure to any rigid set 
satisfying some additional conditions, to produce a new, larger rigid set. In Section 5 we will conclude that 
each set in the exhaustion is in fact strongly rigid.

Definition 15. Suppose P is a pants decomposition of Mn,0. Two spheres a, b ∈ P are adjacent in P if they 
are two of the boundary spheres of some pair of pants component of Mn,0\P . A sphere a ∈ P is self-adjacent 
in P if a bounds two cuffs of a single pair of pants in Mn,0 \ P .

Definition 16. Suppose P is a pants decomposition of Mn,0 and a ∈ P . A sphere b ∈ S(Mn,0) is a split 
sphere for (a, P ) if a is the unique sphere in P intersecting b.

If X ⊆ S(Mn,0) is a subcomplex, P ⊆ X(0), and b ∈ X(0) is a split sphere for (a, P ), then we say that P
is X–split at a (by b). We say that P is X–split if it is X–split at a for some a ∈ P . If X contains every 
split sphere for P ⊂ X, then we say that P is fully X–split.

Observe that if P is a pants decomposition and a ∈ P , a split sphere for (a, P ) exists if and only if a is 
contained in an M0,4 component of the complement of P \ {a}, that is, a is not self-adjacent in P . In this 
case there are exactly two split spheres for P intersecting a, by Lemma 9. Since there are two such spheres, 
we cannot guarantee that adding a single split sphere results in a rigid set. However for certain pairs we 
can exploit Lemma 12.

Definition 17. Suppose X ⊆ S(Mn,s) is a subcomplex and a ∈ X(0). A pair of distinct, disjoint spheres 
(b1, b2) in S(Mn,s)(0) is a split pair for a if there exists pants decompositions P1, P2 ⊆ X(0), both containing 
a, such that bi is a split sphere for (a, Pi), for i = 1, 2.

Lemma 18. Suppose X ⊆ S(Mn,0) is a geometrically rigid subcomplex, and a ∈ X(0) has a split pair (b, c). 
Then the subcomplex Xb,c induced by X ∪ {b, c} is geometrically rigid.

Proof. Observe that both the intersection of a with b and a with c is Xb,c-detectable, using the pants 
decompositions Pb and Pc witnessing the split pair. Now suppose f : Xb,c → S(Mn,0) is a locally injective 
simplicial map. Since X is geometrically rigid there is a homeomorphism h : Mn,0 → Mn,0 such that in 
the induced map on the sphere complex h|X = f |X . By Lemma 8, f(a) and f(b) have f(Xb,c)-detectable 
intersection, so f(b) is a sphere distinct from f(a) in N(f(a) ∪f(b)). Similarly f(c) is a sphere distinct from 
f(a) in N(f(a) ∪ f(c)). Further, h(Pb) = f(Pb) and h(a) = f(a), so h(N(a ∪ b)) = N(f(a) ∪ f(b)), and 
similarly h(N(a ∪ c)) = N(f(a) ∪ f(c)). Let b′ be the sphere in S(N(a ∪ b)) other than a and b and define c′

similarly. By Lemma 12, b′ and c′ intersect and both intersect b and c, so the same is true of h(b′) and h(c′). 
Since b and c are disjoint and f is locally injective and simplicial we conclude h(b) = f(b) and h(c) = f(c)
as required. �

From the lemma (and the notation from the proof), we see that Pb is Xb,c–split at a by b (and similarly 
for Pc). We also record the following obvious fact:

Observation 19. If P ⊆ X(0) is a pants decomposition that is X-split at a by b ∈ X(0), then the pants 
decomposition P ′ = (P \ {a}) ∪ {b} is X-split at b by a.
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1

2

3

4

5

a

b
c

d4

e4

d5

e5

Fig. 5. The split pairs (d4, e4) and (d5, e5) for the sphere c constructed in Lemma 20. The pairs satisfy the definition of split pair 
because the sphere b is in X(0) by hypothesis.

Lemma 20. Suppose X ⊆ S(Mn,0) is a subcomplex and P ⊆ X(0) is a pants decomposition that is X–split 
at a by b ∈ X(0). For every sphere c ∈ P adjacent to a, if c has a split sphere d then there is a sphere e
such that (d, e) is a split pair for c.

