San Jose State University

SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

1-1-2024

Creating valid adversarial examples of malware

MatousS Kozak
Czech Technical University in Prague

Martin JureCek
Czech Technical University in Prague

Mark Stamp
San Jose State University, mark.stamp@sjsu.edu

Fabio Di Troia
San Jose State University, fabio.ditroia@sjsu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

Recommended Citation

Matous Kozak, Martin JureCek, Mark Stamp, and Fabio Di Troia. "Creating valid adversarial examples of
malware" Journal of Computer Virology and Hacking Techniques (2024). https://doi.org/10.1007/
s11416-024-00516-2

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SUSU ScholarWorks. For more
information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F4577&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s11416-024-00516-2
https://doi.org/10.1007/s11416-024-00516-2
mailto:scholarworks@sjsu.edu

Journal of Computer Virology and Hacking Techniques
https://doi.org/10.1007/s11416-024-00516-2

ORIGINAL PAPER O‘)

Check for
updates

Creating valid adversarial examples of malware

Matous Kozak'® - Martin Jure¢ek' - Mark Stamp? - Fabio Di Troia2

Received: 9 September 2023 / Accepted: 4 February 2024
© The Author(s) 2024

Abstract

Because of its world-class results, machine learning (ML) is becoming increasingly popular as a go-to solution for many
tasks. As a result, antivirus developers are incorporating ML models into their toolchains. While these models improve
malware detection capabilities, they also carry the disadvantage of being susceptible to adversarial attacks. Although this
vulnerability has been demonstrated for many models in white-box settings, a black-box scenario is more applicable in practice
for the domain of malware detection. We present a method of creating adversarial malware examples using reinforcement
learning algorithms. The reinforcement learning agents utilize a set of functionality-preserving modifications, thus creating
valid adversarial examples. Using the proximal policy optimization (PPO) algorithm, we achieved an evasion rate of 53.84%
against the gradient-boosted decision tree (GBDT) detector. The PPO agent previously trained against the GBDT classifier
scored an evasion rate of 11.41% against the neural network-based classifier MalConv and an average evasion rate of 2.31%
against top antivirus programs. Furthermore, we discovered that random application of our functionality-preserving portable
executable modifications successfully evades leading antivirus engines, with an average evasion rate of 11.65%. These findings
indicate that ML-based models used in malware detection systems are sensitive to adversarial attacks and that better safeguards
need to be taken to protect these systems.

Keywords Validity - Adversarial examples - Malware detection - PE files - Reinforcement learning

1 Introduction of malware detection a never-ending battle between attackers
and antivirus developers.

Malicious software, also known as malware, conducts unwanted According to the AV-TEST institute, more than 450,000

actions on infected systems. Protection of our devices is
paramount as more and more of our lives are in the digi-
tal world. Cybersecurity professionals are developing new
defense mechanisms to improve the detection capabilities of
their antivirus (AV) programs. However, their opponents are
advancing at the same, if not faster, rate, making the problem

<1 Matous Kozik
matous.kozak @fit.cvut.cz

Martin Jurecek
martin.jurecek @fit.cvut.cz

Mark Stamp
mark.stamp @sjsu.edu

Fabio Di Troia

fabio.ditroia@sjsu.edu

Faculty of Information Technology, Czech Technical
University in Prague, Prague, Czechia

Department of Computer Science, San Jose State University,
San Jose, CA, USA

Published online: 18 March 2024

new malware samples are registered daily, totaling more than
150,000,000 new malicious programs in 2021 [1]. Nowa-
days, attackers are not focusing only on Windows devices, but
other platforms such as Linux, Mac or Android are also tar-
geted. However, Windows remains the go-to target for most
attackers [2].

Using malware detection models based on machine learn-
ing yields promising results [3]. Nonetheless, ML models are
susceptible to adversarial examples (AEs) that can mislead
the models [4]. For example, a minor modification of a mal-
ware file can make its feature vector resemble some of the
feature vectors of benign files. Consequently, this can cause
the malware classifier to make an incorrect prediction.

State-of-the-art antivirus programs incorporate both static
and dynamic analysis in their inner workings. Static analy-
sis methods, which do not require the executable to be run,
provide us with information such as opcode sequences, pro-
gram format information, and others. On the other hand, the
dynamic analysis consists of studying the program’s activ-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-024-00516-2&domain=pdf
http://orcid.org/0000-0001-8329-7572

M. Kozék et al.

ity during execution and recording information such as API
calls, registry and memory changes, and more [5].

In this work, we target our attack on static malware
analysis for numerous reasons. Firstly, static detection is
time-efficient as it does not involve the execution of binary
executables. As aresult, it is typically the first line of defense
against unwanted threats and is thus a critical part of any
antivirus program. Secondly, dynamic analysis requires exe-
cuting malware inside a secure sandbox and recording its
behavior, which is both time and technically demanding.
Thirdly, malware authors can incorporate sandbox-evading
techniques to detect that their malware is running inside a
controlled environment and stop its malicious behavior [6,
71.

Our goal is to implement a technique of adversarial attack
at the level of samples, i.e., a technique that would create
functional AEs. This task is considerably more demanding,
as typical machine learning models operate at the level of
feature vector, and reliable reverse mapping from a feature
vector back to a binary file is difficult to perform. Therefore,
we chose to perform adversarial perturbations on the binary
level. To verify the functional preservation of our adversar-
ial perturbations, we present a method comparing behavior
patterns before and after modifications, which ensures max-
imum validity of the generated AEs.

Our adversarial attack works in a black-box scenario,
mimicking the most difficult scenario where no information
about the target classifier apart from the final prediction label
is known to the attacker. While the defense methods should
be tested in the most open (white-box) scenario to ensure the
protection of the system in all settings [8], we believe that the
attack methods should be tested in the black-box scenario to
provide a worst-case estimate of their abilities.

In this work, we introduce a set of functionality-preserving
binary file modifications. Further, we train reinforcement
learning agents to use these modifications to modify Win-
dows malware binaries to avoid detection by the target
classifier. Additionally, we compare trained and random
agents and assess the transferability of our attacks to other
malware detectors. This research demonstrates that a large
number of malware detection models are vulnerable to adver-
sarial attacks and should be better protected against these
threats.

Paper outline:

e In Sect.2, we establish the necessary background. Start-
ing with an introduction to adversarial machine learning,
continuing with a brief dive into reinforcement learning
and finishing with a description of the portable executable
file format.

e In Sect. 3, we display related work focusing on the area
of adversarial malware generation.

@ Springer

e In Sect. 4, we define our method in detail. From modifica-
tion of binary files and protocol to guarantee they retain
their original functionality, to describing our reinforce-
ment learning environment and agents.

e In Sect.5, we introduce our experiments, present the
results achieved, and suggest ideas for future research.

e In Conclusion, we summarize the contributions of our
work.

2 Background

In this section, we outline the necessary background to com-
prehend this paper. Firstly, we briefly introduce adversarial
machine learning. Then, we follow by describing the funda-
mental principles of reinforcement learning, and we finish
by describing the portable executable file format in detail.

2.1 Adversarial machine learning

Adversarial machine learning is an area of machine learning
focusing on improving ML systems to withstand adversar-
ial attacks both from inside (data poisoning) and outside
(evasion attacks). An adversarial attack is a carefully cre-
ated action to mislead the ML model. The victim model
is also called a target model, and the attacker is called an
adversary. Nevertheless, both attacker and adversary are used
interchangeably in the current literature. The object respon-
sible for misleading the target model is referred to as an
adversarial example (AE). Adversarial machine learning is
commonly employed in the malware detection domain to
mislead AV products into incorrectly classifying malicious
files as benign.

The success of an adversarial attack is dependent on the
available knowledge of the targeted system [9]. When the
adversary has access to the system and can examine its inter-
nal settings or training datasets, we call this a white-box
scenario. Contrarily, we refer to a situation as a black-box
scenario if the adversary only has access to a limited amount
of information, typically just the model’s final prediction,
such as the malware/benign label for each sample that is pre-
sented. In between these two is a grey-box scenario where the
adversary has higher access to the system than in the black-
box scenario, but the access is still limited to some parts.
For example, the attacker can use the model’s score or fea-
ture space but cannot access and modify its training dataset.
Since the specific structure of the AV is typically unknown
to the attacker, the black-box scenario is the most realistic
for producing adversarial malware examples.

Creating valid adversarial...

