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A B S T R A C T

Degradation of engineered systems can result in poor performance and failure. Graph Convolutional Networks
(GCNs) have been used to predict the remaining useful life (RUL) of engineered systems by analyzing
condition monitoring data. Conventional GCNs typically stack multiple spectral graph convolutional layers,
where each layer aggregates condition monitoring data and then projects the aggregated data into another
feature space. However, conventional GCNs suffer from two issues. Firstly, repeated aggregation operations
affect the temporal correlation of condition monitoring data. Secondly, repeated aggregation and projection
operations may generate less significant features, resulting in poor prediction performance. To address these
issues, we introduce a temporal convolutional operation to extract and preserve temporal features prior to
repeated aggregation and projection operations. Additionally, we create an internal residual connection to
skip some aggregation and projection operations to reduce the negative impact of the less significant features.
Finally, we use an attention mechanism to extract the most significant features obtained from previous GCN
layers and feed them to next GCN layers. We demonstrate the effectiveness of our method through three case
studies. Our numerical results show that the proposed approach outperforms existing data-driven methods.

1. Introduction

The degradation of engineered mechanical and electronic systems
such as bearings, aircraft engines, and lithium-ion batteries can take
place due to wear, corrosion, excessive load, and fatigue [1]. Degra-
dation can result in low reliability, reduced life, and even unexpected
failures [2]. For example, the degradation process reduces the total
capacity and state of health of batteries of electronic vehicles, leading
to a decreased driving range and increased charging frequency [3]. The
bearing degradation in aircraft engines may lead to engines’ unexpected
failures, resulting in delayed or canceled flights [4]. Therefore, devel-
oping effective degradation modeling methods is crucial to remaining
useful life (RUL) predictions of complex systems.

Over the past few years, deep learning methods have been in-
creasingly used to predict the RUL due to their exceptional predic-
tion accuracy and fidelity [5]. These deep learning methods include
neural networks-related approaches, such as autoencoder (AE) [6],
convolutional neural network (CNN) [7], and variational autoencoder
(VAE) [8]. For example, Yao et al. [9] adopted one-dimensional CNN

∗ Corresponding author.
E-mail address: yupeng.wei@sjsu.edu (Y. Wei).

to extract features from vibration signals to predict the RUL of rotatory
bearings, where fully connected layers were replaced by maximum
pooling layers for regularization. Wei et al. [10] proposed a dynamic
conditional VAE to learn the health indices of aircraft engines, and
the learned health indices have been demonstrated as effective to
improve the RUL prediction accuracy and fidelity. In addition to the
methods mentioned above, neural networks with recurrent character-
istics are also widely applied for RUL predictions as these networks
with recurrent characteristics can take into account the temporal dy-
namic dependency of condition monitoring data. The deep learning
methods with recurrent attributes involve the recurrent neural network
(RNN) [11], long short-term memory (LSTM) [12], gated recurrent unit
(GRU) [13], and so on. For example, Shi and Chehade [14] introduced
a dual LSTM method to integrate the change point detection process
with the RUL prediction, the proposed method used the condition
monitoring data after the change point to boost the RUL prediction
performance. Cao et al. [15] presented a transferable bidirectional
GRU network to predict the RUL of bearings operated under multiple
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working conditions, where both the historical and future condition
monitoring data was examined via the bidirectional operation.

Although the effectiveness of existing deep learning methods has
been demonstrated in degradation modeling and RUL predictions, they
are not effective in revealing the correlation in condition monitoring
data at different timestamps [16]. The aforementioned correlation can
be used to recognize condition monitoring data with high affinity at
different timestamps and aggregate them for improving model robust-
ness and fidelity [17]. In the current literature, such a correlation is
typically built by an undirected or directed graph [18], where each
graph node represents a vector of condition monitoring data at a
timestamp and each edge between two nodes indicates the high affinity
among condition monitoring data at different timestamps [19]. To take
advantage of the topological architecture of a graph, graph convolu-
tional networks (GCNs) have been increasingly used in recent years. For
example, GCNs were used to interpret and predict the mechanical and
chemical behaviors of polycrystalline materials by modeling the topo-
logical structure of polycrystalline units [20]. GCNs were also used for
degradation diagnostics of bearings via affinity graph construction and
the aggregation of high similarity frequency-domain features extracted
from vibration sensor signals at different timestamps [18].

GCNs usually stack several identical spectral graph convolutional
layers for degradation modeling and RUL predictions, where each graph
convolutional layer performs two operations. The first operation is
to aggregate condition monitoring data with high affinity at different
timestamps based on pre-constructed affinity graphs; the second opera-
tion is to project the aggregated data into a higher or lower dimensional
feature space to obtain features with different dimensionality [21].
Alternatively, GCNs can be interpreted as repeated aggregation and
projection operations. While such repeated aggregation and projection
operations have been demonstrated to be effective in degradation mod-
eling and RUL predictions, there still exist two issues. First, repeated
aggregations of condition monitoring data at different timestamps can
severely destroy the temporal correlation of condition monitoring data.
Second, similar to many other deep learning methods, the repeated
aggregation and projection operations in GCNs can generate less sig-
nificant features and reduce feature correlation [22]. Feeding these
less significant features to next spectral convolutional layers can result
in poor prediction performance. To address the first issue, we intro-
duce a temporal convolutional operation to extract temporal-correlated
features prior to the repeated aggregation and projection operations
in GCNs. To preserve these extracted temporal features, a residual
connection is created to provide another shortcut for features to reach
the latter portion of a neural network by skipping a few portions.
We employ an external residual connection to allow these extracted
temporal features to skip all aggregation and projection operations
and reach to the end of the neural network so that the temporal
correlation in condition monitoring data can be preserved. To address
the aforementioned second issue, two methods are introduced to reduce
the negative impact of less significant features: (1) an internal residual
connection is created among multiple GCN layers to skip a few aggre-
gation and projection operations so that less significant features can be
removed; (2) attention mechanisms are used after some GCN layers to
extract the most significant features obtained from previous GCN layers
and feed them to next GCN layers, where the attention mechanism
introduces an attention matrix that identifies the most significant part
of features. The contributions of this work are as follows:

• A temporal convolutional operation is introduced to extract tem-
poral features prior to the repeated aggregation and projection
operations in GCN layers, and an external residual connection is
created to preserve these temporal features.

• Internal residual connections are created among multiple GCN
layers to skip a few aggregation and projection operations to
reduce the impact of less significant features on prediction accu-
racy.

• Attention mechanisms are used after some GCN layers to extract
the most significant features obtained from previous GCN layers
and then feed them to next GCN layers.

The rest of this work is arranged as follows: Section 2 introduces
the proposed graph convolutional attention network with temporal
convolution-aware nested residual connections. Section 3 illustrates
the efficacy and generalizability of the presented graph convolutional
attention network with temporal convolution-aware nested residual
connections using a publicly available bearing dataset. Section 4 dis-
cusses the model performance on an aircraft engine dataset. Section 5
uses a publicly available lithium-ion battery dataset to demonstrate
the proposed approach. Section 6 concludes the proposed method and
directs future work.

2. Graph convolutional attention network with nested residual
connections

In this section, we introduce the graph convolutional attention
network with temporal convolution-aware nested residual connections,
where the graph convolutional attention network is first introduced
in Section 2.1 and the temporal convolution-aware nested residual
connections are introduced in Section 2.2.

