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A B S T R A C T   

Machine learning (ML) is a range of powerful computational algorithms capable of generating predictive models 
via intelligent autonomous analysis of relatively large and often unstructured data. ML has become an integral 
part of our daily lives with a plethora of applications, including web, business, automotive industry, clinical 
diagnostics, scientific research, and more recently, forensic science. In the field of forensic DNA, the manual 
analysis of complex data can be challenging, time-consuming, and error-prone. The integration of novel ML- 
based methods may aid in streamlining this process while maintaining the high accuracy and reproducibility 
required for forensic tools. Due to the relative novelty of such applications, the forensic community is largely 
unaware of ML capabilities and limitations. Furthermore, computer science and ML professionals are often 
unfamiliar with the forensic science field and its specific requirements. This manuscript offers a brief intro
duction to the capabilities of machine learning methods and their applications in the context of forensic DNA 
analysis and offers a critical review of the current literature in this rapidly developing field.   

1. Introduction 

Forensic DNA profiling is the backbone of forensic science and one of 
the most rigorous forensic disciplines. In the last four decades, this field 
has made significant progress and cemented its ’gold standard’ reputa
tion by incorporating extremely sensitive, accurate, robust and exten
sively validated methods of human identification [1,2]. In a similar 
fashion, machine learning (ML) is the fastest-growing field of computer 
science that offers extremely powerful capabilities for intelligent data 

analysis [3,4]. These learning algorithms dominate the field of artificial 
intelligence (a field which focuses on mimicking human abilities) and 
are considered the benchmark of data processing methods. 

ML has penetrated almost every aspect of our lives. Many of us are 
used to the fact (although not always aware) that ML algorithms are 
used for producing fruitful web search results, targeting online adver
tisements, effective spam filters in our email boxes, photo tagging in 
social networks, predicting stock market trends, constructing self- 
driving cars, better understanding of the human genome structure and 
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many additional applications. In forensic science however, the appli
cation of ML is still in its infancy. This is primarily due to the fact that 
most forensic scientists are not aware of the possibilities of ML, while ML 
and data mining specialists are not familiar with specific tasks that arise 
when conducting forensic examinations. 

This manuscript aims to briefly describe the key capabilities of ML 
and provide a critical review on its potential applications in forensic 
DNA profiling. Due to a relatively wide variety of such applications, this 
paper mainly focuses on the area of Human Identification (HID), briefly 
delving into additional forensic applications. Section 1 (subsection 1.1) 
introduces the topic of machine learning and its mathematical and 
computational foundations; subsection 1.2 presents a brief overview of 
the main machine learning methods; subsection 1.3 gives examples of 
problems that can be solved with ML approach, such as classification, 
clustering, regression analysis, dimensionality reduction and generative 
models, while in subsections 1.3.4 and 1.3.5, we discuss the topics of 
dimensionality reduction and generative models by using examples from 
forensic intelligence applications, such as prediction of externally visible 
characteristics (EVCs) and biogeographical ancestry (BGA) from DNA. 

Section 2 focuses on ML applications for forensic STR analysis – the 
main focus of this article, and provides detailed insights into the chal
lenges related to HID applications, emphasizing how the power of ma
chine learning is harnessed to address these challenges. We explore the 
application of ML in STR genotyping using CE and MPS data, and its 
potential to enhance accuracy and efficiency. We begin by delving into 
the complexities arising from the use of MPS technology for STR geno
typing, which generates vast genomic data and presents the need for 
more sophisticated bioinformatic tools. Furthermore, we explore the 
role of ML in DNA mixture interpretation, a particularly challenging 
aspect of forensic DNA analysis. As we delve into the applications of ML 
in STR genotyping, we see the logical progression of leveraging ML for 
improved forensic DNA analysis. 

1.1. Machine learning approach 

In the classical scientific approach to the study of a phenomenon or 
effect, scientists usually explore all the relationships between the ele
ments of the system under study. Once identified, these relationships are 
analysed and used to create a comprehensive mechanistic model that 
describes the system. This is how most of the basic formulas used in 
physics, mechanics, thermodynamics, chemistry and other sciences 
were derived. In the engineering sciences, however, the analytical for
mulas developed for ideal models do not always accurately reflect the 
real world. In addition to the main parameters that determine the 
behaviour of the model, various random factors play their roles. In such 
cases, scientists would usually develop empirical formulas that include 
one or more numerical variables (coefficients) designed to factor in the 
influence of unknown environmental factors. 

In forensic science, probabilistic genotyping algorithms use empir
ical formulas to provide the probability of obtaining the profile if a 
nominated individual is a DNA donor, compared to if they are not a DNA 
donor. For example, STRmix™ (one of the main probabilistic genotyp
ing software) uses an algorithm that incorporates variables like observed 
and expected allele and stutter peak heights at specific DNA loci. To 
estimate the likelihood of the observed peak heights, the algorithm uses 
a log normal distribution in order to assign the probability of observed 
peak heights when the factors relating to various potential contributors 
are varied [5–8]. This empirical formula allows the software to predict 
peak heights in a probabilistic manner, taking into consideration the 
inherent variability and unknown influences in the real-world experi
mental data which are not able to be fully described by mechanistic 
models using analytical formulae. Additionally, the computational cost 
of using the empirical formula may be lower compared to more complex 
analytical formulas, making it more practical for implementation in 
software. So, the empirical formula provides a way to model the rela
tionship between peak height and various unknown factors in a more 

comprehensive and flexible manner, taking into account the complex
ities of the real-world system being studied. This is especially useful 
when the relationships between the data are not fully known or when 
the amount of data or potential number of variables is large and requires 
statistical analysis techniques to derive meaningful insights. 

The essential dependence relationship between the variables in the 
functions (for empirical formulas) can be obtained by correlating the 
results of experiments and observations. Based on the data obtained, it is 
possible to construct a function that will reflect the relationship between 
these data in a convenient way. The form of the obtained function is 
usually set by the researcher, the amount of data analysed is finite, and 
the relationship between variables is modelled. However, what if the 
relationships between variables are not known, and the amount of data 
as well as potential variables are exponentially large? In this case, sta
tistical analysis such as ML, can help. 

ML represents systems of statistical analysis that enables identifica
tion of dependencies in large volumes of data. In other words, ML al
gorithms can be described as a transformation (T) that predicts a vector 
(i.e. a set of values) of output variables (Y) by learning from many ex
amples of the input variables (X). The function however, is usually 
"invisible" or cannot be easily articulated. In the most "non-forensic" 
applications this is not necessarily a problem, as the primary aim is to 
make accurate predictions. As such, the predictive model should be able 
to envisage the Y for every new X by mapping Y as a function of X for 
reference (training) data: Y = T(X). In the forensic arena however, there 
is a general expectation for full transparency and standardisation of the 
scientific methods used to analyse physical evidence in a criminal case. 
Given the intrinsic complexity of the ML algorithms, coupled with a 
relative scarcity of experts who can scrutinise these methods, forensic 
implementation of ML methods should follow relevant developmental 
and internal validation procedures, such as the SWGDAM Validation 
Guidelines for DNA Analysis Methods [9]. 

The first methods for ML began to be developed in the 1950 s [10, 
11], although the first fundamental publication proposing the idea of 
neural networks (one of the dominant ML methods, discussed below) 
was published earlier in 1943 [12]. Since then, a large number of 
different ML methods have been developed, suited for a variety of data 
and types of tasks to be solved. Such methods include linear regression, 
linear discriminant analysis, k-nearest neighbours (k-NN) algorithms, 
naive Bayes algorithms, decision trees, random forest algorithms, 
various types of neural networks, and other methods. 

When processing the initial data using ML methods, several ap
proaches can be used. In general, the particular strategy will depend on 
the problem being solved and the form of data presentation. In the next 
paragraphs we will describe the main ML approaches and their potential 
applications. 

1.2. Types of machine learning 

Machine learning can be arbitrary categorized into four main types: 
supervised learning, unsupervised learning, semi-supervised learning 
and reinforcement learning [13]. Each of these categories is briefly 
discussed in the below paragraphs and summarized in Fig. 1. 

