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Non-invasive arterial blood pressure 
measurement and  SpO2 estimation using PPG 
signal: a deep learning framework
Yan Chu1†, Kaichen Tang1†, Yu‑Chun Hsu1, Tongtong Huang1, Dulin Wang1, Wentao Li1, Sean I. Savitz2, 
Xiaoqian Jiang1,2 and Shayan Shams1,2,3* 

Abstract 

Background Monitoring blood pressure and peripheral capillary oxygen saturation plays a crucial role in healthcare 
management for patients with chronic diseases, especially hypertension and vascular disease. However, current blood 
pressure measurement methods have intrinsic limitations; for instance, arterial blood pressure is measured by insert‑
ing a catheter in the artery causing discomfort and infection.

Method Photoplethysmogram (PPG) signals can be collected via non‑invasive devices, and therefore have stimu‑
lated researchers’ interest in exploring blood pressure estimation using machine learning and PPG signals as a non‑
invasive alternative. In this paper, we propose a Transformer‑based deep learning architecture that utilizes PPG signals 
to conduct a personalized estimation of arterial systolic blood pressure, arterial diastolic blood pressure, and oxygen 
saturation.

Results The proposed method was evaluated with a subset of 1,732 subjects from the publicly available ICU data‑
set MIMIC III. The mean absolute error is 2.52 ± 2.43 mmHg for systolic blood pressure, 1.37 ± 1.89 mmHg for dias‑
tolic blood pressure, and 0.58 ± 0.79% for oxygen saturation, which satisfies the requirements of the Association 
of Advancement of Medical Instrumentation standard and achieve grades A for the British Hypertension Society 
standard.

Conclusions The results indicate that our model meets clinical standards and could potentially boost the accuracy 
of blood pressure and oxygen saturation measurement to deliver high‑quality healthcare.

Keywords Deep learning, Blood pressure, Photoplethysmogram, Oxygen saturation, Hypertension assessment, 
Digital health
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Background
Chronic cardiovascular and cerebrovascular disease are 
considered to be among the most prevalent causes of 
death nowadays [1], and hypertension is one of the lead-
ing causes of heart disease and stroke [2]. Hypertension 
is defined as systolic blood pressure (SBP) higher than 
140 mmHg or diastolic blood pressure (DBP) higher than 
90 mmHg [3]. According to the World Heart Federation, 
approximately 50 percent of ischemic strokes are caused 
by hypertension [4]. In addition, with the Covid-19 pan-
demic ravaging the world, a recent study shows that 
almost 75% of patients who have died due to Covid-19 in 
Italy had a history of hypertension, which indicates a high 
correlation between hypertension and Covid-19 mortal-
ity [5]. For patients who are suffering from vascular dis-
eases, blood pressure (BP) monitoring and management 
are crucial [6].

Arterial Blood Pressure (ABP) is an invasive con-
tinuous BP measurement method that has been widely 
accepted as the golden standard [7]. However, since the 
mechanism of ABP is to insert a catheter into an artery to 
conduct real-time BP monitoring, it is highly sensitive to 
body movement, such as position changes, and it is rela-
tive to the accessed artery, which may bring risks of com-
plications to the patient like infection [8]. Techniques 
such as cuff-based ABP measurement devices have 
been widely used for monitoring ABP. However, such 
measurements might cause discomfort to patients dur-
ing the inflation and deflation of the cuff. This can affect 
the accuracy and introduce higher levels of uncertainty 
[9–11]. Thus, researchers and clinicians are interested in 
non-invasive approaches [12, 13] to measure ABP.

Photoplethysmography (PPG) and electrocardiogram 
(ECG) signals can be collected by non-invasive measure-
ment devices such as Fiber optic sensors [6] and force-
sensitive electromechanical film sensors [14], and have 
shown a close correlation in estimating ABP. Although 
both ECG and PPG signals are available in the MIMIC 
database, ECG signals have a higher missing rate, and the 
lead count varies for different patients [15]. Moreover, 
recording ECG signals is generally considered to be more 
bothersome than recording PPG signals, which is not 
preferable for a non-invasive ABP estimation method [16, 
17]. Additionally, ECG devices are expensive, while fin-
gertip PPG devices are cheap, so there won’t be scalabil-
ity issues [18]. ABP is a quasi-periodic signal in sync with 
the patient’s heartbeat. The peak in each period refers 
to arterial systolic blood pressure (ASBP), and the lower 
bound refers to arterial diastolic blood pressure (ADBP), 
and correlations between ASBP, ADBP, and PPG signals 
are shown in Fig. 1.

In recent years, studies have focused on estimating 
ABP using PPG signals, adopting the spatial–temporal 

neural network consisting of convolutional neural net-
works (CNN) and gated recurrent units (GRU) to pre-
dict ABP level using PPG signals and its first and second 
derivative [19]. Athaya et  al. employed a U-net-based 
deep learning architecture to estimate ABP waveforms 
using PPG signal only, and estimation of related ABP is 
achieved by using the peak detection algorithm on the 
MIMIC III dataset [20]. EI Hajj et al. introduced a GRU-
based deep learning approach with time domain-based 
features to estimate ABP using raw PPG signals [21]. 
Despite the extraordinary performance achieved by deep 
learning-based methods, their requirement for specific 
input formats may limit their deployment, as heterogene-
ity in clinical settings may involve ABP estimation given 
PPG signals with varying sequence lengths. Furthermore, 
previous studies have generally been limited in terms of 
the number of subjects included, and robustness is not 
fully discussed.