Proof. Fix a sphere c ∈ P adjacent to a which has a split sphere, i.e. so that Mn,0 \ {P \ {c}} has an M0,4
connected component. Let N be the connected component of Mn,0\{P \a, c} containing a and c. Since both 
a and c have split spheres, N 
 M0,5 and we identify ∂M0,5 with [5]. Further, we identify the spheres a and 
c with size 2 subsets of [5] by Lemma 9, choosing labels so that a = {1, 2}, b = {2, 3} and c = {4, 5}. There 
are two possible split spheres for c ∈ P—the spheres d4 = {3, 4} and d5 = {3, 5}—and to complete the 
proof of the lemma we will produce their split pairs. Let P ′ = (P \{a}) ∪{b}. For d4, the sphere e4 = {1, 5}
is a split sphere for c ∈ P ′, and (d4, e4) is a split pair. For d5, the sphere e5 = {1, 4} is a split sphere for 
c ∈ P ′ and (d5, e5) is a split pair for c in P ′. See Fig. 5 for an illustration. �

Lemma 21. Suppose X ⊆ S(Mn,0) is a finite geometrically rigid set and P ⊆ X(0) is X–split. Then there is 
a finite geometrically rigid set XP ⊃ X so that P is fully XP –split; that is, XP contains every split sphere 
for P .

Proof. Let a0 ∈ P be a sphere of P witnessing that P is X-split. Inductively define P0 = {a0} and

Pi = {s ∈ P | s is adjacent to a ∈ Pi−1 and not self-adjacent }.

Note that there exists some k such that ∪k
i=1Pi is all non-self-adjacent spheres in P . To see this, consider the 

dual (3-valent) graph to P , which has a vertex for every pair of pants and edge connecting pants that share 
a boundary sphere. Then the spheres in P which have a split sphere correspond precisely to the non-loop 
edges, which forms a connected subgraph of the dual.

Next we inductively define finite geometrically rigid subcomplexes Xi ⊃ X such that for each a ∈ Pi, the 
pants decomposition P is Xi split at a and contains both split spheres for (a, P ). Since P is X–split at a
by some b ∈ X(0), there is at most one other sphere c that is a split sphere for (a, P ), and we set X0 to be 
the subcomplex induced by X ∪ {c}. It is straightforward to see that X0 has the desired property.

We now suppose we have constructed Xi−1 in this fashion and construct Xi. For each sphere c ∈ Pi

there are two split spheres d, d′ for (c, P ). The sphere c is adjacent to a ∈ Pi−1, and P is Xi−1–split at a, so 
by Lemma 20 there exist split pairs (dc, ec) and (d′c, e′c) for c. Let Xi be the subcomplex induced by Xi−1
and {dc, ec, d′c, e′c}c∈Pi

for the split pairs constructed in the previous sentence as c ranges over Pi. Repeated 
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application of Lemma 18 implies that Xi is geometrically rigid, and for each c ∈ Pi, the pants decomposition 
is Xi-split at c by construction. Moreover, Xi contains the split spheres of P intersecting each c ∈ Pi. Take 
XP = Xk. This is a finite geometrically rigid complex in S(Mn.0) by construction; moreover, every split 
sphere s for P intersects a unique non-self adjacent sphere cs ∈ P , and cs ∈ Pi for some i ≤ k, hence 
s ∈ Xi ⊆ XP . �
Proposition 22. There exists a nested family of finite geometrically rigid sets Xj ⊆ S(Mn,0) such that

S(Mn,0) = ∪jXj .

Proof. Let X be the finite strongly rigid set constructed in Proposition 14. By construction X contains a 
pants decomposition P0 that is X-split.

Define a sequence of sets of pants decompositions of Mn,0 as follows. Begin with P0 = {P0} and define

Pi = {P a pants decomposition | there is a P ′ ∈ Pi−1 such that |PΔP ′| = 2 }.

Observe that if P ∈ Pi then P is obtained from P ′ by exchanging a split sphere. Thus each Pi is finite. 
Moreover, Hatcher proves that S(Mn,0) is contractable using a flow [9, Theorem 2.1], and observes that this 
flow restricts to the spine of outer space [9, p. 60]. Since the spine of outer space is locally finite, a flow line 
joining a pants decomposition to a reference pants decomposition can be perturbed to describe a sequence 
of split sphere exchanges. Thus every pants decomposition appears in some Pk.

Now define a sequence of subcomplexes Xi such that for each pants decomposition P ∈ Pi+1, both 
P ⊆ X

(0)
i and P is X(0)

i -split. Start with X0 = XP0 , the complex obtained by applying Lemma 21 to X
and P0. The conclusions of that lemma guarantee that each P ∈ P1 is contained in X(0)

0 and is X0-split.
For each i fix an enumeration of Pi = {Pi,1, . . . , Pi,ki

}, and set Xi,0 = Xi−1. Define Xi,j = (Xi,j−1)Pi,j

the complex obtained by applying Lemma 21 to Xi,j−1 and Pi,j . Finally set Xi = Xi,ki
, this is geometrically 

rigid by induction.
Every pants decomposition P ∈ Pi+1 is obtained from some Pi,j ∈ Pi by exchanging a split sphere, and 

so it follows from Lemma 21 that P ⊆ Xi,j ⊆ Xi. By Observation 19, P is Xi,j-split, and therefore it is 
Xi-split.