1.2.1. Supervised learning 
Supervised learning is the most common type of ML in general and in 

forensic DNA analysis in particular. In this type of learning, the pre
dictive model is first trained with a large structured dataset - input 
variables and corresponding output variables [14]. The training data in 
this approach is given in the form of samples with labels. For example: 
sequences of DNA fragments annotated with labels corresponding to 
STR loci and flanking regions. The learning algorithm essentially learns 
the mapping function between the values based on a training dataset 
with labelled examples and subsequently assigns the corresponding 
label for each new example based on the established rules. Supervised 
learning is generally a very effective ML method, but requires 

M. Barash et al.                                                                                                                                                                                                                                 



Forensic Science International: Genetics 69 (2024) 102994

3

high-quality, normalised, and thoroughly cleaned training data to 
reduce potential bias (e.g. overfitting) in the output. Supervised learning 
can be executed by two main approaches: classification and regression 
analyses (described below). However, it must be noted that each of these 
problems (i.e. classification, regression) can also be approached with 
other ML methods, categorized under unsupervised or semi-supervised 
learning categories (as outlined in Fig. 1). 

1.2.2. Unsupervised learning 
Unsupervised learning does not have an a priori-structured data- 

target format. In other words, it can also develop a function based on the 
input data (X), but does not require the corresponding output labels (Y) 
for the training data as in a supervised learning approach [15]. Given the 
lack of the predefined labels, the algorithms need to be fed with a very 
large comprehensive dataset in order to accommodate most of the 
different scenarios of the X-Y connections. This is essential, so the model 
can be efficiently trained to understand the properties of the data. In this 
approach, the task is to organise the data in a similar way as humans do 
but, as for humans, this depends on which features are presented to and 
extracted by the algorithm. For example, when presented with images of 
cats, dogs, tigers and wolves, a child might recognise cats and dogs as 
“pets” and recognise tigers and wolves as “wild animals”. Alternatively, 
if cat-like and dog-like features were emphasised (extracted), the child 
might recognise tigers as a form of “cat” and wolves as a form of “dog”. 
Unsupervised learning is particularly beneficial when there is a need to 
automatically organise terabytes of unlabelled data into similar clusters 
with minimal manual intervention, but classification depends on fea
tures of the data which may or may not be obvious. 

1.2.3. Semi-supervised learning 
Semi-supervised learning is essentially a blend between supervised 

and unsupervised learning approaches. This type of ML is usually used 
when there is a large amount of input data, while only a small portion of 

the data is labelled. The goal of semi-supervised learning is to leverage 
the additional information contained in the unlabelled data to improve 
the model’s performance, especially when obtaining labelled data is 
costly, time-consuming, or limited. For example, a model might be 
supplied with a very large number of raw electropherograms to learn to 
distinguish an allele from background noise, while only a subset of 
electropherograms and/or alleles have been pre-labelled [16]. 

1.2.4. Reinforcement Learning 
Reinforcement learning is a type of ML where an agent (e.g. com

puter program or an autonomous robot) learns to make decisions by 
interacting with an environment. The agent takes actions in the envi
ronment, receives feedback in the form of rewards or penalties, gath
ering experience, and uses this experience to improve its policy through 
trial and error. This type of ML is commonly used in tasks where an agent 
needs to make informed decisions by learning through trial and error, 
such as game playing, robotics, and autonomous systems. 

1.3. Types of problems that can be solved with ML approach 

There is a large variety of data processing tasks that are well suited 
for ML methods. Some of the problems that can be solved with ML 
include:  

• Classification: assigning input data to predefined categories or 
classes;  

• Regression: predicting continuous numerical values based on input 
data;  

• Clustering: grouping similar data points together based on their 
characteristics;  

• Dimensionality reduction: retaining the most meaningful features of 
the data while eliminating redundant or less informative ones; 

Fig. 1. A simplified diagram describing various ML algorithms. Please note that this diagram is not exhaustive and includes only some commonly used ML methods 
under the specified categories. The tasks such as classification, clustering, regression and dimensionality reduction can be solved with different ML methods, hence 
the overlap in the diagram. 

M. Barash et al.                                                                                                                                                                                                                                 



Forensic Science International: Genetics 69 (2024) 102994

4

• Image and Video Recognition: analysing and understanding visual 
data, such as object detection, facial recognition, identification and 
classification of bloodstains, sperm cells, and image captioning;  

• Anomaly Detection: identifying unusual patterns or outliers in data, 
which can be valuable for fraud detection, fault diagnosis, or 
detecting anomalies in sensor data;  

• Natural Language Processing: understanding and processing human 
language;  

• Generative Models: creating new data that resembles the training 
data distribution, such as generating realistic images, music, or text; 

The main types of these tasks are briefly discussed below. 

1.3.1. Classification 
Data classification is usually performed by a supervised learning 

method and requires an annotated dataset for efficient training (Fig. 2). 
The resulting model would be a function that determines which of the 
predefined groups the new data will be assigned to. In addition, the 
likelihood of belonging to each group can also be calculated. The clas
sification models can be binary, where the data is divided into two 
groups, such as "true signal" vs "noise", "allele" vs "stutter"; "STR locus" vs 
"flanking sequence" and so on. In other cases, non-binary models are able 
to classify into multiple categories by assessing their best fit to one of the 
several groups. An example of such a classification approach is hand
writing text recognition and interpretation (Fig. 3). 

Classification tasks can be approached with many different ML 
methods, including linear discriminant analysis (LDA), logistic regres
sion, naive Bayes, decision trees and random forest, k-nearest neigh
bours (k-NN), support vector machine (SVM) and neural networks 
(discussed below). A more detailed review of these classification tech
niques can be found in [14]. 

1.3.2. Clustering 
The clustering problem is very similar to the classification problem 

with the main difference being the training approach, which uses 
unlabelled data (unsupervised learning). Clustering is used to find 
common aspects (patterns) within a dataset and distinguish between 
groups of data based on the features of the data. If the study can assume 

that the objects described by the data can be divided into a certain 
number of groups, then application of the clustering approach would 
result in segregating all objects into that number of groups. The clus
tering of the objects is performed according to the presence of the most 
similar characteristics (features) within each group, while being mostly 
different from objects in other groups (Fig. 4). The resulting model can 
be subsequently used to classify new data. The qualities of the objects 
that determine which clusters they belong to are not necessarily known 
but may correspond with other meta data associated with the objects. 

Clustering can be solved with many different ML methods, such as: k- 
Means, density-based spatial clustering of applications with noise 
(DBSCAN), hierarchical clustering, fuzzy clustering and others [17,18]. 

Model-based likelihood estimation is a particular type of clustering 
algorithm that is used extensively in forensic DNA analysis for popula
tion assignment. The most popular form of this algorithm is represented 
by Structure [19] which is a Bayesian algorithm that uses a matrix (i.e. a 
rectangular arrangement of values or data representing a mathematical 
object or its particular property) of known genotypes (G) to estimate a 
matrix of (unknown) genotype frequencies in K ancestral populations 
(P) and a matrix of (unknown) genetic contributions (Q) to each 
ancestral population, according to: 

G = QP 

For a given value of K, Structure updates prior estimates of P and Q 
according to the posterior probability distribution: 

P(Q,P|G)∝P(Q)P(P)P(G|Q,P)

Markov chain Monte Carlo (MCMC) simulations of P(P), P(Q) and P 
(G|Q,P) enable sampling from the posterior probability distribution. A 
log likelihood estimation is maximised until convergence. P and Q are 
initially modelled by Dirichlet distributions, which define variance in 
matrix elements but these are allowed to drift until they converge to 
stable values [20,21]. 

Fig. 2. An illustration of linear classification into two groups where pre- 
determined annotation is represented by red star and blue diamond labelled 
data points which are in turn functions of two variables (one quantified on the 
horizontal axis and the other quantified on the vertical axis). The line repre
sents a boundary that best separates the two groups based on the features 
(variables) presented to the model. 

Fig. 3. An illustration of multi-label classification for text recognition where 
the dataset for classification includes examples of hand writing and the pre
diction categories are individual letters of the alphabet and/or words. 

Fig. 4. An illustration of the data clustering approach where three clusters (A, 
B and C) are defined by their co-location in a co-ordinate system defined by two 
variables (one quantified on the horizontal axis and the other quantified on the 
vertical axis). 
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1.3.3. Regression analysis 
When trying to solve a complex scientific problem, researchers 

perform a series of experiments or observations in which the behaviour 
of an object or a process itself is studied under different conditions. With 
this standard scientific method, the process or object under study is 
described only at points with given initial parameters, rather than the 
whole process. Nevertheless, with the collected data, one can produce a 
mathematical function that would describe the process with a given 
accuracy at other points for which experimental data was not collected. 
In cases where the number of variable parameters is relatively small, and 
the type of relationship between the parameters is known (e.g. various 
dependences: linear, quadratic, trigonometric, power, etc.), the con
struction of such a function is usually not a particularly difficult task. 