In addition to the possibility of ABP estimation, PPG 
signals serve as a promising input to estimate oxygen 
saturation  (SpO2) with appropriate modeling [22].  SpO2 
is an indicator of the percentage of hemoglobin saturated 
with oxygen at the time of the measurement [22, 23]. 
Normal  SpO2 ranges from 95 to 100 percent, while below 
90 percent is considered abnormal and called hypoxemia, 
which may cause other complications, such as nausea 
[24], fatigue [25], organ damage, and failure [26]. The 
absorption of LED’s green light by oxyhemoglobin and 
deoxyhemoglobin has significant differences, therefore, 
the changes of PPG signals induced by blood flow fluc-
tuation can be used to estimate Oxygen saturation level 
in blood. Several studies have demonstrated how PPG 
signaling could be used to measure the level of  SpO2 [22, 
27]. However, to the best of our knowledge, no previous 
study has utilized deep learning (DL) models on PPG sig-
nals acquired from medical devices to estimate ABP and 
 SpO2 levels  simultaneously. These methods failed to 
estimate ABP and  SpO2 simultaneously due to noise in 
signals introduced by ABP and  SpO2. Here we want to 
propose a continuous and hardware-independent solu-
tion to address the problem of predicting ABP and  SpO2 
using PPG signals and reduce the implementation cost. 
In addition, a relatively small sample size may introduce 
higher uncertainty in the deep learning model training 
process and undermine generalizability.

In [28–30], the methods based on Pulse Transit Time 
(PTT) were proposed. PTT refers to the time used for 
ABP waves transiting to the wrist, where the PPG signal 
is recorded. Moreover, several recent studies introduced 
additional features based on the second derivative of the 
PPG signal and demographic features to boost the accu-
racy of estimating ABP [31–33]. All feature extraction-
based methods start with extracting features from the 
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PPG signal with a pre-defined feature extraction pipe-
line, which may fail to capture all information inherited 
in the signals and lead to deteriorated generalizability. In 
addition, none of the feature-extraction-based methods 
exploit temporal information by considering PPG signals 
as time series data undermining the estimation perfor-
mance. Furthermore, diverse machine learning and deep 
learning-based pipelines were proposed in recent years. 
Su et  al. employed a Long-Short term memory (LSTM) 
network to PPG signals processed by PTT [34], while 
Kachuee et  al. explored the combination of AdaBoost 
and PTT on the MIMIC II dataset [35]. Due to the ability 
to extract local temporal features, a convolutional neu-
ral network (CNN) was also utilized in the estimation of 
ABP using PPG [36–38]. However, these methods may 
suffer from inflexibility and lack of generalizability due 
to fixed kernel size, or inefficiency in temporal feature 
extraction. Therefore, we hypothesize that using Time 

Series Transformer on PPG signals alone could provide 
accurate ABP and  SpO2 prediction for ICU patients.

Hence, in this paper, we propose a method to estimate 
ABP and  SpO2 using Transformer-based deep learning 
architecture. Our model only needs the raw PPG signal 
to estimate ASBP, ADBP, and  SpO2. To the best of our 
knowledge, this is the first work to estimate ASBP, ADBP, 
and  SpO2 using PPG signals. This approach has many 
advantages, including:

1. This method is an end-to-end approach to processing 
PPG signals and can handle different periods of PPG 
signals to deliver accurate ABP and  SpO2 estimation.

2. The model was developed using unsupervised pre-
training and supervised fine-tuning. The utilized 
approaches are less prone to overfitting and are 
appropriate for personalized model creation with 
high accuracy.

Fig. 1 PPG signals (upper) and Aortic Pressure in a beat cycle (lower) from MIMIC III dataset. The top figure presents an example of a PPG signal 
(blue), and the bottom one represents details of a beat cycle with a corresponding ABP signal (red)
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3. The model satisfies the requirements of the Asso-
ciation of Advancement of Medical Instrumenta-
tion (AAMI) standard and achieves grade A for the 
British Hypertension Society (BHS) standard, with 
significantly low mean absolute error (MAE) than 
standard criteria on a large test cohort (1,732 patients 
in total).

4. This method transforms an invasive measurement 
of ABP to a non-invasive approach while maintain-
ing high accuracy, therefore, it reduces risks to the 
patient and is more applicable for continuous moni-
toring.

Methods
Data and preprocessing
Our work utilizes the MIMIC III database, available 
online per request [39]. This database contains a mix-
ture of different types of digital data (typically contains 
ECG, ABP, respiration, PPG, and others) with over 
60,000 records from more than 30,000 ICU patients. 
Each patient has at least one record, which ranges from 
seconds (usually anomalies) to hundreds of hours. Fol-
lowing methods described in the previous study [19], 
we extracted ABP and PPG signals from bedside wave-
form (only 10,282 patients have waveform signals docu-
mented) records, and cleaned and pre-processed the 
original data to rule out the anomalies. Considering the 
impact of the length of signal slices on prediction accu-
racy, we conducted a literature search and presented it in 
Supplementary Table  1. We discovered that the chosen 
sample lengths for different models ranged from beat-
wise (approximately 1 to 2  s) to 32  s. Additionally, we 

performed an initial investigation on the range of heart 
rates found in the MIMIC III dataset, and identified ref-
erence that indicate a minimum heart rate of around 
20 bpm [40]. We plotted the histogram of the heart rate 
distribution in our dataset in Supplementary Fig. 1. Upon 
analyzing the heart rate distribution, we observed that, 
as the dataset comprises ICU patients, there are indeed 
slices with relatively lower heart rates (less than 40 bpm). 
Given that we were considering the use of a Time Series 
Transformer for our proposed model, we empirically 
selected a 20-s sample length. We performed the pre-
processing and cleaning steps first, and to further denoise 
the PPG signal and extract the latent signal for model 
training, we conducted empirical mode decomposition 
(EMD) on PPG 20-s slices and divided the results into 4 
channels and fed them into a Transformer encoder-based 
model. The embedding of each record is fed as an input 
into a feed-forward network for regression on the corre-
sponding  SpO2, ASBP, and ADBP values.