2.2 Reinforcement learning

Reinforcement learning (RL) is a branch of machine learning
where an agent equipped with a set of actions is learning
how to reach its goal. The agent can be a bot learning to play
a computer game or a physical robot working in a factory.
Based on trial and error and appropriate feedback from an
interactive element called the environment, the agent learns
which actions are “good” and “bad” for achieving its goal.
The crucial challenge for reinforcement learning is a balance
of exploration and exploitation, i.e., how to explore enough of
the environment while maximizing the reward and reaching
its goal. This section is based on the book [10], where you
can find more details and examples on this topic.

There are three key elements of reinforcement learning:
the agent’s policy, the reward signal, and the value function.
A model of the environment is also included for some tasks,
but we will not specify this further.

The core part of any reinforcement learning agent is
policy. It is a function mapping from the states of the envi-
ronment to an action from a set of agent actions representing
the agent’s behavior at a given time. If learned correctly, it
should lead to a strategy that maximizes the total rewards the
agent receives.

The reward signal is an immediate response to a taken
action provided by the environment. This signal grades action
taken at a given state as good or bad concerning the agent’s
goal.

The value function estimates how rewarding the current
state is. The ultimate goal of every RL agent is to achieve
the highest total reward, also called return. This goal usually
cannot be accomplished by following states and actions with
the highest immediate rewards but rather with the highest
values, as these maximize the cumulative reward.

Although there are other formal definitions of reinforce-
ment learning, in this work, we follow the one presented
in [10]. Reinforcement learning can be defined as repeated
interactions between agent and environment at discrete time
stepst =0, 1,2,...T. At time step ¢, the environment is at
a state S; € S where S is a set of all possible states. After
the agent is presented with the state S;, based on its policy
7, creates a mapping Sy — A; € A(S;), where A(S;) is a set
of all possible actions at state S;. In many scenarios, A(S;)
can change based on the current state S;, but in others, it can
remain fixed depending on the environment. After deciding
on the action A;, the chosen action is sent to the environ-
ment where it gets executed. The subsequent response from
the environment gets presented to the agent in the form of a
new state S;41, and reward R, € R C R, where R is the
set of all possible rewards. Figure 1 illustrates the interaction
between the agent and the environment.

We call the exchange of actions, states, and rewards
between the agent and the environment across time steps

state S; 2
action A,

reward R, Agent’

< By

Sy Environment |«

Fig.1 Interaction between the agent and the environment

t = 0and ¢t = T an episode. One episode can be character-
ized by the following sequence ending in the terminal state
Sr, 1.e., So, Ao, R1, S1, A1, ..., Rr, ST. Subsequently, the
environment is reset, and a new independent episode begins.

As stated before, the agent’s goal is to maximize the total
ofrewards G; = R;41+R;+2+. ..+ Rr,alsocalled expected
return. For the computation of expected return Gy, it is com-
mon to use a technique called discounting. This technique
allows control over how far into the future the agent should
look, i.e., how much value it should assign to the future states.
We calculate discounted return as follows:

G =Ryt +YRip2 +y? Rz +--+yT R (D)

where 0 < y < 1 is a parameter called discount rate. If
y = 0, the agent only considers immediate reward, and the
closer the y is to 1, the higher value the agent gives to the
future states.

2.2.1 Algorithms

In this part, we briefly describe some of the algorithms popu-
lar in reinforcement learning, focusing on those we use later
in this work. Detailed descriptions can be found in their orig-
inal publications.

A popular algorithm called Q-learning was introduced in
[11] by Watkins. This algorithm works by iteratively esti-
mating action-value function Q(s, a), also called Q values.
Q values represent values of individual actions (a) in each
state (s) and are calculated using the following formula:

Qnew(St, Ar) = 0(S, Ar)
(R i+y max(Q(See1,)= Q(S, An)
2
where a € A(S;+1) and « is the learning rate. The
max,{Q(Si+1, a)} represents the best value in the follow-

ing state S;y1. The newly calculated Q values (Q"¢") are
stored in a so-called Q table.

@ Springer

M. Kozék et al.

Improvement of the Q-learning algorithm called deep Q-
network (DQN), or deep Q-learning, was introduced by
Mnih et al. [12, 13]. DQN replaces the tabular manner of
storing all state-action pairs Q (s, a) with a function, usually
taking the form of a neural network. The Q value is then
defined as Q(s, a; &), where & can be one or more function
parameters.

The above-introduced algorithms learn the value functions
and choose appropriate actions based on them. Policy gra-
dient (PG) methods optimize the policy 7 directly [14]. The
policy is parameterized by weight vector 6 € R". The deci-
sion on choosing action a is therefore not only conditioned
by the state s but also by the vector 6. The policy can then
be defined as 7 (als, 6), i.e., the probability of taking action
a given that the agent is in the state s with weight vector 6
at time step ¢. Policy gradient methods use a gradient ascent
algorithm to find the optimal value of 6 to maximize the total
return.

Proximal policy optimization (PPO) is a variant of the pol-
icy gradient methods where the policy vector is updated only
after several gradient ascent iterations [15]. This is in contrast
with the original PG methods, which perform one gradient
ascent update of the target policy per sample. As stated in the
original paper, this improvement is easy to implement, yet it
brings substantial performance improvements.

2.3 Portable executable file format

Portable executable (PE) is a file format commonly found on
Windows operating systems for various types of files, such as
executables (EXEs) or dynamically linked libraries (DLLs).
This file format is based on the Common Object File Format
(COFF) found on Unix operating systems. It contains all the
necessary information for the operating system (OS) loader
to correctly map the PE file to system memory [16].

In this section, we will describe the PE file format used for
EXE files, as the usage of some fields differs from other file
types. The PE file format has a rigid structure, as presented
in Fig. 2. Most of the information listed in this section comes
from the official Windows documentation [17].

2.3.1 MS-DOS header and stub program

MS-DOS header and stub program are still part of the PE
file format for backward compatibility with older operating
systems (MS-DOS). Nowadays, if a modern Windows exe-
cutable gets executed on MS-DOS, it should display some
variation of the following message: ‘“This program cannot be
run in DOS mode.”.

MS-DOS header is 64 bytes long and is located at the
beginning of the PE file. The first field of this header is
e_magic, also called a magic number. This field usually
contains a value of 0x5A4D, a hexadecimal representation

@ Springer

MS-DOS Header
MS-DOS Stub

COFF File Header
Optional Header

+ Data Directories

Section Headers

Section Data

Fig.2 PE File Format

of the characters MZ, initials of one of the MS-DOS devel-
opers, Mark Zbikowski [18]. This field is followed by several
other important fields for the MS-DOS system, which are not
relevant for modern systems. The header is concluded with
the e_1 fanew field, which stores a file offset to the COFF
file header.

MS-DOS stub program is an actual valid MS-DOS pro-
gram that would get executed on the MS-DOS operating
system. This stub is located right after the MS-DOS header,
and its size is variable depending on the program.

2.3.2 COFF file header

Following the MS-DOS header and stub program is the
COFF file header. It is located at the offset found in the
e_lfanew field from the MS-DOS header. Before the
actual COFF header starts, there is a 4-byte field called
Signature that identifies the file as a PE file with
a value of PE. The following 20 bytes are the header
itself, which contains general information regarding the PE
file, such as NumberOfSection, TimeDateStamp or
SizeOfOptionalHeader.

2.3.3 Optional header

Right after the COFF file header is located the optional
header. Although it is called optional, for many files, such as
EXEs, it is mandatory. It integrates core information for the
OS loader. This header has three main parts: standard fields,
Windows-specific fields, and data directories.

The standard fields are eight fields used for each COFF
file, which contain items such as:

Creating valid adversarial...

e Magic: Indicates the type of optional header (32-bit/64-
bit).

e SizeOfCode: The size of the code section, usually
called .zext.

e AddressOfEntryPoint: Relative virtual address
(RVA) of the entry point (the first program instruction
when execution begins) after being loaded into memory.

The following are 21 fields belonging to the Windows-
specific fields that contain unique information for the Win-
dows operating system. Some of the fields are:

e SizeOfImage: The size of the PE file.

e CheckSum: Checksum value used to validate files such
as drivers or DLLs.

e NumberOfRvaAndSizes: Number of entries in the
data directories.

Atthe end of the optional header are placed the data direc-
tories. These directories form an array of 8-byte structures
with two fields: RVA and size of the directory. There are 15
types of data directories, such as export, import, debug, or
certificate tables.