However, if the studied object or phenomenon is described by a large 
number of parameters, and the relationship between these parameters 
does not lend itself to analytical description, then the methods of 
mathematical regression might better suit this task. As for the classifi
cation problem, constructing a regression function is an example of a 
supervised learning method. The only difference between the two is that 
when classifying, the studied data is predicted to belong to a particular 
category, while the result of regression is a number or a vector. 

One of the most known (and arguably useful) applications of ML for 
constructing regressions is in predicting the results of stock trading. This 
method however, can be successfully applied in solving many other 
problems. In forensic DNA phenotyping for example, this method can be 
used for predicting externally visible characteristics, such as iris, skin 
and hair pigmentation from a DNA sample based on a large dataset of 
respective phenotypes with corresponding genotypes [22–24]. 

The problems requiring regression analysis can be approached with 
several ML methods including linear and polynomial regressions, lo
gistic regression, decision trees and random forest, neural networks and 
others [3,25]. 

1.3.4. Dimensionality reduction 
Quite often, a study involves collection of a large amount of different 

types of data related to an object or phenomenon under study. In such a 
case, it may turn out that some of the parameters that were measured are 
only generally related to the object of study and their change does not 
affect the change in the resulting values. In other cases, such a rela
tionship may be present, but its effect is minimal compared to changes in 
other parameters and can therefore be disregarded. Consequently, it 
would be more productive (efficient) to discard such irrelevant param
eters in order to facilitate the construction of a model describing the 
object/phenomenon under study. Another variation of this scenario is 
when there is a functional or statistical relationship between several 
parameters, which essentially means that a group of parameters can be 
expressed by fewer parameters. In such cases, it may be appropriate to 
reduce the number of represented variables through dimensionality 
reduction techniques. This approach transforms the data from a high- 
dimension space into a low-dimension space, while retaining the prin
cipal properties of the data. Such tasks can be approached via linear 
discriminant analysis (LDA), multiple correspondence analysis (MCA), 
principal component analysis (PCA), principal coordinate analysis 
(PCoA), generalised discriminant analysis (GDA), t-distributed stochas
tic neighbour embedding (t-SNE) and other methods [26,27]. 

In addition to simplifying the model and making it easier to analyse, 
dimension reduction is often used in the visualisation of results, when a 
function of n-variables is reduced to 2 or 3 variables, which makes it 
easier to display it graphically. In the area of forensic DNA analysis, 
dimensionality reduction is often applied in order to predict the BGA or 
EVCs of a person (such as facial appearance and other complex traits) 
from a DNA sample (also discussed below in subsection 1.3.5). Here, 
highly dimensional data exist in the form of multi-locus single nucleo
tide polymorphism (SNP) genotypes, where the dimension can vary 
from a few dozen SNPs (e.g the 34-plex autosomal SNP single base 
extension assay developed by Phillips et al. [28] to over a million SNPs 

(e.g. microarray genotypes). These data are reduced to the two or three 
dimensions (as principle components or principle coordinates) which 
explain most of the variance in the data and which can be easily 
visualised in two- or three-dimensional plots. 

BGA inference by dimensionality reduction illustrates the issue of 
data features mentioned earlier. The 34-plex assay described above is 
comprised of SNPs that have been specifically chosen to differentiate 
between BGAs, that is, they have features that describe BGA. The 52-plex 
SNP assay developed by Phillips et al. (2006) [29] is comprised of SNPs 
that have been specifically chosen to differentiate between individuals, 
that is, they have features that describe individuals. When PCoA is used 
to, firstly, reduce dimensionality and, secondly, to cluster genotypes 
derived from three different populations, the 34-plex is much more 
effective than the 52-plex, even though it has fewer SNPs (Fig. 5). For the 
34-plex, the first principle co-ordinate (PC) explains 41% of the variance 
in the data while the second PC explains 22%, making a total of 63% of 
the variance explained. Dimensionality reduction has resulted in the loss 
of just 37% of variance. For the 52-plex, the first PC explains 12% of the 
variance in the data while the second PC explains 7.5%, making a total 
of only 20% of the variance explained (80% unexplained). The 52-plex 
does not perform as well as the 34-plex because it consists of data with 
less relevant features for BGA (compare with the child who will only be 
able to classify tigers and wolves as cat-like and dog-like, respectively, if 
images of tigers and wolves emphasise cat-like and dog-like features). 
STRs are particularly unuseful for BGA inference because they have 
fewer BGA-like features (the higher mutation rates of STRs, relative to 
SNPs, means that allele frequency differences between populations are 
diminished). It should be noted that BGA estimation represents just an 
example for the dimensionality reduction approach and highlights the 
broader potential of genetic data analysis in forensic science, which is 
beyond the focus of the current review. 

1.3.5. Generative models 
By combining various methods of ML, it is possible to build more 

complex models which could be used to analyse a variety of incoming 
information and, on this basis, predict not only the class of an object or a 
specific value of a parameter, but create a comprehensive model of a 
system. This approach is generally known as ’deep learning’. It falls 
under the umbrella of machine learning and is inspired by the structure 
and functionality of the human brain with the aim of creating intelligent 
machines capable of making independent decisions [30]. Deep learning 
methods utilise variations of a hierarchical (layered) organisation of 
artificial neurons with connections to other neurons (similar to the brain 
structure). These neurons pass a signal to other neurons based on the 
received input – a process that can be repeated multiple times, which 
ultimately creates a complex network capable of intuitive learning: an 
artificial neural network – ANN [31,32]. 

A major public demonstration of deep learning occurred in 2016 
when the AlphaGo computer program (developed by DeepMind Tech
nologies and based on a deep neural network) defeated Lee Sedol in four 
games of Go (Lee won one game) [33]. Until this point, it was thought 
that AI would not be able to beat Go world champion because the 
landscape of potential moves was so great and because intuition was 
considered necessary to win. Previously, in 1997, the Deep Blue super
computer (IBM) had beaten chess grandmaster Gary Kasparov using 
“brute force computation”, but AlphaGo was an example of true deep 
machine learning [34]. 

In an artificial neural network, each layer of neurons performs 
transformations using weights, biases, and activation functions. This 
process continues until the data reaches the output layer, where final 
predictions or results are generated. ANNs are incredibly versatile and 
can be applied to various machine learning tasks, including classifica
tion, regression, image recognition, natural language processing, and 
more. What sets neural networks apart from other machine learning 
methods is their ability to identify and emphasize features that distin
guish each class during the learning process. In classification tasks, 
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neural networks compare the features of an object with the features of 
each class, rather than comparing it with the features of each object in 
the training dataset [35]. 

Generative models, a subfield of deep learning, often incorporate 
layered networks that utilize multiple levels of nonlinear data process
ing to extract and transform features of interest. One popular example is 
generative adversarial networks (GANs). [36]. The key innovation 
behind GANs is their two-network architecture, which consists of a 
generator network and a discriminator network. The generator creates 
synthetic data, and the discriminator evaluates whether the data is real 
or fake, leading to a competitive training process where the generator 

becomes increasingly skilled at producing highly realistic data (as 
exemplified below). These models are highly versatile and can combine 
both supervised and unsupervised learning methods in a single model as 
reviewed elsewhere [37]. 

Deep learning and particularly GANs have proven to be a powerful 
approach producing reliable results for predictive tasks of diverse na
ture. One such task that is routinely deciphered in many fields including 
forensic science, is pattern recognition [38]. For instance, this approach 
can be used for artificial aging of an individual’s photograph or bio
logical age prediction from a facial image – another attempt to imitate a 
’very ordinary’ human capability [39,40]. Forensic molecular 

Fig. 5. PCoA applied to individuals genotyped with the 34-plex (above) and the 52-plex (below). The BGAs of the individuals are colour coded red, blue and green. 
The numbers in parentheses on the axis (co-ordinate) labels indicate the proportion of variance explained by each coordinate. 
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phenotyping in general and the problem of predicting the externally 
visible appearance from a DNA sample in particular is another forensic 
application of the generative ML approach [41]. These characteristics 
can include physical traits such as eye colour, hair colour, skin colour, 
and even facial morphology. One of the most intriguing applications of 
generative machine learning in forensic science is the prediction of an 
individual’s facial appearance from a DNA sample. This task is excep
tionally challenging due to the complex relationship between genetic 
and epigenetic factors and facial traits [42–45]. Given the relatively 
limited knowledge of the underlying genetic architecture of craniofacial 
morphology, coupled with the complex task of phenotyping facial traits, 
generative machine learning models, particularly deep neural networks, 
may offer a promising solution [46]. This approach leads to more ac
curate predictions of complex variables, such as facial traits, by itera
tively refining the generated output (as exemplified in Fig. 6). 

