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A B S T R A C T

Transformer, built on the self-attention mechanism, has been demonstrated to be effective in numerous
applications. However, in the context of prognostics and health management, the self-attention mechanism
in the Transformer is not effective in selecting the most important features that are highly correlated with the
remaining useful life (RUL) of a component. To address this issue, we developed a novel conditional variational
transformer architecture consisting of four networks: two generative networks and two predictive networks.
The first generative network uses the transformer encoder–decoder as well as both condition monitoring data
and RUL as input to extract the most important features in one feature space from condition monitoring data.
The second generative network uses the transformer encoder and condition monitoring data to extract features
in another feature space. The two predictive networks use the extracted features in two different feature spaces
to make predictions. A KL-divergence is used to minimize the distance between the two feature spaces learned
by the first and second generative networks so that the feature space extracted from the second generative
network can approximate the feature space extracted from the first generative network. We demonstrated that
the proposed method is effective in predicting the RUL of bearings using two datasets.

1. Introduction

Rotating machinery refers to a broad range of machines that rotate
around an axis, such as turbines, generators, pumps, compressors, and
engines [1]. These machines have a wide range of applications in many
fields, including power generation, oil and gas, transportation, and
manufacturing [2]. Turbines generate mechanical energy from fluid
energy by rotating blades, while generators produce electrical energy
from mechanical energy through a rotor rotating within a stator [3].
Pumps and compressors, on the other hand, transfer fluids or gases us-
ing rotating impellers or pistons. Bearings play a crucial role in ensuring
the smooth and efficient operation of rotating machinery by supporting
and facilitating shaft rotation through a low-friction interface between
a shaft and its housing, reducing wear and tear on machine compo-
nents [4]. However, bearings degrade over time due to high loads,
inadequate lubrication, contamination, or misalignment [5]. Bearing
degradation can lead to excessive vibration and noise, low efficiency,
and high energy consumption, and if left unchecked, can result in
catastrophic failures that cause costly repairs, machine downtime, and
potential safety hazards [6]. Therefore, it is critical to monitor and
predict the health condition and remaining useful life (RUL) of bearings
to reduce machine downtime.

∗ Corresponding author.
E-mail address: yupeng.wei@sjsu.edu (Y. Wei).

Over the past decade, new sensing technology allows one to monitor
the health condition of bearings more effectively. With more cost-
effective sensors, data-driven methods have become widely adopted
for predicting the RUL of bearings, as they can perform prognostics
using real-time condition monitoring data without prior knowledge.
These data-driven methods can be grouped into two classes: traditional
machine learning and deep learning methods. Traditional machine
learning methods include support vector regression [7], Gaussian pro-
cess [8], ensemble learning [9], Markov model [10], and others. For
instance, Wang et al. [11] introduced a multi-support vector regression
approach to acquire optimized sub-model parameters for RUL predic-
tions of bearings. After obtaining the optimized model parameters,
an automatic weight updating mechanism was proposed to assess the
appropriateness of each sub-model for more robust prediction perfor-
mance. A publicly accessible dataset was used to assess the prediction
performance of the presented method, and the results reflected that
the RMSE of prediction was 14.98 cycles. Meng et al. [12] integrated
the gray Markov model with the fractal spectrum theory to track
the degradation trajectory of rolling bearings. The presented method
was compared to the generalized mathematical morphology particle
characteristic, showing that the presented method can reduce the RMSE
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by 4%. Wang et al. [13] combined a feature-level fusion approach with
an ensemble learning approach to fully identify the deep representation
of condition monitoring data to estimate the RUL of bearings. In the
presented ensemble learning approach, a diversity of base learners
were aggregated to boost the RUL prediction performance. The results
showed that combining feature-level fusion with ensemble learning
outperforms solely using ensemble learning approaches.

Traditional machine learning methods are not effective in learning
complex and nonlinear relationships from condition monitoring data.
To address this issue, in recent years, deep learning methods have
become increasingly popular to predict the RUL due to their ability
to learn complex patterns and handle large volumes of data. These
deep learning methods can be broadly categorized into two subgroups:
recurrent and non-recurrent networks. The non-recurrent deep learning
techniques include convolutional neural network (CNN) [14], artificial
neural network (ANN) [15], autoencoders [16], graph neural network
(GNN) [17,18], and generative models such as variational autoencoder
(VAE) [19] and generative adversarial network (GAN) [20]. As an
example, Zhu et al. [21] proposed a multiscale CNN to extract deep
representations from condition monitoring data, and the extracted
deep representations were combined with time–frequency attributes for
RUL prediction of bearings. The multiscale CNN was able to preserve
global and local representations in comparison with traditional CNN
approaches, and the results reflected that the presented multiscale CNN
enhances prediction performance. Xu et al. [16] presented a convolu-
tional autoencoder to extract features from condition monitoring data
collected from the depreciated rolling bearings, and a health index
scaling function was adopted to downscale the extracted features. The
results showed that the presented method is efficient in predicting the
RUL and evaluating the degradation stages of rolling bearings. Yang
et al. [22] utilized a GNN to estimate the RUL of bearings, where
regression shapelet was first adopted to build graphs of the condition
monitoring data, and GNN was adopted to handle the topological
structures of the built graphs. Suh et al. [23] employed a GAN to
generate multiscale features for estimating the RUL of bearings. To
capture sequence patterns in one-dimensional vibration signals, they
introduced a U-Net architecture. The results revealed that the proposed
technique extracted effective features to improve prediction accuracy.

While many studies have explored the use of non-recurrent neural
networks for bearing RUL prediction, these methods are often not
effective in dealing with time series data because they are not able
to recognize the sequential characteristics of condition monitoring
data. By contrast, recurrent deep learning algorithms such as recurrent
neural network (RNN) [24], long short-term memory (LSTM) [25,26],
gated recurrent network (GRU) [27], and their bidirectional versions
such as bidirectional LSTM and bidirectional GRU [28] have been
demonstrated to be more effective in estimating the RUL of bearings.
As an example, Ma et al. [29] introduced a deep convolutional LSTM
for bearing RUL prediction. The convolutional operation in the pro-
posed LSTM cell was capable of extracting time–frequency features and
preserving long-term dependencies simultaneously. Numerical results
have shown that the proposed convolutional LSTM outperforms the
deep CNN and LSTM cell. Zhang et al. [30] developed a parallel
hybrid deep learning method that integrates 1D CNN and bidirectional
GRU for real-time RUL predictions, enabling the parallel extraction
of spatial and temporal features from condition monitoring data. Han
et al. [31] combined the stacked autoencoder and RNN to estimate the
remaining lifetime of bearings. The stacked autoencoder was adopted
to fuse features into health indices, and RNN was then implemented
to construct the predicted model. Moreover, to deal with the issue
brought by insufficient data, the spline curve interpolation was adopted
to increase the model accuracy and robustness.

Although recurrent deep learning techniques have been widely
used for bearing RUL predictions, they are not effective in captur-
ing the long-term dependency or memory in condition monitoring

data [32]. To address this issue, attention mechanisms, especially self-
attention mechanisms [33], are increasingly adopted. The self-attention
mechanism includes three components: the query, the key, and the
value, which are generated using the condition monitoring data. The
self-attention mechanism computes a score for each key–value pair
based on how well it matches the query, and the scores are then
converted into probabilities using a softmax function. These probabil-
ities are used to weight the values, so that the predictive model can
utilize the most significant features of the condition monitoring data
to make predictions. Among the deep learning methods that use the
self-attention mechanism, transformer is one of the most powerful and
effective algorithms. The transformer architecture combines attention
with other features such as positional encoding and feed-forward neural
networks to reveal the nonlinear correlation in condition monitoring
data, thereby significantly improving prediction performance. For in-
stance, Su et al. [34] employed the transformer encoder to predict the
RUL of bearings. Their proposed method included two stages, where the
first stage extracted low-level features using a feature extraction mecha-
nism, and the second stage utilized the transformer encoder to estimate
the RUL. Two publicly available datasets were utilized to verify the
effectiveness of the presented method, and results have shown that the
transformer encoder leads to an increased prediction performance. Ding
et al. [35] introduced a convolutional transformer that integrates the
convolutional operation and the self-attention mechanism to estimate
the RUL of bearings. The convolutional operation was used to reveal
the local dependencies in condition monitoring data, and the self-
attention mechanism was adopted to reveal the global dependencies
of condition monitoring data. Zhang et al. [36] proposed a novel
Transformer model to predict the RUL, where a multi-head dual sparse
self-attention mechanism was introduced to improve the computational
efficiency. Experimental results have shown that the proposed method
outperforms conventional Transformer and other data-driven methods.

