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ABSTRACT: The time scales of long-time atomistic molecular
dynamics simulations are typically reported in microseconds, while
the time scales for experiments studying the kinetics of amyloid
fibril formation are typically reported in minutes or hours. This
time scale deficit of roughly 9 orders of magnitude presents a major
challenge in the design of computer simulation methods for
studying protein aggregation events. Coarse-grained molecular
simulations offer a computationally tractable path forward for
exploring the molecular mechanism driving the formation of these
structures, which are implicated in diseases such as Alzheimer’s,
Parkinson’s, and type-II diabetes. Network Hamiltonian models of
aggregation are centered around a Hamiltonian function that
returns the total energy of a system of aggregating proteins, given
the graph structure of the system as an input. In the graph, or network, representation of the system, each protein molecule is
represented as a node, and noncovalent bonds between proteins are represented as edges. The parameter, i.e., a set of coefficients
that determine the degree to which each topological degree of freedom is favored or disfavored, must be determined for each
network Hamiltonian model, and is a well-known technical challenge. The methodology is first demonstrated by beginning with an
initial set of randomly parametrized models of low fibril fraction (<5% fibrillar), and evolving to subsequent generations of models,
ultimately leading to high fibril fraction models (>70% fibrillar). The methodology is also demonstrated by applying it to optimizing
previously published network Hamiltonian models for the 5 key amyloid fibril topologies that have been reported in the Protein Data
Bank (PDB). The models generated by the AI produced fibril fractions that surpass previously published fibril fractions in 3 of 5
cases, including the most naturally abundant amyloid fibril topology, the 1,2 2-ribbon, which features a steric zipper. The authors also
aim to encourage more widespread use of the network Hamiltonian methodology for fitting a wide variety of self-assembling systems
by releasing a free open-source implementation of the genetic algorithm introduced here.

■ INTRODUCTION
Amyloid Fibril Formation and Its Role in Disease.

Amyloid fibrils are insoluble fibrous aggregates of proteins that
form under a variety of physiological conditions and fall into
three categories: pathological amyloids, artificial amyloids, and
functional amyloids.1 While physiological functions can vary,
amyloids share a characteristic cross-β structure.2 In contrast to
globular proteins, amyloid proteins can flatten, allowing β-
sheet-like hydrogen bonding between protein molecules, which
leads to protein molecule stacking, resulting in fibril length-
ening along a particular fibril growth axis.3 Pathological
amyloids are associated with a group of degenerative amyloid
diseases, including Parkinson’s disease, Alzheimer’s disease,
and type-II diabetes.2,4 For example, insoluble aggregates of α-
synuclein in the form of Lewy bodies inhibits glucocere-
brosidase functioning in patients with Parkinson’s disease.5

Amyloid fibrils composed of the amyloid-β peptide (Aβ) are
strongly associated with Alzheimer’s disease, as Aβ peptides
accumulate in the medial temporal lobe of the brain and can
have neurotoxic effects, leading to neurodegeneration.6 While

the importance of amyloid fibrils to biomedical research is well
established,2,4 and numerous equilibrated amyloid fibril
structures have been resolved experimentally,3,7,8 elucidating
the mechanism of amyloid fibril formation is an ongoing area
of research with many open questions.9−11 Amyloid fibril
growth is characterized by normally soluble proteins under-
going nucleated growth to eventually form insoluble and
degradation-resistant aggregates. More precisely, after an initial
lag phase, amyloid fibril growth is first initiated from primary
nucleation sites, proliferation is then accelerated by secondary
nucleation events.12−14 Fibril breakage is also believed to
further contribute to the total fibril content in a system of
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aggregating proteins.12−14 The known association between
amyloids and neurodegenerative diseases has motivated
substantial research efforts toward potential treatments.
Although existing drugs are used to treat the symptoms of
Alzheimer’s disease, for example by either inhibiting the
cholinesterase enzyme or antagonists for N-methyl D-aspartate
(NMDA), a treatment for preventing, reversing, or halting the
progression of the disease state is yet to be discovered.6 Many
disease-modifying treatments are currently undergoing clinical
trials to test both prevention and reduction of Alzheimer’s
disease. Most of these treatments target Aβ peptides by use of
monoclonal antibodies (Aducanumab and Gantenerumab),
active immunotherapy (ABvac40), or anti-inflammatories
(ALZT-OP1, Azeliragon).6 Importantly, there are gaps in
knowledge surrounding the mechanism of amyloid fibril
formation that are impeding the development of treatments
for reversing amyloid diseases. Such gaps include how
oligomers, the possible precursors and/or biproducts to
amyloid fibril formation, may be formed by many different
parallel pathways due to slightly different experimental or
physiological conditions.2,10,11,15−17

