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a b s t r a c t 

Graphene quantum dots (GQDs) were reported to fill the role 

of nanofillers that enhance composite properties. Detailed in- 

vestigation of this nanofiller in composites is largely unex- 

plored. To understand the fundamental mechanisms in play, 

this study uses molecular dynamics simulations to reveal 

the effects of GQDs on epoxy properties. Mechanical sim- 

ulations were performed on three varying GQD chemistries 

which included a pristine GQD and 2 edge aminated GQDs 

with different degrees of functionalization (5.2 % and 7.6 %). 

These GQDs were separately inserted in a polymer matrix 

across five individual replicates. The nanocomposite mechan- 

ical properties were computed using uniaxial strain simula- 

tions to display the effect of embedded GQDs. 
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Specifications Table 

Subject Computational Mechanics, Computational Materials, Material Science 

Specific subject area Molecular Dynamics simulation of GQD-epoxy nanocomposites 

Data format Raw: LAMMPS trajectory, input scripts, and log files 

Analysed: stress-strain plots 

Type of data LAMMPS simulation and mechanical property plots 

Data collection Molecular dynamics simulations were performed on a computing cluster at 

San Jose State University using LAMMPS open-source software. The data was 

post-processed using custom python scripts to generate the mechanical 

property predictions. 

Data source location San Jose State University, San Jose, CA 95192 

Data accessibility Repository name: Mendeley Data 

Data identification number: 10.17632/gmm7rfrsdt.1 

Direct URL to data: https://data.mendeley.com/datasets/gmm7rfrsdt/1 

1. Value of the Data 

• The detailed simulation data provides structural evolution of the GQD-epoxy nanocomposite 

during mechanical deformation. Along with the atom trajectories, the stress-strain response 

is supplied to link the structure and the properties of nanocomposite models. 

• Polymer scientists invested in GQD filled composites can gain substantial insight into the 

molecular behavior of the material. Also, other computational researchers benefit from the 

modeling methodology and analysis techniques. 

• The data describes a generalized case and provides pathways to more complex modeling 

methods. 

2. Background 

Thermoset composites are notably used in different industries requiring high-performance 

materials. The polymer matrix is an amorphous material with low toughness which is usually 

supplemented with nanofillers. Nanofillers like GQDs have been shown to enhance the mate- 

rial properties of the matrix [1–4] . Recent studies have affirmed these claims for GQD-epoxy 

composites [5] . To fully understand the inherent mechanisms responsible for property enhance- 

ments, this study uses molecular dynamics to model the polymer-GQD nanocomposite. Vari- 

ous interactions were observed, and mechanical simulations were performed to see the effect 

of GQDs on the properties. The data generated in this study was used to establish the findings 

linking GQD chemistry to the output mechanical properties. The simulated data includes the en- 

tire workflow of modelling the GQD-epoxy nanocomposite right from the inception of individual 

monomeric components. 

3. Data Description 

The simulation data is distributed in four main directories for the four modelled material 

systems – epoxy, GQD-epoxy, 4N-GQD-epoxy, and 6N-GQD-epoxy. Each directory has several 

sub-directories which include LAMMPS files for a specific simulation. Table 1 details the de- 

scription of all the sub-directories and Table 2 details the description of the files within the 

sub-directories. 

https://doi.org/10.17632/gmm7rfrsdt.1
https://data.mendeley.com/datasets/gmm7rfrsdt/1
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Table 1 

Directory data description for the four material systems. 

Directory name Simulation Type Simulation Details 

step_1 Monomer generation Generating individual monomeric components using 

the IFF-R forcefield 

step_2 Bulk polymer at liquid density Mixing the polymer components in a stoichiometric 

ratio and compressing the model to liquid density 

step_3 Annealing Inserting the GQD and cooling the model from 

elevated temperature to cure temperature 

step_4 Crosslinking Chemical crosslinking to form the polymer network 

step_5 Annealing Cooling down the model from cure temperature to 

room temperature and relaxing the model 

step_6 Relaxation Changing the forcefield from IFF-R to ReaxFF and 

equilibrating the model 

step_7 Tension Apply strain to the simulation box in three principal 

directions (x-, y-, and z- axis) separately 

Table 2 

File data description for the sub-directory contents. 

File Types File Details 

dump.∗ LAMMPS trajectory 
∗ .data LAMMPS structure 

in.∗ LAMMPS input script 
∗ .log or log.∗ LAMMPS log 
∗ .moltemp reaction template 
∗ .ecoeffs reaction template coefficients 
∗ .txt reaction map 
∗ .csv stress-strain data 
∗ .reax ReaxFF forcefield file 

4. Experimental Design, Materials and Methods 

The epoxy resin used in this study is the diglycidyl ether bisphenol F (DGEBF), sold commer- 

cially as EPON 862. The curing agent used in the diethyl toluene diamine (DETDA), sold com- 

mercially as Epikure W. The two molecules were modelled and mixed in a simulation box with 

the stoichiometric ratio of 2:1 using the IFF-R forcefield in LAMMPS software [6–8] . The selected 

stoichiometric ratio was selected to maximize the chemical crosslinking between the molecules 

during the virtual cure [ 9 , 10 ]. The mixture was multiplied to generate a larger model with the 

total atom count of 5616 atoms and the total molecule count of 144. 