While several studies have shown that the transformer model is
effective in predicting the RUL of bearings [37], the current transformer
model that uses the self-attention mechanism also has limitations. For
example, the self-attention mechanism relies solely on the condition
monitoring data to generate queries, keys, and values. These queries
and keys are used to create an attention matrix, which is multiplied by
the generated value to extract features for RUL prediction. Because both
queries and keys do not include any information about the RUL, the at-
tention matrix does not necessarily extract the most important features
that are highly correlated with the RUL. To address the limitation of the
self-attention mechanism in the conventional transformer models, we
developed a novel conditional variational transformer architecture that
consists of four networks: two generative networks and two predictive
networks. Both generative networks learn deep-level representations in
two different feature spaces of the condition monitoring data, while
the predictive networks use these representations to predict RUL. The
first generative network uses a transformer encoder–decoder architec-
ture to learn deep-level representations in one feature space of the
condition monitoring data. The inputs of the transformer encoder are
the condition monitoring data, while the inputs of the transformer
decoder are the true RUL of bearings. We also introduced a cross-
attention mechanism in the first generative network such that queries
are generated using the true RUL data, while keys and values are gen-
erated using condition monitoring data. The cross-attention mechanism
allows one to construct a more effective attention matrix to extract the
most important features that are highly correlated with the true RUL.
The deep-level representations in one feature space of the condition
monitoring data learned by the first generative network are then fed
into the first predictive network to predict RUL. One issue with the
cross-attention mechanism is that the true RUL data are not available
in the testing phase, although the true RUL data are available in the
training phase. To address this issue, we introduced the second gener-
ative network that uses the transformer encoder architecture with only
condition monitoring data as input to learn deep-level representations
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in another feature space. The learned representations in another feature
space are then fed into the second predictive network to predict the
RUL. Then, we used a Kullback–Leibler (KL) divergence to minimize the
distance between two feature spaces so that the feature space extracted
from the second generative network can approximate the feature space
extracted from the first generative network. Therefore, even without
the true RUL, the feature space extracted from the first generative
network can be taken into account when the feature space extracted
from the second generative network is used for testing.

We also introduced a two-stage training process to train the pro-
posed conditional variational transformer. In the first training stage,
we trained both generative networks and both predictive networks by
minimizing two prediction losses and the KL-divergence loss simul-
taneously. In the second training stage, we employed a fine-tuning
mechanism to tune the parameters in the second predictive network by
minimizing a single prediction loss only. The first training stage mainly
aims at minimizing the distance between two feature spaces generated
by two generative networks, and the second training stage aims at
minimizing the prediction loss so that the prediction performance
can be optimized. The contributions of this work are summarized as
follows:

• Two generative networks were introduced to learn deep-level
features in two different feature spaces from condition monitoring
data, where the first generative network involves a cross-attention
mechanism to select the most important features that are highly
correlated with the RUL of a bearing. Two predictive networks
were introduced to use the learned features to predict the RUL.

• The KL-divergence was introduced to minimize the distance be-
tween two feature spaces, allowing the feature space extracted
from the second generative network to approximate the feature
space extracted from the first generative network.

• A two-stage training process was introduced to train a predictive
model. In the first stage, both generative networks and both
predictive networks were trained. In the second stage, a fine-
tuning mechanism was adopted to optimize the parameters in the
second predictive network.

The remaining sections of this work are organized as follows: Sec-
tion 2 presents the theoretical background and architecture of the
proposed conditional variational transformer. Sections 3 and 4 utilize
two publicly available datasets to demonstrate the efficiency of the
presented conditional variational transformer. Section 5 provides a
summary of this work and discussions on future work.

2. Conditional variational transformer

In this section, the conditional variational transformer is intro-
duced. First, the theoretical background of the conditional variational
transformer is presented. Second, the architecture of the proposed con-
ditional variational transformer is detailed. Last, the two-stage train-
ing process for the proposed conditional variational transformer is
presented.

2.1. Conditional variational inference

To reduce computational costs, we begin by extracting features from
the condition monitoring data of bearings in both time and frequency
domains. We then sample these features using a sliding window of size
𝒮 . The 𝑡th sampled features for bearing unit 𝑖 at time 𝑡 is represented
by 𝐗𝑖,𝑡 ∈ R𝒮×ℱ , where ℱ denotes the number of extracted features. In
the context of prognostics health management, most predictive models
aim to map the distribution of extracted features 𝐗𝑖,𝑡 to the true RUL
𝑦𝑖,𝑡. Mathematically, this can be expressed as Eq. (1),

max
𝛷

E
[

log 𝑝𝛷
(

𝑦𝑖,𝑡|𝐗𝑖,𝑡
)]

(1)

where 𝑦𝑖,𝑡 represents the ground truth of RUL for bearing 𝑖 at time 𝑡,
while 𝛷 denotes the parameters used to map 𝐗𝑖,𝑡 to 𝑦𝑖,𝑡. The notation
E[⋅] denotes the expectation. The objective of Eq. (1) is to maximize the
expectation of the log-likelihood of the true RUL given the extracted
features, so that the distribution of 𝐗𝑖,𝑡 can be mapped to 𝑦𝑖,𝑡. By
applying Bayes’ theorem, we can re-express Eq. (1) as Eq. (2).

max
𝛷

E

[

log
𝑝𝛷

(

𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

𝑝𝛷
(

𝐗𝑖,𝑡
)

]

(2)

Most deep learning-based predictive models for RUL prediction of bear-
ings use 𝐗𝑖,𝑡 to learn deep-level representations 𝐅𝑖,𝑡, and subsequently
employ 𝐅𝑖,𝑡 to predict the RUL 𝑦𝑖,𝑡 of the bearings [38]. Consequently,
we can express the joint probability distribution of 𝐗𝑖,𝑡, 𝐅𝑖,𝑡, and 𝑦𝑖,𝑡 as
Eq. (3).

𝑝𝛷
(

𝐗𝑖,𝑡,𝐅𝑖,𝑡, 𝑦𝑖,𝑡
)

= 𝑝𝛷
(

𝑦𝑖,𝑡|𝐅𝑖,𝑡
)

⋅ 𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

⋅ 𝑝𝛷
(

𝐗𝑖,𝑡
)

(3)

We can use Bayes’ theorem to express the joint distribution of 𝐗𝑖,𝑡 and
𝑦𝑖,𝑡 as Eq. (4).

𝑝𝛷
(

𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

=
𝑝𝛷

(

𝐗𝑖,𝑡,𝐅𝑖,𝑡, 𝑦𝑖,𝑡
)

𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
) =

𝑝𝛷
(

𝑦𝑖,𝑡|𝐅𝑖,𝑡
)

⋅ 𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

⋅ 𝑝𝛷
(

𝐗𝑖,𝑡
)

𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

(4)

By incorporating Eq. (4) into Eq. (2), Eq. (5) can be obtained.

max
𝛷

E

[

log
𝑝𝛷

(

𝑦𝑖,𝑡|𝐅𝑖,𝑡
)

⋅ 𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

]

(5)

As the conditional posterior inference 𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

is intractable, it
is commonly accepted that a variational inference method can be used
to approximate this posterior inference. This leads us to Eq. (6),

max
𝛷,𝛱

E

[

log
𝑝𝛷

(

𝑦𝑖,𝑡|𝐅𝑖,𝑡
)

⋅ 𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
) ⋅

𝑞𝛱
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

𝑞𝛱
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

]

(6)

where 𝑞𝛱 (⋅) denotes the variational inference, while 𝛱 refers to the
set of parameters in the variational inference. We can then rewrite
Eq. (6) as Eq. (7), where KL(⋅) represents the KL-divergence between
two distributions.

max
𝛷,𝛱

E𝐅𝑖,𝑡∼𝑞𝛱

[

log
𝑝𝛷

(

𝑦𝑖,𝑡|𝐅𝑖,𝑡
)

⋅ 𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

𝑞𝛱
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

]

+ KL
(

𝑞𝛱
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

||𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
))

(7)

Since the KL-divergence cannot be negative and the KL-divergence term
in Eq. (7) is difficult to handle, it is common practice to maximize the
evidence lower bound (ELBO) of Eq. (7) instead of maximizing the orig-
inal optimization problem [39]. The ELBO of Eq. (7) can be represented
as Eq. (8), where the KL-divergence term has been removed.

ELBO ∶= max
𝛷,𝛱

E𝐅𝑖,𝑡∼𝑞𝛱

[

log
𝑝𝛷

(

𝑦𝑖,𝑡|𝐅𝑖,𝑡
)

⋅ 𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

𝑞𝛱
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

]

(8)

We can express this ELBO as the expectation of the log-likelihood
of the true RUL given the learned deep-level representations and the
KL-divergence of two distributions. This is represented as Eq. (9).