Briefly, this complex process can be described as follows:  

• Data Collection: To train a deep neural network for facial appearance 
prediction, a dataset is collected. This dataset includes both genetic 
data (DNA samples) and corresponding 2D/3D facial images of 
thousands of individuals. The genetic data provide the input to the 
model, and the images represent the target output – the individual’s 
facial appearance.  

• Feature Extraction: The deep neural network employs multiple layers 
of artificial neurons to extract relevant features from the genetic 
data. These features could be related to genetic or epigenetic varia
tions, and other factors that contribute to facial traits.  

• Training Process: The network is trained using a large dataset of 
genetic data and facial images. During training, the network learns to 
map genetic information to facial features. This process is guided by 
the images in the training dataset, allowing the network to make 

predictions about an individual’s facial appearance based on their 
DNA.  

• Discriminator Feedback: One of the key elements in generative 
models is the discriminator, which assesses the quality of the 
generated output. In this case, the discriminator acts as a classifier 
that evaluates how well the predicted facial features match the actual 
images in the dataset. The neural network iteratively refines its 
predictions by learning from the discriminator’s feedback.  

• Generating Facial Predictions: Once the network is trained, it can 
take a new ‘questioned’ DNA sample as input and generate pre
dictions about the individual’s facial appearance. These predictions 
can include the shape of the face, the size of facial features, and other 
visible traits. 

The potential applications of this technology in forensic science are 
significant. For example, it could be used to create composite images of 
suspects based on DNA evidence left at crime scenes or reconstruct the 
facial appearance of a person based on partial skeletal remains, helping 
in the identification process [47,48]. While this field is still in its early 
stages, the power of generative machine learning offers exciting possi
bilities for forensic science. It highlights the potential of AI and deep 
learning to provide valuable insights and predictions from genetic data, 
ultimately aiding investigations and solving complex cases. 

Similar to previous sections, this subsection employs examples of 
machine learning applications in forensic science to illustrate the prin
ciples of generative models, even though it is not the primary focus of 
this review. 

1.4. Benefits of machine learning methods 

One of the main advantages of ML methods is their capacity to 

Fig. 6. Illustration of the proposed GANs approach for predicting complex phenotyping traits from genomic data (see [46] for more details).  
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streamline the processing of a large amount of ‘big data’ (and in many 
cases make their analysis possible in the first place), while such pro
cessing does not require deep specialised knowledge of statistics from 
the user [49]. This is possible due to a wide variety of ML algorithms, 
which have been developed for various applications. These algorithms 
have been incorporated into a large number of computer programs and 
libraries for different programming languages (such as Python, R, Mat
lab, etc.), which allows the use of ML to solve a research problem 
without extensive knowledge of the data processing algorithms them
selves. The researcher only needs to formulate the research questions 
and the computational task, and then collect and prepare data (e.g. 
label, verify and clean the training dataset) prior to its input. Conse
quently, the automation capabilities of ML methods significantly reduce 
the burden of manual data analysis tasks, freeing up scientists to focus 
on higher-level problem-solving and creativity. Whether it’s data 
pre-processing, feature extraction, or model optimization, ML algo
rithms can handle very large datasets through automating various pro
cesses, thereby streamlining research workflows and accelerating 
discoveries. Furthermore, machine learning algorithms can be applied in 
cases where some data is missing [50]. The algorithms are able to use 
partial data or will automatically fill the gaps (e.g. via interpolation, 
imputation, or Dirichlet process priors) in order to create a model and 
predict the final result [51–53]. 

The benefits of machine learning methods in data analysis are vast 
and continue to evolve as researchers explore new applications and 
develop more advanced algorithms. From aiding decision-making and 
forecasting to enabling personalized experiences and automation, ML 
stands as a transformative force in modern research and technological 
advancement. Embracing and harnessing the potential of machine 
learning will undoubtedly play a pivotal role in shaping the future of 
scientific inquiry and problem-solving across diverse domains. 

1.5. Weaknesses and pitfalls of machine learning methods 

The process of preparing and pre-processing data (e.g. cleaning, 
editing, etc.) is a crucial and time-consuming step in building ML 
models. This time is of course, spent in addition to the program code 
writing and algorithm training. Currently, this step requires mostly 
manual intervention. However, computational techniques can be 
leveraged to automate and streamline these tasks by automatically 
detecting, cleaning and removing inconsistencies, errors, outliers, 
anomalies and unusual patterns from the dataset. For example, tech
niques like clustering, classification, and regression can be employed to 
identify and handle missing values, correct data entry mistakes, and 
impute values based on patterns in the data (as discussed in Sections 
1.3.1, 1.3.2 and 1.3.3). Nevertheless, human experts are currently still 
required to review and validate the results generated by these tech
niques to ensure the quality and accuracy of the prepared data before 
proceeding with training the ML algorithm. 

The use of separate train/test/validation sets is an important aspect 
of ML which is also linked to its limitations. These sets are used to 
evaluate the performance of the ML algorithms and ensure that they are 
not overfitted to the training data. Overfitting occurs when the ML al
gorithm becomes too complex with more variables and and/or hidden 
variables than is justified by the data. In this case, the algorithm per
forms well on the training data but poorly on new data, reducing the 
reliability of the algorithm. Proper evaluation using separate and large 
train/test/validation sets can help mitigate this issue and increase the 
transparency and reliability of the results. While large datasets can 
improve the accuracy of the ML algorithms, they can also introduce bias 
and errors that can undermine the reliability and validity of the results 
produced by the algorithms. This phenomenon is often called the "curse 
of dimensionality" and refers to degrading performance of ML algo
rithms as the dataset’s dimensionality (number of features or variables) 
increases [54,55]. To mitigate the curse of dimensionality, some tech
niques can be applied, including dimensionality reduction methods (e. 

g., principal component analysis), as discussed in Section 1.3.4. Either 
way, a dataset that is not representative of the population(s) being 
studied may result in inaccurate predictions and conclusions. Such an 
outcome may have significant implications for the criminal justice 
system. 

Another problem is the over-reliance on ML algorithms as a substi
tute for human judgment [56–58]. While ML algorithms can provide 
valuable insights and support decision-making processes, they should 
not be used as a sole basis for legal decisions. Human experts should 
always be involved in interpreting and validating the results produced 
by the ML algorithms. 

Moreover, the potential lack of transparency can undermine the 
validity and acceptability of the results produced by the ML algorithms, 
particularly in legal contexts, where forensic evidence is often used to 
support court decisions. This problem is known as the "black box" issue. 
In this context, explainable AI (XAI) is a critical area of research that 
aims to develop ML algorithms that are transparent and interpretable 
[59,60]. XAI refers to the ability of an AI system to provide explanations 
for its decisions, so that human experts can understand the underlying 
reasoning and have confidence in the accuracy and reliability of the 
results. Several techniques have been proposed to improve the trans
parency of ML algorithms, including decision trees, rule-based models, 
and Bayesian networks [61–63]. These models are transparent and 
interpretable, allowing human experts to understand the 
decision-making process and validate the results produced by the 
algorithms. 

As ML continues to permeate various fields, it is essential to recog
nize that these methods are not infallible and may produce erroneous 
results if not appropriately handled. The inherent weaknesses and pit
falls of ML can significantly impact decision-making and the reliability 
of outcomes, making it imperative for researchers to navigate these 
limitations cautiously. By addressing these challenges, the scientific 
community can work towards enhancing the transparency and robust
ness of ML techniques, ensuring their responsible and effective 
deployment. 

2. Machine learning applications in forensic DNA analysis 

Application of ML methods can be especially beneficial for the field 
of DNA analysis. Continuous advancements in high-throughput genomic 
technologies such as massively parallel DNA sequencing coupled with 
improved algorithms for bioinformatic data analysis lead to accumula
tion of complex genetic data. These data require extensive processing 
and annotation – a natural application for ML. In fact, ML approaches 
are used to solve numerous problems in genetics and genomics, such as: 
generating genomic annotations, predicting functional genomic ele
ments, understanding mechanisms of gene expression and other prob
lems requiring complex analysis of large and often unstructured datasets 
(for a comprehensive review see [64]). 