Coarse-Grained Models for Simulating Protein Ag-
gregation. Although experimental techniques like NMR and
X-ray crystallography are commonly combined with atomistic
molecular simulations for studying structural dynamics of
amyloid fibril structures,18,19 such methods are better suited to
studying fully equilibrated structures than the transient
intermediate structures underlying the mechanism of for-
mation for mature amyloid fibrils. While atomistic classical
molecular dynamics simulations can be highly effective for
studying molecular motions of individual proteins and nucleic
acids,20−23 protein aggregation dynamics leading to amyloid
fibril formation involves many individual protein molecules
interacting on time scales roughly 9 orders of magnitude
beyond the reach of typical molecular dynamics simulations
(e.g., 1 μs compared to 1 h). Although enhanced sampling
techniques for atomistic molecular dynamics simulations can
be used to extend the temporal reach of atomistic molecular
dynamics simulations,24−27 time scale deficits of this
magnitude typically require the construction of coarse-grained
(CG) models, where degrees of freedom deemed unimportant
for characterizing the molecular motions of interest are unified
into less detailed fundamental components of the system.28−32

Coarse-grained computational models of protein aggregation
are useful for suggesting potential mechanisms for amyloid
fibril formation at a higher level of detail than what is directly
accessible to experiments while remaining grounded in
experiments due to computed observables being consistent
with experimentally measured observables.11,13,33−38 Most
coarse-grained models of molecular self-assembly employ a
bottom-up approach, wherein the underlying physics driving
monomer dynamics at an atomistic level of detail is coarse-
grained down to a set of mechanical degrees of freedom
deemed essential by the builder of that model. Such
approaches yield fibril structures as emergent phenomena
from the modeled monomer dynamics. One well-known
coarse-grained model of aggregation of the bottom-up variety
is that of Šaric ́ et al.,39 in which entire proteins are represented
as oblong particles, and configurational changes are modeled as
patches of attraction that are shifted from the side of the
particle to the tip of the particle. This model has been used to
propose a mechanism of amyloid fibril formation whereby
amyloid fibrils are preceded by the formation of prefibrillar

oligomers.39 Another coarse-grained modeling approach of a
similar level of coarseness to the aforementioned work by Šaric ́
et al.,39 i.e., whereby the fundamental interacting bodies are
entire protein molecules, is the network Hamiltonian model
(NHM),13,29,36,40,41 which is the focus of the present work.
Conversely to bottom-up approaches, NHMs operate via a

top-down strategy, where exponential random graph models
(ERGMs) are used to directly simulate fibril topology
formation.29 This approach enables the extraction of a
statistical mechanical description of the intermolecular
interactions driving the emergence of the known aggregate
topology, once the model parameters have been tuned to
reproduce network structures that match those measured using
experimental techniques like NMR, X-ray crystallography,
etc.29 The NHM methodology offers a complementary
perspective to bottom-up techniques by not only reducing
computational cost but also leveraging the congruence
between the construction of normalizing constants in
ERGMs and partition functions in statistical mechanics to
enable direct derivation of a statistical mechanical description
of the system of aggregating molecules during parametriza-
tion.29 Another feature of NHMs is that their parsimonious
description of the few body intermolecular effects driving the
formation of higher order structure facilitates direct compar-
ison between network Hamiltonians representing different
aggregating systems (example given in the final paragraph of
the Results and Discussion section). One particularly
interesting mechanistic insight into amyloid fibril formation,
which was brought to light using network Hamiltonian models
by Yu et al.,41 is that fibrillar fraction growth curves for the
simple 1-ribbon fibril topology exhibit steady gentle growth
compared to the higher ordered structures that display a sharp
increase in fibril formation after the initial lag phase. Such
developments offer interesting targets for experimental probes
involving comparisons between computed fibril fraction
growth curves and fibril growth kinetics data obtained via
dye-binding fluorescence assays.42−44 Though not an ex-
haustive list, some of the leading coarse-grained modeling
approaches that have been applied toward studying amyloid
fibril formation include: single bead per amino acid
models,11,45,46 midresolution models (multiple beads per
residue),10,15,47−50 the UNRES model,37,51 the Martini
model,52,53 lattice models,34,54,55 and network Hamiltonian
models.13,29,36,40,41