ELBO ∶= max
𝛷,𝛱

E𝐅𝑖,𝑡∼𝑞𝛱
[

log 𝑝𝛷
(

𝑦𝑖,𝑡|𝐅𝑖,𝑡
)]

− KL
(

𝑞𝛱
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

||𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
))

(9)

The introduced ELBO consists of two terms: the expectation term and
the KL-divergence term. The expectation term aims to maximize the ex-
pectation of the log-likelihood of the true RUL 𝑦𝑖,𝑡 given the deep-level
representations 𝐅𝑖,𝑡 learned from 𝐗𝑖,𝑡. The KL-divergence term aims
to minimize the gap between the posterior inference 𝑝𝛷

(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

and
the variational inference 𝑞𝛱

(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

. To approximate the three
probability distributions in Eq. (9), any sophisticated neural networks
can be adopted based on the Universal Approximation Theorem [40]. In
this work, we use transformer encoders and decoders for this purpose.
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2.2. Conditional variational transformer architecture

The conditional probability distributions in the ELBO are approxi-
mated with transformer encoders and decoders due to their superior
predictive capability. In the proposed architecture, one transformer
encoder is used to approximate 𝑝𝛷

(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

, one transformer encoder–
decoder is used to approximate 𝑞𝛱

(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

, and two feedforward
artificial neural networks are used to approximate 𝑝𝛷

(

𝑦𝑖,𝑡|𝐅𝑖,𝑡
)

. The fol-
lowing subsections will introduce the details of these approximations.

2.2.1. Approximate 𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

with transformer encoder
The conditional probability distribution 𝑝𝛷

(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

is approxi-
mated using a transformer encoder network. The input to this trans-
former encoder network is the sampled feature matrix 𝐗𝑖,𝑡 for all
bearing units 𝑖 and time 𝑡, and the output is the learned deep-level
representations 𝐅𝑖,𝑡. We refer to this transformer encoder network as
the generative encoder network and denote it as E𝑝 since its purpose is
to generate the deep-level representations 𝐅𝑖,𝑡. To leverage the time de-
pendency of 𝐗𝑖,𝑡, the transformer encoder network starts with positional
encoding, as the transformer encoder does not include any recurrent
attributes. Here, we employ conventional sine and cosine functions
with distinct frequencies as the positional encoding function, as this ap-
proach enables the model to extend its capability to handle sequences of
greater length compared to those encountered in the training data [41].
The positional encoding function is given by Eq. (10),

𝑃𝐸(𝑝𝑜𝑠,2𝑗) = sin
(

𝑝𝑜𝑠∕100002𝑗∕𝑑𝑚𝑜𝑑𝑒𝑙
)

𝑃𝐸(𝑝𝑜𝑠,2𝑗+1) = cos
(

𝑝𝑜𝑠∕100002𝑗∕𝑑𝑚𝑜𝑑𝑒𝑙
) (10)

where 𝑝𝑜𝑠 denotes the position, 𝑗 is the dimension, 𝑑𝑚𝑜𝑑𝑒𝑙 refers to
feature size, which can be set as 𝑑𝑚𝑜𝑑𝑒𝑙 = ℱ . Next, the positional
encoding is added to the sampled feature matrices 𝐗𝑖,𝑡, which can be
expressed as Eq. (11).

𝐗(𝑃𝐸)
𝑖,𝑡 = 𝐗𝑖,𝑡 + 𝑃𝐸𝑖,𝑡 (11)

In Eq. (11), 𝑃𝐸𝑖,𝑡 refers to the positional encoding for the 𝑡th sampled
feature matrix of bearing unit 𝑖. The sampled feature matrices with
positional encoding are then inputted into a multi-head self-attention
mechanism to select the most important features of the sampled 𝐗𝑖,𝑡. A
single-head self-attention mechanism is represented mathematically as
Eq. (12), where 𝐖(ℎ,E𝑝)

𝑄 ∈ Rℱ ×𝒟 refers to a parameter matrix used to
generate queries in the generative encoder network E𝑝 for the ℎth head,
𝐖(ℎ,E𝑝)

𝐾 ∈ Rℱ ×𝒟 refers to a parameter matrix used to generate keys in
E𝑝 for the ℎth head, 𝐖(ℎ,E𝑝)

𝑉 ∈ Rℱ ×𝒟 refers to a parameter matrix used
to generate values in E𝑝 for the ℎth head, and 𝐀(ℎ,E𝑝)

𝑖,𝑡 ∈ R𝒮×𝒮 refers to
the learned attention matrix in E𝑝 for the ℎth head.

𝐀
(

ℎ,E𝑝
)

𝑖,𝑡 = Softmax
(

𝐗(𝑃𝐸)
𝑖,𝑡 𝐖(ℎ,E𝑝)

𝑄

(

𝐗(𝑃𝐸)
𝑖,𝑡 𝐖(ℎ,E𝑝)

𝐾

)𝑇
∕
√

𝒟
)

𝐎(ℎ,E𝑝)
𝑖,𝑡 =

(

𝐗(𝑃𝐸)
𝑖,𝑡 𝐖(ℎ,E𝑝)

𝑉

)

⋅ 𝐀(ℎ,E𝑝)
𝑖,𝑡

(12)

Then, the multi-head self-attention mechanism is mathematically rep-
resented as Eq. (13),

𝐎(E𝑝)
𝑖,𝑡 =

(

||

𝐻
ℎ=1𝐎

(ℎ,E𝑝)
𝑖,𝑡

)

⋅𝐖(E𝑝)
𝑂 (13)

where 𝐻 denotes the quantity of heads in the multi-head self-attention
mechanism, || denotes the concatenation operator, and 𝐖(E𝑝)

𝑂 is a
parameter matrix to project the resulting tensors after performing con-
catenation. Next, the resulting tensor 𝐎(E𝑝)

𝑖,𝑡 are fed into a normalization
layer to update the obtained 𝐎(E𝑝)

𝑖,𝑡 , such a layer includes both residual
connection and normalization, which can be represented as Eq. (14).

𝐎(E𝑝)
𝑖,𝑡 = LayerNorm

(

𝐎(E𝑝)
𝑖,𝑡 + 𝐗(𝑃𝐸)

𝑖,𝑡

)

(14)

Next, the updated 𝐎(E𝑝)
𝑖,𝑡 is passed through two parallel feedforward

layers, followed by two parallel normalization layers, to generate the

mean 𝜇(1)
𝑖,𝑡 and variance 𝛴(1)

𝑖,𝑡 of the probability distribution 𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

.
This process can be mathematically represented as Eq. (15), where
𝐖(E𝑝)

1 and 𝐖(E𝑝)
2 are the kernel weight matrices in the two feedforward

layers used to generate 𝜇(1)
𝑖,𝑡 and 𝛴(1)

𝑖,𝑡 , respectively. Similarly, 𝐛(E𝑝)1 and
𝐛(E𝑝)2 are the bias weight vectors in the two feedforward layers used to
generate 𝜇(1)

𝑖,𝑡 and 𝛴(1)
𝑖,𝑡 , respectively. The rectified linear unit activation

function is denoted by the term Relu.

𝜇(1)
𝑖,𝑡 = LayerNorm

(

Relu
(

𝐖(E𝑝)
1 𝐎(E𝑝)

𝑖,𝑡 + 𝐛(E𝑝)
1

)

+𝐎(E𝑝)
𝑖,𝑡

)

𝛴(1)
𝑖,𝑡 = LayerNorm

(

Relu
(

𝐖(E𝑝)
2 𝐎(E𝑝)

𝑖,𝑡 + 𝐛(E𝑝)
2

)

+𝐎(E𝑝)
𝑖,𝑡

) (15)

Here, it is commonly presumed that 𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

follows a normal
distribution, which can be denoted as Eq. (16).

𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

∼ 
(

𝐅𝑖,𝑡;𝜇
(1)
𝑖,𝑡 , 𝛴

(1)
𝑖,𝑡

)

(16)

Next, we use the generated 𝜇(1)
𝑖,𝑡 and 𝛴(1)

𝑖,𝑡 to sample the deep-level
representations 𝐅(E𝑝)

𝑖,𝑡 for the generative encoder network E𝑝, which
can be expressed as Eq. (17), where 𝜉 denotes a random variable that
conforms to a multivariate normal distribution characterized by a zero
mean and unit variance.