The preprocessing and cleaning steps of the dataset 
are illustrated in Fig. 2. The entire waveform dataset was 
downloaded into a dedicated server and transformed 
to the proper MATLAB format by the wfdb2mat func-
tion in the WFDB software package [41]. In addition, 
using waveform type information from the header files, 
we excluded those records that do not contain ABP or 
PPG (specified as ABP and PLETH in header files) and 
removed the files smaller than 17 kilobytes.

Afterward, we took more detailed cleaning pro-
cedures to enhance waveform quality. Firstly, we set 
the time length threshold of records to be 10  min 
while records shorter than that were deleted. Then, 
we checked the morphology of waveform signals and 

Evaluation on the same
20% testing patient

dataset
MLM-Transfomer

Testing dataset split in
chronological, finetuned

for personalization on
first 20% slices, evaluate

on latter 80%

MLM-Transformer
w/personalization

Identification Screening Overall quality
check

Slice quality check

Patients in MIMIC III
waveform subset

(n = 10,282)

Patients with both ABP
and PPG signals

(n=3,149)

Patients with good
quality ABP and PPG

signals (n = 2,094, wave
cut counts = 1,095,423)

Selected Patients with
good quality slice

records (n = 1,732, wave
cut counts = 804,676)

Patient not having
matched ABP and PPG

signals (n = 7,133)

ABP or PPG signals
shorter than 10 minutes,

or flat line > 5% 
(n =1,055) 

ABP or PPG signal slices
count 3 or more outliers
in 20-second (n = 362)

Dataset split in patient-
wise level, train :
validation : test =

70%:10%:20% (n=1212,
173, 347)

Prepare for model
training

MLM pretraining on the
same 70% training

patient dataset, validate
on 10% patient

• U-Net
 • Transformer
• Transformer
  w/multi-task

 Model 
development

Potential models

Fig. 2 Signal preprocessing flow gram. The figure shows patient/data inclusion/exclusion criteria in each major step
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found that a large proportion of signals contain outli-
ers, which can be divided into two major categories: 
flat lines and flat peaks. We applied a cycle peak-val-
ley detection algorithm proposed by [19, 42] on both 
ABP and PPG signals, and signals were further cut into 
slices, which contain separate cycles. Using locations 
of peaks and valleys, we defined “flat” as 3 or more 
consecutive equal values; hence, the proportion of flat 
parts in the whole record of both ABP and PPG signals 
was calculated. If the proportion was beyond 5%, we 
simply discarded the entire record. For those records 
containing flat parts less than 5%, we discarded the flat 
part and sutured the remaining part.

After the initial preprocessing, we filtered the ABP 
data using a Hampel filter [43] with a sliding window 
of 100 values. For each window, the median was com-
puted, and outliers were replaced with this median 
if they fell 3 sigmas below or above it. It is important 
to note that, as our data came from different patient 
sources, we did not apply any global or local normaliza-
tion to the records. As shown in Fig. 3, the Hampel fil-
ter effectively filtered abnormal ASBP and ADBP values 
due to its robustness against outliers. The PPG data was 
filtered using a 4th-order Butterworth band-pass filter 
with a frequency range of 0.5 to 8  Hz. This helped to 
filter out the baseline wander below 0.5  Hz and high-
frequency noise above 8  Hz, which can contribute to 
eliminating motion artifacts and high-frequency noise 
[44]. A demonstration of the filters applied to the sig-
nals is shown in Fig.  4. Fast Fourier Transform fre-
quency analysis revealed several noise peaks in the 
range of 0.5 to 8  Hz. The 4th-order Butterworth filter 

was used because it can provide a smooth, flat fre-
quency response in the passband, coupled with a rapid 
transition to the stopband, without overshoot or ring-
ing. Examples of unsuitable ABP and PPG segments 
can be found in Supplementary Fig. 2.

We carried out a segmented cycle quality assessment 
for both ABP and PPG signals. Starting from the initial 
time point of the cardiac cycle in the signal, we analyzed 
the subsequent 20-s segments, identifying all beat cycles 
within this duration using a cycle peak-valley detection 
algorithm proposed by [19, 42]. If we detected more than 
3 anomalous cycles in either the ABP or PPG signals, we 
disregarded that specific segment. Subsequently, if the 
segment passed the quality assessment, we computed the 
average values for ASBP and ADBP using ABP signals. A 
comprehensive outline of our data selection criteria can 
be found in Supplementary Table 2.

After preprocessing and cleaning of the dataset, we 
have in total 804,676 slices with related ASBP and ADBP 
values, belonging to 2,641 records of 1,732 patients. The 
distribution of ASBP, ADBP, and  SpO2 values is shown in 
Fig. 5.

To denoise the PPG signals, we employed Empirical 
Mode Decomposition (EMD) because it captures key 
features of each heartbeat and provides additional input 
channels for our TST model. Please refer to Supplemen-
tary Fig.  3 for an example plot of EMD applied to PPG 
signal segments. EMD is particularly suitable for this task 
as it makes only mild assumptions about time-series data 
and does not rely solely on simple sine and cosine waves, 
allowing it to be used for denoising and feature extraction 
while retaining the original dimensions of the raw signals. 

Fig. 3 Illustration plot of ABP signal slice, its corresponding ASBP values at peaks before and after Hampel Filtering. A motion artifact is detected 
and the abnormal ASBP value is replaced with the window average median



Page 6 of 16Chu et al. BMC Medical Informatics and Decision Making          (2023) 23:131 

We conducted an exploratory experiment based on the 
MLM-transformer model to determine the optimal num-
ber of channels. We tested 2, 3, 4, and 8 channels and 
found that the model with 4-channel EMD-processed 
data yielded satisfactory MAE performance (see Supple-
mentary Table 3). Consequently, we used 4-channel time-
series data with a dimension of 2,500 (corresponding to 
20-s) as our input for model training. Table  1 presents 
a comparison of prediction performance using different 
signal denoising techniques, demonstrating that EMD is 
effective in feature extraction.