Network Hamiltonian Simulations of Amyloid Fibril
Formation. Network Hamiltonian models are highly
computationally efficient coarse-grained (CG) molecular
simulations, which are capable of reproducing multiple
known experimental observables (e.g., topological structures
measured via NMR and fibril formation growth curves from
dye-binding fluorescence kinetics assays13,28), and can provide
insights into the complex interactions between proteins that
lead to the formation of amyloid fibrils. By sacrificing atomic-
level details, these models can capture the essential large-scale
interactions and dynamics that drive amyloid aggregation. This
facilitates the discovery of assembly mechanisms and provides
insights into the structure and stability of amyloid fibrils. These
simulations capture essential interactions and dynamics for
noncovalent bond formation and breakage between aggregat-
ing proteins by directly modeling the graph structure dynamics.
It is important to note that network Hamiltonian models
(NHMs) of this form are exclusively topological models, in
that they offer massive gains in computational speedup by
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directly simulating changes in noncovalent bonding between
interacting protein molecules without accruing computational
costs associated with updating explicit molecular positions.
Network Hamiltonian simulations can offer valuable insights
into the thermodynamics, kinetics, and structural transitions
involved in amyloid fibril assembly, which can aid in
identifying targets for the design of potential therapeutic
strategies. There are substantial technical challenges inherent
to parameter selection for NHMs, as the parameter space is
fraught with discontinuities and nonlinearities.28 Although
prior NHMs have been successfully parametrized to produce a
variety of aggregate structures,13,28,36,40,41 their parametrization
was carried out using a combination of different optimization
methods and manual search,28 as well as standard practices
used for social networks, as demonstrated by Hunter et al.56 In
contrast, here we present a single fully automated methodology
for parametrizing an NHM to self-assemble into aggregate
states displaying a maximal periodic structure, for any user-
defined periodic structures (e.g., the 5 amyloid fibril structures
demonstrated here).

■ METHODS
Network Hamiltonian Theory. Network Hamiltonian

models are a type of coarse-grained molecular simulation that
can be used to model amyloid fibril self-assembly, or other
types of aggregation events,13,29,40,41,57 and are built within the
framework of exponential-family random graph models
(ERGMs).58 The principal objects in network Hamiltonian
simulations are graphs (networks), where each node represents
a molecule in the aggregating system and a pair of nodes share
an edge if a pair of molecules in the system share a noncovalent
bond. An example of mapping an experimentally determined
amyloid fibril structure is shown in Figure 1, where Grazioli et

al.29 used a free energy scoring methodology to quantitatively
map the structure of an amyloid-β fibril resolved using NMR
spectroscopy (PDB ID: 5KK37) to a graph representation.
Central to the network Hamiltonian formalism is the

expression for the probability of observing a particular graph
g from the set of all possible graphs given a particular set of

sufficient statistics t, a vector of parameters ϕ, and temperature
T shown in eq 1

( )
( )

g t T
h g

h gPr( , , )
exp

exp ( )
( )

g
k T

g
k T

( )

g
( )

B

B

= | =
(1)

where g( ) is the network Hamiltonian, kB is Boltzmann’s
constant, and h(g) is the reference measure.29 The expression
is isomorphic with the Boltzmann distribution, the key
difference being that instead of the Hamiltonian being a
function of the positions and momenta of the particles in the
system it is a function of the graph structure, i.e., which
particles share a noncovalent bond and which do not. The
network Hamiltonian itself is the sum of a set of sufficient
statistics t each multiplied by its respective real number
parameter ϕ, as shown in the expanded form in eq 2

g k T t g t g
t g t g

t g t g t g t g
t g

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
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e B e 2s 2s
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= + +
+ + +

+ + +
+

(2)

Each term of the network Hamiltonian includes a real valued
coefficient multiplied by a sufficient statistic, tX(g), which is a
function that returns the number of subgraphs of type X that
occur in the graph g. As an example, consider the graph in
Figure 2. The simplest statistic, the edges statistic te(g), returns

the number of edges in the graph. The 2-star statistic t2s returns
the number of times a central node shares edges with two
other nodes. Intuition for the other sufficient statistics can be
gleaned by considering their applications to the simple graph
shown in Figure 2. For the graph in Figure 2, the single null
shared partner statistic tNSP1(g) = 2 because nodes B and C
have a shared partner A but do not share an edge with each
other, as is the case with nodes B and D with shared partner A
(i.e., 2 instances of a null between nodes with one shared
partner). The edgewise shared partner zero statistic, tESP0(g), is
equal to 1 in Figure 2 because there is only one instance where
two nodes sharing an edge do not share any partners (nodes A
and B). Although the cycle statistics [tC5(g), tC6(g), and tC7(g)]
would all return zero in the example in Figure 2, a 3-cycle
statistic, tC3(g), would return 1, as one 3-membered ring is
present. Physical intuition for the parameters of the network
Hamiltonian, i.e., the coefficients ϕX in each term of the
network Hamiltonian, can be gained by interpreting a negative
parameter value as indicating that the formation of the
subgraph corresponding to it is respective sufficient statistic
[tX(g)] has an exothermic effect on the system, while positive

Figure 1. (A) Rendering of the NMR structure of amyloid-β
(Aβ42).7,59 (B) Graph representation of that same structure with the
nodes colored and positioned to highlight the mapping of each
protein chain to a particular node,29 though the nodes are only
distinguishable by the graph structure in the model.