𝐅(E𝑝)
𝑖,𝑡 = 𝜇(1)

𝑖,𝑡 + 𝛴(1)
𝑖,𝑡 ⊙ 𝜉, 𝜉 ∼  (𝟎, 𝐈) (17)

Fig. 1 illustrates the architecture of the transformer encoder that
utilizes multiple encoder layers to generate deep-level representations
𝐅(E𝑝)
𝑖,𝑡 . In the first encoder layer, the feature matrices 𝐗𝑖,𝑡 for all 𝑖 and

𝑡 are inputted into the multi-head attention mechanism to extract the
most important features. The extracted features are then projected into
a different space using a feedforward layer, and residual connections
and normalization are applied to increase model robustness. The pro-
posed transformer encoder stacks such layers multiple times. The last
two parallel feedforward layers are followed by two parallel normal-
ization layers to generate the mean 𝜇(1)

𝑖,𝑡 and the variance 𝛴(1)
𝑖,𝑡 . The

generated mean and variance are utilized to sample 𝐅(E𝑝)
𝑖,𝑡 . By following

the above process, we can generate the deep-level representations 𝐅(E𝑝)
𝑖,𝑡

to approximate 𝑝𝛷
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡
)

.

2.2.2. Approximate 𝑞𝛱
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

with transformer encoder–decoder
The conditional probability distribution 𝑞𝛱

(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

is approx-
imated using a transformer encoder–decoder network. The input to
the transformer encoder are the sampled feature matrices 𝐗𝑖,𝑡 for all
bearing units 𝑖 and all time steps 𝑡. Based on the condition given in
the conditional probability, the input to the transformer decoder is the
ground truth of RUL 𝑦𝑖,𝑡 for all units 𝑖 at time 𝑡. To better use the true
RUL to select the most relevant features for making predictions, we
use a vector 𝐲𝑖,𝑡 as the input to the transformer decoder. This vector
can be mathematically represented as 𝐲𝑖,𝑡 =

(

𝑦𝑖,𝑡−𝒮+1,… , 𝑦𝑖,𝑡
)

. The
output of this transformer encoder–decoder network is also the learned
deep-level representations 𝐅𝑖,𝑡. We designate this transformer encoder–
decoder network as the generative encoder–decoder network (ED𝑞), as
it also intends to generate the deep-level representations. We denote
the transformer encoder as E𝑞 and the transformer decoder as D𝑞 .

The transformer encoder E𝑞 is similar to the transformer encoder
E𝑝, with the exception that E𝑞 does not generate mean and variance
vectors. Specifically, each encoder layer of E𝑞 consists of four sub-
layers that are connected to each other: a multi-head self-attention
layer, a residual connection and normalization layer, a feedforward
layer, and another residual connection and normalization layer. The
outputs of the transformer encoder E𝑞 are denoted as 𝐎(E𝑞 )

𝑖,𝑡 , which are
obtained by applying Eq. (10) to Eq. (14) repeatedly. The outputs of the
transformer encoder E𝑞 are subsequently inputted into the transformer
decoder network D𝑞 . The transformer decoder network D𝑞 also starts
with positional encoding, which makes use of the order of the sequence
by using sine and cosine functions with distinct frequencies as the
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Fig. 1. (a) The architecture of the transformer encoder with multiple encoder layers that is utilized to generate deep-level representations 𝐅(E𝑝 )
𝑖,𝑡 ; (b) multi-head self-attention

mechanism.

positional encoding function. The positional encoding is added to the
true RUL vectors 𝐲𝑖,𝑡, which can be represented as Eq. (18).

𝐲(𝑃𝐸)
𝑖,𝑡 = 𝐲𝑖,𝑡 + 𝑃𝐸𝑖,𝑡 (18)

Next, the vectors 𝐲(𝑃𝐸)
𝑖,𝑡 for all bearings 𝑖 at time 𝑡 are fed into the

multi-head self-attention mechanism using Eqs. (12) and (13), and the
resulting outputs are denoted as 𝐲′𝑖,𝑡. Next, the resulting tensor 𝐲′𝑖,𝑡 is fed
into a normalization layer, which includes both residual connection and
normalization and can be denoted as Eq. (19).

𝐲′𝑖,𝑡 = LayerNorm
(

𝐲′𝑖,𝑡 + 𝐲(𝑃𝐸)
𝑖,𝑡

)

(19)

Next, the outputs 𝐲′𝑖,𝑡 and 𝐎(E𝑞)
𝑖,𝑡 are fed into the multi-head cross-

attention mechanism, where 𝐲′𝑖,𝑡 is employed to generate query, and
𝐎(E𝑞 )

𝑖,𝑡 is used to generate both keys and values. With using the 𝐲′𝑖,𝑡
learned from the true RUL to generate query, the prediction model
is capable of selecting the most important features that is highly
correlated with the true RUL to make predictions. A single head cross-
attention mechanism can be mathematically represented as Eq. (20),
where 𝐖(ℎ,D𝑞 )

𝑄 refers to a parameter matrix to generate query for the ℎth
head in D𝑞 , 𝐖

(ℎ,D𝑞 )
𝐾 refers to a parameter matrix to generate key for the

ℎth head in D𝑞 , 𝐖
(ℎ,D𝑞 )
𝑉 refers to a parameter matrix to generate value

for the ℎth head in D𝑞 , and 𝐀(ℎ,D𝑞 )
𝑖,𝑡 refers to the learned cross-attention

matrix in D𝑞 for head ℎ.

𝐀(ℎ,D𝑞 )
𝑖,𝑡 = Softmax

(

𝐲′𝑖,𝑡𝐖
(ℎ,D𝑞 )
𝑄

(

𝐎(E𝑞 )
𝑖,𝑡 𝐖(ℎ,D𝑞 )

𝐾

)𝑇
∕
√

𝒟
)

𝐎(ℎ,D𝑞 )
𝑖,𝑡 =

(

𝐎(E𝑞 )
𝑖,𝑡 𝐖(ℎ,D𝑞 )

𝑉

)

⋅ 𝐀(ℎ,D𝑞 )
𝑖,𝑡

(20)

The multi-head cross-attention mechanism is mathematically repre-
sented as Eq. (21), where 𝐖(D𝑞 )

𝑂 is a parameter matrix used to project
the concatenated output tensors.

𝐎(D𝑞 )
𝑖,𝑡 =

(

||

𝐻
ℎ=1𝐎

(ℎ,D𝑞 )
𝑖,𝑡

)

⋅𝐖(D𝑞 )
𝑂 (21)

After the multi-head cross-attention mechanism is employed, the re-
sulting tensor 𝐎(D𝑞 )

𝑖,𝑡 is normalized to update the obtained values. These
updated values are then passed through two parallel feedforward lay-
ers, followed by two parallel normalization layers, to generate the mean
𝜇(2)
𝑖,𝑡 and variance 𝛴(2)

𝑖,𝑡 of the probability distribution 𝑞𝛱
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

.
This generation process can be represented mathematically as Eq. (22),
where 𝐖(D𝑞 )

1 and 𝐖(D𝑞)
2 are the kernel weight matrices used in the two

feedforward layers to generate 𝜇(2)
𝑖,𝑡 and 𝛴(2)

𝑖,𝑡 , respectively, while 𝐛(D𝑞 )
1

and 𝐛(D𝑞)2 are the bias weight vectors used in the two feedforward layers
to generate 𝜇(2)

𝑖,𝑡 and 𝛴(2)
𝑖,𝑡 , respectively.

𝜇(2)
𝑖,𝑡 = LayerNorm

(

Relu
(

𝐖(D𝑞 )
1 𝐎(D𝑞 )

𝑖,𝑡 + 𝐛(D𝑞 )
1

)

+𝐎(D𝑞 )
𝑖,𝑡

)

𝛴(2)
𝑖,𝑡 = LayerNorm

(

Relu
(

𝐖(D𝑞 )
2 𝐎(D𝑞 )

𝑖,𝑡 + 𝐛(D𝑞 )
2

)

+𝐎(D𝑞 )
𝑖,𝑡

) (22)

Here, we also assume that the probability distribution 𝑞𝛱
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

follows a normal distribution, which can be written mathematically as

Eq. (23).

𝑞𝛱
(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

∼ 
(

𝐅𝑖,𝑡;𝜇
(2)
𝑖,𝑡 , 𝛴

(2)
𝑖,𝑡

)

(23)

After generating 𝜇(2)
𝑖,𝑡 and 𝛴(2)

𝑖,𝑡 , we use these values to sample the deep-
level representations 𝐅(ED𝑞 )

𝑖,𝑡 for the generative encoder–decoder net-
work ED𝑞 . This process can be represented mathematically as Eq. (24).