Proposed model
Recently, Transformer-based models achieved superior 
performance in Natural Language Processing and Com-
puter Vision tasks due to their extraordinary ability of 
temporal feature extraction and representation [45, 46]. 
In addition, several previous studies applied Transformer 

to time series prediction, showing its potential in time-
series regressions [47, 48]. Our deep learning architecture 
utilizes the Transformer encoder [45]. The TST model is 
based on the attention mechanism, which considers any 

Fig. 4 Illustration plot of PPG signal slice and Fast Fourier Transform Frequency Domain after Butterworth Bandpass Filtering. a—d) present 
signal morphology before and after Butterworth bandpass filter of orders 2, 4, and 6, respectively, with fixed frequency threshold [0.5, 8] Hz. e—h) 
present corresponding Power Spectral Density by Fast Fourier analysis. As subplot (g) shows, noise exists with a lower frequency and is diminished 
after filtering. SNR: Signal–Noise Ratio

Fig. 5 Distribution of (a) arterial systolic BP (ASBP), (b) arterial diastolic BP (ADBP), and (c)  SpO2 in the processed dataset

Table 1 Results of baseline comparison using different signal 
denoising techniques. Experiments were conducted using a 
Vanilla Transformer structure trained 70% training patients’ 
records and evaluated over 30% testing patients’ records

Denoising techniques SBP 
(MAE ± S.D., 
mmHg)

DBP 
(MAE ± S.D., 
mmHg)

Original Signal 7.54 ± 8.19 4.02 ± 4.63

Signal +  1st and  2nd derivative 7.16 ± 7.41 3.85 ± 4.12

Wavelet 6.83 ± 5.48 3.54 ± 4.27

Empirical Mode Decomposition 6.76 ± 5.24 3.57 ± 4.39



Page 7 of 16Chu et al. BMC Medical Informatics and Decision Making          (2023) 23:131  

pair of readings from the input channels with an atten-
tion score, while RNN-based models rely on a hidden 
memory state to store previous information, which is 
hard to parallelize during model training and may trig-
ger information loss due to improper selection of hid-
den state dimension, leading to undermined estimation 
performance [34, 36, 37]. Moreover, the proposed model 
utilized unsupervised pre-training and supervised fine-
tuning strategies for personalized models, which main-
tains high generalizability in ICU cases. In addition, local 
patterns extracted by attention mechanisms could boost 
model performance. The reason we did not adopt the 
full Transformer architecture with encoders and decod-
ers is that the estimation of ABP and  SpO2 concentrates 
on feature extraction from input data instead of signal 
reconstruction tasks. To be specific, the Transformer 
encoder maintains scalability in feature extraction from 
time-series inputs and is more suitable for our tasks. We 
refer the readers to the original paper of Transformer for 
details on Transformer encoder architecture for further 
clarification.

Transformer encoder model
For each training sample XǫRw×l = [x1, x2, ..., xl] , where 
w refers to the number of channels generated by EMD, 
and l refers to the length of the channel. Standardization 
for each channel is conducted by subtracting its mean 
and dividing by the standard deviation, and then a linear 
projection onto D-dimensional representation space is 
used, where D refers to the input dimension of the trans-
former model:

where WpǫR
D×w , bpǫR

D are learnable linear projec-
tion parameters. The output zt serves as the input for 
the transformer encoder model, which could be used as 
queries, keys, and values in self-attention layers. With-
out external information, self-attention focuses on the 
extraction of internal information and latent patterns 
within signals. Mathematically, the linearly projected 
signal Z serves as query, key, and value after multiplying 
three trainable weights vectors ωq , ωk and ωv , and l repre-
sents the length of Z:

where:

(1)zt = Wp · xt + bp

(2)Attention(Q,K ,V ) = softmax(
QKT

√
l
)V

Q = ωq · Z

K = ωk · Z

Since the attention mechanism could not naturally 
capture ordering information, a positional encoder is 
required to inform the model of the ordering of input 
signals. We added positional encodings Wpos to the input 
vectorztǫRD×l = [z1, z2, ..., zl]:

We noticed that in the original transformer encoder, 
the deterministic sinusoidal positional encoder achieved 
extraordinary performance in many NLP tasks, however, 
PPG signals maintain periodic patterns, and a learnable 
positional encoding could extract such patterns more 
effectively. Although the input dimension and length of 
PPG signals in our dataset remain fixed, we may encoun-
ter considerable variance in signal length when deploying 
in real life. This issue is effectively solved with our Trans-
former-based approach: after setting a maximum signal 
length l, samples with shorter input lengths are padded. 
The padding process introduces extremely large negative 
values to the attention scores for the padded positions. 
In our implementation, therefore, a padding mask is uti-
lized to force the model to overlook padded positions. By 
doing so, our model could potentially handle any PPG 
signal shorter than our maximum length. Finally, a layer 
normalization is conducted after computing self-atten-
tion scores and the linear layer of each encoder block, 
leading to a robust output. The overall encoder structure 
is shown in Fig. 6.

To deliver regression on ASBP, ADBP, and  SpO2, we 
adopt fully connected layers to project embedding vec-
tors learned by transformer encoder blocks onto a scalar 
value for each task:

where Wo and bo are learnable parameters in fully con-
nected layers. The loss function is mean squared error 
L = 1

n�||y− y||2 where y is the ground truth and n is the 
batch size.