2.1. Graph convolutional attention network

Fig. 1 shows the flowchart of the graph convolutional attention
network (GCAN) including one graph convolutional attention layer.
A sliding window with the window size of 𝑛 is first used to obtain
𝐗𝑖,𝑙 which refers to the 𝑙th sampled condition monitoring data for
unit 𝑖. The cosine similarity matrix 𝐒𝑖,𝑙 is derived for the sampled
condition monitoring data. Next, a masking function 𝑀(⋅) with the
connection threshold of 𝜁 is used to construct the affinity graph G𝑖,𝑙,
where the edge in the graph refers the high affinity of the sampled
condition monitoring data at distinct time-points. Using the constructed
affinity graph G𝑖,𝑙, the condition monitoring data at distinct time-points
are gathered and projected to derive features 𝐇𝑖,𝑙 in another feature
space, where the aggregation operation is conducted if there is an edge
between two nodes in the affinity graph G𝑖,𝑙. The repeated aggregations
and projections generate less significant features, and the self-attention
mechanism is used to reduce the negative impact of less significant
features. The attention mechanism first generates a query 𝐐𝑖,𝑙 and a
key 𝐊𝑖,𝑙, and the query and key are utilized to obtain an attention
matrix 𝒜𝑖,𝑙, and the attention matrix is capable of identifying the most
significant and relevant parts of features obtained from previous GCN
layers. Last, the attention matrix is used to reduce the negative impact
of less significant features in 𝐇𝑖,𝑙. More details about the GCAN can be
found in the rest paragraphs of Section 2.1.

The first step of the presented graph convolutional attention net-
work is to construct affinity graphs, where the nodes of the affinity
graphs represent vectors of condition monitoring data at distinct time-
points and edges represent the affinity correlation of these vectors. To
construct affinity graphs, a sliding window of using the size of 𝑛 and the
sliding length of 1 is adopted for sampling condition monitoring data.
The condition monitoring data captured by the 𝑙th sliding window for
degradation unit 𝑖 is represented as 𝐗𝑖,𝑙 ∈ R𝑛×𝑝, where 𝑝 represents the
amount of channels of condition monitoring data. Here, 𝑥𝑖,𝑗,𝑘,𝑙 denotes
the element of the sampled condition monitoring data. The cosine
similarity matrix 𝐒𝑖,𝑙 ∈ R𝑛×𝑛 for unit 𝑖 and the 𝑙th sampled condition
monitoring data is obtained, and the element of 𝐒𝑖,𝑙 is expressed as
Eq. (1),

𝑠𝑖,𝑙,𝑗,𝑗′ =

( 𝑝
∑

𝑘=1
𝑥𝑖,𝑗,𝑘,𝑙 ⋅

𝑝
∑

𝑘=1
𝑥𝑖,𝑗′ ,𝑘,𝑙

)

∕

(

‖

𝑝
∑

𝑘=1
𝑥𝑖,𝑗,𝑘,𝑙‖ ⋅ ‖

𝑝
∑

𝑘=1
𝑥𝑖,𝑗′ ,𝑘,𝑙‖

)

,

𝑖 = 1,… , 𝑚; 𝑗 = 1,… , 𝑛; 𝑘 = 1,… , 𝑝

(1)
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Fig. 1. The flowchart of the presented graph convolutional attention network including one layer.

where 𝑥𝑖,𝑗,𝑘,𝑙 refers to the condition monitoring data obtained by the 𝑙
sliding window for degradation unit 𝑖 and data channel 𝑘 at time point
𝑗; and 𝑚 is the number of degradation units. Next, a masking function
𝑀(⋅) is implemented on the matrix 𝐒𝑖,𝑙 to obtain Dijkstra matrices
𝐄𝑖,𝑙 ∈ R𝑛×𝑛 for all 𝑖 and 𝑙, which can be written as 𝐄𝑖,𝑙 = 𝑀(𝐒𝑖,𝑙). The
element of the Dijkstra matrices can be obtained by using Eq. (2), where
𝜁 represents the threshold level to establish edges between different
vertices.

𝑒𝑖,𝑙,𝑗,𝑗′ = 𝑀(𝑠𝑖,𝑙,𝑗,𝑗′ ) =

{

1 𝑠𝑖,𝑙,𝑗,𝑗′ ≥ 𝜁,
0 𝑠𝑖,𝑙,𝑗,𝑗′ < 𝜁.

(2)

The affinity graph G𝑖,𝑙 for condition monitoring data sampled by the
𝑙th sliding window and unit 𝑖 can be constructed based on the obtained
Dijkstra matrices 𝐄𝑖,𝑙, where 𝑒𝑖,𝑙,𝑗,𝑗′ = 1 refers that there exists an edge
between node 𝑗 and node 𝑗′ and where 𝑒𝑖,𝑙,𝑗,𝑗′ = 0 refers that there does
not exist an edge between node 𝑗 and node 𝑗′.

It has been justified that stockpiling over two or three GCN layers
may cause a severe decrement in the model’s accuracy and fidelity [23].
Therefore, the proposed graph convolutional attention network uses an
attention mechanism to reduce the negative impact of less significant
features for every two spectral graph convolutional operations, and the
first spectral graph convolutional operation can be written as Eq. (3).
In this equation, ℱ is the graph Fourier transform, ℱ −1 is the inverse
graph Fourier transform; and F1 is the graph filter matrix brought by
G𝑖,𝑙 during the first spectral graph convolutional operation.

F1(◦G𝑖,𝑙
)𝐗𝑖,𝑙 = ℱ −1 (ℱ (F1)⊙ℱ (𝐗𝑖,𝑙)

)

(3)

Solving Eq. (3) can be unmanageable. Therefore, we rewrite Eq. (3) as
Eq. (4) which is the eigendecomposition of L𝑖,𝑙, here 𝐔 refers to the
eigenvectors of the Laplacian matrix L𝑖,𝑙; 𝛥 is a diagonal matrix with
diagonal entries refer to the eigenvalues of L𝑖,𝑙; and 𝜃1 refers to the set
of parameters provided by the graph filter F1 during the first spectral
graph convolutional operation.

𝐔
(

𝐔𝑇F1 ⊙ 𝐔𝑇𝐗𝑖,𝑙
)

= 𝐔F𝜃1 (𝛥)𝐔
𝑇𝐗𝑖,𝑙 (4)

The Laplacian matrix L𝑖,𝑙 can be written as Eq. (5), and this matrix can
be decomposed into eigenvectors and a matrix of eigenvalues. Here,
𝐈 ∈ R𝑛×𝑛 is a diagonal matrix with all elements of one. 𝐃𝑖,𝑙 refers to a
matrix with the diagonal element equals to the degree of the Dijkstra
matrix 𝐄𝑖,𝑙, where the diagonal element 𝑑𝑖,𝑙,𝑗,𝑗 equals to ∑𝑛

𝑗′=1 𝑒𝑖,𝑙,𝑗,𝑗′ .

L𝑖,𝑙 = 𝐈 − 𝐃−1∕2
𝑖,𝑙 𝐄𝑖,𝑙𝐃

−1∕2
𝑖,𝑙 = 𝐔𝛥𝐔−1 (5)

Because of the Laplacian matrix is symmetric, Eq. (5) is rewritten as
Eq. (6).

L𝑖,𝑙 = 𝐔𝛥𝐔−1 = 𝐔𝛥𝐔𝑇 (6)

Next, we obtain Eq. (7) by substituting Eq. (6) into Eq. (4).

𝐔F𝜃1 (𝛥)𝐔
𝑇𝐗𝑖,𝑙 = F𝜃1 (L𝑖,𝑙)𝐗𝑖,𝑙 (7)

To simplify the computational procedure, we use the 1st-order Cheby-
shev polynomials to simplify the spectral graph convolutional oper-
ation [24,25]. Thus, Eq. (7) is expressed as Eq. (8) in which L̃𝑖,𝑙
represents the scaled L𝑖,𝑙; 𝒞1,𝑟(L̃𝑖,𝑙) represents the Chebyshev polyno-
mial with 𝑟 orders for the first spectral graph convolution; and 𝛩1 ∈
R𝑝×𝑝′ refers to the graph filter matrices for the first spectral graph
convolutional operation.
1
∑

𝑟=1
𝜃1,𝑟𝒞1,𝑟(L̃𝑖,𝑙)𝐗𝑖,𝑙 = 𝛩1

(

𝐃−1∕2
𝑖,𝑙 𝐄𝑖,𝑙𝐃

−1∕2
𝑖,𝑙 + 𝐈

)

𝐗𝑖,𝑙 (8)

Next, we can obtain Eq. (9) by setting 𝐄̃𝑖,𝑙 = 𝐄𝑖,𝑙 + 𝐈 and substituting
𝐄̃𝑖,𝑙 into Eq. (8), where 𝐃̃𝑖,𝑙 is the degree matrix of 𝐄̃𝑖,𝑙 and the diagonal
entry of this degree matrix is ∑𝑛

𝑗′=1 𝑒𝑖,𝑙,𝑗,𝑗′ . Here, 𝑒𝑖,𝑙,𝑗,𝑗′ is the element
of the matrix 𝐄̃𝑖,𝑙.