𝐅(ED𝑞 )
𝑖,𝑡 = 𝜇(2)

𝑖,𝑡 + 𝛴(2)
𝑖,𝑡 ⊙ 𝜉, 𝜉 ∼  (𝟎, 𝐈) (24)

Fig. 2 illustrates the architecture of the transformer encoder–decoder
network, which includes multiple encoder and decoder layers used to
generate deep-level representations 𝐅(ED𝑞 )

𝑖,𝑡 . In each encoder layer, four
operations are performed sequentially: multi-head self-attention, resid-
ual connection and normalization, feed-forward operation, and another
residual connection and normalization. These layers are stacked to
obtain the resulting tensor 𝐎(E𝑞 )

𝑖,𝑡 , which is then used in the multi-head
cross-attention mechanism in each decoder layer to generate corre-
sponding keys and values. Each decoder layer includes six operations,
performed sequentially: multi-head self-attention, residual connection
and normalization, multi-head cross-attention, residual connection and
normalization, feed-forward operation, and another residual connec-
tion and normalization. Specifically, within each multi-head cross-
attention mechanism, 𝐎(E𝑞 )

𝑖,𝑡 is used to generate keys and values, while
the conditional information learned from 𝐲𝑖,𝑡 is used to generate the
query. The transformer decoder stacks multiple transformer decoder
layers, where the last two parallel feedforward layers and followed by
two parallel normalization layers are used to generate the mean 𝜇(2)

𝑖,𝑡

and variance 𝛴(2)
𝑖,𝑡 . These values are utilized to sample 𝐅(ED𝑞 )

𝑖,𝑡 , resulting
in the approximation of 𝑞𝛱

(

𝐅𝑖,𝑡|𝐗𝑖,𝑡, 𝑦𝑖,𝑡
)

. By following this process, we
can generate the deep-level representations 𝐅(ED𝑞 )

𝑖,𝑡 .

2.2.3. Approximate 𝑝𝛷
(

𝑦𝑖,𝑡|𝐅𝑖,𝑡
)

with feed forward neural network
The purpose of the conditional probability distribution 𝑝𝛷

(

𝑦𝑖,𝑡|𝐅𝑖,𝑡
)

is to estimate the RUL of bearing unit 𝑖 at time 𝑡 by utilizing the
learned deep-level representations 𝐅(ED𝑞 )

𝑖,𝑡 . In this work, we employ a
feedforward neural network to approximate this distribution. This neu-
ral network is linked to the transformer encoder–decoder network ED𝑞 .
Additionally, following the suggestions in [42], we introduce another
feedforward neural network that connects to the transformer encoder
network E𝑝 to improve the prediction performance and robustness.
This network uses the learned deep-level representations 𝐅(E𝑝)

𝑖,𝑡 to make
RUL predictions. We refer to these two feedforward neural networks
as predictive networks because their goal is to use learned deep-level
representations to predict the RUL of bearings. The predictive network
connected to the transformer encoder network E𝑝 is denoted as P𝑝, and
the predictive network connected to the transformer encoder–decoder
network ED𝑞 is denoted as P𝑞 . The feedforward neural network with
a single layer that is used for RUL predictions can be represented
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Fig. 2. The architecture of the transformer encoder–decoder network with multiple encoder layers and decoder layers that is utilized to generate deep-level representations 𝐅(ED𝑞 )
𝑖,𝑡 .

mathematically as Eq. (25),

�̂�
(P𝑝)
𝑖,𝑡 = 𝜎

(

𝐖(P𝑝) ⋅ Flatten
(

𝐅(E𝑝)
𝑖,𝑡

)

+ 𝐛(P𝑝)
)

�̂�
(P𝑞 )
𝑖,𝑡 = 𝜎

(

𝐖(P𝑞 ) ⋅ Flatten
(

𝐅(ED𝑞 )
𝑖,𝑡

)

+ 𝐛(P𝑞 )
) (25)

where the symbol 𝜎 denotes the activation function, and Flatten refers
to the flatten function. 𝐖(P𝑝) and 𝐖(P𝑞 ) are the kernel parameter ma-
trices in the predictive networks P𝑝 and P𝑞 , respectively. 𝐛(P𝑝) and 𝐛(P𝑞 )

are the bias vectors in the predictive networks P𝑝 and P𝑞 , respectively.
The predicted RUL provided by the predictive network P𝑝 is denoted by
�̂�
(P𝑝)
𝑖,𝑡 , and the predicted RUL provided by the predictive network P𝑞 is

denoted by �̂�(P𝑞)𝑖,𝑡 . Using these notations, we can rewrite the expectation
term in the ELBO listed in Eq. (9) as Eq. (26), where 𝑦𝑖,𝑡 denotes the
true RUL for unit 𝑖 at time 𝑡.

P𝑞
predict =

∑

𝑖

∑

𝑡

(

�̂�
(P𝑞 )
𝑖,𝑡 − 𝑦𝑖,𝑡

)2
(26)

The other introduced predictive network, P𝑝, also results in a predictive
loss that can be written as Eq. (27).

P𝑝
predict =

∑

𝑖

∑

𝑡

(

�̂�
(P𝑝)
𝑖,𝑡 − 𝑦𝑖,𝑡

)2
(27)

Additionally, by using the reparameterization trick [43,44], we can
rewrite the KL-divergence in the ELBO listed in Eq. (9) as Eq. (28),
where 𝒹 refers to the dimensionality of the learned deep-level repre-
sentations, and 𝑡𝑟(⋅) denotes the trace of a matrix.

KL =
∑

𝑖

∑

𝑡

1
2

(

𝑡𝑟
[

(

𝛴(2)
𝑖,𝑡

)−1
𝛴(1)
𝑖,𝑡

]

+
(

𝜇(2)
𝑖,𝑡 − 𝜇(1)

𝑖,𝑡

)𝑇 (

𝛴(2)
𝑖,𝑡

)−1 (
𝜇(2)
𝑖,𝑡 − 𝜇(1)

𝑖,𝑡

)

−𝒹 − log
(

|𝛴(2)
𝑖,𝑡 |∕|𝛴

(1)
𝑖,𝑡 |

)

)

(28)

The overall training loss is the sum of all three losses from Eq. (26) to
Eq. (28), and it can be written as Eq. (29).

overall = P𝑞
predict + P𝑝

predict + KL (29)

The gradient descent method is employed to update the parameters in
the proposed conditional variational transformer network.

2.3. Two-stage training process of conditional variation transformer

Fig. 3 illustrates the two-stage training process and prediction pro-
cess of the proposed conditional variational transformer for predicting
the RUL. In the first training stage, the entire conditional variational
transformer is trained using the overall training loss overall. The KL-
divergence loss is backpropagated within both the transformer encoder
(E𝑝) and the transformer encoder–decoder network (E𝑞 and D𝑞). Sim-
ilarly, the prediction loss P𝑝

predict is backpropagated within both the
predictive network (P𝑝) and the transformer encoder E𝑝. The prediction
loss P𝑞

predict is also backpropagated within both the predictive network
P𝑞 and the transformer encoder–decoder network (E𝑞 and D𝑞). In the
second training stage, the trained transformer encoder E𝑝 obtained

from the first training stage is connected to the predictive network P𝑝,
and the parameters in E𝑝 are frozen. Only the predictive network P𝑝

is retrained by backpropagating the prediction loss P𝑝
predict. To predict

the RUL, the trained E𝑝 and the retrained P𝑝 are used. Specifically, the
encoder E𝑝 is used to extract the features of the input sequence, and
the predictive network P𝑝 is adopted to make the RUL prediction based
upon the extracted features.

Table 1 provides further details about the first and second training
stages used to train the proposed conditional variational transformer.
Specifically, the first training stage involves both the feedforward and
backpropagation processes. In the feedforward process, 𝐗𝑖,𝑡 with the
positional encoding 𝑃𝐸𝑖,𝑡 for all 𝑖 and 𝑡 are input to the generative
network E𝑝 to obtain 𝐅(E𝑝)

𝑖,𝑡 , while both 𝐗𝑖,𝑡 and 𝐲𝑖,𝑡 with the positional
encoding 𝑃𝐸𝑖,𝑡 for all 𝑖 and 𝑡 are input to the generative network E𝑞 and
D𝑞 to obtain 𝐅(ED𝑞 )

𝑖,𝑡 . The obtained 𝐅(E𝑝)
𝑖,𝑡 and 𝐅(ED𝑞 )

𝑖,𝑡 are then input to the
predictive networks P𝑝 and P𝑞 to obtain the RUL predictions �̂�

(P𝑝)
𝑖,𝑡 and

�̂�
(P𝑞 )
𝑖,𝑡 , respectively. In the backpropagation process, the overall training

loss overall is used to update the parameters within the entire condi-
tional variational transformer network, including E𝑝, E𝑞 , D𝑞 , P𝑝, and
P𝑞 . Similarly, the second training stage involves both the feedforward
and backpropagation processes. In the feedforward process, 𝐗𝑖,𝑡 with
the positional encoding 𝑃𝐸𝑖,𝑡 for all 𝑖 and 𝑡 are input to the generative
network E𝑝 to obtain 𝐅(E𝑝)

𝑖,𝑡 . The obtained 𝐅(E𝑝)
𝑖,𝑡 is then input to the

predictive network P𝑝 to obtain the RUL predictions �̂�
(P𝑝)
𝑖,𝑡 . The training

loss P𝑝
predict is employed to update parameters within the predictive

network P𝑝 only.