Pre‑trained and fine‑tuning for personalization regression
To further investigate the proposed model in personal-
ized ABP and  SpO2 prediction, we introduced unsu-
pervised learning-based pre-training and fine-tuning 
techniques to conduct personalized prediction. The 
unsupervised pre-training part aims at learning latent 
patterns inherited in PPG data from training samples 
of a diverse cohort, while the fine-tuning part conducts 
personalized ABP and  SpO2 prediction using individual 
training samples and model parameters initialized by the 
pre-training part.

V = ωv · Z

(3)Z′ = Z +Wpos

(4)ŷ = Wo · Z′ + bo
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In the unsupervised pre-training part, an autoregres-
sive task is utilized. We borrowed the idea from Masked 
Language Modeling (MLM) [49], and basically, for each 
PPG sequence, a random set of records is masked, and 
the model is asked to predict the masked region of the 
sequence. Data splitting was performed by random selec-
tion of patients into training and testing datasets, and 
demographic feature statistics of splitting is calculated. 

For each patient’s record, the model was finetuned with 
the first 20% as training and the rest 80% as evalua-
tion. This chronological split helps to avoid data leak-
age. A summary of the dataset splitting was presented in 
Table 2, and an illustration of dataset splitting was given 
in Supplementary Fig. 4. We further fine-tuned the pre-
trained transformer encoder to personalize the model for 
each patient. An ablation study was conducted to find the 

Fig. 6 Illustration of self‑attention‑based encoder structure
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best rate for finetuning to be 20% (please see Supplemen-
tary Table 4).

To further improve model performance and generaliz-
ability, we adopted personalized model training, which 
considers patients with multiple samples available (at 
least a 200-s PPG signal available). We split each patient’s 
samples as training, validation, and testing sets in chron-
ological order, where we use all patients’ samples in the 
training set to conduct pre-training, which serves as 
the base model for all patient-specific fine-tuning tasks 
and fine-tuning on each patient’s sample in the test-
ing set. Then each patient-specific model is validated on 

the corresponding validation set to determine the best 
model. The result reported in the result section is evalu-
ated on each patient’s testing set. All models used in this 
paper are based on a 3-layer Time Series Transformer 
with ReLU as an activation function. For different tasks, 
a fully connected layer with hidden dimension 128 was 
used. We used MLM-Transformer as the pre-training 
task with 200 epochs and 3e-3 as fine-tuning learning 
rate with the beta coefficient for learning rate decay after 
epoch 50. The fine-tuning task will terminate if valida-
tion loss could not decrease within 20 epochs (patience 
parameter as 20).

Table 2 Summary of the dataset splitting

Training Validation Testing Testing (Finetune-part) Testing (Evaluation)

Patient count 1,212 173 347 347 347

Slices count 580,871 74,279 149,527 29,893 119,634

Slices/patient (Mean ± S.D.) 479.26 ± 761.96 429.70 ± 658.27 430.91 ± 632.15 86.15 ± 127.31 344.77 ± 493.6

Min slice count 10 10 10 2 8

Max slice count 6,339 4,507 4,186 837 3349

SBP (mmHg, Mean ± S.D.) 126.26 ± 20.87 125.91 ± 21.94 129.34 ± 22.06 129.58 ± 21.50 129.29 ± 21.15

DBP (mmHg, Mean ± S.D.) 67.49 ± 11.19 67.25 ± 11.34 67.40 ± 11.25 67.36 ± 11.29 67.41 ± 11.13

SpO2 (%,Mean ± S.D.) 97.21 ± 2.19 97.16 ± 2.31 97.27 ± 2.19 97.49 ± 2.15 97.22 ± 2.20

Fig. 7 ABP and  SpO2 Estimation using PPG by Transformer‑based Time Series Model
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The overall architecture of our Transformer-based 
model on the estimation of ABP and  SpO2 using PPG 
data is shown using a flowchart in Fig. 7.

Evaluation metrics and experimental setup
ABP and  SpO2 prediction is compared with other models 
by the mean absolute error (MAE), which is defined as

and the rooted mean square error (RMSE), which is 
defined as

where N is the number of record counts in a batch, ŷ is 
the model prediction and y is the golden label.

Training environment
Python v3.9.10 (Python Software Foundation) with pack-
age ‘pytorch’ v1.13.0 [50] was used for data processing 
and model building. All experiments were conducted on 
DGX-2 and 2 Nvidia v100 GPUs.

(5)MAE =
1

N

∑N

i=1
||̂y− y||

(6)RMSE =
√

1

N

∑N

i=1
||̂y− y||2

Results
Estimation of ABP and SpO2
A demographic statistics summary of the dataset used is 
presented in Table 3.

To compare the performance of the proposed 
approach, several baselines (basic transformer and 
CNN-based U-Net) are adopted for the prediction of 
ABP and  SpO2, which are shown in Table 4. Addition-
ally, we performed an ablation study using a 5-s sample 
length, which led to MAE and SD values for ASBP and 
ADBP of 2.52 ± 2.63 and 1.37 ± 1.89, respectively.

For the multi-task Transformer model, we fine-tuned 
the pre-trained Transformer model for the regres-
sion of ASBP, ADBP, and  SpO2 simultaneously, which 
showed undesirable performance due to heterogeneity 
among ABP and  SpO2 readings of ICU patients.