F1(◦G𝑖,𝑙
)𝐗𝑖,𝑙 = 𝛩1

(

𝐃̃−1∕2
𝑖,𝑙 𝐄̃𝑖,𝑙𝐃̃

−1∕2
𝑖,𝑙

)

𝐗𝑖,𝑙 (9)

Then, we set 𝐄̂𝑖,𝑙 = 𝐃̃−1∕2
𝑖,𝑙 𝐄̃𝑖,𝑙𝐃̃

−1∕2
𝑖,𝑙 , and substitute 𝐄̂𝑖,𝑙 into Eq. (9) to

derive Eq. (10).

F1(◦G𝑖,𝑙
)𝐗𝑖,𝑙 = 𝐄̂𝑖,𝑙𝐗𝑖,𝑙𝛩1 (10)

As we use an attention mechanism to reduce the negative impact of
less significant features for every two spectral graph convolutional
operations, the resulting tensor of the first operation is fed into the
second spectral graph convolutional operation, followed by the at-
tention mechanism. Such a process can be mathematically written as
Eq. (11), where F2 is the graph filter matrix brought by G𝑖,𝑙 during
the second spectral graph convolutional operation, 𝛩2 ∈ R𝑝′×𝑝 refers to
the graph filter matrix for the second spectral graph convolution, and
𝒜𝑖,𝑙[⋅] represents the attention mechanism function used to reduce the
negative impact of less significant features for graph G𝑖,𝑙.

𝒜𝑖,𝑙

[

F2(◦G𝑖,𝑙
)
(

F1(◦G𝑖,𝑙
)𝐗𝑖,𝑙

)]

= 𝒜𝑖,𝑙

[

𝐄̂𝑖,𝑙

(

𝐄̂𝑖,𝑙𝐗𝑖,𝑙𝛩1

)

𝛩2

]

(11)

In order to improve the performance of the proposed graph convo-
lutional attention network, activation functions and bias vectors are
incorporated into these spectral graph convolutional operations. Thus,
Eq. (11) can be written as Eq. (12), where Relu represents the rectified
linear unit activation function; 𝐛𝛩1

refers to the bias vector incorpo-
rated in the first spectral graph convolutional operation; and 𝐛𝛩2

is
the bias vector included in the second spectral graph convolutional
operation.

𝒜𝑖,𝑙

[

F2(◦G𝑖,𝑙
)
(

F1(◦G𝑖,𝑙
)𝐗𝑖,𝑙

)]
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Fig. 2. Temporal convolution network with two dilated convolution layers for extracting temporal features from condition monitoring data.

= 𝒜𝑖,𝑙

[

Relu
(

𝐄̂𝑖,𝑙 ⋅ Relu
(

𝐄̂𝑖,𝑙𝐗𝑖,𝑙𝛩1 + 𝐛𝛩1

)

𝛩2 + 𝐛𝛩2

)]

(12)

The self-attention mechanism is implemented on the proposed attention
function 𝒜𝑖,𝑙 for degradation unit 𝑖 at the 𝑙th sliding window. The main
intention of the self-attention mechanism is to construct an attention
matrix that is capable of identifying the most relevant part of features
extracted from previous GCN layers. To derive such an attention matrix,
the self-attention mechanism first constructs a query 𝐐𝑖,𝑙 and a pair of
key and value {𝐊𝑖,𝑙 ,𝐕𝑖,𝑙} by using the output 𝐇𝑖,𝑙 ∈ R𝑛×𝑝′ of the spectral
graph convolutional operations for degradation unit 𝑖 at window 𝑙, this
output can be written as Eq. (13).

𝐇𝑖,𝑙 = Relu
(

𝐄̂𝑖,𝑙 ⋅ Relu
(

𝐄̂𝑖,𝑙𝐗𝑖,𝑙𝛩1 + 𝐛𝛩1

)

𝛩2 + 𝐛𝛩2

)

(13)

Eq. (14) shows the construction process for a query 𝐐𝑖,𝑙 and a pair
of key and value {𝐊𝑖,𝑙 ,𝐕𝑖,𝑙}, where W𝐐

𝑖,𝑙 ∈ R𝑝′×𝑑 , W𝐊
𝑖,𝑙 ∈ R𝑝′×𝑑 , and

W𝐕
𝑖,𝑙 ∈ R𝑝′×𝑑 respectively refers to the weight matrices to obtain the

query, key, and value.
(

𝐐𝑖,𝑙 ,𝐊𝑖,𝑙 ,𝐕𝑖,𝑙
)

= 𝐇𝑖,𝑙 ⋅
(

W𝐐
𝑖,𝑙 ,W

𝐊
𝑖,𝑙 ,W

𝐕
𝑖,𝑙

)

(14)

The attention matrix can be derived by using Eq. (15), where 𝑑 is the
dimension of the matrices to obtain the query, key, and value; and
SoftMax represents the softmax activation function.

𝒜𝑖,𝑙 = SoftMax
(

𝐐𝑖,𝑙 ⋅𝐊𝑇
𝑖,𝑙∕

√

𝑑
)

(15)

Next, the value 𝐐𝑖,𝑙 is multiplied by the attention matrix to reduce the
negative impact of less significant features, which can be written as
𝒜𝑖,𝑙 ⋅𝐕𝑖,𝑙. In summary, the graph convolutional attention network with
one layer is expressed as Eq. (16).

𝒜𝑖,𝑙

[

F2(◦G𝑖,𝑙
)
(

F1(◦G𝑖,𝑙
)𝐗𝑖,𝑙

)]

= SoftMax
(

𝐐𝑖,𝑙 ⋅𝐊𝑇
𝑖,𝑙∕

√

𝑑
)

⋅
[

Relu
(

𝐄̂𝑖,𝑙 ⋅ Relu
(

𝐄̂𝑖,𝑙𝐗𝑖,𝑙𝛩1 + 𝐛𝛩1

)

𝛩2 + 𝐛𝛩2

)]

⋅W𝐕
𝑖,𝑙 (16)

2.2. Temporal convolution-aware nested residual connections

In this section, the temporal convolution-aware nested residual
connections are introduced, where the internal residual connection is
proposed to skip a few aggregation and projection operations in GCAN
layers so that some transmission of less significant features can be
skipped; and the external residual connection is introduced to extract
and preserve the temporal features of condition monitoring data so
that the temporal correlation of condition monitoring data cannot
be destroyed. More details about the nested residual connections are
introduced in the rest paragraphs of this subsection.

The proposed internal residual connection is inspired by the residual
neural network [26], which adds the activated output of the previous
spectral graph convolutional layer to the higher-dimensional features
projected in the current spectral graph convolutional layer. The output

𝐑𝑖,𝑙 of the proposed graph convolutional attention layer (GCAL) with in-
ternal residual connections is mathematically expressed as Eq. (17), in
which 𝐎𝑖,𝑙 is the output of the first spectral graph convolutional layer;
𝐇̂𝑖,𝑙 represents the output of the second spectral graph convolution layer
with internal residual connection; 𝐄̂𝑖,𝑙 represents the scaled 𝐄𝑖,𝑙 of the
constructed G𝑖,𝑙; 𝛩1 and 𝛩2 refer to the projection matrix in the first and
second spectral graph convolutional operations, respectively; 𝑏𝛩1

and
𝑏𝛩2

are bias vectors in the first and second spectral graph convolutional
operations; 𝐐𝑖,𝑙 is the generated query; 𝐊𝑖,𝑙 is the generated key; and
𝑑 is the dimension of weighted matrices used to generate the key
and query. Based on this equation, we can observe that the output
𝐎𝑖,𝑙 of the first spectral graph convolutional layer is not only fed into
the second spectral graph convolutional layer, but also added to the
projected features in the second spectral graph convolutional layer.
Such an internal residual connection can simultaneously guarantee the
continuous connection between different layers and skip some of the
aggregation and projection operations in some GCN layers so that some
transmissions of less significant features generated by the repeated
aggregation and projection process can also be skipped.