2.3.4 Section headers and data

Immediately following the optional header and data directo-
ries is the section table, also known as section headers. Each
section header contains ten fields totaling 40 bytes in size.
Examples of the fields include:

e Name: Eight bytes representing the name of the section
padded with zeros, e.g., . text\0\0\0.

e VirtualSize: Section size when loaded into memory.

e Characteristics: 4-byte flag indicating section
attributes, e.g., the section contains executable code or
can be shared in memory.

The location and size of the relevant section data are
indicated in the corresponding section header. An ordi-
nary PE file usually has several commonly found sections
[16]. Although their names may vary from file to file, their
intentions remain the same. The most notable is the .text
section, which encapsulates all pieces of code and naturally
AddressOfEntryPoint points to this section.

One of the critical parts of nearly every EXE is the import
directory table (IDT), or just the import table. This table is
usually stored in the .idata section, with each entry represent-
ing one of the imported DLLs. Each entry contains the RVAs
of the name of the imported DLL and the import address and
lookup tables associated with this DLL. The import lookup
table (ILT) encodes the imported function names from a given
DLL. While stored on disk, the import address table (IAT)

has the same structure and content as ILT. However, after the
PE file is loaded into memory, the IAT entries contain the
addresses of the imported functions instead of the function
names.

The section name .debug refers to a section containing
debugging information. This section is not memory-mapped
by default, and the PE file format also allows the information
to be stored in a separate debug file.

When a PE file has a certificate, e.g., to ensure file origin
or immutability, the location is specified in a security data
directory inside the optional header. The security data direc-
tory points to the beginning of the certificate table, which
contains 20-byte entries for each certificate. This certificate
table is usually appended to the end of the file in a segment
typically called an overlay.

3 Related work

This section summarizes related publications that focus on
creating adversarial malware examples. We break down this
section into several subsections depending on the approach
used to generate AEs. We begin by describing works based
on the same technique as our work, i.e., reinforcement learn-
ing attacks. Then, we present the research that exploits the
back-propagation algorithm commonly used in training deep
neural networks with so-called gradient-based attacks [4, 19].
Note that most of these gradient-based attacks classify as
white-box attacks since they work directly with the inner
configurations of targeted models. Lastly, we mention sev-
eral publications related to adversarial malware attacks that
do not fit within these two categories. A summary of publica-
tions related to generating evasive AEs is presented in Table
1.

3.1 Reinforcement learning-based attacks

Adversarial attacks using reinforcement learning algorithms
are based on a fundamental concept in which RL agents are
equipped with a set of file manipulations that are used to
perturbate malicious binaries to evade detection. The file
manipulations are usually self-contained modifications of
executable files on a binary level.

One of the first works done in the domain of generating
AEs using reinforcement learning was published in 2018 by
Anderson et al. [20]. The authors presented a gym-malware
framework equipped with RL agents and an OpenAl gym
[31] environment. They targeted a gradient-boosted decision
tree (GBDT) trained on 100,000 binary files and achieved an
evasion rate of up to 24%, depending on the dataset used.

In [21], Fang et al. presented two models, a detector called
DeepDetectNet and a generator of AEs called RLAttackNet.
In a pure black-box scenario, their generator, based on the

@ Springer

M. Kozék et al.

Table 1 Summary of related adversarial attacks

Paper Knowledge Problem space Target model Functionality
Anderson et al. [20] Grey-scale, black-box Binary files GBDT X

Fang et al. [21] Black-box Binary files Deep neural network X

Song et al. [22] Black-box Binary files GBDT, MalConv, AVs Sandbox
Quertier et al. [23] Grey-scale, black-box Binary files GBDT, MalConv, AVs, Grayscale Sandbox
Kolosnjaji et al. [24] White-box Binary files MalConv X

Kreuk et al. [25] White-box Binary files MalConv X
Demetrio et al. [26] White-box Binary files MalConv X

Yang et al. [27] White-box Binary files Convolution neural network Manually
Hu and Tan [28] White-box, black-box Extracted features Deep neural network X
Ebrahimi et al. [29] Black-box Binary files MalConv Sandbox
Demetrio et al. [30] Grey-box, black-box Binary files GBDT, MalConv X

The symbol X denotes that functionality preservation was not empirically verified

DQN algorithm, bypassed their own detector in 19.13% of
cases. The authors later used the AEs to retrain their DeepDe-
tectNet model, and the evasion rate of RLAttackNet dropped
to 3.1%.

The MAB-Malware framework was presented by Song et
al. [22]. As an agent, the authors used a multi-armed ban-
dit (MAB) model while adjusting the agent’s action set in
real-time by adding successful action-content pairs. Further,
the authors introduced an action minimization procedure,
which removes unnecessary modifications after successful
evasion, reducing the final size of AEs. The authors targeted
the GBDT! by EMBER [32], MalConv! [33], and several
commercial AV detectors. They recorded a high evasion rate
of 74.4% against GBDT, 97.7% against MalConv, and up to
48.3% against commercial AVs. Further, they validated the
functionality preservation of generated AEs by comparing
file signatures with genuine malware files.

Quertier et al. in [23] used reinforcement learning algo-
rithms to attack MalConv, GBDT by EMBER and Grayscale
(convolutional neural network interpreting PE binaries as
images) classifiers in grey-scale settings with available pre-
diction scores for learning. Further, the authors targeted
commercial AV in a pure black-box environment as well.
They used the DQN and REINFORCE (policy gradient algo-
rithm) agents and achieved a high evasion rate against all
targeted models, including an 80% evasion rate with REIN-
FORCE against GBDT, a 100% perfect evasion against
MalConv with both algorithms and a 70% evasion rate against
commercial AV with REINFORCE. However, Quertier et al.
did not specify what commercial AV they were targeting, nor
did the authors disclose their models for further use.

! Description of GBDT and MalConv classifier can be found in
Sect.4.2.

@ Springer

3.2 Gradient-based attacks

In [24], Kolosnjaji et al. proposed a gradient-based attack
against the MalConv malware detector [33]. Their attack only
perturbed the overlay part of the file and achieved an evasion
rate of 60% while modifying less than 1% of total bytes.

Kreuk et al. [25] used a gradient-based attack, limited to
injecting small-scale chunks of bytes into unused parts or at
the end of the file. The authors argued that these modifications
do not change the functionality of the file but without further
justification. The authors scored a high evasion rate of 99%
against the MalConv classifier.

Another attack on MalConv was carried out by Demetrio et
al. in [26]. Using an integrated gradient method, the authors
studied which sections of binaries stimulate the MalConv
classifier and thus are vulnerable to adversarial attacks. They
found that MalConv partially bases its prediction on features
in the DOS header and achieved an evasion rate of more than
86% by only modifying the DOS header.

A variation on the method introduced in [25] was pre-
sented in 2021 by Yang et al. [27]. The authors treated the
input EXEs as images, used as input into a convolution neu-
ral network. They calculated necessary byte perturbations
for evasion and then transformed them into specific byte
sequences. Depending on the location of the given pertur-
bation, the resulting byte sequence was either a dead-code
or API call instruction. The authors conducted a theoret-
ical examination of the above-mentioned modifications to
confirm that their modifications preserve functionality. Their
introduced perturbations reduced the accuracy of several ML
detectors by up to 94%.

Creating valid adversarial...

3.3 Other methods

A generative adversarial network (GAN) called MalGan was
proposed in [28] as a method of generating AEs. The MalGan
model was trained to mislead a deep neural network, serving
as a substitute detector, by modifying feature vectors repre-
senting extracted API calls from malware files. Their results
demonstrate high attack transferability between the substitute
and target models, with near-perfect evasion against the ran-
dom forest, decision tree, and linear regression algorithms.
While the MalGan model was capable of creating highly eva-
sive adversarial feature vectors, the authors did not provide a
method that would convert the generated feature vectors into
real-word EXEs to produce functioning AEs.

One of the few works that addresses the data poisoning
issue is [34] by Chen et al. Even though this work is centered
on the Android operating system, the results could also apply
to Windows systems. The authors saw up to 30% drops in
accuracy after injecting their data while targeting pure ML
models. As a defense mechanism, they introduced a cam-
ouflage detector that detects suspicious samples inside the
training dataset and boosts the detector’s accuracy by at least
15%.

Ebrahimi et al. proposed a generative sequence-to-sequence
language model in the form of a recurrent neural network
[29]. This network was trained on benign binaries to generate
adversarial benign bytes. These benign bytes were subse-
quently appended to malware EXEs to produce adversarial
malware instances. The authors achieved an average evasion
rate of 73.24% against the MalConv classifier. Their findings
suggest thatincreasing padding size increases the evasionrate
but with diminishing returns as the value grows. The authors
conducted a behavior analysis to validate that the function-
ality of malicious EXEs did not change after appending the
generated benign bytes.