The Bland–Altman plots for the personalized Trans-
former model are shown in Fig.  8. The x-axes refer 
to pressure from 60 to 220  mmHg for ASBP and 30 
to 140  mmHg for ADBP, while the y-axes stand for 
error ranging from -30 to 30  mmHg for our estima-
tion. The dashed horizontal lines refer to error at -15 
to 15  mmHg with 5  mmHg as intervals step size. As 
Fig. 8 shows, most of the ASBP and ADBP errors lie in 

Table 3 Demographic statistics of dataset split. For hypothesis testing, we conducted Welch’s two‑tailed t‑test to compare the means 
of age and length‑of‑stay‑at‑hospital between two independent groups and Pearson’s Chi‑square test for other categorical variables. 
To account for multiple comparisons, p‑values were adjusted using the Bonferroni Correction. All p‑values > 0.05 indicate that there is 
no evidence to suggest that the groups are statistically different or that there is an association between the categorical variables tested

Missing Overall Train Validation Test p—value

Demographic features 1732 1212 173 347

Gender, n (%) Female 0 778 (44.9) 535 (44.1) 129 (49.6) 114 (43.8) 0.255

Male 954 (55.1) 677 (55.9) 131 (50.4) 146 (56.2)

Length of stay at hospital, 
days, mean (SD)

0 10.0 (12.6) 10.1 (13.4) 8.7 (7.9) 10.4 (12.5) 0.192

Age, years, mean (SD) 0 62.0 (58.3) 61.8 (56.4) 64.4 (65.4) 61.0 (59.2) 0.77

Ethnicity, n (%) Caucasian 0 1206 (69.6) 843 (69.6) 180 (69.2) 183 (70.4) 0.996

Unknown/Not specified 158 (9.1) 116 (9.6) 25 (9.6) 17 (6.5)

African American 134 (7.7) 93 (7.7) 17 (6.5) 24 (9.2)

Admission type, n (%) Emergency 0 1174 (67.8) 822 (67.8) 169 (65.0) 183 (70.4) 0.567

Newborn 287 (16.6) 192 (15.8) 52 (20.0) 43 (16.5)

Elective 228 (13.2) 166 (13.7) 32 (12.3) 30 (11.5)

Insurance, n (%) Private 0 761 (43.9) 526 (43.4) 115 (44.2) 120 (46.2) 0.612

Medicare 733 (42.3) 509 (42.0) 116 (44.6) 108 (41.5)

Medicaid 152 (8.8) 112 (9.2) 22 (8.5) 18 (6.9)

Religion, n (%) Catholic 18 555 (32.4) 390 (32.5) 78 (30.4) 87 (33.7) 0.357

Not specified 369 (21.5) 249 (20.8) 64 (24.9) 56 (21.7)

Unobtainable 273 (15.9) 181 (15.1) 50 (19.5) 42 (16.3)

Marital status, n (%) Married 363 682 (49.8) 472 (48.6) 99 (49.7) 111 (56.1) 0.338

Single 370 (27.0) 276 (28.4) 49 (24.6) 45 (22.7)

Widowed 198 (14.5) 139 (14.3) 37 (18.6) 22 (11.1)
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Table 4 Overall prediction performance (measured as MAE) of the proposed Transformer Models (bottom 3) on the test dataset 
for ASBP, ADBP, and  SpO2 in comparison with traditional Transformer and U‑Net model as baseline. MLM, fine‑tuned with Masked 
Language Modeling

Methods Parameter Counts, ×  106 SpO2, % ASBP, mmHg ADBP, mmHg

Transformer 1.4 1.65 ± 1.94 6.76 ± 5.24 3.57 ± 4.39

U‑Net 13.3 1.02 ± 1.46 5.03 ± 4.78 2.98 ± 3.41

Transformer w/multi‑task 2.2 1.28 ± 1.67 6.44 ± 5.32 3.42 ± 4.17

MLM‑Transformer 2.2 0.75 ± 1.04 4.97 ± 4.72 2.99 ± 2.39

MLM-Transformer w/personalization 2.2 0.56 ± 0.79 2.41 ± 2.72 1.31 ± 1.77

Fig. 8 Bland–Altman scatterplot for (a) ASBP and (b) ADBP values. The top histograms present golden label distributions for the test set, 
and the right histograms present the distributions of differences between predicted and actual values

Fig. 9 Model performance on demographic subgroups. a—c) present the performance of patients of different ages and gender, and d—f) present 
the performance of patients with different lengths of stay at the hospital. Columns from left to right: ASBP, ADBP, and  SpO2. As plot shows, our 
proposed model does not present significant prediction differences in different subgroups
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[-5, 5]. A subgroup analysis of prediction performance 
was conducted, based on the patients’ gender, age, and 
length of stay at hospitals, and the results are shown in 
Fig. 9. No demographic prediction bias was found con-
sidering these features.

Comparison with state-of-the-art studies
As demonstrated in Table 5, the results of our approach 
were compared with other state-of-the-art studies on 
PPG-BP predictions. The evaluation metrics used are 
estimation error (MAE ± S.D.) and the squared Pear-
son correlation coefficient  (r2) for systolic blood pres-
sure (SBP) and diastolic blood pressure (DBP). We 
achieved 2.41 ± 2.72 and 1.31 ± 1.77 for SBP and DBP with 
r2 = 0.982 and r2 = 0.971, respectively, which is better than 
the existing approaches in BP estimation.

We compared our proposed transformer-based model 
with feature extraction-based ML or DL models. The 
recent study from Gupta et  al.  used nonlinear features 
extracted from the third and fourth derivatives of the 
PPG cycle, combined with random forest as one of the 
traditional machine-learning models [52]. The authors 
reported achieving 1.30 ± 4.05 and 0.56 ± 1.70 for SBP and 
DBP, respectively, on the MIMIC III dataset. However, a 
selected smaller sample (510 subjects) was used in that 
study and the denoising process was not fully presented.