3. Case study I

3.1. Data description

In this case study, we demonstrated the effectiveness of the condi-
tional variational transformer using the FEMTO bearing dataset [45].
The dataset was collected from the PRONOSTIA platform, which is
designed to accelerate the wear and tear of rolling bearings, enabling
the detection of faults within hours. The platform consists of a gearbox
attached to a rotating motor, a pneumatic jack, and a regulator that
controls pressure using digital electro-pneumatic technology, which are
used to manage the speed and load-up pressure of the bearings. The
run-to-failure experiments were conducted with the platform, and were
discontinued if the measured vibration exceeded 20 g-forces. Fig. 4
displays the PRONOSTIA platform, the normal bearings before the
experiment, and the degraded bearings after the experiment. Table 2
shows the operating conditions used to collect the condition moni-
toring data in this dataset, as well as the bearing indices associated
with the distinct operating conditions. In this case study, a seven-fold
cross-validation was adopted to evaluate the prediction performance
of the proposed conditional variational transformer on Bearing1_1 to
Bearing1_7, demonstrating its ability to predict the RUL of bearings
under a constant condition. A five-fold cross-validation was also used
to evaluate the prediction performance of the proposed method on
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Fig. 3. The two-stage training process of the proposed conditional variational transformer, and the test process of RUL predictions of bearings.

Table 1
The first and second training stages that are used to train the proposed conditional variational transformer.
♢ First Training Stage
1. Extract features in both time-domain and frequency-domain, and the number of features is denoted as ℱ
2. Sample features and true RUL with a moving window to obtain feature matrix 𝐗𝑖,𝑡 and true RUL vector 𝐲𝑖,𝑡
3. Utilize a positional encoding function to obtain 𝑃𝐸𝑖,𝑡, and obtain 𝐗(𝑃𝐸)

𝑖,𝑡 and 𝐲(𝑃𝐸)
𝑖,𝑡

4. For iteration=1, . . . , 𝐼 do
4.1. For encoder layer = 1, . . . , 𝑁 , use 𝐗(𝑃𝐸)

𝑖,𝑡 and do within the generative network E𝑝

Generate attention matrix 𝐀(ℎ,E𝑝)
𝑖,𝑡 , obtain 𝐎(ℎ,E𝑝 )

𝑖,𝑡 in each head, then obtain the resulting tensor 𝐎(E𝑝 )
𝑖,𝑡

Perform the residual connection and normalization to update 𝐎(E𝑝 )
𝑖,𝑡

If encoder layer is 𝑁 , use two feedforward and normalization layers to generate 𝜇(1)
𝑖,𝑡 and 𝛴(1)

𝑖,𝑡 , and sample 𝐅(E𝑝 )
𝑖,𝑡

If encoder layer is less than 𝑁 , use one feedforward and normalization layer to obtain the resulting tensor
4.2. End return 𝐅(E𝑝 )

𝑖,𝑡
4.3. For encoder layer = 1, . . . , 𝑁 , use 𝐗(𝑃𝐸)

𝑖,𝑡 and do within the generative network E𝑞
Use the multi-head self-attention mechanism and follows by a normalization layer
Use a feed forward layer and follows by a normalization layer to obtain 𝐎(E𝑞 )

𝑖,𝑡

4.4. End return 𝐎(E𝑞 )
𝑖,𝑡

4.5. For decoder layer=1, . . . , 𝑁 , use 𝐲(𝑃𝐸)
𝑖,𝑡 and 𝐎(E𝑞 )

𝑖,𝑡 and do within the generative network D𝑞
Use the multi-head self-attention mechanism to obtain 𝐲′𝑖,𝑡, follows by a normalization layer
Use 𝐎(E𝑞 )

𝑖,𝑡 to generate pairs of key and value, and use 𝐲′𝑖,𝑡 generate query
Use the multi-head cross-attention mechanism to obtain 𝐎(D𝑞 )

𝑖,𝑡 , follows by a normalization layer
If encoder layer is 𝑁 , use two feedforward and normalization layers to generate 𝜇(2)

𝑖,𝑡 and 𝛴(2)
𝑖,𝑡 , and sample 𝐅(ED𝑞 )

𝑖,𝑡
If encoder layer is less than 𝑁 , use one feedforward and normalization layer to obtain the resulting tensor

4.6. End return 𝐅(ED𝑞 )
𝑖,𝑡

4.7. Feed 𝐅(E𝑝 )
𝑖,𝑡 and 𝐅(ED𝑞 )

𝑖,𝑡 into the predictive network P𝑝 and P𝑞 to obtain �̂�(P𝑝 )
𝑖,𝑡 and �̂�(P𝑞 )

𝑖,𝑡 , respectively
4.8. Obtained the training loss overall ← P𝑞

predict + P𝑝

predict + KL

4.9. Use the overall training loss overall to backpropagate update the parameters within E𝑝 ,E𝑞 ,D𝑞 ,P𝑝, and P𝑞
5. End and return the trained generative network E𝑝

♢ Second Training Stage
1. For iteration=1, . . . , 𝐼 do

1.1. Use the trained E𝑝 from the first training stage to obtained the learned deep-level representations 𝐅(E𝑝 )
𝑖,𝑡

1.2. Feed 𝐅(E𝑝 )
𝑖,𝑡 into the predictive network E𝑝 to obtain the predicted RUL �̂�(P𝑝 )

𝑖,𝑡

1.3. Use the prediction loss P𝑝

predict to backpropagate update the parameters within P𝑝

2. End and return the trained E𝑝 from the first training stage and the trained P𝑝 from the second training stage

Bearing2_1 to Bearing3_3, showing its ability to predict the RUL of
bearings under varying operating conditions. Furthermore, 20 features
and their cumulative features were extracted from the signals collected
in both the horizontal and vertical directions, resulting in a total of 80
extracted features. Additional details about these features can be found
in [46–48].

3.2. Piece-wise RUL prediction and hyperparameters

Previous studies have shown that bearing degradation processes typ-
ically experience multiple degradation stages [9,49], and estimating the

RUL of bearings based on these different stages can enhance prediction
performance [50]. Therefore, in this case study, we used an abrupt
change point detection method [51] to detect different degradation
stages, so that the RUL of bearings can be estimated in a piece-wise
order. More specifically, the root-mean-square (RMS) was used for
change point detection. With respect to each detected change point,
the average RMS of condition monitoring data before and after the
detected change point was compared. The detected change point was
considered a true change point if the average of condition monitoring
data after the detected change point was more than twice the average
of condition monitoring data before the detected change point, so
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Fig. 4. The PRONOSTIA platform, the normal bearings before the experiment, and the degraded bearings after the experiments [45].

Table 2
The operating conditions used to collect the condition monitoring data in the FEMTO bearing dataset, as well as the bearing indices
associated with the different operating conditions.

Condition Angular velocity (rpm) Radial force (kN) Twisting force (N m) Bearing indices

Condition 1 1800 4.0 1.326 Bearing1_1 to Bearing1_7
Condition 2 1650 4.2 1.447 Bearing2_1 to Bearing2_7
Condition 3 1500 5.0 1.591 Bearing3_1 to Bearing3_3

Fig. 5. The vibration signals for IEEE Bearing1_2, IEEE Bearing1_3, and IEEE Bearing3_1, and the results of the stage detection.

that the degradation stages can be effectively detected. More details
about the change point detection method can be found in [9,52].
Fig. 5 displays the vibration signals for various bearing units and the
results of the degradation stage detection. The number of detected
stages differs among the bearing units. For instance, Bearing1_3 has
three degradation stages, including a non-defective stage, a steady
degradation stage, and an accelerated degradation stage. In contrast,
Bearing1_2 and Bearing3_1 only have two degradation stages, involving
a non-defective stage and an accelerated degradation stage. As some
bearings do not involve a steady degradation stage, we trained one
predictive model to estimate the RUL for both the non-defective and
steady degradation stages, and another predictive model to estimate
the RUL for the accelerated degradation stage.

The hyperparameters of the presented conditional variational trans-
former are set as follows: The batch size is 100, and 𝑑model = ℱ is set
to 80. The quantity of encoder layers in the generative network E𝑝 is
set to 3, the quantity of encoder layers in E𝑞 is 3, and the quantity
of decoder layers in the generative network D𝑞 is also set to 3. The
quantity of hidden nodes in the feedforward layers is set to 200 in both
generative networks. The number of heads 𝐻 is determined as one, and
the number of feedforward layers in the predictive networks P𝑝 and
P𝑞 are set to 2. The activation function ReLU is utilized in all hidden
layers, and the linear activation function is used for all last layers. The
learning rate in the first training stage is set to 10−3, and the learning
rate in the second training stage decreases to 10−4 for fine-tuning the

predictive network P𝑝. Moreover, both the window size 𝒮 and the
prediction starting points are set to 20 samples. Each sample includes
2560 data points in this dataset, which means that the RUL prediction
initiates when 20 × 2560 data points have been observed. There are two
primary reasons why the prediction starting point is set at 20 samples.
First, 20 samples ensure that there is sufficient condition monitoring
data to accurately initiate the RUL prediction process. Second, using
20 samples will not significantly increase the size of the training data,
resulting in an acceptable training time.