Figure 2. Six of the sufficient statistics utilized in the present work are
demonstrated on a simple example of a graph g. Each function ϕX(g)
returns the number of times subgraphs of type X occur in the graph g.
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values indicate an energetic cost or endothermic effect on their
formation, and zero valued coefficients indicate that the system
is indifferent to the formation of that subgraph.
The compact expression for a single parameter vector ϕ

containing the set of network Hamiltonian parameters, for
which the genetic algorithm featured in the present work is
designed to optimize, is shown in eq 3

k T( ), , , , , ,

, ,
e B 2s NSP1 NSP2 ESP0 ESP1 C5

C6 C7

= { +

} (3)

It should also be noted that the physically motivated ϕ
representation of the network Hamiltonian (systems equili-
brate toward lower energy states) must be translated into the
more statistically motivated θ forms (systems equilibrate
toward higher likelihood states) prior to carrying out
simulations using the ERGM software package (where θ =
−ϕ/(kBT))58

g t
t g
t g h g

h gPr( , )
exp( ( ))
exp( ( )) ( )

( )
g

T

T= | =
(4)

where θTt(g) is simply the set of sufficient statistics multiplied
by the transpose of the parameter vector. For additional details
on the network Hamiltonian methodology, please see both the
main text and the Supporting Information from Grazioli et al.
2019.29

There are numerous sufficient statistics that can be
incorporated into a NHM,58 the choice of which can be
influenced by anything from user insights into known
microscopic interactions between interacting protein molecules
to empirical approaches whereby sufficient statistics found to
produce a known higher order structure as an emergent
property are used to develop mechanistic details based in few
body interactions. The set of sufficient statistics employed in
the network Hamiltonian models for the 5 fibril topologies
demonstrated here were chosen based on previously
established models,13,29,41 and although the present work is
focused on introducing our genetic algorithm and demonstrat-
ing its efficacy by (re)tuning the coefficients for network
Hamiltonians employing this same choice of sufficient
statistics, it is worth briefly addressing strategies and physical
justifications for choosing a particular set of sufficient statistics
to be included in a network Hamiltonian model. As per
previous work,13,29,41 the terms can be described in terms of
energy as follows. te(g), the number of edges in g, establishes
the baseline first order energetic cost of an edge in isolation.
t2s(g), the number of occurrences of a monomer bound to two
other monomers, can be thought of as the energetic cost of
forming a new bond to a given monomer that is brought on by
all existing bonds to that monomer. For example, a t2s(g) term
with a positive coefficient in the network Hamiltonian could be

interpreted as an allosteric effect whereby the free energy of
binding to a protein is diminished with each subsequent
binding event. tNSP1(g) and tNSP2(g), the null shared-partner
terms, and the cycle terms (tc5(g) − tc7(g)), are multibody
interactions that can be thought of as higher-order rigidity
effects (e.g., an energetic penalty for forming 5-cycles can be
interpreted as structural resistance inhibiting closure of a 5
membered ring). Finally, the edgewise shared-partner terms,
tESP0(g) and tESP1(g),

60 are related to triadic closure, i.e., the
tendency of monomers that are both bound to a common
partner to bind to each another.
Description of the Genetic Algorithm Used to

Parametrize the Models. The use of AI and machine
learning (ML) to optimize, interpret, and guide molecular
simulations has become ubiquitous in fields ranging from
biophysics, materials science, drug discovery, and
others.27,28,57,61−69 Genetic algorithms are a class of
unsupervised machine learning algorithms that are inspired
by the process of natural selection and genetics in biological
systems.70 They proceed via an iterative process involving a
population of candidate solutions that undergo recombination
and mutation to create new offspring solutions. A selection
process based on the fitness of each solution, or model, is used
to determine which solutions survive into the next generation.
Just as evolutionary pressures are a powerful driver for shaping
the evolution of organisms, the metric used to determine each
candidate model’s ability to survive selection and go on to
participate in breeding the next generation of models is of
central importance to shaping the evolution of candidate
models in a genetic algorithm. Because the goal here is to
discover network Hamiltonian models that can maximally and
reliably simulate the self-assembly of amyloid fibril network
structures, we define a metric for amyloid fibril production
called fibril fraction,29 which is defined simply as the number of
nodes in the system that make up part of a region of perfect
amyloid fibril divided by the total number of nodes in the
simulation (e.g., in Figure 3). Calculating fibril fraction is
carried out using custom scripts in the R statistical computing
environment, along with a variety of R packages,71−75 using
approaches standard to the network Hamiltonian method-
ology.13,28,29,40,41,57 The R script used to calculate fibril fraction
for the present work ( f ibril_assay.R76,77) was constructed with
the goal of rewarding parameters that produce longer fibrils;
thus, fibrillar nodes that belong to the interior of an amyloid
fibril structure were prioritized in fibril fraction calculations for
the present work. Although this stringent metric can lead to a
slight undercounting of fibrillar nodes (e.g., the 0.25 fibril
fraction in Figure 3), the strategy was deemed fit-for-purpose
given the success of the genetic algorithm in optimizing for
models of high fibril fraction using this metric (demonstrated
in the Results and Discussion section).