Moreover, the time sequence consistency between 
slices was not taken into consideration in the dataset 
splits, which can sabotage the validity of the results. 
In addition, the inflexibility of the input format may 
undermine its potential in a real-world deployment. 
Traditional models such as CNN-RNN combined 
deep learning model can indeed improve prediction 

performance through fine-tuning techniques, which is 
demonstrated by Leitner et  al. [37]. Through personali-
zation, the MAE in that study improved from 4.59 and 
2.72  mmHg for SBP and DBP to 3.52 and 2.20  mmHg 
respectively. However, we think that the natural set-
ting of the fixed count of convolutional channels and the 
dimension of the convolutional kernel results in limited 
applicability to PPG signals with motion artifacts and 
heterogeneity of the patient cohort. And in the com-
pared study, the qualified patients have 10-h high-quality 
data. Also, in the compared study, there is no control of 
time sequence in fine-tuning, namely the model can be 
trained on later slices and evaluated on earlier slices. On 
the other hand, please kindly note that our inclusion cri-
teria require only 10 or more segments of qualified slices 
which are 200 s in length in total, and we used all avail-
able samples from the fine-tuned patient record. Moreo-
ver, we used the earlier 20% slices for fine-tuning and the 
later 80% for evaluation to avoid data leakage problems.

On the other hand, Su et al. utilized ECG and PPG sig-
nals with Long Short-Term Memory (LSTM) networks to 
predict BP waveform, which achieved RMSE of SBP and 
DBP of 3.73 and 2.43, respectively [34]. However, it’s 
based on healthy subjects whose SBP and DBP maintain 
lower fluctuation compared with ICU patients. Moreo-
ver, some works based on the MIMIC II dataset were pro-
posed. Kurylvak’s group initially introduced the neural 
network to handle PPG signals of the MIMIC II dataset, 
which illustrated the potential of a neural network-based 
approach in signal processing of vital signs [51]. Kachuee 
et al. proposed an Adaboost-based framework to process 
vital signs, which achieved moderate performance due to 
model simplicity and small sample size [51].

Table 5 Comparison of methods and result of state‑of‑the‑art studies with proposed model

Data source Method Personalized Metrics SBP DBP

(Su et al. 2018) [34] Proprietary data (84 
subjects, 10 min each)

PTT + deep learning (LSTM) Unknown RMSE 3.73 2.43

(Mohammad Kachuee et al. 2017) [35] MIMIC II (1000 subjects) PTT + classical ML (AdaBoost) Yes MAE 11.17 5.35

(Kurylyak, Lamonaca, and Grimaldi 
2013b) [51]

MIMIC (15,000 beats) Temporal PPG features + artificial neural 
network (ANN))

Unknown MAE 3.8 2.21

(Gupta et al. 2022) [52] MIMIC I, II, and III (39 
subjects, ? subjects, 510 
subjects)

PPG signal’s derivative contours + ML 
algorithms

Yes MAE 0.74, 
1.69, 
1.30

0.35, 
0.77, 
0.56

(Bernard, Msigwa, and Yun 2022) [36] MIMIC II (69 subjects) 
and proprietary data (23 
subjects)

five 1‑D CNN, three Bi‑directional LSTM 
networks

No MAE 1.38 0.95

(Leitner, Chiang, and Dey 2022) [37] MIMIC III (100 subjects) RCNN neural networks + personalization Yes MAE 3.52 2.2

(Wang et al. 2022) [53] MIMIC II (348 records) Visibility graph + transfer learning No MAE 6.17 3.66

(Schlesinger et al. 2020) [38] MIMIC II (304 subjects) CNN + Siamese Network No MAE 5.95 3.41

Our proposed work (MLM‑Transformer 
w/personalization)

MIMIC III (1,732 subjects) 3‑layer Time Series Transformer + person‑
alized fine‑tuning

Yes MAE 2.41 1.31
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Compliance with standards
The prediction on the test dataset is compared with the 
AAMI error standard for the estimation of ABP [54]. 
Note that the AAMI standard requires an ME less than 5 
in the prediction of ABP with more than 85 subjects (we 
also presented MAE as a more rigorous criterion which 
is commonly used in previous PPG-BP prediction work) 
A comparison between the AAMI standard and our pro-
posed model is shown in Table 6.

In addition, the performance of MLM-Transformer w/
personalization is also evaluated by the British Hyper-
tension Society (BHS) grading standard [55], which is 
shown in Table  7. The BHS grading standard measures 
the cumulative percentage of a pre-defined error range. 
According to the evaluation, our results achieved “Grade 
A”, which means at least 60% of samples with less than 
5  mmHg error, at least 85% of samples with less than 
10  mmHg error, and at least 95% of samples with less 
than 15 mmHg error.

Discussion
In this study, we developed a novel end-to-end trans-
former-based deep learning model for the prediction of 
ABP and  SpO2 using a PPG signal and evaluated its per-
formance on the MIMIC III waveform dataset. Results 
show that our model reached the prediction accuracy as 
MAE of ASBP, ADBP, and  SpO2 by 2.41, 1.31, and 0.56, 
respectively, and complies with current standards for 
ABP prediction. The proposed model is trained and eval-
uated on 1,732 patients and over 4000 records in total 

which to the best of the author’s knowledge, is the largest 
subset compared to former studies.

As shown in Fig.  5, after preprocessing, we collected 
PPG and ABP signal data from 1,732 subjects, which is 
much higher compared with previous studies. Although 
we achieved similar performance with [20], our model 
is capable of delivering ABP and  SpO2 prediction simul-
taneously with pre-trained and fine-turned models, 
which serve as a satisfactory personalization model not 
only for ICU patients but also for more wide-scale gen-
eral usage. It is worth noting that utilizing preprocessing 
steps we proposed, we produced a subset of the MIMIC 
III waveform subset with high-quality PPG signal slices 
with ABP-based blood pressure as golden labels. It 
should be noted that such preprocessing steps could fil-
ter out a large proportion of raw signal data due to a lack 
of synchronized ABP or  SpO2 signals, or relatively low-
quality PPG signals with nuances, such as flat lines and 
fluctuations.