𝐑𝑖,𝑙 = SoftMax
(

𝐐𝑖,𝑙 ⋅𝐊𝑇
𝑖,𝑙∕

√

𝑑
)

⋅ 𝐇̂𝑖,𝑙 ⋅W𝐕
𝑖,𝑙

𝐇̂𝑖,𝑙 = Relu
(

𝐄̂𝑖,𝑙𝐎𝑖,𝑙𝛩2 + 𝑏𝛩2
+𝐎𝑖,𝑙

)

𝐎𝑖,𝑙 = Relu
(

𝐄̂𝑖,𝑙𝐗𝑖,𝑙𝛩1 + 𝑏𝛩1

)

(17)

The repeated aggregation and projection operations of the graph
convolutional network can destroy the temporal correlation of condi-
tion monitoring data. The proposed external residual connection is used
to extract and preserve temporal features, representing the temporal
correlation of condition monitoring data prior to the repeated aggrega-
tion and projection operations in GCN layers. The extracted temporal
features 𝐓𝑖,𝑙 for degradation unit 𝑖 at window 𝑙 are combined with
the output 𝐑𝑖,𝑙 of the proposed graph convolutional attention layers
with internal residual connections for degradation prognostics and RUL
predictions. There exists a variety of recurrent neural network architec-
tures that have been introduced to extract the temporal correlation of
condition monitoring data, such as LSTM, Convolutional LSTM, GRU,
and RNN. However, it has been suggested that the temporal convo-
lutional network (TCN) can achieve better prediction performance in
modeling sequential data as TCN can refrain from general drawbacks of
recurrent architectures, such as gradient vanishing, gradient explosion,
and shortage of memory [27]. TCN primarily uses the causal dilated
convolutional operation to extract temporal features from the condition
monitoring data. The output of the causal dilated convolution operation
𝒟 on the data matrix 𝐗 ∈ 𝐑𝐹×𝑁 can be written as Eq. (18),

(𝐗⊛𝐷 𝒟 ) =
∑

𝑓=0

∑

𝑏=1
𝑥𝐹−𝑓 ⋅𝐷,𝑏 ⋅ 𝜔𝐹−𝑓 ⋅𝐷,𝑏 (18)

where ⊛𝐷𝒟 refers to the dilated convolutional operation with dilation
factor 𝐷; 𝑥 is the element of the data matrix 𝐗; 𝜔 represents the weight
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Fig. 3. Flow diagram of the proposed graph convolutional attention network with temporal convolution-aware nested residual connections for degradation prognostics and RUL
predictions.

of the filter in 𝒟 ; 𝐹 refers to the filter size; and 𝑁 represents to
the amount of filters in the previous dilated convolution layer or the
amount of channels.

Fig. 2 shows an example of the temporal feature extraction process
using the temporal convolution network with two dilated convolution
layers. In this figure, the first dilated convolutional layer has a dilation
factor 𝐷1 = 1, the second dilated convolutional layer has a dilation
factor 𝐷2 = 2, and the stride length of these two layers is set as one
for simplification. In the first layer, the number of filters is 𝑁1 and the
dimension of each filter is 𝐹1 by 𝑝, and these filters are multiplied by the
sampled condition monitoring data 𝐗𝑖,𝑙 to obtain 𝐂𝑖,𝑙 ∈ R𝑁1×𝑛1 , where
each element of 𝐂𝑖,𝑙 can be obtained by using Eq. (17) and 𝑛1 equals
𝑛−𝐹1 −𝐷1 +2. In the second layer, the number of filters is 𝑁2 and the
dimension of each filter is 𝐹2 by 𝑁1, and these filters are multiplied
by 𝐂𝑖,𝑙 to finalize the extracted temporal features 𝐓𝑖,𝑙 ∈ R𝑁2×𝑛2 , where
each element of 𝐓𝑖,𝑙 can be obtained by using Eq. (17) and 𝑛2 equals
𝑛1 − 𝐹2 − 𝐷2 + 2. Next, the extracted temporal features 𝐓𝑖,𝑙 and the
output 𝐑𝑖,𝑙 from the proposed graph convolutional attention network
with internal residual connections are flattened and concatenated as
one single vector 𝐯𝑖,𝑙. Such a vector is given to a fully connected layer
for degradation prognostics.

Fig. 3 shows the flow diagram of the graph convolutional attention
network with temporal convolution-aware nested residual connections
for RUL prediction, and compares the presented method with the
traditional GCN. It can be observed from Fig. 3 that the traditional
GCN stacks multiple spectral graph convolutional layers, where each
layer perform aggregation and projection operations based on the
constructed affinity graph. However, with respect to the proposed
method, affinity graphs G𝑖,𝑙 are first initialized for sampled condition
monitoring data 𝐗𝑖,𝑙 for all unit 𝑖 and window 𝑙. Next, each graph
convolutional attention layer (GCAL) uses the constructed graphs to
aggregate condition monitoring data at different time points, project
the aggregated data into a higher dimensional space, and reduce the
negative impact of less significant features generated from the repeated
aggregation and projection process. For each graph convolutional at-
tention layer, the internal residual connections are adopted to skip
some aggregation and projection operations to skip transmissions of
less significant features, and the output of the GCAN with internal
residual connections is written as 𝐑𝑖,𝑙 ,∀𝑖, 𝑙. Prior to the aggregation and
projection operations in the graph convolutional attention layers, the
temporal convolutional operation is used to extract temporal features
𝐓𝑖,𝑙 ,∀𝑖, 𝑙 from the condition monitoring data. Next, the output of the
GCAN with internal residual connections is flattened and concatenated
with the flattened extracted temporal features, and the concatenation
procedure can be written as Eq. (19).

𝐯𝑖,𝑙 = Concat
(

Flatten{𝐑𝑖,𝑗}, Flatten{𝐓𝑖,𝑗}
)

(19)

Next, the concatenated vector 𝐯𝑖,𝑙 is fed into a fully connected (FC) layer
to obtain the training loss 𝐿, which can be written as Eq. (20). In this
equation, 𝑦̂𝑖,𝑙 and 𝑦𝑖,𝑙 respectively represent the predicted and ground
truth of RUL for degradation unit 𝑖 at the 𝑙th sampled sliding window;
𝑡𝑖 is the total life cycle for degradation unit 𝑖; and 𝑡𝑖 − 𝑛 + 1 represents
the number of sampled condition monitoring data with utilizing the
sliding window with a size of n for degradation unit 𝑖. Next, the
gradient descent method is adopted for training the proposed method
for learning the parameters.

𝐿 =
𝑚
∑

𝑖=1

𝑡𝑖−𝑛+1
∑

𝑙=1
(𝑦𝑖,𝑙 − 𝑦̂𝑖,𝑙)2∕

𝑚
∑

𝑖=1
𝑡𝑖 − 𝑛 + 1 (20)

3. Case study I: RUL prediction of bearings

3.1. Dataset description

The Prognostics and Health Management 2012 Challenge bearing
data was used to evaluate the performance of the proposed method in
this case study. This bearing dataset was obtained from a platform that
was capable of accelerating the development of deterioration so that
bearing failures can be detected within a short period [28]. Fig. 4 ex-
hibits the platform that was adopted to obtain this bearing data, normal
and defective bearings generated in this experimental platform. For this
dataset, run-to-failure tests were performed to collect vibration signals
in two directions for degradation modeling and RUL predictions, and
these tests were terminated when the measured vibrations were above
20 g-forces. This dataset was obtained under 3 different conditions.
Table 1 shows the operating conditions used in PHM 2012 Challenge
bearing dataset and bearing indices associated with different operating
conditions. In this work, 7-fold cross-validation was implemented on
bearings in the first bearing dataset (seven bearings were included).
This cross-validation test aimed at demonstrating the presented method
can precisely predict the RUL of bearings operated under a single oper-
ating condition. Moreover, 5-fold cross-validation was implemented on
bearings in both the second and third bearing datasets (ten bearings
were included) to demonstrate that the proposed method is capable
of accurately predicting the RUL of bearings operated under multiple
operating conditions, where the first fold involves Bearing2_1 and
Bearing2_6; the second fold involves Bearing2_2 and Bearing2_7; the
third fold involves Bearing2_3 and Bearing3_1; the fourth fold involves
Bearing2_4 and Bearing3_2; and the last fold involves Bearing2_5 and
Bearing3_3.
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Fig. 4. (a) PRONOSTIA platform was adopted to obtain the PHM 2012 Challenge data; (b) Force transmission; (c) Pneumatic jack; (d) Normal and degraded bearings [28].