Every sphere appears in some pants decomposition, hence every sphere appears as a member of some 
Pi,j , whence:

S(Mn,0) =
⋃

k

Xk. �

5. From geometric rigidity to strong rigidity

We now upgrade geometric rigidity to strong rigidity, in two steps. First, we show that if a mapping 
class fixes the isotopy classes of a pants decomposition pointwise, then it induces the identity on the sphere 
complex.

Lemma 23. Suppose h ∈ Mod(Mn,0) is in the point-wise stabilizer of a pants decomposition P ⊆ S(Mn,0)
such that each sphere is the boundary of two distinct complementary components. Then h induces the identity 
on S(Mn,0).

Proof. If h fixes each sphere of a pants decomposition up to isotopy, then h fixes each complementary 
component up to isotopy (since n ≥ 3). Since each sphere is the boundary of two distinct connected 
components, the restriction of h to each pair of pants fixes the boundary components. Thus, restricted to 
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each pair of pants h is isotopic to the identity, and differs from the identity by Dehn twisting in the pants 
spheres P . Since Dehn twists generate the kernel of the map Mod(Mn,0) → S(Mn,0) [22, Théorème III.4.3]
we are done. �
Corollary 24. If X ⊆ S(Mn,0) is geometrically rigid and contains a pants decomposition where each sphere 
is the boundary of two distinct complementary components then it is uniquely geometrically rigid, in the 
sense that any mapping class that stabilizes X pointwise induces the identity on S(Mn,0).

Applying this corollary to the exhaustion constructed in the previous section we give a new proof of the 
following theorem of Aramayona and Souto. We complete the proof of our first two main theorems using 
this isomorphism.

Theorem 25 ([1]). When n ≥ 3, Out(Fn) ∼= Aut(S(Mn,0)).

New proof. Consider φ ∈ Aut(S(Mn,0)). Let Xj be the exhaustion of S(Mn,0) by geometrically rigid sets 
constructed in Proposition 22. For each j we get a homeomorphism hj such that φ|Xj

= hj |Xj
. Moreover, 

by construction each Xj contains a common pants decomposition where each sphere is the boundary of two 
distinct complementary components. Therefore, it follows from Corollary 24 that for j 
= k the homeomor-
phisms hj and hk induce the same automorphism of S(Mn,0). Hence φ|Xj

= h1|Xj
for all j, and we conclude 

that φ = h1. Hence Mod(Mn,0) → Aut(S(Mn,0)) is surjective.
To conclude, it is a consequence of Laudenbach’s theorem [21, Théorème III] that this homomorphism 

factors through the surjective map Mod(Mn,0) → Out(Fn) and that the map Out(Fn) → Aut(S(Mn,0)) is 
injective. �
Proof of Theorem 1 and Theorem 2. It follows from Theorem 25 that the pointwise stabilizer of
Aut(S(Mn,0)) of a set X is equal to the image of its Mod(Mn,0) stabilizer.

The set X constructed in Proposition 14 contains a pants decomposition, so by Corollary 24 the image 
of its Mod(Mn,0) stabilizer is the identity. This completes the proof of Theorem 1.

Since X is a subset of every set constructed in Proposition 22, each set in the exhaustion contains a 
pants, and Theorem 2 follows from an identical argument. �
6. No rigid sets in rank 2

The situation in rank 2 is quite different.

Proposition 26. There is no finite rigid set X ⊂ S(M2,0).

Proof. The graph S(M2,0) is obtained from the Farey graph, F , by adding an edge path of length two 
between every two adjacent vertices of F , depicted in Fig. 6. That is, we attach (the 1–skeleton of) a 
triangle–sometimes called a fin–to every edge of F along an edge; see Culler and Vogtmann’s description 
of outer space in rank 2 [6, Section 6] and Hatcher [9, Appendix] for the translation to the sphere complex. 
Each vertex of F has infinite valence while the new vertices each have valence 2.

Every element of Aut(F) ∼= PGL2(Z) has a unique simplicial extension to an automorphism of S(M2,0), 
defining a natural isomorphism Aut(S(M2,0)) ∼= Aut(F). In particular, there are two orbits of edges: the 
Farey edges and the added fin edges; and two orbits of vertices: the infinite valence vertices and valence 2
vertices.