In [30], Demetrio et al. presented a black-box attack
named GAMMA. The GAMMA attack tackles the problem
of creating AEs as an optimization problem, with the main
requirement being maximum evasion and minimal inserted
content size. The optimization problem was solved using
a genetic algorithm that used the traditional selection pro-
cess, cross-over, and mutation. These operations are applied
to vectors representing modifications of EXEs by injecting
benign content. The best solution vector is applied to the
original malware file to create AE. In the training phase, the
authors targeted the GBDT and MalConv classifiers to later
attack real-world AVs hosted on the VirusTotal website, suc-
cessfully bypassing 12 out of 70 detectors on average.

4 Adversarial malware generator

We introduce a complete framework for generating adver-
sarial malware examples called AMG (Adversarial Malware
Generator). AMG consists of a tested PE file modifier, which
can be easily expended with additional modifications, an
environment in the Open Al Gym format [31] working with
raw binary files, and a set of optimized reinforcement learn-
ing agents ready to use.

Our approach falls into the category of evasive black-box
attacks. In other words, we are performing an adversarial
attack to mislead the target model (e.g., antivirus) to clas-
sify malware samples as benign. Our objective is to execute
small modifications on PE files that do not alter the original
functionality but can make them undetectable to the antivirus.
Our attack targets static malware analysis, where the detector
makes decisions without examining the EXE’s behavior. We
set our adversarial attack in a black-box scenario where only
the target classifier’s hard predictions (malware/benign) are
known to the attacker, as this is the most difficult scenario for
the attacker. In addition, we believe that using the black-box
approach limits the likelihood of our attack being successful
only against a specific classifier and consequently increases
the potential of transferability to other detectors. However,
additional research in this field should be conducted in the
future.

In our work, we modified the existing framework called
gym-malware by Anderson et al. [20], which provides an
environment for training reinforcement learning agents on
binary samples. We rewrote most parts because the existing
code did not meet our vision and goals. In particular, they
used the LIEF [35] library for modifying PE files, whereas
we used the pefile [36] Python library. We found that the
LIEF library can make unnecessary changes to the original
binary and that their modifications did not retain the same
functionality as is shown later in Sect.5.2. In addition, in
their training setup, the agent is presented with an observa-
tion space that coincides with the feature space of the target
classifier. As such, it cannot be classified as a pure black-box
setup. Furthermore, we think that using the feature space of
the target classifier can detriment the transferability of trained
agents to other detectors. For this reason, we used a different
observation space that is not used by any of the classifiers
we targeted. Nonetheless, the work by Anderson et al. [20]
is a key stepping stone for future research as it is one of
the first complete frameworks for deploying RL agents for
adversarial malware example generation.

@ Springer

M. Kozék et al.

In the following subsections, we describe in detail our
proposed method, starting with the PE file modifications we
use and how we validate them. Later, we introduce our RL
environment setup and agents.

4.1 PE file modifications

Forimplementing PE file modifications, weused thepefile
[36] Python library. This library provides a simple interface
for accessing all parts of the PE file format, such as file and
optional header fields or individual sections. The descrip-
tion of the PE file format can be found in Sect.2.3. We
implemented various modifications of the binary files, all
obeying the structure of the PE file format. While we had
taken inspiration from state-of-the-art related works, such as
the gym-malware mentioned above, we also introduced new
modifications. In total, we implemented ten modifications,
which are described below:

Break CheckSum: Set the CheckSum field from the
optional header to zero.
Append to overlay: Append a random benign content to
the end of the file.
e Remove debug: Clear the debug entry in the list of data
directories and remove the respective debug information
from the file.
Remove certificate: Clear the security entry in the list of
data directories and remove the certificate data from the
file.
Add new section: Add a new section to the PE file if
possible. Firstly, it is necessary to check if the file has
enough free space between the last section header and
the beginning of section data (at least 40 bytes). If so, we
can increase the file size and add a new section header
and data. To preserve the original PE file structure as
much as possible, we also move the old overlay data and,
if present, redirect the security data directory to the new
address.

e Append to section: Append benign content to one of the
existing sections if possible. First, we need to find a sec-
tion with the possibility of adding extra content, i.e., the
virtual size of the section is greater than its raw size. If
we encounter one, we fill the empty space with benign
content.

e Rename section: Choose one section at random and
rename it to one of the section names commonly used
in benign files.

e Increase TimeDateStamp: Increase the value of

TimeDateStamp in the COFF file header by 500 days.?

2 We picked 500 days because it is a considerable period of time and it
is not a multiple of one year.

@ Springer

e Decrease TimeDateStamp: Decrease the value of
TimeDateStamp in the COFF file header by 500 days?.

e Append new import: Add a new section to the PE file
with import data if possible. This process is similar to
the preceding add new section modification, with the
only change being that the section content is not ran-
dom benign content but import data. If already present,
we append a new entry (randomly chosen DLL) to the
IDT. Then, we prepare entries for the imported functions
in the IAT and ILT and store these tables in a newly added
section. Finally, we modify the import data directory to
point to the updated IDT.

4.1.1 Validity of PE file modifications

We believe that preserving the original functionality (i.e.,
validity) of executable binary files is a critical part of gener-
ating adversarial malware samples. Without emphasizing this
criterion, we cannot guarantee that the resulting AE will still
be a working executable with the same functionality as the
original file. We have found that more than simply checking
the syntax of the PE file format is needed to maintain func-
tionality, so we designed the following protocol to test the
validity of PE file modifications.

To ensure that the functionality of an executable after
adversarial perturbations is as close as possible to the origi-
nal file behavior, we used a Cuckoo Sandbox [37]. Cuckoo
Sandbox is an open-source automated malware analysis tool
that can run malicious files and examine their behavior. Even
though it is predominantly intended for malware analysis,
we also used it to analyze benign files as it provides behav-
ioral analysis, which we utilized to track any changes in
the functionality of executables. We decided to use benign
files instead of malware EXEs for testing the modifications
because malware authors can insert checks into their pro-
grams that monitor whether their malware is running in a
sandbox environment and change its behavior accordingly
[6, 7]. Consequently, by using benign files, we limit the pos-
sibility of artificial activity of the tested binaries, and thus,
we can better analyze the reported behavior.

In contrast with other approaches [22, 23], we do not ver-
ify the functionality preservation of generated AEs, but we
propose validating each modification individually before the
generation process. Therefore, our approach is more time-
efficient as it does not require discarding nonfunctional AEs
during or at the end of the generation procedure.

For our method, we selected a set of benign EXEs D that
was executable in the sandbox environment and studied their
respective behavior reports. Namely, we looked into three
features found in the Cuckoo analysis report: signatures, API
calls, and processes:

Creating valid adversarial...

e Signatures: Predefined patterns that are used to compare
with the examined file. They are used predominately for
malware detection to cluster malware into their respective
families. Nevertheless, they can also classify types of
actions, such as file open/write or access to system files,
which also occur with benign files.

e API calls: Function calls by a program to external
libraries during program execution.

e Processes: Main process and sub-processes started by a
program.

To combat the variability of results reported by the sand-
box environment, we conducted three testing rounds and
considered the feature matched if it got at least 95% agree-
ment between rounds. We selected the value of 95% to allow
a small margin of error and to get all unmodified files reliably
matched.

The set of untampered benign files D is used as a control
dataset to test whether the functionality of the PE file has
changed after the modification M. Firstly, the modification M
is applied on each file f € D, creating a dataset of modified
files fM € DM Next, the modified dataset DM is compared
with the unmodified dataset D according to the same three
features we mentioned earlier by performing three rounds of
Cuckoo analysis. We consider the modification a failure if
the modified file cannot be run in the Cuckoo Sandbox. If the
file executes successfully, we compare the three generated
test analysis reports with all three control reports. We look
at each feature individually, matching it with each control
file. The feature is considered matched if it has an agreement
of at least 95% with one of the control files. Overall, the
modified file is considered successfully modified (i.e., the
original functionality has been preserved) if it matches at
least two of its features with control reports. A more detailed
pseudo-code on how we evaluate each modified file f¥ is
shown in Appendix A (Algorithm 1).