Forensic science is a multidisciplinary field that analyses and draws 
conclusions from numerous sources of highly variable multidimensional 
data. Forensic analysts are expected to base their data interpretation on 
extensive professional knowledge, experience and rigid standards with 
zero-bias involved in their decisions. This task however is challenging, 
as biological data can be extremely complex and diverse. It includes 
human and non-human DNA markers (e.g. STRs, SNPs and micro
haplotypes) used for identity and investigative purposes; RNA markers 
(e.g. mRNA and microRNA) used for confirmation of the biological tis
sue of origin; epigenetic markers (e.g. DNA methylation) used for bio
logical age estimation and biological tissue of origin, and even protein 
markers which can be used as a proxy for genetic identification [65–68]. 
Each of these markers include numerous inherent (and often "hidden") 
variables, patterns and artefacts, requiring powerful software and 
thoroughly trained specialists for data analysis and interpretation. In 
many cases, the analysis of generated data requires complex mathe
matics and/or a large number of calculations, which are not feasible or 
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even possible without computational support. The computational 
methods allow inclusion of an increased number of both qualitative and 
quantitative factors, leading to creation of increasingly intricate models 
that often stray beyond the practical reach of analysts. The data gener
ated in such diverse applications must meet several conditions prior to 
incorporation into a learning computational pipeline. One of the 
essential conditions for efficient learning is the size of a training set, 
which is expected to be significantly larger than the number of specific 
features (e.g. allele calls vs artefacts) to be extracted. This is necessary to 
mitigate against the risk of overfitting [69,70]. Sometimes however, it 
might be necessary to reduce the dimensionality of the data by 
extracting the most informative features, which allows more efficient 
use of computer algorithms. In most cases, the data requires extensive 
processing (e.g. labelling) for a more efficient classification via super
vised learning. 

Current applications of ML in forensic biology can be arbitrarily 
divided into:  

1) Applications related to human identification, such as efficient 
designation of STR alleles from either CE- or NGS-generated data, 
while filtering for potential artefacts and assisting with DNA mixture 
interpretation, such as estimating the number of contributors (NoC) 
to a DNA mixture. 

2) Applications related to forensic intelligence, such as forensic mo
lecular phenotyping and biogeographic ancestry prediction. 

3) Applications related to increasing the evidential value of DNA evi
dence, such as forensic microbiology (e.g. post-mortem interval 
estimation), biological tissue source confirmation and activity level 
reporting. 

Considering the relatively large variety of ML applications in forensic 
DNA analysis, this literature review (and specifically Section 2) focuses 
on applications for HID only. 

2.1. STR allele designation from CE- and MPS- generated data 

The process of STR genotyping and data interpretation consists of 
numerous steps, including separation of signals from different colour 
channels, identification of all peaks that are present in an electrophe
rogram (EPG), sizing DNA fragments, designating allele calls at each 
locus, removing artefacts and subsequently designating a DNA profile 
for further interpretation. The complexity of separating the alleles from 
background noise and artefacts is the basic problem in forensic DNA 
analysis. Currently, the process of STR genotyping is carried out in a 
semi-automatic manner, using dedicated expert software such as Gen
emapper™ (Thermo Fisher Scientific). This software separates allelic 
peaks from noise and artefacts with the help of built-in algorithms and 
utilises a number of validated thresholds. The process subsequently re
sults in a designated DNA profile, although manual confirmation by an 
analyst is required. The resulting DNA profile can be used for compar
ison with a reference profile or for further analysis with probabilistic 
genotyping (PG) software. 

The majority of published studies in this niche undertook a similar 
approach. Briefly, the proposed ML methods make no a priori assump
tions and rely almost entirely on the raw EPG data to generate a model, 
while eliminating the data analysis thresholds which are used in 
contemporary STR profiling. Instead of using static analytical and sto
chastic thresholds (ST), they utilise either a dynamic threshold [71] or 
refrain from applying any thresholds altogether [72–74]. The pro
ponents of this approach presume that application of a static threshold 
(ST) is too conservative and may lead to significant loss of valuable in
formation (i.e. allelic peaks), which could be reduced if using a dynamic 
threshold (DT) or no thresholds (NT) at all. In other words, the 
platform-agnostic algorithms are designed to utilise all the available 
information (i.e. raw data) to learn and make informed predictions, thus 
maximising the information obtained from DNA evidence. 

Traditionally, the decision on setting interpretation thresholds is 
based on extensive validation using a variety of samples and a particular 
piece of analytical equipment (i.e. genetic analyser). In the traditional 
approach, the signals below such thresholds (e.g. below AT) are 
considered unreliable (due to the inherent limitations of any analytical 
system) and discarded. This approach helps to minimise a situation 
when artefacts are labelled as allele peaks and/or true peaks are dis
carded. Most forensic DNA laboratories use a series of validated static 
thresholds, which aim to avoid Type I errors (e.g. designating an arte
factual peak as an allele) and minimise Type II errors (e.g. incorrectly 
classifying true peaks as artefacts), as recommended by the SWGDAM 
[75]. Traditionally, the possibility of detecting false positives (Type I 
error) is considered a more consequential error in forensic science, as it 
may lead to false inclusion and wrongful conviction [76,77]. The 
application of a more conservative ST and especially AT minimises 
occurrence of Type I error at the expense of Type II error. On the other 
hand, the use of a more variation-sensitive DT reduces the possibility of 
losing essential allelic information. Considering the enhanced sensitivity 
of modern STR kits and genotyping technologies, it is important to 
rigorously validate proposed dynamic threshold methods to ensure at 
least equal performance (including concordance) to existing methods, 
especially with trace DNA samples. 

Consequently, it is important that ML models which do not incor
porate any thresholds should be validated to demonstrate concordance 
with the traditional threshold-based methods. In the following para
graphs we give a more detailed overview of the studies that have utilised 
either the DT, ST or NT (or their combination) approach to improve 
contemporary HID methods. 

2.2. STR genotyping using CE - generated data 

Pull-ups are among the most common technical artefacts of the CE 
process. These artefactual peaks can be observed when there is a partial 
overlap between the wavelength windows of two or more fluorescent 
dyes used to label and detect amplified STR fragments. The majority of 
these artefacts are zeroed by a spectral calibration mechanism during 
pre-run calibration of the CE system. Some, however, may remain and 
challenge DNA profile interpretation, especially mixed samples with 
minor contributors. Currently, the routine approach to detect and 
remove pull-ups is by manual inspection of the EPG raw data. This 
method however is time-consuming and not always accurate. 

A possible solution to this problem has been offered in a recent study 
by Adelman et. al [78]. The authors describe a method for automatic 
detection and removal of fluorescence pull-ups that does not require 
prior removal of the technical or biological artefacts. The proposed 
computational pipeline utilises a symbolic regression model that is 
applied to the raw EPG data. In order to identify the candidate variables 
for building a model, the data were first filtered with a static AT of 10 
rfu, followed by either a dynamic, locus– or sample-specific threshold. 
Subsequently, three more quantitative filters were applied, resulting in 
removal of all expected allelic and stutter peaks, leaving only the arte
factual peaks caused by pull-ups. 

Quite expectedly, peak height was found to be the most significant 
variable influencing pull-up frequency, while both the dye and the type 
of CE instrument were also found to be insignificant features. Accord
ingly, a direct relationship between the height of a pull-up peak and its 
removal accuracy was observed: the higher the peak, the more accu
rately it was trimmed by an algorithm. Notably, the dynamic locus- 
specific AT together with ML algorithms demonstrated better perfor
mance compared to static ATs of 50 rfu and 150 rfu. On the other hand, 
applying a dynamic AT alone left a larger number of pull-up artefacts 
than when using STs. The developed symbolic regression models have 
been optimised for EPG data generated with commonly used 3100 and 
3500 genetic analysers and demonstrated 96% predictive accuracy 
when applied in combination with a DT. 

Fluorescence pull-ups however are not the only artefactual signals 
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commonly observed in EPGs. Other common CE artefacts include elec
trical spikes, reverse and forward stutters, and background noise. A 
recent publication by Marciano et.al [71] proposes a sophisticated ML 
approach for EPG analysis intended to identify and remove such arte
facts (except pull-ups), and subsequently yield a DNA profile [71]. The 
authors of the study developed an "intelligent Locus-Sample-Specific 
Threshold and Noise Reducer" (iLSST-NR) system, containing four 
computational modules. The first module utilises a locus- and 
sample-specific dynamic analytical threshold, which is calculated as 
four standard deviations above the mean of the background noise in the 
flanking regions of each locus, while a peak detection algorithm sub
sequently detects and removes artefacts such as pull-ups and spikes. The 
second module employs algorithms that detect forward and reverse 
stutters, based on user-defined thresholds. The third module in
corporates trimming algorithms, designed to remove any additional 
background noise artefacts, not detected by previous modules, while 
retaining potential low-level alleles. The fourth module incorporates an 
SVM predictive model and is the actual ML component of the system, 
designed to classify the data, remove any remaining artefacts and extract 
the final DNA profile in each locus. The iLSST-NR system has been 
trained with EPG data that has been generated from 960 single source 
and mixed samples produced by three different CE platforms. The model 
performance has been tested with 341 samples generated in the same 
manner as the training data set. Overall, the iLSST-NR system demon
strated better performance compared to traditional ST methods with an 
overall accuracy of 97.2% for detecting true alleles and a false positive 
rate of 0.8% for detecting artefacts. Conversely, 11% of artefactual peaks 
were designated as true alleles, which represented 0.079% of the total 
alleles detected. 