Table 1
The operating conditions used in PHM 2012 Challenge bearing dataset and bearing indices associated with different operating conditions.

Condition Rotation rate (rpm) Radial pressure (kN) Applied torque (N m) Bearing indices

1 1800 4.0 1.326 Bearing1_1 to Bearing1_7
2 1650 4.2 1.447 Bearing2_1 to Bearing2_7
3 1500 5.0 1.591 Bearing3_1 to Bearing3_3

Fig. 5. Collected vibration signals and degradation stage detection results for (a) Bearing1_1, (b) Bearing1_2, and (c) Bearing2_7.

3.2. Degradation stage detection and features extraction

It is widely accepted that the detection of degradation stages could
improve the prediction performance of the RUL of rotating bear-
ings [29]. In this case study, we used the most often used abrupt
change point detection method to detect different degradation stages,
and details of the abrupt change point detection method can be found
in [30]. Fig. 5 shows some of the vibration signals and degradation
stage detection results. In this figure, we can observe that the number
of detected degradation stages varies with respect to different bearing
units in this case study. For example, there are three stages are detected
with respect to Bearing1_1, where one non-defective stage and two de-
fective stages are incorporated. Bearing1_1 shifts from a non-defective
stage (first stage) to a steady degradation stage (second stage) and
wraps up in the accelerated degradation stage (third stage). As shown
in Fig. 5, only two stages are detected for Bear1_2 and Bearing2_7 in
comparison with three stages for Bearing1_1, where these two stages
include the non-defective stage and accelerated degradation stage. Due
to some bearing units used in this case study do not include the steady
degradation stage, we use one predictive model to predict RUL for both
the first and second stages and another predictive model to predict RUL
for the third degradation stage.

Next, twelve (12) time-domain and eight (8) frequency-domain
features are derived from the signals collected in two orientations.

These time-domain features consist of maxima, minima, variance, stan-
dard deviation, root-mean-square, average, entropy, kurtosis, skewness,
peak-to-peak value, standard deviation of inverse sine, and standard
deviation of inverse tangent. These frequency-domain features consist
of average frequency, median frequency, band power, occupied band-
width, power bandwidth, maximum power spectral density, maximum
amplitude, and frequency of maximum amplitude. Moreover, we use
a cumulative sum function to obtain the cumulative version of each
extracted feature as it has been demonstrated that the cumulative
function can increase the monotonicity of features [31]. The cumulative
function is expressed as Eq. (20) in which 𝑥𝑖,𝑡,𝑘 represents the 𝑘th
obtained feature for bearing 𝑖 at time 𝑡 and 𝑥̃𝑖,𝑡,𝑘 is the generated
cumulative feature.

𝑥̃𝑖,𝑡,𝑘 =
𝑡

∑

𝑗=1
𝑥𝑖,𝑗,𝑘∕

(

|

𝑡
∑

𝑗=1
𝑥𝑖,𝑗,𝑘|

)1∕2

(21)

In summary, twenty (20) time-domain and frequency-domain features
are extracted from the vibration signals in each direction, and forty
(40) features are extracted in total as there is a total of two directions.
Moreover, a cumulative function is applied to each extracted feature so
that 40 cumulative features are generated from the extracted features.
Thus, there are eighty (80) features are extracted in this case study.
Next, these extracted features can be used to construct a feature matrix,
then a sliding window with the window size of 𝑛 is used to sample
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Fig. 6. The Pearson, Spearman, and Kendall correlations between the target RUL and the extracted features with using different number of aggregation and projection operations
for the selected three bearing units.

Table 2
The network architecture of the presented graph convolutional attention network with temporal convolution-aware nested residual connections.

Number of stacked layers Layer description Connected to Output dimensionality

1 Input layer – 𝐵 × 𝑛 × 𝑝
𝑘1 GCAL with internal residuals Input layer 𝐵 × 𝑛 × 𝑝′

1 GCN with internal residuals GCAL with internal residuals 𝐵 × 𝑛 × 𝑝′

1 Flatten layer GCN with internal residuals 𝐵 × 𝑛𝑝′

𝑘2 Dilated convolution layer Input layer 𝐵 × 𝑛𝑘2 ×𝑁𝑘2
1 Flatten layer Dilated convolution layer 𝐵 × 𝑛𝑘2𝑁𝑘2
1 Concatenation layer Two flatten layers 𝐵 × (𝑛𝑝′ + 𝑛𝑘2𝑁𝑘2 )
1 Fully connected layer Concatenation layer 𝐵 × 1

the feature matrix to obtain the feature matrix 𝐗𝑖,𝑙 for training and
testing. Here, 𝐗𝑖,𝑙 refers to the 𝑙th sampled condition monitoring data
for bearing unit 𝑖.

3.3. Features significance after repeated aggregation and projection opera-
tions

We conducted an experiment to demonstrate that the repeated ag-
gregation and projection operations in the conventional spectral graph
convolutional (SPC) layer can lead to less significant features and re-
duced feature correlation. Three bearing units (Bearing1_1, Bearing2_1,
Bearing2_5) were used in the experiment. We examined the correlations
between the target RUL and features extracted using the conventional
SPC. Fig. 6 presents the correlations between the target RUL and the ex-
tracted features using different numbers of aggregation and projection
operations for the selected three bearing units. The correlation metrics
used include Pearson correlation, Spearman correlation, and Kendall
correlation. In Fig. 6, 1 SPC denotes one aggregation and projection
operation in the conventional SPC layer. From the results shown in
Fig. 6, it is evident that the feature correlation decreases as the number
of aggregation and projection operations increases. For example, in the
case of Bearing1_1, the Kendall correlation between the extracted fea-
tures and RUL is 0.568 after one aggregation and projection operation.
However, this correlation decreases to 0.133 when two aggregation
and projection operations are performed. Similarly, for Bearing2_5, the
Spearman correlation is 0.713 after one aggregation and projection
operation, but it drops dramatically to 0.001 after two aggregation
and projection operations. The observed decrease in feature correlation
emphasizes the need for the proposed method, which aims to mitigate
the negative impact of less significant features and enhance prediction
performance.

3.4. Hyperparameters

Table 2 exhibits the network architecture of the presented graph
convolutional attention network with temporal convolution-aware nested
residual connections used in this case study. In Table 2, 𝐵 represents
the batch size, 𝑛 is the time length of the sampled features, 𝑝 refers

to the amount of features, 𝑝′ represents the projected dimension using
the proposed graph convolutional attention layers, 𝑘1 represents the
number of stacked graph convolutional attention layers with internal
residuals, 𝑘2 refers to the number of stacked dilated convolution layers,
𝑁𝑘2 is the number of filters provided by the 𝑘2-th dilated convolution
layer, and 𝑛𝑘2 refers to the output dimension after using the dilated
convolutional operations.

To optimize the prediction performance, the hyperparameters are
set as follows. For all bearing units in the PHM 2012 Challenge bearing
dataset under three defective stages, 𝐵 is determined as 100, 𝑛 is 20, the
number of extracted features 𝑝 is 80 based upon Section 3.2, 𝑝′ is set as
100, the number of graph convolutional attention layer with internal
residuals 𝑘1 is 3, the number of dilated convolution layer is set as 2,
the value of 𝑑 in the attention mechanism is 100, the number of filters
and the filter size for both dilated convolution layers respectively set
as 10 and 5, and the dilation factors for two layers is set as 𝐷1 = 1 and
𝐷2 = 2.