By testing only a single modification M rather than result-
ing AEs spanning multiple changes, we can better focus on
each modification and trace potential errors. In addition, our
protocol is time-efficient because the evaluation can be per-
formed before generating evasive AEs.

4.2 Malware environment

As mentioned in Sect.2.2, RL algorithms are based on learn-
ing through feedback provided by the environment. We
worked with a commonly used environment format devel-
oped by the OpenAl company called Gym [31]. The Gym is
an open-source Python library equipped with a standardized
API for agent-environment interaction. The source codes of
our implementation are available in the GitHub repository.>

3 https://github.com/matouskozak/ AMG.

A critical part of the environment is the target classifier,
as each action is rewarded with respect to its predictions. We
studied two ML classifiers, MalConv and GBDT, both pub-
licly available on GitHub with pre-trained configurations.*
MalConv is a deep convolutional neural network that does
not require complex feature extraction procedures because it
uses the entire EXE (truncated to 2,000,000 bytes) as an input
feature vector [33]. On the other hand, GBDT is a gradient-
boosted decision tree trained using the LightGBM framework
that requires converting the input executable to an array of
2,381 float numbers [32]. Note that we did not directly tar-
get the MalConv classifier but only used it to explore whether
adversarial attacks can be transferred between ML classifiers.

4.3 Reinforcement learning agents

In total, we experimented with three RL agents: deep Q-
network (DQN), vanilla policy gradient (PG), and proximal
policy optimization (PPO). We chose these reinforcement
learning algorithms because they are well-known in the rein-
forcement learning community and represent both on-policy
and off-policy approaches. A more detailed description of
these algorithms can be found in the previous Sect.2.2.1. We
made use of the implementations that were offered by the
Ray RLLib [38] reinforcement learning library.

5 Evaluation

In this section, we first describe our experimental setup. Sec-
ondly, we evaluate the validity of various PE file modifiers.
Next, we present how we optimized individual RL algo-
rithms to achieve the highest possible evasion rate against the
GBDT target classifier. Additionally, we evaluate how gen-
erated AEs transfer to other malware detectors. In real-world
circumstances, the transferability of AEs between detectors
is paramount, as the victim’s defenses can be unknown to the
attacker. Finally, we discuss the results and propose ideas for
future work. Note that the numbers in bold represent the high-
est evasion rate and the lowest size increase for the respective
columns of Tables 3, 4, 5, and 6.

5.1 Setup

Datasets: We use two datasets. A dataset of benign binaries,
including more than 4,000 executables, was scrapped from
the fresh Windows 10 installation. These benign files are
only used for testing the preservation of functionality after
modification, as mentioned in Sect.4.1.1. Second, a dataset
of malware files was obtained from the VirusShare> reposi-
tory. For training, we used 5,000 malware files, from which

4 https://github.com/endgameinc/malware_evasion_competition.

> https://virusshare.com/.

@ Springer

https://github.com/matouskozak/AMG
https://github.com/endgameinc/malware_evasion_competition
https://virusshare.com/

M. Kozék et al.

we selected 4,000 to train the models and 1,000 to validate
the training progress. An additional 2,000 malicious binaries
were used as a test set for the final evaluation.

Evasion rate: The principal metric we use in this work is
called an evasion rate. This metric denotes the ratio of mis-
classified files by the target classifier and is calculated as
follows:

missclassified
total

evasion rate =

- 100% 3)

where total stands for the total number of files submitted to
the target classifier after discarding files that were already
incorrectly predicted before modification.

Computer setup: Our experiments were executed on a single
computer platform with two server CPUs (Intel Xeon Gold
6136, base frequency 3.0Ghz, 12 cores), one GPU (Nvidia
Tesla P100, 12 GB of video RAM) and 754 GB of RAM
running the Ubuntu 20.04.5 LTS operating system.

5.2 Evaluation of the preservation of functionality

We used a set of 100 benign EXEs, complying with the
requirements introduced in Sect.4.1.1, to evaluate our PE
file modifications described in Sect.4.1, and to compare
them with several PE file modifiers from well-known frame-
works for generating adversarial malware examples. Namely,
we tested gym-malware,® Pesidious” and MAB-Malware®
generators. Both gym-malware and Pesidous use the LIEF
library for modifying binaries, whereas MAB-Malware, the
same as our approach, uses the pefile library. Addition-
ally, Pesidous uses the PE Bliss [39] C++ library for
rebuilding PE files. We chose these frameworks because they
are all publicly available on GitHub and share the reinforce-
ment learning approach with our work.

We evaluated each PE file modification in an isolated
setting, i.e., in each run of Algorithm 1, the input file was
perturbed by a single modification. We present the results
of functionality preservation testing in Table 2, where the
first column represents different PE modifications, and the
following ones represent the number of valid files for PE
modifiers from the respective frameworks. The symbol X
denotes that the operation was not implemented by the frame-
work. Apart from the modifications mentioned in Table 2,
authors of MAB-Malware also implemented code random-
ization operation. However, we could not reproduce the code
locally for our dataset, so we did not include it in our testing.

The implemented append new import modification per-
formed significantly worse than other AMG perturbations,

© https://github.com/endgameinc/gym-malware.
7 https://github.com/CyberForce/Pesidious.
8 https://github.com/weisong-ucr/MAB-malware.

@ Springer

possibly corrupting the underlying functionality of modified
executables. However, we can see that the AMG modifica-
tions equaled or surpassed all other tested frameworks. In
contrast, the gym-malware framework recorded the worst
results with some of the modifications, such as adding a new
section or appending to a section, created valid binaries in
only 4 and 8 cases, respectively. Overall, we can see that
MAB-Malware and AMG, the PE file modifiers that use the
pefile library, better preserve the original functionality
than the PE modifiers using the LIEF library, such as gym-
malware and Pesidious.

5.3 Generating adversarial malware examples

In the following experiment, we focus on optimizing our gen-
erator of malicious AEs (AMG) against the GBDT classifier.
We define the following procedure used for each RL algo-
rithm. The first step is finding the optimal maximal number of
modifications for the RL algorithm. For this part of the exper-
iment, we leave the agent’s parameters at their default settings
assetinthe Ray RLLib. Therange we testis between 5 and
200 modifications, and we choose the optimal value based
on two criteria. Firstly, we try to maximize the evasion rate
achieved by the agent, and secondly, we try to minimize the
increased size of evasive AEs.

After determining the maximum number of modifica-
tions, we conduct a hyperparameter search using the grid
search method over two hyperparameters, the learning rate
(Ir,) and the discount rate (gamma, y), leaving the rest
of the parameters at the default settings as defined by the
authors of Ray RLLib. Based on the highest mean episode
reward (mean of all rewards received during a single episode)
recorded during 100 training iterations, we select the best
four agent configurations and let them train for another 900
iterations. After the training finishes, we test these agents on
the validation set and determine the best agent configuration
for the RL algorithm.

Subsequently, we introduce our testing dataset, which is
presented to the final RL agent. The obtained results are then
used to compare different RL algorithms and to verify the
success of the training stage. The complete overview of our
optimization and evaluation workflow and how we used our
dataset can be found in Fig. 3.

5.3.1 Optimization and selection of RL agents

Firstly, we followed the optimization process described ear-
lier to tune the maximum number of steps, learning rate, and
discount rate hyperparameters. Based on the results achieved
by the respective RL algorithms on the validation set, we
selected the following configurations listed in Table 3. Note
that the size increase column refers to the average increase
in file size of generated AEs.

https://github.com/endgameinc/gym-malware
https://github.com/CyberForce/Pesidious
https://github.com/weisong-ucr/MAB-malware

Creating valid adversarial...

Table 2 Number of valid files

. . Action Gym-malware Pesidious MAB-malware AMG
after modification out of a total
of 100 Break checksum 89 X 100 100
Create new entry point 17 X X X
Append new import 20 42 X 66
Overlay append 100 99 100 100
Remove debug 90 X 100 100
Remove certificate 22 X 90 91
Add new section 4 85 75 98
Append to section 8 X 99 99
Rename section 89 89 99 100
upx pack 73 X X X
upx unpack 100 X X X
Increase TimeDateStamp X X X 100
Decrease TimeDateStamp X X X 100
ot Target
Classifier
Training
@ . max steps C n);iefaul:. hyperparameters] ~Results of select Trained modify _ |Adversarial
5| Train Set search 7| ~oneuration search Different | the best agents | Agents | malware | Examples
= by RLLib .
) Configurations
=2 Y [y
=9
Real-world
Validation Set AV

Fig.3 Workflow of our training and testing procedure for generating adversarial malware examples

Table 3 The best configuration

of cach tested RL algorithm and Agent Max steps o y Evasion rate (%) Size increase (%)
their results against the GBDT DQN 50 0.01 05 79.93 4.64
classifier on the validation set ' ’ ’ ’

PG 20 0.01 0.75 69.33 324

PPO 50 0.0001 0.5 90.38 9.2

The values reported show that PPO outperformed the other
RL algorithm tested, although it was offset by a 9.2% size
increase. Overall, the PG method performed the poorest, as it
did not exceed 70% evasion rate, but it increased the resulting
AEs the least, by only 3.24% on average.