The main problem of this approach, according to the authors, is that 
the application of the iLSST-NR system successfully increased the 
number of interpretable alleles at the cost of calling an increased num
ber of additional incorrect alleles compared to static thresholding 
methods. This problem seems to be mainly associated with mixed 
samples and specifically with low-template contributors at the back
ground noise level. Nevertheless, the proposed ML approach in 
conjunction with DT has outperformed the traditional ST method in 
terms of maintaining the balance between retrieving the maximum in
formation from EPG data, while minimising the number of artefactual 
peaks that were erroneously called alleles. 

Based on outcomes of the aforementioned studies, the problem of 
accurate classification of such a diverse range of EPG signals presented 
in very large data sets required for model training, might be better 
addressed by a more sophisticated ML approach – deep learning. It is 
expected that deep learning algorithms with hundreds of artificial 
neurons in conjunction with model-free reinforced learning, are ex
pected to produce a better classification outcome with CE- and espe
cially MPS -generated data. Deep neural networks usually have more 
computational layers than traditional ML algorithms, thus offer an 
ability to learn more efficiently from large and diverse datasets. If the 
aim is not only to separate allelic signals from noise and artefacts, but 
provide a comprehensive genotyping solution for different types of 
forensic DNA samples, the DL models might be a preferable approach. 

A number of recent studies have demonstrated successful use of 
ANNs to classify raw EPG signals as either allelic or artefactual [73,74]. 
In these studies, the researchers decided to eliminate all the genotyping 
thresholds completely. The studies followed a previous small-scale 
attempt by the same research group to use ANNs to categorise EPG 
data [72], which in-turn is based on a number of previously published 
studies (outside of the forensic science area) to analyse CE data with the 
ANN approach [79–81]. 

In this initial proof-of-concept, the authors built a neural network 
with 1206 input neurons (according to 201 scan points per EPG x 6 
fluorescent dyes), one hidden layer with 100 neurons and an output 
layer with 5 neurons, (according to the number of classification cate
gories) [72]. The ANN model was trained on a very limited dataset of 

only two single-source electropherograms (epg) decoded into a set of 
"scans", covering approximately 8 base pairs in both directions and 
resulting in 12,000 data sets of 1206 inputs. Each of those training sets 
went through 100 iterations (’epochs’ in the computer science lexicon) 
in order to recognise various features such as: baseline, alleles, pull-ups 
and stutters (both forward and reverse). The final prediction model 
demonstrated approximately 93% overall precision with a test dataset 
consisting of only one electropherogram, represented in the same 
manner as the training data set. Specifically, the ANN model demon
strated good performance for baseline and allele calling features clas
sification (e.g. 96% precision) and inferior performance for artefacts 
prediction (e.g. 68% precision for the n-4 stutter prediction). 

In their subsequent work, the researchers have substantially 
increased the amount of training data and number of computational 
networks [74]. The training dataset was represented by a total of 206 
single – source and mixed DNA profiles of various template concentra
tions generated on two types of genetic analysers (3130xl and 3500xl). 
The ANN architecture was the same as in the preliminary model [72,73]. 
The authors compared performance of various ANN models (e.g. 
incorporating reference profiles, mixtures or both types of data gener
ated on either a single CE platform or both) and found that an ANN 
model trained on mixed data demonstrated very similar or slightly 
improved performance compared to a model trained on a single data 
type, while the precision metrics ranged between 90% and 96% across 
all datasets. 

The authors state that the developed ANN model can be potentially 
incorporated as a step before data analysis in the existing expert systems 
such as Genemapper™ to streamline the interpretation by saving sub
stantial time required for manual analysis. In a more recent study, Lin et. 
al describe the developmental validation of FaSTR™ DNA analysis 
software following the FBI Quality Assurance Standards for Forensic 
DNA Testing Laboratories 2020 [82]. The developed software was 
compared with the GeneMapper™ ID-X software on a large dataset of 
3403 single-source and mixed DNA profiles generated using seven 
different STR profiling kits. The study demonstrated almost 100% 
concordance in peak designations including an accurate designation of 
stutter peaks. In a more recent publication, the proposed ANN model has 
been improved, which together with the expanded training data, 
allowed it to classify an entire DNA profile, rather than individual profile 
features [83]. Furthermore, the FaSTR™ DNA software and its improved 
ANN model was recently validated by Forensic Science South Australia 
to determine whether one of the human DNA analysts could be replaced 
by an “ANN analyst” [84]. The validation demonstrated remarkable 
FaSTR™ DNA accuracy of 99.7% in detecting allele peaks in the refer
ence profiles, with additional research ongoing [85,86]. 

2.3. STR genotyping using massively parallel sequencing data 

Rapid progress in massively parallel DNA sequencing (MPS) and its 
superior capabilities have triggered the implementation of this tech
nology for HID applications. Some operational laboratories are already 
transitioning from traditional CE fragment separation, especially for 
SNP genotyping. The computational methods designed for DNA 
sequencing data analysis face similar problems as those for CE-generated 
data, although MPS data brings additional challenges. For example, the 
MPS platforms generate a significantly larger amount of genomic data 
than CE genotyping methods. In addition, sequencing retrieves more 
comprehensive genomic information (e.g. the actual DNA sequence of 
STR loci including flanking regions vs just the number of tandem re
peats), hence requiring extensive processing and interpretation. As a 
result, even more sophisticated bioinformatic tools are required to 
extract a DNA profile and resolve biological variants, intra-locus poly
morphisms, sequencing errors and platform-specific artefacts, before the 
profile interpretation can be conducted. Given the complexity of MPS 
data analysis, the ML approach looks like a natural fit for solving this 
problem. From the ML point of view, this question fits into a pattern 
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analysis paradigm and can be approached with clustering or classifica
tion algorithms. 

An attempt to develop a bioinformatic ML tool for extracting STR 
sequences from MPS raw data has been recently presented by Liu et al. 
[87]. Their Fragsifier software incorporates a random forest prediction 
model to designate STRs by locating both the repeat sequences and 
respective flanking sequences. This comprehensive strategy proved ad
vantageous over the other previously published tools, which rely on 
either repeat or flanking region detection. Fragsifier is a 
platform-agnostic software tool that analyses sequencing reads in the 
FASTQ format and detects possible STR loci by the presence of consec
utive k-mers of 3–6 nucleotides repeated more than two times, followed 
by alignment of STR flanking sequences to a reference genome. The 
prediction model has been established through supervised training with 
7-mers of various STR loci, extracted from 40 sequenced samples and 
based on the reference dataset of approximately 2500 sequences 
extracted from STRait Razor v2s dataset [88]. In addition to ’positive 
feature training’, the random forest prediction model was trained with 
’negative feature training’ examples that included trailing sequences 
used in the i7 sequencing adaptors to recognise ’what is not an STR’. The 
evaluation of the learning step produced a 30-tree forest model, which 
showed the best balance between prediction accuracy (99%) and low 
computational cost. 

One of the limitations of the developed software is that it cannot 
correct sequencing errors or any sequence-specific artefacts such as 
homopolymer-read errors, which may affect its performance. Despite 
these limitations, the ML software produced generally concordant ge
notypes with CE and outperformed other previously published bio
informatic solutions for STR sequence extraction from MPS data. 
Another recent study by Yang et al. describes the use of linear regression 
and neural networks on MPS data of SNPs for DNA mixture interpreta
tion [89]. The authors utilized a dataset of 10 single-source samples and 
66 mixtures of various natures sequenced for 960 autosomal SNPs. The 
experiments demonstrated that both the linear regression and neural 
network models out-performed EuroForMix (probabilistic genotyping 
software in the R-coding language) in determining the minor contributor 
to DNA mixtures, including challenging profiles generated from highly 
degraded samples and closely related donors. 