To fully utilize all available data, we further imple-
mented unsupervised pre-training which enables us to 
train personalized models using not only golden-labeled 
data, but all training samples to deliver robust and reli-
able results. Due to the large data dimension and hetero-
geneity among patients, especially ICU patients, feature 
extraction-based methods are impractical and hard to 
implement in real life [56]. Hence, we chose deep learn-
ing models to deliver end-to-end ABP and  SpO2 predic-
tion. Different from LSTM and other recurrent neural 
networks, transformer-based models do not require 

Table 6 Comparison of our results with the Association for the Advancement of Medical Instrumentation (AAMI) standard

No. of Subjects MAE (mmHg) ME (mmHg) STD (mmHg)

AAMI Standard 30  > 85 /  < 5  < 8

MLM‑Transformer ASBP 347 4.97 0.043 4.72

ADBP 347 2.99 0.026 2.39

MLM‑Transformer w/person‑
alization

ASBP 347 2.41 0.037 2.72
ADBP 347 1.31 0.029 1.77

Table 7 Comparison of our results with the British Hypertension Society (BHS) grading standard

Cumulative Error (%)

 ≤ 5 mmHg  ≤ 10 mmHg  ≤ 15 mmHg

BHS grading standard [55] Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%

MLM‑Transformer w/personalization ASBP 89.73% 97.61% 99.24%

ADBP 97.33% 99.62% 99.86%
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complicated gates and cell designs to process sequen-
tial information. Instead, an attention mechanism is uti-
lized to automatically recognize significant patterns from 
raw data, which not only boosts the model’s ability in 
latent pattern recognition but also saves computational 
resources. In addition, since the transformer model was 
proposed naturally to process unstructured text data, it 
could tolerate different lengths of input by introducing 
masks to pad the input.

In our experiment, the boost of prediction accuracy 
was achieved through supervised personalization, which 
is essentially fine-tuning a pre-trained transformer model 
with the upstream slices of the same patient to predict 
downstream tasks. This further increased the MAE of 
ASBP, ADBP, and  SpO2 by 4.35, 2.26, and 1.09, respec-
tively. We used rather unconstrained inclusion/exclu-
sion criteria when filtering a subset from the MIMIC III 
waveform subset regarding the patient’s demographic 
and clinical information, such as ICD-9 diagnosis, to 
ensure the wide range of its application. Therefore, it is 
expected to generate a rather heterogeneous subset over 
the original one. Such heterogeneity in clinical condi-
tions has been reported to connect with different ABP 
clinical impact and management strategies [57], in addi-
tion to demographic features (impact of different age, 
BMI, gender, and race/skin color for PPG absorption as 
an example [58]). Thus, we anticipated a personalization 
of the model would help further improve the prediction 
performance.

As shown in Fig. 2, the prediction performance remains 
relatively stable within a large span of ABP distribu-
tion. We also compared the results with AAMI and BHS 
standards and results show that the MLM-Transformer 
w/personalization complies with the standards for ensur-
ing accuracy, safety, and effectiveness, meanwhile the 
model also achieved satisfied prediction accuracy for 
 SpO2 prediction. It is worth noting that in this dataset, 
the distribution of patients’  SpO2 is highly skewed, and 
only 0.6% and 15.5% of our samples are considered below 
standards, using thresholds of 90% and 95% respectively. 
Predicting  SpO2 levels with accuracy and conductibil-
ity has gained more attention in recent years, especially 
during Covid-19 pandemic [59, 60]. One potential future 
study would be transferring and evaluating this model on 
the Covid-19 patient dataset.

This study has several limitations. One major draw-
back of using PPG signals to predict blood pressure is 
the potential for data bias. PPG signals are highly sensi-
tive to changes in skin color and commonalities, which 
can vary significantly from person to person (Wang 
et  al., 2016). As a result, the PPG data collected may 
not be representative of the general population and 

may be biased toward certain demographic groups or 
patient groups. Due to data accessibility, the relationship 
between comorbidities and the prediction performance 
of the proposed model was not studied, which remains 
for future research. Another limitation of this approach 
is its generalizability. The MIMIC III dataset is a col-
lection of records from ICU patients, so the applicabil-
ity of the proposed model to other cohorts and healthy 
subjects requires further investigation on external data-
sets. MIMIC-II is considered by its authors an older ver-
sion of MIMIC-III (and MIMIC-IV https:// mimic. mit. 
edu/ docs/ ii/), and also there is an issue of overlapping 
patients between different versions of the MIMIC data-
base (https:// github. com/ MIT- LCP/ mimic- code/ issues/ 
229). A potential hazard of data leakage may occur if we 
evaluate the model trained on MIMIC-III to MIMIC-II, 
so we decided not to do so. Although there was a lack 
of external evaluation, we trained and tested our model 
on sample slices acquired from 1,732 subjects, of which 
cohort size is expanded compared to former studies. We 
will continue evaluating our work in clinical settings in 
future studies. Finally, there are potential issues in the 
deployment of the proposed personalized model, which 
can be computationally expensive, and we plan to fur-
ther investigate how to put the proposed personalization 
method into practice. In future studies, a combination of 
additional information, e.g., demographic features such 
as age and gender, clinical information, and deep learn-
ing model may further improve the model performance. 
Moreover, properly defined loss functions considering 
the heterogeneity may boost the performance of a multi-
task Transformer. Lastly, data utilized in this study was 
solely collected from ICU patients [39], and incorporat-
ing this MIMIC III waveform subset with a dataset col-
lected from healthy people may help further increase the 
prediction performance.
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