5.3.2 Evaluation of RL agents

Following that, we used our test dataset to evaluate the best
configuration of each RL algorithm from Table 3. Further-
more, we included a so-called random agent in the following
results. This agent represents a repeated random application
of the modifications described in Sect.4.1 until the GBDT
classifier is bypassed or 50 alterations are reached. Including
the random agent allows us to better understand the learning
capabilities of the trained RL algorithms.

Table 4 Results of the best configuration of each tested RL algorithm
and random agent against the GBDT classifier on the test set

Agent Evasion rate (%) Size increase (%)
DQN 52.72 4.63
PG 46.75 3.11
PPO 53.84 3.57
Random 36.88 1.07

The test results are shown in Table 4. We immediately see

significant performance decreases for all agents compared to
the validation set, suggesting possible overfitting. Overfitting
occurs when an ML model predicts more accurately on data
it used for training than on unseen examples. This may be
due to a training dataset that does not represent real-world
distribution, excessive training of the model, or other factors

@ Springer

M. Kozék et al.

Table 5 Transferability of adversarial attacks targeted against GBDT
to MalConv

GBDT MalConv
MAB-Malware 76.12 60.1
AMG-PPO 53.84 11.41
AMG-random 36.88 7.65

[40]. However, the agents still achieved decent results by
overcoming the GBDT detector in approximately half of the
cases. The trend is similar to what we saw on the validation
set, with PPO recording the highest evasion rate of 53.84%
and the PG agent recording the lowest. The measured results
represent an improvement of up to 17% over the random
agent, which, on the other hand, had the lowest average size
increase of 1.07%. To summarize our results, the overall best
RL algorithm against the GBDT classifier is PPO with y =
0.5 and o = 0.0001, striking the highest evasion rate while
maintaining a reasonable size increase of generated AEs.

5.4 Transferability of adversarial attack

In the previous experiment, we considered the GBDT classi-
fier as our target model. In the final evaluation phase, we test
the transferability of adversarial attacks between GBDT and
other malware detectors. We included the MAB-Malware
generator in our transferability experiment as it is a state-
of-the-art model based on RL, obtained a similar validity of
modified files (Table 2) as our AMG framework and targets
the same GBDT classifier.

5.4.1 Transferability to the MalConv classifier

To begin, we examine the transferability of adversarial
attacks from GBDT to the MalConv classifier. We employed
the best-trained AMG agent (PPO with y = 0.5 and o =
0.0001), the random agent with the AMG modifications, and
MAB-Malware to generate AEs against the GBDT detector
and then test them against the MalConv classifier.

The recorded evasion rates against the GBDT and Mal-
Conv classifiers are listed in Table 5. From these results,
we can conclude that MAB-Malware outperforms our AMG
agents in terms of GBDT evasion as well as transferabil-
ity to the MalConv classifier. The MAB-Malware recorded
evasion rates of 76.12% and 60.1% against the GBDT and
MalConv models, respectively. In comparison, the AMG-
PPO agent struggled to transfer the performance recorded
against GBDT to MalConv, with a considerable decrease in
performance from 53.84% down to 11.41%. Similarly, AEs
generated by the AMG-random agent bypassed the MalConv
classifier only in 7.65% of cases.

@ Springer

5.4.2 Transferability to real-world antiviruses

In the final stage of our experiments, we compare the per-
formance of the above-mentioned generators of adversarial
malware against leading AV programs. The transferability
of generated AEs from lightweight ML detectors to com-
mercially deployed AVs is an essential feature that AE
generators should have, as developing AEs against AVs is
time-consuming and could reveal the attacker.

‘We conduct this assessment on a selection of antivirus pro-
grams based on the March 2023 antivirus comparative study
by the Austrian AV testing laboratory AV-Comparatives [41].
We used the VirusTotal® website as a substitute for local
instances of selected AV engines.

The recorded evasion rates of generated AEs against
AV detectors are presented in Table 6. We anonymized the
recorded results to minimize the possible risk of misuse of
our work and to comply with the VirusTotal policies.!? At
first glance, we can see that AMG-PPO and MAB-Malware
decreased their performance to 2.31% and 2.61%, respec-
tively. This represents a significant drop in evasion rates
compared to the original ones recorded against the targeted
GBDT classifier. This decrease could indicate that employ-
ing the GBDT classifier as a substitute model for generating
malicious AEs does not lead to successful evasion against
real-world AV programs and that better surrogate models
should be utilized.

The AMG-random agent, on the other hand, achieved
surprising results against all top-tier AV products, outper-
forming both the trained PPO agent and MAB-Malware
framework in each scenario. While the random application of
our AMG modifications did not produce satisfactory results
against pure ML models such as GBDT and MalConv, it did
produce evasive AEs against commercially available AVs.
The random AMG agent recorded evasion rates ranging from
2.15% to 34.48%, with an average of 11.65% among the
tested AVs.

5.5 Discussion and future work

The results in Sect.5.4.1 show that our model is outper-
formed by MAB-Malware in evading GBDT, a task both
systems were designed for. This could be caused by numer-
ous reasons. Firstly, while our modifications better preserve
the original functionality, this could also mean that the per-
turbation area is smaller, thus affecting the predictions by
GBDT or MalConv less. Secondly, it is possible that even
though the MAB-Malware model is trained better against
ML models, it does not generalize well to models not based

9 https://www.virustotal.com/.

10" https://blog.virustotal.com/2012/08/av-comparative-analyses-
marketing-and.html.

https://www.virustotal.com/
https://blog.virustotal.com/2012/08/av-comparative-analyses-marketing-and.html
https://blog.virustotal.com/2012/08/av-comparative-analyses-marketing-and.html

Creating valid adversarial...

Table 6 Transferability of

adversarial attacks targeted AV-1 AV-2 AV-3 AV-4 AV-5 AV-6 AV-7 AV-8 average

against GBDT to AVs MAB-Malware 122 041 1.66 1.9 153 30 776 338 261
AMG-PPO 239 041 284 275 179 241 39 19 231
AMG-random 937 215 986 1174 922 1288 3448 354 11.65

purely on ML (e.g., antivirus engines). This is supported by
our findings in Sect.5.4.2, where our PPO agent and MAB-
Malware perform almost the same after transferring attacks
to real-world AVs.

The surprising results of the AMG-random agent against
leading AV are in contrast with its poor performance against
ML-based detectors GBDT and MalConv. One possible
explanation could be that GBDT and MalConv are vulnerable
to specific modifications, whereas commercially available
AVs rely on a broader set of features. For that reason, ran-
dom application of functionality-preserving modification has
ahigher chance of exploiting the vulnerabilities of real-world
AVs.

While our goal was to implement a functionality-preserving
adversarial attack, the next natural step would be to introduce
a defense mechanism that could be incorporated into existing
detectors. Retraining with generated AEs or a self-contained
AE classifier could be used as a defensive technique, but
more research must be done in this area.

Additionally, our proposed approach to generating AEs
still has room for improvement. To begin, one of our imple-
mented PE modifications (append new import) did not
sufficiently preserve the validity of modified files. More
improvements should be made before deploying this opera-
tion to other projects. Following that, different modifications
(e.g., obfuscation) or target classifiers could be introduced to
improve the AMG framework further.

The experimental part could be enhanced by evaluating
AEs directly on real-world AVs instead of using VirusTotal
API. This could help us understand the differences between
reported results from individual AVs and propose ideas for
improvements.

One of the strong points of our evaluation of the modi-
fication validity is its time efficiency, which stems from the
usage of hard-coded adversarial perturbation found in RL-
based generators of adversarial malware. While predefined
modifications are common nowadays, learned perturbations
could prevail in the future. As a result, a reliable evaluation
of the functionality of PE files should be developed, which
could be incorporated into the generation of AEs.