Another new and promising approach for mixture interpretation 
using ML was recently published by Crysup et.al [90]. This study ex
plores the application of the previously described barcoding method 
using unique molecular identifiers (UMIs) [91] coupled with a machine 
learning bioinformatic pipeline to enhance the accuracy of allele calling 
in low-template DNA mixtures. Low-template samples and particularly 
low-template mixtures pose challenges in forensic DNA analysis due to 
PCR artefacts and the difficulty of distinguishing minor contributors 
from noise products. The authors developed a bioinformatic pipeline 
that utilizes UMIs attached to DNA sequences and employs ML tech
niques to filter out noise products. They conducted experiments with 
varying DNA input amounts and mixture ratios and found that using 
UMIs reduced noise, and machine learning further improved perfor
mance. The study demonstrates that UMIs coupled with a ML pipeline 
can significantly enhance allele calling accuracy by filtering out the 
noise products, especially in low-template mixtures, and offers potential 
benefits for forensic applications. 

Despite a relatively small number of publications in this particular 
field, it is expected to increase steadily, in line with the growing number 
of forensic laboratories implementing MPS technology. The application 
of ML to mixture deconvolution is further discussed in the following 
subsection. 

2.4. DNA mixture interpretation 

Forensic DNA mixture deconvolution is one of the most challenging 
and controversial problems in forensic DNA analysis. Most challenges 
arise with interpreting complex DNA mixtures of three and more donors, 

especially if one or more of these contributors is represented by a very 
low-level portion of the mixture and/or the DNA molecules are degraded 
to varying degrees. In such a common situation, a true allele can be 
confused with various artefacts, including stutters, pull-ups, drop–in and 
drop-out. All these variables may influence one of the key parameters in 
DNA mixture interpretation – estimating the number of contributors 
(NoC). This assessment is fundamental for generating two competing 
propositions, usually defined as Hp (for the prosecution) and Hd (for the 
defence). Subsequently, these competing propositions are incorporated 
into Bayes theorem to evaluate the odds of different scenarios by 
calculating respective likelihood ratios. Due to the complexity of such 
calculations, it is usually completed using probabilistic genotyping 
software (PGS). 

Most of the current PG systems rely on the manual assignment of the 
minimum NoC for the calculation of likelihood ratios. There are 
different methods to infer the NoC, such as the maximum allele count 
(MAC) [92], total allele count (TAC) [93] and the maximum likelihood 
estimation (MLE) [94]. The MLE approach is probabilistic by its nature 
and generally considered the most comprehensive: it can incorporate 
peak height information, allele sharing and probabilities of drop – in, 
drop – out, stutter and other artefacts. Conversely, the MAC method 
requires removal of all artefacts (especially stutters), which otherwise 
can lead to overestimating the NoC. Even after artefact removal, the 
MAC method is more likely to underestimate the NoC, due to the pos
sibility of allele sharing. The uncertainty of mixture deconvolution by 
current PGSs increases proportionally with the number of contributors 
and/or when there is significant allele sharing between contributors 
[95]. 

One of the first attempts to efficiently decipher the NoC using an ML 
approach was described by Swaminathan et. al [96]. The authors 
developed a MCMC continuous probabilistic method - NOCIt - that uti
lises information about peak height, degradation, forward and reverse 
stutter, noise and allelic drop-out and other parameters to infer the 
number of contributors to a profile. In a follow up study, the model was 
calibrated with 100 single-source ground truth profiles, while its per
formance was consequently evaluated with 815 DNA profiles of varying 
quality, number of contributors, and mixture proportions [97]. Notably, 
this process included a manual step of artefact removal prior to incor
poration into the computational pipeline. In a more recent publication 
by the same research group, the authors developed another continuous 
model, incorporating ANN, then performed benchmark comparison 
between the two methods and the commonly-used MAC approach [98]. 
Each method was tested with a standard set of 214 PROVEDIt mixtures 
[99] and focused on accuracy and precision of the true NoC estimation 
(based on the highest LR) among other parameters. As expected, the 
ANN required a much longer training period than the NOCIt (approxi
mately 24 h vs several minutes). However, after the training, it ran faster 
and demonstrated higher precision metrics than the NOCIt, which 
required tens of minutes to run and was less repeatable. The authors also 
note that ML models in this particular study and in general, have certain 
limitations such as higher variability of results (i.e. precision, accuracy, 
robustness) compared to probabilistic models. 

Another significant contribution to the field of DNA mixture analysis 
using computational methods was made in 2017 by the introduction of 
PACE: probabilistic assessment for contributor estimation software 
[100]. This study evaluated five different ML algorithms: k-NN, CART, 
MLP, SVM and MNLR for NoC prediction accuracy and artefact removal 
efficiency. The model was initially trained with STR data generated 
using the Identifiler™ amplification kit (Thermo Fisher Scientific). 
Evaluation of all five models demonstrated relatively similar perfor
mance. However, the non-linear SVM algorithm showed the best per
formance such as higher classification accuracy of all the tested 
algorithms, while the linear SVM algorithm demonstrated the worst 
metrics. Furthermore, the non-linear SVM model yielded NoC prediction 
accuracies of 100%, 98.1%, 95.9% and 100% for single – source samples 
and mixtures with two-, three- and four – contributors, respectively. It 
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should be noted that due to training dataset limitations, the accuracy for 
four donor mixtures is an estimation and is actually lower by approxi
mately 2 per cent. 

The subsequent development and validation of the latest PACE™ 
v1.3.7 software utilised a continuous probabilistic model in conjunction 
with the SVM classification approach [101]. The model has been 
extended to incorporate data from additional STR kits and trained on 
both single– person DNA profiles and up to four-person mixtures 
generated with the Globalfiler™ (Thermo Fisher Scientific) and Pow
erPlex Fusion 6c® (Promega) amplification kits. It also includes modules 
that permit automated artefact identification such as n-1 and n + 1 
stutters, pull-up and background noise, using the iLSST-NR algorithms 
previously developed by the authors. The developmental validation of 
PACE demonstrated over 93.5% accuracy in automated artefact identi
fication for both amplification kits and greater than 90% accuracy in 
predicting the number of contributors (up to four donors). According to 
the authors, the relatively high number of misclassified samples in 
validation experiments (10%) was due to samples with high levels of 
allele sharing, low DNA template and allelic dropout in degraded DNA 
samples. Notably, most of the misclassified samples were under
estimated by one contributor only. 

In the follow-up study, the model was updated to predict up to 5 
contributors and demonstrated even higher accuracy in both artefact 
identification and NoC estimation (95% and 92%, respectively) [102]. 
The validation included complex DNA mixtures with various contributor 
ratios, samples with high levels of dropout due to degradation and low 
template samples. According to the authors, an additional benefit of the 
PACE software is its efficient usage of computational resources: the re
sults can be obtained in seconds using a standard desktop or laptop 
computer (compared to hours with alternative methods implementing 
MCMC algorithms). Another benefit is the flexibility of the PACE model, 
which potentially can be trained to produce classifications from data 
generated with other amplification kits, such as MPS-based kits. Pending 
extensive validation, the current version of the software can be poten
tially incorporated into operational workflow prior to a PG software 
pipeline, to improve the accuracy and increase the speed of the NoC 
estimation, and subsequently, generate more accurate propositions for 
likelihood ratio calculations. 

Another notable attempt to assist with the correct estimation of NoC 
has been published by Benschop et al. [103]. Their ML software is based 
on an RF classifier approach and named "RFC19" (due to 19 features it 
seeks to classify). These 19 features comprise information about various 
aspects of allele count, peak heights and allele frequencies (refer to Fig. 3 
in the original article for more details). The final model has been 
selected upon evaluation of ten ML algorithms based on precision and 
recall metrics. Two models (RFC19 and LDA40) demonstrated compa
rable performance, which was superior to the remaining models. 
Considering that RFC19 required fewer features for classification (19 vs 
40), it has been selected for further validation. 

The final model was trained on single-donor samples and up to 5- 
donor mixtures of various quantity and quality from 1174 unique do
nors, which were used to construct 590 DNA profiles. The NoC classi
fication accuracy of the final model was 83.3%, with most 
mischaracterisations occurring in challenging samples represented by 
complex mixtures of three to five donors with degraded DNA template. 
The comparison of RFC19 to other non-ML NoC estimation methods 
such as MAC and nC-tool (an in-house TAC-based approach), demon
strated its superior performance in accurate classification of 2- to 5-per
son mixtures (85% vs 69.2% vs 76.7%, respectively). One of the 
limitations of the current RFC19 model is the absence of female DNA 
profiles (both single and mixtures) in the training dataset. Incorporation 
of such data is essential and would affect (and potentially improve) the 
model’s prediction accuracy. Overall, the performance of the RFC19 
model seems to be slightly inferior to that of PACE™ (as discussed 
above). This comparison however, might not be entirely objective 
considering intrinsic differences in numerous parameters, such as 

training datasets (as discussed below). It is worth noting that a recent 
follow-up study describes another method for NoC estimation based on a 
less computationally intensive and ‘simple’ decision tree model (only 
two decision nodes) [104]. The proposed decision tree model was 
compared to RFC19, NOCIt and MAC approaches, demonstrating 77% 
accuracy in NoC estimation. 