Figure 3. Five examples of graphs produced by 48 node simulations of models parametrized to produce 1,2 2-ribbon type fibril structures, with the
fibril fraction for each below the graphs.
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Also important in the creation of a genetic algorithm is the
definition of how the exchange of genes, i.e. breeding, is carried
out. In the present case, intuition gained from studying the
stability of graph structures under a particular parametrization
of an ERGM was leveraged.41 Specifically, it was observed that
higher fibril fraction-producing parameters are often found
within the convex hull of less successful parameters.41 Building
on this observation, a breeding process was created for the
present work whereby child parameters are created by first
connecting all possible breeding pairs with N-dimensional lines
in a parameter space (one dimension for each sufficient
statistic in the model), then placing child parameters on an
evenly spaced grid along each line (referred to as linear
children), then making copies of the linear children with noise
added (referred to as mutant children). A visual demonstration
of the breeding process is shown in Figure 4.

A schematic illustrating how our genetic algorithm for
optimizing network Hamiltonian models for maximal amyloid
fibril production operates is shown in Figure 5, but there are
some additional subtleties that bear mentioning. For example,
although genetic algorithms are inspired by natural selection,
there are circumstances where it is advantageous for genetic
algorithms to depart from some of the constraints typically
found in biological natural selection. For example, in the event
that a new generation does not produce a single simulation
that outperforms the best fibril fraction from that generation’s
parent generation, the entire new generation is removed from
the gene pool and the parent generation repeats the breeding
process in the hopes that a new generation of children will
outperform them. Including a copy of all breeding parents in
each new generation is also done because, in the event that a
consistently top performing parameter arises, it can become
immortal. Another departure from typical biological natural
selection is that, in order to ensure more complete sampling of
parameter space, all possible pairs of survivor points in the
parameter space are given the opportunity to breed. Because
this condition leads to proliferation on the order of N2, where
N is the number of breeding parents (potentially challenging
for available computing resources), a hyperparameter was
created for the algorithm called childMax, whereby, if a
breeding pair produces more children than the value of

childMax, that number of child parameters is selected at
random from the full set of children to go on to the simulation
step where fibril fraction is assessed. Further discussion of
hyperparameters, such as childMax, is continued in the
following section and summarized in Table 1.
Choosing the Hyperparameters for the Genetic

Algorithm. Most machine learning algorithms require users
to choose a set of hyperparameters, i.e. training parameters that
are chosen prior to beginning the learning process,78 and the
genetic algorithm introduced here is no different in that regard
(Table 1 gives an overview of key hyperparameters). We begin
the discussion with the reps hyperparameter, which determines
the number of simulations run for each candidate model when
calculating the mean fibril fraction (the measure used to
govern the natural selection process). Notably, it was observed
that running the genetic algorithm with lower reps values can
lead toward favoring regions of parameter space that produce
multimodal distributions that include a high-yield mode, as
fewer repetitions make the mean fibril fraction more
susceptible to getting skewed by a small number of
uncharacteristically high values. Running larger reps values
will ensure that the parameters chosen to survive natural
selection are more consistent performers, but, of course, this is
at the cost of longer compute times. The hyperparameter
noiseVarInit determines the initial variance in the noise used to
add noise to linear children when creating the mutant children.
Choosing larger noiseVarInit values allow for broader searches,
but this comes at the risk of allowing the search to wander off
into unproductive regions. While the noiseVarInit hyper-
parameter determines the initial variance, smartVar, i.e. smart
variance, instructs the algorithm to broaden the search by
increasing the variance when the latest generation of children
does not outperform their parents. Likewise, the hyper-
parameter smartPts, i.e. smart points, instructs the algorithm
to generate more children each time the latest new generation
does not outperform the parents. The hyperparameters
useLineDensity and minLineDensity were created in order to
ensure more uniform sampling by allowing pairs of parent
points separated by further Euclidian distances in parameter
space to produce more children than those separated by
shorter distances. An additional feature that is coded into the
algorithm is that parent pairs of points in parameter space that
lie so close together that the chosen minLineDensity value
would imply less than one child between them are deemed too
closely related to breed. This design choice, which essentially
avoids inbreeding, was made in order to prevent wasting
computing resources running simulations on child models that
are highly similar to their parents. The rest of the hyper-
parameters can be easily understood via Table 1.