We suppose X ⊂ S(M2,0) is any finite subgraph, and show that it cannot be rigid. The general case 
follows from the claim that no connected subgraph is rigid. Furthermore, X must consist of more than one 
edge (since there are two orbits of edges). So, suppose X is a connected subgraph with at least 2 edges. We 
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Fig. 6. A subgraph of the Farey graph (black) and fin paths (blue) giving a schematic of the 1-skeleton of S(M2,0).

v

u

Fig. 7. A subgraph X (blue) with a valence 1 vertex connected to an infinite valence vetex and alternate embeddings of X that 
differ only on the edge e (red).

will show that X is not rigid. Our proof is by cases, the case where X has a valence 1 vertex and the case 
where X does not.

Suppose that X has a valence 1 vertex, v. This vertex must be one endpoint of an edge e in X, and 
we let u denote the other endpoint. If u has infinite valence in S(M2,0), then there are infinitely many 
simplicial embeddings of X into S(M2,0) that are all the identity on X \ e and which send e to distinct 
edges of S(M2,0), see Fig. 7. Since there are only two elements of PGL2(Z) that act as the identity on any 
given Farey edge, at most two of the embeddings are restrictions of elements of Aut(S(M2,0)). Any other 
embedding is therefore not the restriction of an element of Aut(S(M2,0)) and so X is not rigid.

The other possible case is that u is a valence 2 vertex in S(M2,0). Since v is valence 1 in X, connectivity 
of X ensures that there is a second edge e′ so that e ∪ e′ is a length two path in X. In this case, note that 
both e and e′ are fin edges. If X = e ∪ e′, this is clearly not rigid since we can map this to any length 
two path in the Farey graph, such a map is not the restriction of an element of Aut(S(M2,0)). Therefore, 
e ∪ e′ is a length two path in X which meets the rest of X in a single vertex w (the other endpoint of e′). 
Since w must be infinite valence, we can find infinitely many distinct simplicial embeddings of X which 
are the identity on X \ (e ∪ e′), see Fig. 8. Again at most two of these can be restrictions of elements of 
Aut(S(M2,0)), so X is not rigid.

We may now consider the case where X has no valence 1 vertices. Let XF denote the convex hull of X∩F
in F . Observe that XF is (the 1–skeleton of) a triangulation of a polygon with vertices on the boundary, 
and thus has a valence 2 vertex, v. Let e1 and e2 denote the edges of XF adjacent to v, and u and w, 
respectively, denote their other endpoints. Then u and w are vertices of an edge e3 which together with e1
and e2 defines a triangle in XF .



14 E.A. Bering, C.J. Leininger / Topology and its Applications 347 (2024) 108862

v

u

Fig. 8. A subgraph X (blue) with a valence 1 vertex connected to a valence 2 vertex and some alternate embeddings of X that 
differ only on the two-edge path connected to v (red).

u

v

w

Fig. 9. A convex hull XF (green) in the Farey graph with valence 2 vertex v forming a triangle with u and w. Fin edges not shown.

Fig. 10. A subgraph X (blue) containing both e1 and e2 from Fig. 9 and the fin edges e and e′ used for the “swap” embedding 
(red).

Now suppose e1 ∪ e2 ⊂ X and let e ∪ e′ be the length two path of fin edges connecting u and w. Either 
both e and e′ are in X or neither is, since X has no valence 1 vertices. In either case, there is an embedding 
of X that maps e1 ∪ e2 to e ∪ e′ and is the identity on X \ (e1 ∪ e2 ∪ e ∪ e′) (swapping e1 ∪ e2 with e ∪ e′

if the latter is contained in X), see Fig. 10. Since this sends Farey edges to fin edges, this cannot be the 
restriction of an element of Aut((M2,0)), hence X is not rigid.

Therefore, we may assume that e1 or e2 is not in X. Without loss of generality we assume e1 is not in X. 
Since XF was the convex hull of X ∩ F , it follows that v is a vertex of X. Therefore, there is a length two 
path of fin edges e ∪ e′ in X having v as an endpoint, and the other endpoint is u. Thus there is a length 
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Fig. 11. A subgraph X (blue) that does not contain e1 from Fig. 9, the Farey edges e4, e5 (yellow) and the fin edges e and e′
belonging to X used for the “swap” embedding (red).

two path e4 ∪ e5 of Farey edges connecting the endpoints of e ∪ e′, that meets XF , and hence X, only in the 
endpoints. From this we can construct a simplicial embedding of X which is the identity on X \ (e ∪ e′) and 
sends e ∪ e′ to e4 ∪ e5, see Fig. 11. Since this sends fin edges to Farey edges, this cannot be the restriction 
of an element of Aut((S(M2,0)), and hence X is not rigid.

The cases above exhaust all possibilities for X, and in all cases X fails to be rigid. This completes the 
proof. �
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