3.5. RUL prediction results

Fig. 7 shows the RUL prediction results for some bearing units,
where Fig. 7(a) to Fig. 7(d) shows the predicted RUL versus the true
RUL for bearings operated under the first operating condition, and
Fig. 7(e) to Fig. 7(i) shows the predicted RUL versus the true RUL
for bearings operated under the second and third operating condi-
tions. From Fig. 7, the preliminary conclusion we could draw is that
the presented graph convolutional attention network with temporal
convolution-aware nested residual connections can forecast the bear-
ings’ RUL with high precision as the predicted value is capable of
tracing the path of the ground truth of RUL. For instance, with respect
to Bearing 1_1, the predicted RUL is 0.994 with the ground truth of RUL
is 0.993; and the predicted RUL is 0.620 with the true RUL is 0.668.
For Bearing1_6, the RUL prediction is 0.269 with the ground truth is
0.270.

3.6. Ablation and comparative study

To evaluate the efficacy of the temporal convolution-aware nested
residual connections and the proposed graph convolutional attention
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Fig. 7. (a) to (d) shows the predicted RUL versus the true RUL for bearings operated under the first operating condition, and (e) to (i) shows the predicted RUL versus the true
RUL for bearings operated under the second and third operating conditions.

Table 3
The abbreviations of the methods used in the ablation study.

Abbreviation Description

GCAN-TCNR Graph convolutional attention network with temporal convolution-aware nested residual connections
GCN-TCNR Graph convolutional network with temporal convolution-aware nested residual connections
GCAN Graph convolutional attention network without nested residual connections
GCN Conventional graph convolutional network

network, an ablation study was conducted. Table 3 shows the ab-
breviations of the methods used in this ablation study. In this table,
GCAN-TCNR refers to the presented method, which is the graph con-
volutional attention network with temporal convolution-aware nested
residual connections. GCN-TCNR refers to the graph convolutional
network with temporal convolution-aware nested residual connections,
which is the ablation study of the self-attention mechanism. GCAN
represents the graph convolutional attention network, which is the
ablation study of temporal convolution-aware nested residual connec-
tions. GCN represents the traditional graph convolutional network,
serving as a benchmark method. For GCN-TCNR, the network architec-
ture and hyperparameters setup are identical to GCAN-TCNR (proposed
method) except that GCN-TCNR does not include attention mechanism.
For GCAN, the network architecture and hyperparameters setup are
identical to the proposed method except that GCAN does not have
internal and external residual connections. The network architecture
and hyperparameters setup of GCN are also the same as the proposed
method, but GCN does not include attention mechanism or nested
residual connections.

Table 4 shows the RUL prediction RMSE for Bearing1_1 to Bear-
ing3_3 operated under three different conditions in the PHM 2012
Challenge dataset with using the methods listed in this ablation study.

From Table 4, we conclude that the proposed temporal convolutional-
aware nested residual connections can improve the RUL prediction
performance. For instance, regarding Bearing1_1, the prediction RMSE
of the proposed GCAN-TCNR is 0.060 in comparison with the RMSE
of GCAN is 0.085. Based on this table, we can also observe that the
proposed self-attention mechanism can improve the RUL prediction
performance. For example, with respect to all bearing units in the
PHM 2012 Challenge dataset, the mean RMSE of the GCAN-TCNR
is 0.121 compared to the mean RMSE of methods listed in Table 4
ranges from 0.125 to 0.210. In addition, by using the attention mecha-
nism only, the average prediction RMSE reduces by 27.14%. By utiliz-
ing the temporal convolution-aware nested residual connections only,
the average prediction RMSE reduces by 40.48%. Furthermore, when
both the temporal convolution-aware nested residual connections and
the attention mechanism are employed, the average prediction RMSE
reduces by 42.38%. The proposed nested residual connections en-
hance prediction performance due to the external residual connection’s
ability to preserve temporal features prior to repeated feature aggre-
gation in GCN. Additionally, the internal residual connection skips
some aggregation operations, reducing the negative impact of less
significant features. The self-attention mechanism improves prediction
performance by passing the most relevant part of features extracted
from the previous GCN layers to the next GCN layers.
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Table 4
The RUL prediction RMSE for Bearing1_1 to Bearing3_3 in the PHM 2012 Challenge dataset with using the methods listed in this ablation study.

Operating condition Bearing index GCAN-TCNR GCN-TCNR GCAN GCN

Operating Condition 1

Bearing1_1 0.060 0.080 0.085 0.109
Bearing1_2 0.163 0.179 0.129 0.181
Bearing1_3 0.074 0.072 0.063 0.082
Bearing1_4 0.125 0.152 0.139 0.105
Bearing1_5 0.071 0.075 0.055 0.129
Bearing1_6 0.029 0.086 0.046 0.124
Bearing1_7 0.120 0.125 0.112 0.101

Operating Condition 2

Bearing2_1 0.048 0.081 0.033 0.274
Bearing2_2 0.061 0.144 0.096 0.263
Bearing2_3 0.060 0.227 0.055 0.284
Bearing2_4 0.264 0.162 0.235 0.278
Bearing2_5 0.219 0.338 0.257 0.286
Bearing2_6 0.103 0.082 0.073 0.274
Bearing2_7 0.258 0.257 0.268 0.276

Operating Condition 3
Bearing3_1 0.265 0.188 0.262 0.262
Bearing3_2 0.062 0.127 0.137 0.279
Bearing3_3 0.077 0.227 0.084 0.265

Average 0.121 0.153 0.125 0.210

Table 5
The average prediction RMSE of the presented GCAN-TCNR, methods used in the ablation study, and other deep learning methods described
in the literature.

Condition GCAN-TCNR GCN-TCNR GCAN GCN CLSTM [32] CNN [33] DAN [34] GANN [35] GCNSA [36]

1 0.092 0.110 0.090 0.119 0.159 0.189 0.206 0.105 0.087
2 0.145 0.145 0.185 0.145 0.277 0.260 0.206 0.187 0.152
3 0.135 0.181 0.161 0.269 0.152 0.290 0.366 – 0.206

In addition, the proposed GCAN-TCNR is also compared to other
deep learning methods described in the literature, which used the
same dataset. Table 5 exhibits the average prediction RMSE of the
presented GCAN-TCNR, methods used in the ablation study, and other
deep learning methods described in the literature, where these methods
incorporate convolutional long short-term memory (CLSTM), convolu-
tional neural network (CNN), deep adversarial network (DAN), gener-
ative adversarial neural networks (GANN) and GCN with self-attention
mechanism (GCNSA). In this table, it is observed that the presented
GCAN-TCNR outperforms many deep learning algorithms described in
the literature in most cases. For instance, with respect to bearings in the
PHM Challenge dataset operated under the third operating condition,
the average prediction RMSE of the proposed GCAN-TCNR is only
0.135. However, the average prediction RMSE of the deep learning
algorithms used in the literature fluctuates from 0.152 to 0.366.

4. Case study II: RUL prediction of aircraft engines

4.1. Dataset description

An aircraft engine dataset collected by the commercial modular
aero-propulsion system simulation (C-MAPSS) tool was utilized to eval-
uate the efficacy of the proposed GCAN-TCNR in the RUL prediction
of aircraft engines. In this case study, one subset (FD001) of this
engine dataset was used, where run-to-failure signals were collected
from 100 engine units. More details about this dataset can be found
in [37,38]. Fig. 8 shows examples of the collected run-to-failure signals.
Moreover, 5-fold cross-validation was adopted to thoroughly illustrate
the performance of the proposed GCAN-TCNR on all engine units. These
100 engine units are equally divided into five folds, where the first fold
includes engine No. 1 to engine No. 20, the second fold includes engine
No. 21 to engine No. 40, the third fold includes engine No. 41 to engine
No. 60, the fourth fold includes engine No. 61 to engine No. 80, and
the last fold includes engine No. 81 to engine No. 100.