■ RESULTS AND DISCUSSION
The focus of this section is to demonstrate the capabilities of
the genetic algorithm introduced in the present work by using
it to find parameters that maximize amyloid fibril production in
network Hamiltonian simulations for each of the five
experimentally observed amyloid fibril topologies.29 We
begin by demonstrating that the genetic algorithm is able to
find high fibril fraction-producing parameters (up to 0.77) for
the 2-ribbon topology, given an initial generation of four
models with single draw fibril fractions of just 0.04, 0.02, 0.02,
and 0.02. Next, we demonstrate the capabilities of the genetic
algorithm by beginning the evolution from a zeroth generation
centered at previously published model parameters. The

Figure 4. Demonstration of the breeding function on a 2 parameter
model (x and y) showing 3 generations: 1 (orange), 2 (dark blue),
and 3 (light blue). Note that the region of parameter space that lies
within the convex hull of generation 1 is thoroughly explored by the
third generation. Both the density of points and the variance in the
noise can be altered with different hyperparameter choices.
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genetic algorithm was able to find substantially higher fibril
fraction-producing models for 3 of the 5 fibrillar topologies
observed in nature, including the 1,2 2-ribbon, which is the
most naturally abundant amyloid fibril topology29 (often
referred to as a steric zipper structure79,80).
Genetic Algorithm Performance Initialized from

Randomly Chosen Model Parameters. Here, we test the
conjecture, based in prior works on network stability,41 that
searching within the convex hull and surrounding regions in
the parameter space bounded by low fibril fraction-producing
parameters can be fertile ground for identifying higher fibril
fraction parametrizations of a given network Hamiltonian
model. Given this motivation, the genetic algorithm was used
to discover 4-parameter network Hamiltonian models with
sufficient statistics te(g), t2s(g), tNSP1(g), and tNSP2(g) that
produce maximal fibril fractions for the 2-ribbon topology. The
process was initiated by first sampling a sphere of 10,000
randomly distributed points in a 3-dimensional parameter
space (the edge parameter was held constant at 100 for
visualization purposes). Single simulations were run for all
parameters, and though most produced zero fibril fraction, a

select few did produce some fibrillar structures. In order to
showcase the robustness of the genetic algorithm, the four
lowest nonzero fibril fraction parameters were selected as
generation zero (fibril fractions of 0.04, 0.02, 0.02, and 0.02).
After completing 10 generations of evolution using the genetic
algorithm, the process converged upon producing multiple
generations capable of consistently producing fibril fractions in
an excess of 0.6 (Figures 6 and 7). It should also be noted that,
in order to reduce the 4-D parameter space to a visualizable 3-
D space, the edge parameter was held constant at θe = 100
throughout the evolution for this demonstration.
Genetic Algorithm Performance Initialized from

Previous Model Parameters. While the previous section
demonstrated the power of the genetic algorithm to optimize
network Hamiltonian parameters from very weak initial
guesses; here, we show that the genetic algorithm can also
be used to further optimize previously discovered network
Hamiltonian models.13,29 In these applications, the zeroth
generation was created by centering a randomly distributed
point cloud in the parameter space around parameters for each
fibril topology, which were previously published by Grazioli et

Figure 5. Schematic showing an overview of the genetic algorithm used to autonomously search the parameter space for a given set of sufficient
statistics for models that will maximize the fibril fraction for a given topology. Users can create best known parameters through a variety of
methods, e.g., randomly sampling parameters in a region where models capable of producing aggregate structures similar to the target have been
produced and then running simulations with those parameters to determine the most successful randomly chosen parameters. The breeding process
can be thought of as placing points in parameter space along N dimensional lines connecting previously successful parent points in the parameter
space (where N is the number of sufficient statistics in the model), and is described in greater detail in this section. Additionally, the
hyperparameters used to tune the algorithm are summarized in Table 1.

Table 1. Table Highlighting Some of the Features Included in the Genetic Algorithm Code

feature purpose
typical parameter

values

reps number of simulations used to calculate mean fibril yield 16
noiseVarInit initial variance of noise used to generate mutants 1.0
topFraction top fraction of models in a generation that survive selection 0.25
maxSurvivors sets hard limit to the number of survivors; if exceeded, will randomly select from top fraction survivors 20
fixEdge/fixEdgeValue can be used to fix edge value during evolution 100
smartVar if a new generation does not outperform the previous, smart variance increases the variance to broaden the

search
true

smartPts if a new generation does not outperform the previous, smart points increases the number of mutant
offspring for each breeding pair by one

true

useLineDensity/minLineDensity ensures that a minimum density of offspring points are created between each breeding pair true/1.2
childMax sets a hard limit to number of children produced by each breeding pair; if exceeded, survivors are chosen

randomly
100
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al.29 The results of these parameter evolutions, carried out on a
48 node system, are shown in Figure 8. The evolution of the
1,2 2-ribbon is highlighted, as it is both the amyloid fibril
topology most commonly observed in nature,29 and it
exhibited a substantial increase in fibril fraction as a result of
applying our genetic algorithm. The distributions were
generated by carrying out 200 simulations on the highest fibril
fraction-producing parameter from each generation.