6 Conclusion

In this paper, we presented a black-box evasion attack
using reinforcement learning algorithms in the space of PE
binaries. To achieve that, we implemented an interactive
environment in the OpenAl Gym format for training RL
agents. The environment includes a PE file modifier with
tested modifications that maximize the preservation of orig-
inal functionality. Our PE modifier registered the highest
validity of modified binaries compared to modifiers from
frameworks such as gym-malware or MAB-Malware.

Further, we collected a dataset of 7,000 Windows malware
EXEs and experimented with three RL algorithms: DQN, PG,
and PPO. We optimized the maximum number of modifica-
tions and various hyperparameters for each RL agent. Based
on the recorded results, the PPO algorithm with y = 0.5
and o = 0.0001 achieved the highest evasion rate of 53.84%
against the GBDT classifier while increasing the AE size by
3.57% on average. Furthermore, we tested the transferability
to other malware detectors where our PPO agent achieved
an evasion rate of 11.41% against MalConv and an average
evasion rate of 2.31% against leading AV engines.

We compared these results to a random agent using the
same set of PE modifications as our trained PPO agent and
to MAB-Malware, a state-of-the-art generator of malicious
AEs. MAB-Malware bypassed the GBDT and MalConv in
76.12% and 60.1% of cases, respectively, outperforming both
the random and PPO agents. When transferring the generated
AEs to real-world AVs, MAB-Malware achieved an average
evasion rate of 2.61%, which is comparable to our trained
PPO agent. The random agent, on the other hand, recorded
evasion rates ranging from 2.15 to 34.48%, with an average
of 11.65%, significantly outperforming both MAB-Malware
and our trained PPO agent. These findings show that utilizing
GBDT as a substitute model to generate AEs does not result
in evasive AEs against real-world AVs and that even leading
AVs are vulnerable to well-crafted, yet randomly applied,
adversarial perturbations.

This work provides a solid implementation of a rein-
forcement learning generator working at the level of binary
samples while generating functional adversarial malware
examples. Additionally, our modifications, agents, and envi-
ronment setup can be easily extended for future improve-
ments and are freely available to the public.

@ Springer

M. Kozék et al.

Acknowledgements This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No. SGS23/211/0OHK3/
3T/18 funded by the MEYSS of the Czech Republic and by the OP VVV
MEYS funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research
Center for Informatics”.

Funding Open access publishing supported by the National Technical
Library in Prague.

Declarations

Conflict of interest The authors have no relevant financial or non-
financial interests to disclose.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A

Algorithm 1 Evaluation of file validity after modification

1: f < original file
2: fM « modified file
3: CRs, T Rs < empty lists

4: fori < 1to3 do
reports

5: CRs; < Cuckoo-analysis(f)

6: TRs; < Cuckoo-analysis(f™)

7: end for

> Create lists of control (C Rs) and test (T Rs)

8:c<«0

9: for TR € TRs do
10: if TR is failure then return FAILURE

11: endif

12: for feature € [signatures, API calls, processes] do
13: for CR € CRs do

> Number of matched features

14: if match-feature(feature, T R, C R) then

15: ¢ < c+ 1 > More than 95% agreement between 7' R
and CR

16: break

17: end if

18: end for

19: end for

20: end for

21: if ¢ >= 2 then return SUCCESS
matched

22: else return FAILURE

23: end if

> At least two features are

@ Springer

References

1. Institute, A.-T.: Malware statistics & trends report: AV-TEST
(2022). https://www.av-test.org/en/statistics/malware/

2. Sophos: Sophos Threat Report (2022). https://www.sophos.com/
en-us/content/security-threat-report

3. Ucci, D., Aniello, L., Baldoni, R.: Survey of machine learning tech-
niques for malware analysis. Comput. Secur. 81, 123-147 (2019).
https://doi.org/10.1016/j.cose.2018.11.001

4. Papernot, N., McDaniel, P, Jha, S., Fredrikson, M., Celik, Z.B.,
Swami, A.: The limitations of deep learning in adversarial set-
tings. In: 2016 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 372-387 (2016). https://doi.org/10.1109/EuroSP.
2016.36. IEEE

5. Damodaran, A., Troia, ED., Visaggio, C.A., Austin, T.H., Stamp,
M.: A comparison of static, dynamic, and hybrid analysis for mal-
ware detection. J. Comput. Virol. Hack. Tech. 13, 1-12 (2017).
https://doi.org/10.1007/s11416-015-0261-z

6. Erko, A.: Malware sandbox evasion: techniques, principles
and solutions (2022). https://www.apriorit.com/dev-blog/545-
sandbox-evading-malware

7. Yuceel, H.C.: Virtualization/sandbox evasion—how attackers
avoid malware analysis. Picus Giivenlik A.$ (2022). https://www.
picussecurity.com/resource/virtualization/sandbox-evasion-how-
attackers-avoid-malware-analysis

8. Kerckhoffs, A.: La cryptographie militaire. J. Sci. Militaires 9(4),
5-38 (1883)

9. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.L.P., Tygar,
J.D.: Adversarial machine learning. In: Proceedings of the 4th
ACM Workshop on Security and Artificial Intelligence. AlSec ’11,
pp. 43-58. Association for Computing Machinery, New York, NY,
USA (2011). https://doi.org/10.1145/2046684.2046692

10. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Intro-
duction. MIT Press (2018). https://doi.org/10.1016/S1364-
6613(99)01331-5

11. Watkins, C.J.C.H.: Learning from delayed rewards. King’s College,
Cambridge United Kingdom (1989). https://www.researchgate.
net/publication/33784417_Learning_From_Delayed_Rewards

12. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
1., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforce-
ment learning. CoRR arXiv:1312.5602 (2013). https://doi.org/10.
48550/ARXIV.1312.5602

13. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.,
Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K.,
Ostrovski, G., et al.: Human-level control through deep reinforce-
ment learning. Nature 518(7540), 529-533 (2015). https://doi.org/
10.1038/nature14236

14. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy
gradient methods for reinforcement learning with function approx-
imation. In: Solla, S., Leen, T., Miiller, K. (eds.) Proceedings of the
12th International Conference on Neural Information Processing
Systems. NIPS’99, vol. 12, pp. 1057-1063. MIT Press, Cambridge,
MA, USA (1999). https://proceedings.neurips.cc/paper/1999/file/
464d828b85b0bed98e80adeOa5c43b0f-Paper.pdf

15. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.:
Proximal policy optimization algorithms. CoRR arXiv:1707.06347
(2017). https://doi.org/10.48550/arXiv.1707.06347

16. Kowalczyk, K.: Portable Executable File Format (2018). https://
blog.kowalczyk.info/articles/pefileformat.html

17. Karl Bridge, M.: PE Format - Win32 apps (2019). https://docs.
microsoft.com/en-us/windows/win32/debug/pe-format

18. Pietrek, M.: An In-Depth Look into the Win32 Portable Executable
File Format (2008). https://docs.microsoft.com/en-us/previous-
versions/bb985992(v=msdn.10)?redirectedfrom=MSDN

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.av-test.org/en/statistics/malware/
https://www.sophos.com/en-us/content/security-threat-report
https://www.sophos.com/en-us/content/security-threat-report
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1007/s11416-015-0261-z
https://www.apriorit.com/dev-blog/545-sandbox-evading-malware
https://www.apriorit.com/dev-blog/545-sandbox-evading-malware
https://www.picussecurity.com/resource/virtualization/sandbox-evasion-how-attackers-avoid-malware-analysis
https://www.picussecurity.com/resource/virtualization/sandbox-evasion-how-attackers-avoid-malware-analysis
https://www.picussecurity.com/resource/virtualization/sandbox-evasion-how-attackers-avoid-malware-analysis
https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1016/S1364-6613(99)01331-5
https://doi.org/10.1016/S1364-6613(99)01331-5
https://www.researchgate.net/publication/33784417_Learning_From_Delayed_Rewards
https://www.researchgate.net/publication/33784417_Learning_From_Delayed_Rewards
http://arxiv.org/abs/1312.5602
https://doi.org/10.48550/ARXIV.1312.5602
https://doi.org/10.48550/ARXIV.1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://blog.kowalczyk.info/articles/pefileformat.html
https://blog.kowalczyk.info/articles/pefileformat.html
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/previous-versions/bb985992(v=msdn.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/bb985992(v=msdn.10)?redirectedfrom=MSDN

Creating valid adversarial...