The initial density of the system was 0.09 – 0.10 g/cm3 . Before densifying the system, the 

molecules were allowed to mix by ramping the system temperature down from 600 K to 300 K 

over 100 picoseconds (ps). A Nose-Hoover thermostat [11–14] was used and the timestep was 

set to 1 femtosecond (fs). The simulation box was gradually densified by compression from all 

directions. The compression was simulated over 8 nanoseconds (ns) with the target density of 

1.2 g/cm3 . 

A virtual curing simulation was performed at 499 K over 1.5 ns using the REACTER tool 

within LAMMPS [15] . The simulated cure reaction is the two-step amine-epoxy reaction. De- 

tails on the curing simulation settings is described elsewhere [10] . To account for uncertainty of 

property prediction, five unique replicates were modelled. The average crosslink density between 

the five models was 81.77 ± 3.47%. Fig. 1 shows (a) the amine reaction and (b) amine content 

in a representative model and conversion during crosslinking simulations. Post-crosslinking, the 

models were annealed to promote optimal conformation of the newly formed network. The sys- 

tem temperature was ramped down from 60 0 K to 30 0 K with a constant cooling rate of 100 

K/ns. Fig. 2 shows the temperature and density profile during the annealing simulation. Next, 

the system was equilibrated over 1 ns using a Nose-Hoover barostat and thermostat at 1 atm 
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Fig. 1. (a) Epoxy-amine reaction pathway for a bisphenol-F epoxy (DGEBF) and diethyl toluene diamine (DETDA) and 

(b)amine content and conversion during the chemical crosslinking simulation in a representative model with 90 % 

crosslink density. 

pressure and 300 K temperature respectively. Fig. 3 (a) shows a representative MD model after 

full equilibration. 

To perform the mechanical deformation simulations, the models were equilibrated by switch- 

ing the forcefield parameters from IFF-R to ReaxFF [ 9 , 16 ]. This ReaxFF parameter set was chosen 

because of the accuracy of density prediction in various hydrocarbon-based materials [17] . As 

established by Odegard et al. [6] , accurate density prediction is essential for capturing the corre- 

sponding mechanical response of the material. The equilibrated models were then deformed in 

the three directions ( x -, y -, and z - direction). To allow the Poisson contraction, an NPT ensemble 

was used to relax the lateral directions. The maximum applied strain was set at 10% with the 
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Fig. 2. Temperature and density profile during annealing simulation. 

Fig. 3. (a) Representative equilibrated epoxy model. (b) Isolated GQD model before integration (Top view), (c) Isolated 

4N-GQD model before integration (Top view), and (c) Isolated 6N-GQD model before integration (Top view). 
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strain rate of 2 × 108 /s and 0.1 fs timestep. The stress-strain data was then analysed to ex- 

tract the Young’s modulus and the yield strength of the material. A piecewise multi-linear curve 

fitting technique was used to extract the Young’s modulus, Poisson’s ratio and establish a yield 

point on the stress-strain curve. 

A pristine GQD was modelled using an in-house Python script and LAMMPS. The edge carbon 

atoms were terminated with hydrogen atoms. The dimensions of the modelled GQD were 1.9 nm 

× 1.8 nm in zigzag configuration. Fig. 3 (b) shows the GQD structure modelled in LAMMPS. The 

model contains 5616 epoxy atoms and 120 GQD atoms. The modelled GQD was combined with 

epoxy and annealed as demonstrated by Deshpande et al. [18] . The annealing simulation settings 

and rest of successive simulations were identical to the neat epoxy simulation described in pre- 

vious section. Five replicates were modelled to account for uncertainty in property prediction. 

The functionalized GQD was modelled using an in-house Python script and LAMMPS. The 

functional group of choice was the primary amine (NH2 ) and were randomly distributed on the 

edge of the GQD. Two f-GQD were modelled with different amount of amine groups. For the 

first sub-system (4N-GQD-epoxy), the total amount of functional groups accounted for 5.2% of 

the total mass of the GQD. The chosen structure is shown in Fig. 3 (c), the structure has four 

primary amine groups and 2.1 × 1.9 nm in dimensions. For the second sub-system (6N-GQD- 

epoxy), the total amount of functional groups accounted for 7.6% of the total mass of the GQD. 

Fig. 3 (d) shows the structure with six primary amine groups with dimensions 1.8 × 1.9 nm. As 

described in the previous section, the f-GQD and epoxy models were combined using LAMMPS 

and annealed. The model consisted of 5616 epoxy atoms and 128 f-GQD atoms. Post-annealing, 

the model was subjected to crosslinking. With the presence of the functional groups, a sec- 

ondary chemical reaction was performed where the epoxy molecules reacted with the primary 

amines on the GQD. This secondary reaction is identical to the reaction occurring within the 

epoxy material due to similar chemistry. 

Limitations 

Not applicable. 
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