In order to ensure that the genetic algorithm did not
converge on ideal parameters for smaller systems that might
not scale to larger systems, the best generations from the 48
node evolutions for each of the 5 fibril types were then used as
the first generation for an additional evolution sequence
carried out on a 256 node system. It should be noted, however,
that scaling network Hamiltonian models to accommodate
different system sizes can be accomplished by simply scaling
the edge parameter via a Krivitski offset.29,81 The log(N) term
serves to attenuate the edge term depending on the number of
particles in the system, allowing for better scalability in
applying the same model to different sized systems. Intuition
for this offset can be gained by considering that the increase in
baseline likelihood of bond formation between two proteins in
a system as a function of the number of proteins in the system
should diminish when the system size increases proportionally
with volume, as bond formation is limited to pairs of proteins
that are spatially accessible to each other within a given time
step. In this case, the offset would be ϕe + log(48) − log(256)
because the ϕe − log(48) is implicit for all edge parameters
generated by the genetic algorithm evolving on a 48 node
system. The highest fibril fraction-producing parameters for
each of the 5 fibril types were then used to run 200 repetitions
of each simulation. The results of these simulations are
summarized in Figures 9 and 10. Although the previously
reported parameters for the 2-ribbon and double 1,2 2-ribbon
amyloid fibril topologies seem to have already been well
optimized, these results show a marked improvement for the 1-
ribbon, 3-prism, and 1,2 2-ribbon topologies. The parameters
discovered by the genetic algorithm in the present study that
produced the highest fibril fraction are given in Table 2. It is

Figure 6. Fibril fraction distributions produced by 200 repetitions of
the best 2-ribbon model from each generation beginning with the best
randomly parametrized model (generation 0). Inset shows the mean
fibril fraction produced by each generation. The parameters are the
best of each generation shown in parameter space in Figure 7.

Figure 7. This 3D point plot shows the evolution of different generations of models as the genetic algorithm converges on a region of parameter
space that produces maximal fibril yield for 2-ribbon type amyloid fibril structures. The cool color palette signifies the generation, with the deepest
blues representing the latest generations. The warm color palette signifies the fibril yield for the top 20 fibril-producing parameters for each
generation, where colors closest to yellow indicate the highest fibril yields. Four larger pale pink dots, which are referred to as generation 0, are used
to highlight the four initial parameters found via a brute force approach. The parameter discovered by the genetic algorithm that produced the
highest mean fibril yield (0.77) is shown as a large yellow dot. Fibril yields indicated are the mean of 16 repetitions for all parameter values tested. It
should also be noted that, although this model is a 4 parameter model, this particular search was carried out with the edge parameter fixed at 100,
reducing the search to 3-dimensions.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.3c07322
J. Phys. Chem. B 2024, 128, 1854−1865

1860

https://pubs.acs.org/doi/10.1021/acs.jpcb.3c07322?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c07322?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c07322?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c07322?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c07322?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c07322?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c07322?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c07322?fig=fig7&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.3c07322?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


important to note that the parameters are reported in the more
physically motivated ϕ form, where θ = −ϕ/(kBT), and, for the
sake of simplicity, kBT = 1. Thus, in order to use these
parameters to run simulations using the ERGM package for
R,71,74,75 where the simulation parameters must be in the θ
form, set θe = −(ϕe + 1 − log(N)) (where N is the desired

number of nodes to be simulated), and θX = −ϕX for all other
sufficient statistics X.
A key value offered by the NHM methodology is that, by

directly casting the model in a purely topological description
from the outset, the parametrized NHMs lend themselves to
straightforward interpretation of how the different few body

Figure 8. Population density functions for the best parameter produced by each generation of amyloid fibril-producing network Hamiltonian
models. Simulations for each parameter were repeated 200 times.

Figure 9. Box plots comparing fibril fractions previously reported by Grazioli et al.29 (left) with fibril fractions observed in simulations produced by
parameters discovered by the genetic algorithm introduced in the present work (right). The simulations for the present work were carried out on a
256 node system, and repeated 200 times for each of the 5 different models. Maximal fibril fraction draws for each of the 5 models are shown in
Figure 10.
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interactions drive the self-assembly of the higher order
structure by comparing the sign and magnitude of specific
parameters between models. For example, in comparing the
parameters optimized by the genetic algorithm in Table 2 for
the 2-ribbon vs the 1,2 2-ribbon, we note that while the
energetic penalty for forming 2-stars is comparable, the simple
2-body energetic advantage for bond formation represented by
the edge parameter is more than 50% stronger in the 1,2 2-
ribbon model. One potential interpretation of this observation
could be that in comparing two sets of aggregating proteins
with similar attenuation of bond strength with each additional
bond formed (the 2-star effect), a stronger baseline 2-body
attraction (the edge effect), whether due to differences in
amino acid sequence or solvent conditions like ionic strength,
can contribute to the system favoring the more compact 1,2 2-
ribbon structure. Such comparisons between models can be
used to develop hypotheses for explaining known amyloid fibril
behavior, such as addressing the question of why the same
protein monomer can produce different fibril structures given
different solvent conditions.29,82 Although cyclic fibrillar
structures have been observed in both experimentally83,84