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Goodfellow, 1., Shlens, J., Szegedy, C.: Explaining and harnessing
adversarial examples. In: 3rd International Conference on Learning
Representations (ICLR) (2015). https://doi.org/10.48550/ ARXIV.
1412.6572. arxiv:1412.6572

Anderson, H.S., Kharkar, A., Filar, B., Evans, D., Roth, P.: Learning
to evade static pe machine learning malware models via reinforce-
ment learning. CoRR arXiv:1801.08917 (2018). https://doi.org/10.
48550/arXiv.1801.08917

Fang, Y., Zeng, Y., Li, B., Liu, L., Zhang, L.: Deepdetectnet vs
rlattacknet: an adversarial method to improve deep learning-based
static malware detection model. Plos one 15(4), 0231626 (2020).
https://doi.org/10.1371/journal.pone.0231626

Song, W., Li, X., Afroz, S., Garg, D., Kuznetsov, D., Yin, H.:
Mab-malware: a reinforcement learning framework for attacking
static malware classifiers. arXiv preprint arXiv:2003.03100 (2020).
https://doi.org/10.48550/ARXIV.2003.03100

Quertier, T., Marais, B., Morucci, S., Fournel, B.: Merlin—malware
evasion with reinforcement learning. arXiv preprint (2022). https://
doi.org/10.48550/ARX1V.2203.12980 arXiv:2203.12980
Kolosnjaji, B., Demontis, A., Biggio, B., Maiorca, D., Giacinto,
G., Eckert, C., Roli, F.: Adversarial malware binaries: Evading
deep learning for malware detection in executables. In: 2018 26th
European Signal Processing Conference (EUSIPCO), pp. 533-537
(2018). https://doi.org/10.23919/EUSIPCO.2018.8553214 . IEEE.
arXiv:1803.04173

Kreuk, F., Barak, A., Aviv-Reuven, S., Baruch, M., Pinkas, B.,
Keshet, J.: Deceiving end-to-end deep learning malware detec-
tors using adversarial examples. CoRR arXiv:1802.04528 (2019)
https://doi.org/10.48550/ARXIV.1802.04528

Demetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A.:
Explaining vulnerabilities of deep learning to adversarial mal-
ware binaries. arXiv:1901.03583 (2019) https://doi.org/10.48550/
ARXIV.1901.03583

Yang, C., Xu, J., Liang, S., Wu, Y., Wen, Y., Zhang, B., Meng, D.:
Deepmal: maliciousness-preserving adversarial instruction learn-
ing against static malware detection. Cybersecurity 4(1), 1-14
(2021). https://doi.org/10.1186/542400-021-00079-5

Hu, W., Tan, Y.: Generating adversarial malware examples for
black-box attacks based on gan. CoRR arXiv:1702.05983 (2017).
https://doi.org/10.48550/ARXIV.1702.05983

Ebrahimi, M., Zhang, N., Hu, J., Raza, M.T., Chen, H.: Binary
black-box evasion attacks against deep learning-based static mal-
ware detectors with adversarial byte-level language model. CoRR
arXiv:2012.07994 (2020). https://doi.org/10.48550/ARXIV.2012.
07994

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

Demetrio, L., Biggio, B., Lagorio, G., Roli, F., Armando, A.:
Functionality-preserving black-box optimization of adversarial
windows malware. IEEE Trans. Inf. Forensics Secur. 16, 3469—
3478 (2021). https://doi.org/10.1109/TIFS.2021.3082330
Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,
J., Tang, J., Zaremba, W.: Openai gym. CoRR arXiv:1606.01540.
https://doi.org/10.48550/ARXIV.1606.01540 (2016)

Anderson, H.S., Roth, P.: Ember: an open dataset for training static
pe malware machine learning models. CoRR arXiv:1804.04637
(2018). https://doi.org/10.48550/ ARXIV.1804.04637

Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B.,
Nicholas, C.: Malware detection by eating a whole exe (2017).
https://doi.org/10.48550/ARXIV.1710.09435

Chen, S., Xue, M., Fan, L., Hao, S., Xu, L., Zhu, H., Li, B.:
Automated poisoning attacks and defenses in malware detection
systems: an adversarial machine learning approach. Comput. Secur.
73, 326-344 (2018). https://doi.org/10.1016/j.cose.2017.11.007
Thomas, R.: LIEF—Library to Instrument Executable Formats
(2017). https://lief.quarkslab.com/

Carrera, E.: Pefile (2017). https://github.com/erocarrera/pefile
Guarnieri, C.: Cuckoo Sandbox—Automated Malware Analysis
(2012). https://cuckoosandbox.org/

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Gonzalez,
J., Goldberg, K., Stoica, I.: Ray rllib: A composable and scalable
reinforcement learning library. CoRR arXiv:1712.09381 (2017).
https://doi.org/10.48550/arXiv.1712.09381

rukaimi: PE Bliss, Cross-Platform Portable Executable C++
Library. GitHub (2012). https://github.com/BackupGGCode/
portable-executable-library

IBM: what is overfitting? (2022). https://www.ibm.com/topics/
overfitting

AV-Comparatives: Malware Protection Test March 2023 (2023).
https://www.av-comparatives.org/tests/malware-protection-test-
march-2023/

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.48550/ARXIV.1412.6572
https://doi.org/10.48550/ARXIV.1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1801.08917
https://doi.org/10.48550/arXiv.1801.08917
https://doi.org/10.48550/arXiv.1801.08917
https://doi.org/10.1371/journal.pone.0231626
http://arxiv.org/abs/2003.03100
https://doi.org/10.48550/ARXIV.2003.03100
https://doi.org/10.48550/ARXIV.2203.12980
https://doi.org/10.48550/ARXIV.2203.12980
http://arxiv.org/abs/2203.12980
https://doi.org/10.23919/EUSIPCO.2018.8553214
http://arxiv.org/abs/1803.04173
http://arxiv.org/abs/1802.04528
https://doi.org/10.48550/ARXIV.1802.04528
http://arxiv.org/abs/1901.03583
https://doi.org/10.48550/ARXIV.1901.03583
https://doi.org/10.48550/ARXIV.1901.03583
https://doi.org/10.1186/s42400-021-00079-5
http://arxiv.org/abs/1702.05983
https://doi.org/10.48550/ARXIV.1702.05983
http://arxiv.org/abs/2012.07994
https://doi.org/10.48550/ARXIV.2012.07994
https://doi.org/10.48550/ARXIV.2012.07994
https://doi.org/10.1109/TIFS.2021.3082330
http://arxiv.org/abs/1606.01540
https://doi.org/10.48550/ARXIV.1606.01540
http://arxiv.org/abs/1804.04637
https://doi.org/10.48550/ARXIV.1804.04637
https://doi.org/10.48550/ARXIV.1710.09435
https://doi.org/10.1016/j.cose.2017.11.007
https://lief.quarkslab.com/
https://github.com/erocarrera/pefile
https://cuckoosandbox.org/
http://arxiv.org/abs/1712.09381
https://doi.org/10.48550/arXiv.1712.09381
https://github.com/BackupGGCode/portable-executable-library
https://github.com/BackupGGCode/portable-executable-library
https://www.ibm.com/topics/overfitting
https://www.ibm.com/topics/overfitting
https://www.av-comparatives.org/tests/malware-protection-test-march-2023/
https://www.av-comparatives.org/tests/malware-protection-test-march-2023/

	Creating valid adversarial examples of malware
	Recommended Citation

	Creating valid adversarial examples of malware
	Abstract
	1 Introduction
	2 Background
	2.1 Adversarial machine learning
	2.2 Reinforcement learning
	2.2.1 Algorithms

	2.3 Portable executable file format
	2.3.1 MS-DOS header and stub program
	2.3.2 COFF file header
	2.3.3 Optional header
	2.3.4 Section headers and data

	3 Related work
	3.1 Reinforcement learning-based attacks
	3.2 Gradient-based attacks
	3.3 Other methods

	4 Adversarial malware generator
	4.1 PE file modifications
	4.1.1 Validity of PE file modifications

	4.2 Malware environment
	4.3 Reinforcement learning agents

	5 Evaluation
	5.1 Setup
	5.2 Evaluation of the preservation of functionality
	5.3 Generating adversarial malware examples
	5.3.1 Optimization and selection of RL agents
	5.3.2 Evaluation of RL agents

	5.4 Transferability of adversarial attack
	5.4.1 Transferability to the MalConv classifier
	5.4.2 Transferability to real-world antiviruses

	5.5 Discussion and future work

	6 Conclusion
	Acknowledgements
	Appendix A
	References