3.3. Prediction results

Fig. 6 shows the RUL prediction results for some of the bearing
units, and this figure includes the true RUL, predicted RUL, and the
prediction error. The prediction error refers to the true RUL subtracts
the predicted RUL. In this work, the RUL refers to the percentage of
remaining lifetime of bearings. More specifically, the RUL of a specific
bearing unit 𝑖 at time 𝑡 is defined as (𝑇𝑖−𝑡)∕𝑇𝑖, where 𝑇𝑖 denotes the total
lifetime of the bearing unit 𝑖. From this figure, a preliminary conclusion
can be drawn that the conditional variational transformer can predict
the RUL of bearings with relatively high precision, as the predicted RUL
trajectory is close to the true RUL trajectory of bearings. For instance,
for Bearing1_1, the predicted RUL is 0.959 while the true RUL is 0.993.
Similarly, for Bearing2_1, the predicted RUL is 0.273 while the true RUL
is 0.288.
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Fig. 6. The RUL prediction results for a selection of bearing units from the FEMTO bearing dataset.

3.4. Ablation study

In order to provide additional evidence supporting the efficiency
of the proposed conditional variational transformer, we carried out an
ablation study. Firstly, we removed the fine-tuning mechanism in the
second training stage to show the impact of the proposed two-stage
training process. Then, we removed the transformer encoder E𝑞 and
transformer decoder D𝑞 and used only the transformer encoder E𝑝 to
make RUL predictions to show the effectiveness of the conditional vari-
ational inference. Table 3 displays the prediction results of the ablation
study in terms of root-mean-squared error (RMSE) and mean absolute
error (MAE) for all bearing units in this case study. In this table, CVT-FT
denotes the proposed method with the fine-tuning mechanism used in
the two-stage training process, CVT denotes the proposed conditional
variational transformer without the fine-tuning mechanism in the two-
stage training process, and TENC refers to the transformer encoder.
Based on this table, we can demonstrate that the proposed CVT-FT can
predict the RUL of bearings with high accuracy and can improve the
prediction performance. As an example, for Bearing3_1, the prediction
RMSE of the proposed CVT-FT is 0.080, while the prediction RMSE of
the ablation study for CVT and TENC are 0.126 and 0.125, respectively.
In terms of the average prediction error, the average prediction RMSE
of the proposed method is 0.134 and the average prediction MAE of the
proposed method is 0.113. In contrast, the average prediction RMSE of
TENC is 0.161 and the average prediction MAE of TENC is 0.137.

Fig. 7 displays the spider plot of five evaluation metrics used to
assess the prediction performance of the methods used in this ablation

study, namely RMSE (root-mean-squared-errors), MAE (mean-absolute
error), MSE (mean-squared-errors), MedAE (median absolute error),
and R2 Score (r-squared score). From Fig. 7, we conclude that both
the proposed conditional variational transformer and the fine-tuning
mechanism in the proposed two-stage training process can improve
the prediction performance across all evaluation metrics. For instance,
for all bearing units operated under the third operating condition, the
proposed CVT-FT achieves a prediction MedAE of 0.095. In contrast,
the prediction MedAE of CVT and TENC are 0.100 and 0.168, respec-
tively. Moreover, for all bearing units operated under the first operating
condition, the R2 Score of the proposed CVT-FT is 0.913, while the R2
Score of CVT and TENC are 0.866 and 0.840, respectively.

3.5. Comparative study

To conduct a comprehensive evaluation of the proposed CVT-FT,
we also conducted a comparative study with various deep learning
approaches documented in the existing literature. Table 4 presents the
average prediction RMSE for bearings operated under three distinct
operating conditions using CVT-FT (proposed), CVT, TENC, bi-channel
hierarchical vision transformer (BCVHiT), convolutional long short
term memory (CLSTM), convolutional neural network (CNN), deep
adversarial network (DAN), generative adversarial network (GAN), and
transferable bidirectional GRU (TGRU). From this table, we can observe
that the proposed CVT-FT outperforms many of the deep learning meth-
ods reported in the literature, regardless of the operating conditions.
For instance, with respect to all bearing units operated under the first
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Table 3
The RMSE and MAE of RUL predictions for all bearings in the FEMTO bearing dataset.

Condition Bearing index RMSE MAE

CVT-FT CVT TENC CVT-FT CVT TENC

Condition 1

Bearing1_1 0.080 0.126 0.125 0.064 0.101 0.092
Bearing1_2 0.091 0.105 0.171 0.075 0.094 0.140
Bearing1_3 0.040 0.045 0.049 0.034 0.035 0.034
Bearing1_4 0.124 0.131 0.141 0.111 0.118 0.127
Bearing1_5 0.082 0.089 0.075 0.070 0.081 0.069
Bearing1_6 0.056 0.082 0.054 0.044 0.060 0.046
Bearing1_7 0.088 0.124 0.123 0.069 0.098 0.095

Condition 2

Bearing2_1 0.072 0.098 0.102 0.061 0.087 0.082
Bearing2_2 0.069 0.117 0.095 0.061 0.100 0.079
Bearing2_3 0.239 0.264 0.241 0.206 0.217 0.190
Bearing2_4 0.239 0.239 0.225 0.199 0.209 0.180
Bearing2_5 0.298 0.322 0.336 0.278 0.292 0.299
Bearing2_6 0.113 0.172 0.176 0.105 0.165 0.165
Bearing2_7 0.242 0.264 0.277 0.195 0.231 0.245

Condition 3
Bearing3_1 0.164 0.194 0.253 0.150 0.181 0.236
Bearing3_2 0.101 0.084 0.078 0.075 0.069 0.059
Bearing3_3 0.177 0.170 0.216 0.124 0.114 0.195

Average 0.134 0.155 0.161 0.113 0.132 0.137

Fig. 7. The spider plot of five evaluation metrics are used to evaluate the prediction performance of the methods used in this ablation study.

Table 4
The average prediction RMSE of the proposed CVT-FT and other deep learning methods reported in the literature.

Condition CVT-FT CVT TENC BCVHiT [53] CLSTM [54] CNN [55] DAN [56] GAN [23] TGRU [57]

Condition 1 0.080 0.100 0.106 0.133 0.159 0.189 0.206 0.105 0.230
Condition 2 0.182 0.211 0.207 0.175 0.173 0.260 0.206 0.187 0.170
Condition 3 0.147 0.149 0.183 0.189 0.152 0.290 0.366 – 0.150

condition, the average prediction RMSE of the proposed CVT-FT is
0.080, while the average prediction RMSE of other methods ranges
from 0.100 to 0.230. Similarly, for all bearing units operated under
the third operating condition, the average prediction RMSE of the
proposed CVT-FT is 0.147, while the average prediction RMSE of the
other methods ranges from 0.149 to 0.366.

4. Case study II

4.1. Data description

The effectiveness of the conditional variational transformer was
evaluated on the XJTU-SY bearing dataset [58] in this case study. This
dataset consists of condition monitoring data from 15 LDK UER204
bearings that were operated under three different conditions. Run-to-
failure experiments were performed, and if the measured vibration
exceeded 20 g-forces, the experiments were discontinued. This criterion
is similar to that used in the FEMTO bearing dataset. Additional details
regarding the experimental setup can be found in [58]. Fig. 8 displays
the platform utilized to gather the condition monitoring data, as well as
the normal bearings before the experiment and the degraded bearings
after the experiment. Table 5 outlines the combinations of different
operating conditions, and in this case study, bearings operated under

conditions 1 and 2 were used. Furthermore, a five-fold cross-validation
approach was used to assess the prediction performance of the proposed
conditional variational transformer for bearings that were operated
under different conditions.

4.2. Piece-wise RUL prediction and hyperparameters

Similarly, in this case study, we utilized the change point de-
tection method to detect various degradation stages of bearings so
that RUL prediction could be performed on a piece-wise basis. Fig. 9
demonstrates some of the results of the degradation stage detection
for bearings in the XJTU-SY bearing dataset. It is evident that the
number of detected stages varies among the bearing units. For instance,
Bearing1_1 and Bearing2_5 have three degradation stages, including
a non-defective stage, a steady degradation stage, and an accelerated
degradation stage. Conversely, Bearing1_4 only has two degradation
stages, consisting of a non-defective stage and an accelerated degrada-
tion stage. Since some bearings do not have a steady degradation stage,
we trained one predictive model to predict the RUL for both the non-
defective and steady degradation stages, and another predictive model
to forecast the RUL for the accelerated degradation stage. Furthermore,
most of the hyperparameters utilized in this case study were identical
to those used in the first case study, except for the quantity of hidden
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Fig. 8. (a) The experiment platform utilized to collect the condition monitoring data; (b) Normal bearings; (c) (d) (e) Degraded bearings [58].