4.2. Features significance after repeated aggregation and projection opera-
tions

We conducted an experiment to demonstrate that the repeated
aggregation and projection operations in the conventional SPC layer
can result in less significant features and reduced feature correlation.
Three engine units (Engine No. 1, Engine No. 41, Engine No. 61) were
used in the experiment. We examined the correlations between the
target RUL and features extracted using the conventional SPC. Fig. 9
presents the correlations between the target RUL and the extracted fea-
tures, using different numbers of aggregation and projection operations
for the selected three engine units. The results shown in this figure
clearly indicate that the feature correlation decreases as the number
of aggregation and projection operations increases. This decrement in
feature correlation can significantly impact prediction performance,
emphasizing the necessity for the proposed method, which aims to
mitigate the negative impact of less significant features and enhance
prediction performance.

4.3. Sensor selections and hyperparameters

In this engine dataset, there are in total 21 sensors have been used
to collect run-to-failure data for RUL predictions. However, not all these
sensors are relevant to the degradation trend and trajectory of aircraft
engines. Therefore, it is critically important to eliminate irrelevant
sensors so that the computational cost can be largely reduced and
prediction performance can be more robust. One of the most acceptable
ways to select relevant sensors is based on their monotonicity and
signal-to-noise ratio [10]. In this case study, 14 sensor signals were
selected, including T24 (temperature at LPC outlet), T30 (temperature
at HPC outlet), T50 (temperature at LPT outlet), P30 (pressure at HPC
outlet), Nf (fan speed), Nc (core speed), Ps30 (static pressure at HPC
outlet), phi (fuel flow ratio to Ps30), NRf (corrected fan speed), NRc
(corrected core speed), BPR (bypass ratio), htBleed (bleed enthalpy),
W31 (HPT coolant bleed speed) and W32 (LPT coolant bleed speed).
More details of the sensor selection process can be found in [39].
Moreover, all selected sensors are standardized to assure that these
sensor signals are in the same scale. Next, these selected sensors are
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Fig. 8. The collected run-to-failure signals for engine No. 1 and engine No. 69, where (a) shows the trajectory of the total temperature at fan inlet, (b) shows the trajectory of
the total temperature at LPC outlet, and (c) shows the trajectory of the LPT coolant bleed speed.

Fig. 9. The Pearson, Spearman, and Kendall correlations between the target RUL and the extracted features with using different number of aggregation and projection operations
for the selected three engine units.

used to construct a feature matrix, then a sliding window with the
window size of 𝑛 is used to sample the feature matrix to obtain the
feature matrix 𝐗𝑖,𝑙 for training and testing. Here, 𝐗𝑖,𝑙 refers to the 𝑙th
sampled condition monitoring data for engine unit 𝑖.

The network architecture of the proposed method used in this case
study can be found in Table 2. To optimize the prediction performance,
the hyperparameters are set as follows. Batch size 𝐵 is 100, 𝑛 is 20,
the amount of selected sensors 𝑝 is 14, 𝑝′ is set as 100, the number of
graph convolutional attention layers with internal residuals 𝑘1 is 3, the
number of dilated convolution layer is set as 2, the value of 𝑑 in the
attention mechanism is 100, the number of filters and the filter size for
both dilated convolution layers is respectively set 10 and 5, and the
dilation factors for two layers is set as 𝐷1 = 1 and 𝐷2 = 2.

4.4. RUL prediction results

Fig. 10 shows the RUL prediction results for some randomly selected
engine units. It is evident that the presented GCAN-TCNR is capable
of predicting the RUL of aircraft engines with high precision as the
predicted value is close to the ground truth of RUL. In addition, we
can also observe that the prediction error decreases with the decrement
of remaining useful cycles. For example, the true remaining useful life
cycle for Engine No. 5 is 9, and the predicted remaining useful life cycle
is 10.32. With respect to Engine No. 41, the predicted remaining useful
life cycle is 158.47 when the true remaining useful life cycle is 157.

4.5. Ablation and comparative study

To evaluate the efficacy of the presented method, an ablation study
was conducted. Fig. 11 depicts the box plot of absolute errors for the
methods used in this ablation study across different ranges of true
remaining useful cycles, where these methods are listed in Table 3.
Based on this figure, it is evident that the proposed GCAN-TCNR has a
lower absolute prediction error and less dispersion effect for different
ranges of remaining useful cycles. For example, regarding all engine
units with true remaining useful cycles ranging from 1 to 10 cycles, the

median absolute error of the proposed method is 4 cycles in comparison
with other methods’ median absolute error ranges from 4.96 cycles to
6.58 cycles, the interquartile range of the proposed method is 4.59
cycles in comparison with other methods’ interquartile range fluctuates
from 6 cycles to 10.71 cycles. For all engine units with true remaining
useful cycles ranging from 21 to 30 cycles, the median absolute error
of the proposed method is 6.48 cycles compared to GCN’s median
absolute error is 16.47, the interquartile range of the proposed method
is 8.00 cycles compared to GCAN’ interquartile range of 14.50 cycles.
Moreover, when the RUL ranges from 1 cycle to 10 cycles, with using
the attention mechanism only, the average prediction RMSE reduces
by 38.30%; with using the temporal convolution-aware nested residual
connections only, the average prediction RMSE reduces by 17.02%;
and with using both the temporal convolution-aware nested residual
connections and the attention mechanism, the average prediction RMSE
reduces by 48.94%.

Table 6 shows the average relative error rate (ARER) of the GCAN-
TCNR, GCN-TCNR, GCAN, GCN tabulated in Table 3, and methods
described in the literature with respect to different ranges of true
RUL. In this table, ANN refers to the artificial neural network (ANN)
using a single sensor channel and EDPAE represents an ensemble deep
probabilistic autoencoder with using multiple sensor channels. The
average relative error rate for engine number 𝑖 can be expressed as
ARER𝑖 =

∑𝑇𝑖
𝑡=1

(

𝑦𝑖,𝑡 − 𝑦̂𝑖,𝑡
)

∕𝑇𝑖, where 𝑦𝑖,𝑡 is the ground truth of RUL for
engine number 𝑖 in cycle 𝑡, 𝑦̂𝑖,𝑡 is the predicted value for engine number
𝑖 in cycle 𝑡, and 𝑇𝑖 is the total life cycles for engine unit 𝑖. From this
table, we observe that the presented GCAN-TCNR outperforms other
methods in many situations. For instance, when the true RUL ranges
from 11 cycles to 20 cycles, the ARER of the presented GCAN-TCNR is
0.031 and the ARER of other methods fluctuates from 0.040 to 0.155.
When the true RUL ranges from 1 cycle to 50 cycles, the ARER of GCN
fluctuates from 0.047 to 0.154. However, the ARER of the proposed
GCAN-TCNR fluctuates from 0.024 to 0.098.
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Fig. 10. The RUL prediction results for (a) Engine No. 5, (b) Engine No. 10, (c) Engine No. 33, (d) Engine No. 41 (e) Engine No. 66, and (f) Engine No. 89.

Fig. 11. The box plot of absolute error for methods used in this ablation study for different ranges of true remaining useful cycles.

Table 6
The ARER of the proposed GCAN-TCNR and other deep learning methods used in the literature.

RUL Range (cycles) GCAN-TCNR GCN-TCNR GCAN GCN ANN [39] EDPAE [39]

1–10 0.024 0.029 0.039 0.047 0.069 0.020
11–20 0.031 0.040 0.046 0.077 0.155 0.055
21–30 0.047 0.044 0.075 0.110 0.135 0.066
31–40 0.070 0.061 0.106 0.137 0.197 0.124
41–50 0.098 0.084 0.131 0.154 0.191 0.135

5. Case study III: Battery state of health prediction

5.1. Dataset description

A lithium-ion battery dataset collected by the NASA Ames Prognos-
tics Center of Excellence was adopted to illustrate that the presented
GCAN-TCNR can accurately predict the state of health (SOH) of bat-
teries, where four batteries (Battery No. 5, No. 6, No. 7, and No.
18) were utilized in this section. The condition monitoring data was
collected during the replicated charging and discharge process, and
these condition monitoring data include voltage, current, and tempera-
ture. In each charge cycle, a consistent current of 1.5 A was applied
unless the voltage measurement rose to 4.2 V, and continued at a
consistent voltage unless the current measurement decreased to 20 mA.
In each discharge cycle, a consistent current load of 2 A was applied
until the measured voltage decreased to certain voltage thresholds.
The run-to-failure test was stopped until the capacity dropped to 70%.
More details of this experiment can be found in [40]. In practice,
the measurements in charge cycles are usually unavailable or hard to
obtain [41]. Therefore, we only utilize those measurements obtained

in the discharge cycles for SOH predictions in this case study. In this
work, 4-fold cross-validation was implemented on these four batteries.
Moreover, the SOH prediction starting point is 20 cycles, meaning that
the condition monitoring data collected from the previous 20 discharge
cycles is used to predict the SOH in the current discharge cycle.