and in prior simulations of amyloid fibril formation,29,48 it is
notable that cyclic fibrillar structures are prevalent in the
network Hamiltonian models presented herein. This is to be
expected, however, as the utility function maximized by the
genetic algorithm for these models rewards the models that
generate higher order structure consistent with the interior of
the amyloid fibril topology. While this design choice in the
utility function encourages the evolution of models that grow
long fibrillar structures, it also discourages free ends, leading to
the ends of the fibrillar networks joining to form a cycle. This is

somewhat analogous to how one would not expect to observe
surface effects in a computational fluid dynamics model
optimized for bulk simulations of fluids using periodic
boundary conditions.

■ CONCLUSIONS
Here, we have demonstrated that our genetic algorithm for
automated discovery of network Hamiltonian models (NHMs)
can successfully produce models capable of self-assembling
into experimentally observed protein aggregate structures. The
results of the present study also offer an improved model for
the most naturally abundant amyloid fibril topology, the 1,2 2-
ribbon, which is reflected in the steric zipper motif that is
widely reported in the literature.79,80 Further, the network
Hamiltonian model (NHM) methodology offers a unique
perspective in the study of molecular self-assembly and
supramolecular chemistry. While bottom-up coarse-grained
simulation approaches typically require making a priori
decisions about which mechanical details of the interacting
monomers will be represented, then tuning those parameters
until known topological effects emerge (e.g., emergence of
protofilaments with a cross-beta structure, known as 1,2 2-
ribbons in the parlance of NHMs), the top-down NHM
approach casts the model in a purely topological description ab
initio, whereby the few body interactions driving the self-
assembly of the higher order structure can be read directly
from the parametrized NHM. Just as bottom-up coarse-grained
models can offer tremendous value in offering a potential
minimal set of monomeric mechanical degrees of freedom
necessary for producing known supramolecular assemblies, the
NHM methodology offers a complementary value in proposing

Figure 10. Plots of the graphs produced by simulations yielding the highest fibril fraction for a system of 256 nodes: (A) 1-ribbon (fibril fraction =
1.0), (B) 2-ribbon (fibril fraction = 0.8438), (C) 1,2 2-ribbon (fibril fraction = 0.9180), (D) double 1,2 2-ribbon (fibril fraction = 0.7109), and (E) 3-
prism (fibril fraction = 0.9609). Fibrillar nodes are shown in color and nonfibrillar nodes are displayed in white. These graphs display the highest
fibril fractions produced for 200 repetitions of each of the 5 models.

Table 2. Table Displaying the Parameters (ϕ) with the Highest Mean Fibril Fractions Discovered by our Genetic Algorithm

fibril type edges 2-star NSP1 NSP2 ESP0 ESP1 5-cycle 6-cycle 7-cycle

1-ribbon −107.22 37.33 1.35 0 0 0 0 0 0
2-ribbon −102.28 25.2 −0.44 −5.56 0 0 0 0 0
1,2 2-ribbon −158.21 27.28 1.87 −7.12 6.59 0 0 0 0
double 1,2 2-ribbon −471.95 65.31 −0.25 −23.99 75.18 62.03 0 0 0
3-prism −193.35 38.13 −5.77 −14.7 −2.51 −11.14 0.12 0.69 −0.02
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minimal sets of few body intermolecular interactions that are
capable of producing higher order supramolecular structure as
an emergent property.
Potential future research directions in this vein of research

include applying this approach to optimizing network
Hamiltonian models to explore potential mechanisms for
other self-assembly processes: from other supramolecular
assemblies of proteins, to microtubule formation, to perhaps
even self-assembly at the cellular level. Potential broader
impacts for this work are that our methodology may be a useful
tool for the study of protein aggregation diseases as well as the
rational design of engineered self-assembling nanostructures
and polymers. It is worth noting that our genetic algorithm also
offers utility for users developing novel network Hamiltonian
models, as evolution that fails to converge on individual
models capable of producing a significant amount of the
desired higher order periodic structure can be taken as an
indication that the chosen sufficient statistics are perhaps not,
in-fact, sufficient for capturing this behavior. The inverse
approach also has utility, in that users can evaluate whether all
terms in an existing model are actually necessary by removing
terms in question, allowing the parameters for the remaining
terms to evolve, and determining whether more parsimonious
models are possible. By offering a free open-source software
implementation of our methodology for automated para-
metrization of network Hamiltonian models, the authors aim
to lower the barrier to increased adoption of this simulation
methodology for studying self-assembly phenomena. The code
used to generate the present work is available for download via
the lead author’s GitHub page.76,77
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