Table 5
The details about the combination of different operating conditions.

Condition Angular velocity (rpm) Radial force (kN) Bearing index

Condition 1 2100 12 Bearing1_1 to Bearing1_5
Condition 2 2250 11 Bearing2_1 to Bearing2_5
Condition 3 2400 10 Bearing3_1 to Bearing3_5

Fig. 9. The results of the degradation stage detection for bearings in the XJTU-SY bearing dataset.

nodes in the predictive networks P𝑝 and the learning rate. The learning
rate was set to 10−4 in the first training stage and 10−3 in the second
training stage. Concerning bearings operated under the first operating
condition, the quantity of hidden nodes in the first hidden layer of
P𝑝 was set to 4000. Regarding bearings operated under the second
operating condition, the quantity of hidden nodes in the first hidden
layer of P𝑝 was set to 500.

4.3. Prediction results

Fig. 10 shows the RUL prediction results for some bearing units, and
this figure includes the true RUL, predicted RUL, and the prediction
error. The prediction error refers to the true RUL subtracts the pre-
dicted RUL. From this figure, it is clear that the proposed conditional
variational transformer demonstrates a considerable level of precision
in predicting the RUL, as the predicted degradation trajectory closely
aligns with the true degradation trajectory. For example, concerning
Bearing1_1, the predicted RUL of the bearing is 0.553 when the true
RUL is 0.516. Regarding Bearing2_5, the predicted RUL of the bearing
is 0.955 when the true RUL is 0.944.

4.4. Ablation study

To further demonstrate the efficiency of the proposed conditional
variational transformer, an ablation study was conducted in this case
study, identical to the one conducted in Case Study I. Table 6 presents

the prediction results of the ablation study in terms of RMSE and MAE
for all bearing units in the XJTU-SY bearing dataset. Based on this table,
it is evident that the proposed CVT-FT can predict the RUL of bearings
with high accuracy and is capable of enhancing the prediction perfor-
mance. For example, concerning Bearing1_1, the prediction RMSE of
the proposed CVT-FT is 0.115, while the prediction RMSE of the abla-
tion study for CVT and TENC are 0.118 and 0.152, respectively. With
regard to the average prediction error, the average prediction RMSE of
the proposed method is 0.194, and the average prediction MAE of the
proposed method is 0.165. In contrast, the average prediction RMSE of
TENC is 0.301, and the average prediction MAE of TENC is 0.244.

Fig. 11 shows the box plot of prediction RMSE and MAE for all
bearing units operated under both the first and second operating con-
ditions. This figure verifies that the presented conditional variational
transformer can improve the prediction accuracy. For instance, the
average prediction RMSE of bearings operated under the first condition
using the proposed CVT-FT is 0.172, while the average prediction RMSE
of bearings operated under the first condition using TENC is 0.234.
Moreover, the average prediction MAE of bearings operated under
the second condition using the proposed CVT-FT is 0.151, whereas
the average prediction RMSE of bearings operated under the second
condition using CVT is 0.271.

Fig. 12 shows a spider plot of the five evaluation metrics used to
assess the prediction performance of the methods used in this ablation
study. From Fig. 12, we observe that both the presented conditional
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Fig. 10. The RUL prediction results for a selection of bearing units from the XJTU-SY bearing dataset.

Table 6
The RMSE and MAE of RUL predictions for all bearings in the XJTU-SY bearing dataset.

Condition Bearing index RMSE MAE

CVT-FT CVT TENC CVT-FT CVT TENC

Condition 1

Bearing1_1 0.115 0.118 0.152 0.103 0.061 0.114
Bearing1_2 0.110 0.248 0.383 0.097 0.174 0.293
Bearing1_3 0.102 0.204 0.097 0.090 0.156 0.075
Bearing1_4 0.356 0.481 0.293 0.304 0.444 0.233
Bearing1_5 0.176 0.622 0.247 0.156 0.521 0.219

Condition 2

Bearing2_1 0.160 0.193 0.310 0.132 0.145 0.257
Bearing2_2 0.131 0.143 0.429 0.111 0.105 0.370
Bearing2_3 0.241 0.233 0.413 0.186 0.199 0.333
Bearing2_4 0.356 0.723 0.413 0.300 0.696 0.342
Bearing2_5 0.193 0.225 0.270 0.171 0.174 0.203

Average 0.194 0.319 0.301 0.165 0.267 0.244

Fig. 11. The box plot of prediction RMSE and MAE for all bearing units operated under both the first and second operating conditions.

variational transformer and the fine-tuning mechanism in the two-
stage training process can enhance the prediction performance across
different evaluation metrics. For instance, for all bearing units operated
under the second operating condition, the prediction MedAE of the
proposed CVT-FT is 0.164, while the prediction MedAE of CVT and
TENC are 0.256 and 0.254, respectively. Similarly, for all bearing units
operated under the first operating condition, the MSE of the proposed
CVT-FT is 0.039, compared to the MSE of 0.147 and 0.065 for CVT and
TENC, respectively.

4.5. Comparative study

To further demonstrate the efficacy of the proposed CVT-FT, it
was compared with other deep learning methods documented in the
literature. Table 7 displays the average prediction RMSE for bearing
units operated under different operating conditions using CVT-FT (pro-
posed), CVT, TENC, multiscale CNN (MCNN), deep adversarial network
(DAN), LSTM, and graph convolutional network with self-attention
mechanism (GCN-SA). Based on this table, we can conclude that the
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Fig. 12. The spider plot of five evaluation metrics are used to evaluate the prediction performance of the methods used in the ablation study.

Table 7
The average prediction RMSE of the proposed CVT-FT and other deep learning methods reported in the literature.

Condition CVT-FT CVT TENC MCNN DAN [56] LSTM [59] GCN-SA [46]

Condition 1 0.172 0.335 0.234 0.248 0.297 0.264 0.175
Condition 2 0.216 0.303 0.367 0.230 0.240 0.346 0.218

proposed CVT-FT outperforms some of the deep learning methods
reported in the literature for all operating conditions. For example, the
average prediction RMSE of the proposed CVT-FT for all bearing units
operated under the first condition is 0.172, while the average prediction
RMSE of other methods ranges from 0.175 to 0.335.

5. Conclusion and future work

A novel conditional variational transformer architecture was devel-
oped to address the limitations of the self-attention mechanism in the
conventional transformer model. The proposed architecture consists of
four networks: two generative networks and two predictive networks.
The first generative network used a transformer encoder–decoder ar-
chitecture with a cross-attention mechanism to learn deep-level repre-
sentations in one feature space of the condition monitoring data. The
true RUL data were used in the cross-attention mechanism, allowing the
attention matrix to select the most important features of the condition
monitoring data that are highly correlated with the true RUL to make
RUL predictions. The second generative network used a transformer
encoder to learn deep-level representations in another feature space
of the condition monitoring data with the condition monitoring data
only as input. Two separate predictive networks used the learned deep-
level representations in different feature spaces to predict the RUL of
bearings. Because the true RUL data are not available during testing, a
KL divergence was introduced to minimize the distance between two
feature spaces so that the feature space extracted from the second
generative network can approximate the feature space extracted from
the first generative network. Therefore, without the true RUL data,
the feature space extracted from the first generative network can be
taken into account when the feature space extracted from the second
generative network is used for testing. Additionally, we introduced a
two-stage training process to train the proposed conditional variational
transformer. In the first training stage, we trained both generative
networks and both predictive networks by minimizing two prediction
losses and the KL-divergence loss simultaneously. In the second training
stage, we implemented a fine-tuning mechanism to specifically tune
the parameters in the second predictive network by minimizing a
single prediction loss only. The first training stage aims to minimize
the distance between two feature spaces generated by two generative
networks; the second training stage aims to minimize the prediction loss
to achieve the optimal prediction performance. The proposed method
was demonstrated on two publicly available bearing datasets, including
the FEMTO bearing dataset and the XJTU-SY bearing dataset. The
experimental results have shown that the proposed method achieved an
average RMSE of 0.134 for the FEMTO bearing dataset and an average

RMSE of 0.194 for the XJTU-SY bearing dataset. The proposed method
outperforms existing data-driven methods reported in the literature.
In future work, we will investigate the effectiveness of the proposed
method on other datasets.
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