5.2. Features significance after repeated aggregation and projection opera-
tions

We conducted an experiment to demonstrate that the repeated
aggregation and projection operations in the conventional SPC layer
can result in less significant features and reduced feature correlation.
Two battery cells (Battery No. 6 and Battery No. 18) were used in the
experiment. We examined the correlations between the target SOH and
features extracted using the conventional SPC to demonstrate that the
feature correlation reduces with the increased numbers of aggregation
and projection operations. Fig. 12 presents the correlations between
the target SOH and the extracted features, using different numbers of
aggregation and projection operations for the selected two battery cells.
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Fig. 12. The Pearson, Spearman, and Kendall correlations between the target SOH and the extracted features with using different number of aggregation and projection operations
for the selected two battery cells.

Fig. 13. (a) Measured voltage in discharge cycles, (b) measured current in discharge cycles, and (c) measured temperature in discharge cycles.

The results shown in this figure indicate that the feature correlation de-
creases with the increment of the number of aggregation and projection
operations. This decrement in feature correlation can lead to degraded
prediction performance, therefore, the proposed method should be used
to reduce the negative impact of less significant features.

5.3. Features extraction and hyperparameters

Fig. 13 shows the trajectory alternation of the measured voltage,
current, and temperature with the increment of discharge cycles for
Battery No. 6. To better capture the trajectory alternation of these mea-
surements in discharge cycles, temporal features are extracted from the
measured voltage, current, and temperature. These extracted temporal
features include time to the minimum voltage in discharge cycles, time
discharged under a constant current mode, and time to the maximum
temperature in discharging [23]. To fully evaluate the capability of the
presented method, four-fold cross-validation is implemented on these
four batteries.

The network architecture of the presented method used in this
case study can also be found in Table 2. To optimize the prediction
performance, the hyperparameters are set as follows. Batch size 𝐵 is
determined as 100, 𝑛 is 20, the amount of extracted features 𝑝 is 3,
𝑝′ is set as 100, the number of graph convolutional attention layers
with internal residuals 𝑘1 is 3, the number of dilated convolution layer
is set as 2, the value of 𝑑 in the attention mechanism is 100, the
number of filters and the filter size for both dilated convolution layers
is respectively set 10 and 5, and the dilation factors for two layers is
set as 𝐷1 = 1 and 𝐷2 = 2.

5.4. SOH prediction results

Fig. 14 shows the SOH prediction results for all four batteries. The
battery SOH represents its current capacity rated to the maximum
capacity. The SOH is expressed as Eq. (21), where SOH𝑖,𝑡 represents the
SOH for battery cell 𝑖 in the discharge cycle 𝑡, 𝑦𝑖,𝑡 is the true capacity for

battery cell 𝑖 in the discharge cycle 𝑡, and 𝐂𝑖 represents the maximum
capacity for battery cell 𝑖.

SOH𝑖,𝑡 = 𝑦𝑖,𝑡∕𝐂𝑖 (22)

In this figure, we can observe that the ground truth of SOH is not mono-
tonically decreasing because of the capacity regeneration phenomenon
(CRP) led by the rest time of lithium-ion batteries. Evidently, even
though the capacity regeneration phenomenon can significantly impact
the degradation trajectories of batteries in this case study, the proposed
GCAN-TCNR could still predict the SOH and track the trajectory ef-
ficiently. For instance, regarding Battery No. 5, the predicted SOH is
0.883 when the ground truth is 0.902. For Battery No. 18, the predicted
SOH is 0.682 when the ground truth is 0.699.

5.5. Ablation and comparative study

Likewise, an ablation study was also conducted to further eval-
uate the efficacy of the presented GCAN-TCNR in SOH predictions.
Table 7 shows the prediction RMSE of the ablation study and com-
pares the presented GCAN-TCNR with other methods reported in the
literature in terms of RMSE. In this table, MGP refers to Multiple
Gaussian Processes, LRGP represents Logistic Regression with Gaus-
sian Processes, GBT stands for Gradient Boosting Decision Tree, GP
refers to Gaussian Process Regression, and OEGCN denotes the optimal
entropy graph convolutional network with LSTM. It can be observed
from this table that the proposed temporal convolution-aware nested
residual connections and the graph convolutional attention network
are capable of increasing the prediction performance significantly. For
instance, the average RMSE of the presented GCAN-TCNR for these
four batteries is 0.0144, however, the average RMSE of GCN-TCNR and
GCAN are 0.0160 and 0.0423. With using the attention mechanism
only, the average prediction RMSE reduces by 81.78%; with using
the temporal convolution-aware nested residual connections only, the
average prediction RMSE reduces by 51.82%; and with using both
the temporal convolution-aware nested residual connections and the
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Fig. 14. SOH prediction results for Battery No. 5, No. 6, No. 7, and No. 18.

Table 7
The prediction RMSE of the ablation study and the comparison between the presented GCAN-TCNR and other methods reported in the literature.

Battery GCAN-TCNR GCN-TCNR GCAN GCN MGP [42] LRGP [43] GBT [44] GP [43] OEGCN [23]

No. 5 0.0122 0.0118 0.0202 0.0879 0.0096 0.0168 0.0192 0.0751 0.0167
No. 6 0.0169 0.0202 0.1076 0.1102 0.0167 0.0292 0.0281 0.0406 0.0138
No. 7 0.0115 0.0152 0.0239 0.0895 0.0129 – 0.0157 – 0.0123
No. 18 0.0170 0.0170 0.0174 0.0634 0.0228 0.0169 – 0.0323 0.0201

Average 0.0144 0.0160 0.0423 0.0878 0.0155 0.0210 0.0210 0.0493 0.0157

attention mechanism, the average prediction RMSE reduces by 83.60%.
Moreover, it is evident that the presented GCAN-TCNR outperforms
other methods used in the literature in many situations. For instance,
with respect to Battery No. 5, the RMSE of the presented GCAN-TCNR is
0.0122 and the RMSE of the gradient boost decision tree is 0.0192. For
Battery No. 6, the RMSE of the presented GCAN-TCNR is 0.0169 and
the RMSE of the logic regression with the Gaussian process is 0.0292.

6. Conclusions

In this work, a novel graph convolutional attention network with
temporal convolution-aware nested residual connections is developed
to predict the RUL of bearings, aircraft engines, and batteries. The pro-
posed method aims at addressing two primary issues in the traditional
graph convolutional networks: (1) repeated aggregation operations in
GCN layers can severely destroy the temporal correlation in condition
monitoring data; (2) repeated aggregation and projection operations
may generate less significant features and reduce feature correlation,
resulting in poor RUL prediction performance. To deal with the first
issue, a temporal convolutional operation is introduced to extract tem-
poral features prior to the repeated aggregation operations in GCN
layers, and an external residual connection is created to preserve
these extracted features. To deal with the second issue, an internal
residual connection is created among multiple GCN layers to skip a few
aggregation and projection operations to reduce the negative impact
of less significant features; in addition, an attention mechanism is
integrated with some GCN layers to reduce the impact of less signif-
icant features. Three case studies were conducted to demonstrated the
proposed method, where three publicly available datasets were used,
including one bearing dataset, one engine dataset, and one lithium-
ion battery dataset. The numerical results have shown that the nested
residual connections and graph convolution attention network can
significantly improve the RUL prediction accuracy in all three case
studies. Moreover, the proposed method outperforms other data-driven
methods reported in the literature. In the future, we will evaluate the
performance of the proposed method on more datasets from different
applications.
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