The automatic ML methods for NoC estimation can be used as stand- 
alone software or as an integral component of the PGS. To this point, 
McGovern et. al describe a developmental validation of another proba
bilistic algorithm termed the ’variable number of contributors’ (Var
NoC), integrated into the STRMixTM software [105], which is based on a 
previously proposed MCMC method by Weinberg [106]. The validation 
demonstrated a relatively good performance of the VarNoC module (i.e. 
higher LRs for the correct NoC) with a sample set of ten DNA mixtures 
with varying mixture proportions. As expected, with more challenging 
samples (i.e. more complex mixtures), the accuracy of NoC estimations 
and the reproducibility of the LRs were less accurate. Also, the VarNoC 
can be considered a semi-automatic approach as it requires manual 
assignment for the anticipated range of NoC (i.e. Nn to Nn+1) [107]. 

Based on the current literature, the ML approach is very promising 
and may provide a better answer for the accurate estimation of NoC (and 
mixture interpretation in general) over the existing methods. However, 
the implementation of this tool into forensic casework would require 
extensive testing to identify its capabilities and limitations as with any 
new tool in the forensic arsenal. On this point, it is important to 
emphasize a common problem of validation studies, which was also 
highlighted by the authors of the NOCIt study [98]. This problem is the 
lack of standardization between different studies. Significant variability 
in data sets and system parameters, differences in data pre-processing (e. 
g., stutter pre-filtering) and methods trained with different goals in mind 
(e.g., different maximum NoC to be predicted) limit the true face-to-face 
comparison between the NoC estimation methods. However, this prob
lem is not unique and applies to other computational methods and 
forensic disciplines, as accentuated by the PCAST report and recent 
publications [108,109]. Therefore, a proper comparison of this kind 
would require a large standardised dataset of a wide range of sample 
types tested under variable analytical conditions, according to the 
SWGDAM validation guidelines [9110]. This requirement is an essential 
prerequisite for conducting proper validation studies and implementing 
a new method into operational practice. 

Another significant problem that applies not only to this specific 
field, but forensic science in general is the "opacity" of the ML algo
rithms. In other words, the software user usually sees only the output (i. 
e. prediction of the NoC) without any reasoning for that conclusion. 
Considering the legal context of forensic evidence analysis, this situation 
has significant judicial implications. Recently, a few studies have 
attempted to produce more transparent models using XAI approaches 
(as introduced in Section 1.5). For example, a Realistic Counterfactuals 
(ReCo) method has been proposed to generate realistic counterfactual 
explanations for correlated data [63]. It uses a decision tree to provide 
realistic and interpretable explanations for the NoC predictions made by 
the model. The effectiveness of this approach was demonstrated on both 
simulated and real-world DNA datasets and can be subsequently used for 
any type of ML model. It can also be extended to other areas of forensic 
science, such as fingerprint analysis and ballistics, where XAI can play a 
similar role in improving the interpretability and transparency of 
predictions. 

2.5. Additional applications of machine learning in forensic DNA analysis 

While the focus to this point has been on ML to solve various prob
lems with STR data analysis in the area of HID, ML methods have also 
been successfully applied to a number of other aspects of forensic DNA 
analysis. For example, a recent publication describes an application of 
an ML predictive model to infer the Y-SNP haplogroup from a Y-STR 
haplotype [111]. The authors evaluated several ML algorithms, 
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including kNN, NB, Logistic Regression, SVM, DeT, and RF. All models 
except NB, showed high prediction accuracy (above 95%) in the lowest 
haplogroup resolution, while for the highest haplogroup resolution, the 
RF model demonstrated a superior outcome compared to other models 
(77% accuracy). 

Another recently published study describes ML models utilising SVM 
and RF classifiers for haplogroup prediction based on Y-STR data [112]. 
The study compared performance of the three ML models: SVM, RF and 
K-NN to build an effective function for accurately predicting a hap
logroup. The developed training model was fed with data from 32 
Y-STRs genotyped in 377 samples from 19 populations, while an addi
tional 126 samples were used to test the model performance. The final 
model has been integrated into a free software "PredYMaLe" which was 
tested on additional published datasets and showed very high prediction 
accuracy (over 97%). According to the authors, the software is not 
limited to only the markers used for its training, and can be fed with any 
set of Y-STRs. 

Another relevant HID application of ML has been demonstrated in a 
recent study by Woerner et. al who has investigated human individu
alisation with bioinformatic data generated from sequencing 286 
genomic markers in 22 microbial species, sampled from three body sites 
in 51 individuals [113]. Specifically, the study has compared microbial 
genome composition and phylogenetic analysis incorporated into two 
ML classifiers: nearest neighbour and reverse nearest neighbour. The 
classifiers demonstrated a remarkable classification accuracy of 100% 
while using the maximum nearest neighbour conditioned approach. The 
study also suggested that microbial strain composition is more indi
vidualising than a phylogenetic approach. 

Additional potential applications of ML methods in the forensic DNA 
field beyond the focus of this review include forensic intelligence and 
inference, such as prediction of the body fluid origin [114,115], visual 
appearance traits [116], biogeographical ancestry [117–119], biological 
age [120–122], and post-mortem interval estimation [123,124]. Most of 
these applications require analysis of complex MPS data, which can be 
streamlined using ML solutions, as discussed above. 

3. Conclusion 

ML algorithms are considered a subfield of artificial intelligence. 
They are designed to train a computer program how to learn from 
experience with respect to some tasks and its performance measure(s) 
[125]. These algorithms have a wide range of potential applications in 
forensic DNA analysis and beyond, as illustrated by a growing body of 
literature. The use of ML algorithms in forensic science in general and 
forensic DNA analysis in particular can provide valuable insights by 
supporting decision-making processes and minimizing human subjec
tivity. ML algorithms offer significant advantages over the current 
methods of DNA data analysis and interpretation and are gradually 
becoming incorporated into routine casework. However, as with any 
novel forensic tool, ML methods must be extensively tested and vali
dated prior to operational implementation. Consequently, the properly 
validated computational algorithms can improve the throughput and 
reliability of evidence analysis and reduce the implicit subjectivity of 
human interpretation. 

Some of the major limitations preventing rapid implementation of 
the ML methods and especially deep learning methods include the re
quirements for very large (and relevant) training sets representing the 
widest spectrum of possible cases, significant computational resources 
to allow superior processing capacity and training of highly-skilled 
personnel with the knowledge that is not readily available in most 
operational laboratories. Most importantly, the upcoming implementa
tion of ML platforms in forensic DNA analysis (and other forensic dis
ciplines) must remain as transparent as possible rather than" a process 
specified only in terms of the relationship between inputs and outputs 
that uses information to produce a particular set of results" [126], also 
known as a ’black box’ approach. A lack of transparency can undermine 

the reliability and validity of the results produced by these algorithms. 
XAI techniques, such as decision trees, rule-based models, Bayesian 
networks, and the use of separate train/test/validation sets, can help 
improve the transparency and reliability of the ML algorithms used in 
forensic science. By developing more transparent and interpretable (i.e. 
"white-box") algorithms, we can increase confidence in the results pro
duced by ML algorithms and ensure their acceptability in legal contexts. 

The integration of ML methods in forensic science represents an 
objective and irreversible progression. In a similar manner, novel tech
nologies like digital photography were gradually incorporated into 
expert practice. Initially, there was scepticism within the expert com
munity concerning digital photography (authors’ personal communi
cation and [127]). Nevertheless, as image quality improved and digital 
technology advanced, its seamless integration into expert practice 
occurred without altering the fundamental principles of forensic 
photography. In the present day, it is nearly impossible to find docu
mentation of a crime scene or an expert report without digital photo
graphs. In a similar manner, the implementation of ML algorithms is 
expected to be a valuable asset for analysing and interpreting chal
lenging forensic evidence. Their primary advantage lies in streamlining 
analysis, reducing workloads, and minimizing the subjectivity of the 
decision-making process. However, considering the technology’s rela
tively nascent state, it may take a significant amount of time before 
machines can completely replace human experts. 
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