
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

11-1-2023

Using Graph Neural Networks for Social Recommendations Using Graph Neural Networks for Social Recommendations

Dharahas Tallapally
Alumni

John Wang
Alumni

Katerina Potika
San Jose State University, katerina.potika@sjsu.edu

Magdalini Eirinaki
San Jose State University, magdalini.eirinaki@sjsu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

Recommended Citation Recommended Citation
Dharahas Tallapally, John Wang, Katerina Potika, and Magdalini Eirinaki. "Using Graph Neural Networks
for Social Recommendations" Algorithms (2023). https://doi.org/10.3390/a16110515

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more
information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F4690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3390/a16110515
mailto:scholarworks@sjsu.edu

Citation: Tallapally, D.; Wang, J.;

Potika, K.; Eirinaki, M. Using Graph

Neural Networks for Social

Recommendations. Algorithms 2023,

16, 515. https://doi.org/10.3390/

a16110515

Academic Editors: Vicente

García-Díaz and Edward Rolando

Núñez-Valdez

Received: 29 September 2023

Revised: 1 November 2023

Accepted: 6 November 2023

Published: 10 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Using Graph Neural Networks for Social Recommendations
Dharahas Tallapally 1, John Wang 2, Katerina Potika 1,* and Magdalini Eirinaki 2

1 Department of Computer Science, San José State University, San José, CA 95192, USA;
dharahas.tallapally@sjsu.edu

2 Department of Computer Engineering, San José State University, San José, CA 95192, USA;
john.wang@sjsu.edu (J.W.); magdalini.eirinaki@sjsu.edu (M.E.)

* Correspondence: katerina.potika@sjsu.edu; Tel.: +1-408-924-5134

Abstract: Recommender systems have revolutionized the way users discover and engage with
content. Moving beyond the collaborative filtering approach, most modern recommender systems
leverage additional sources of information, such as context and social network data. Such data
can be modeled using graphs, and the recent advances in Graph Neural Networks have led to the
prominence of a new family of graph-based recommender system algorithms. In this work, we
propose the RelationalNet algorithm, which not only models user–item, and user–user relationships
but also item–item relationships with graphs and uses them as input to the recommendation process.
The rationale for utilizing item–item interactions is to enrich the item embeddings by leveraging the
similarities between items. By using Graph Neural Networks (GNNs), RelationalNet incorporates
social influence and similar item influence into the recommendation process and captures more
accurate user interests, especially when traditional methods fall short due to data sparsity. Such
models improve the accuracy and effectiveness of recommendation systems by leveraging social
connections and item interactions. Results demonstrate that RelationalNet outperforms current
state-of-the-art social recommendation algorithms.

Keywords: social recommendation algorithm; graph neural networks; recommender systems; social
network; influence diffusion

1. Introduction

Recommender systems (RSs) have revolutionized the way users discover and engage
with content. These systems play a crucial role in numerous domains for providing
personalized recommendations to individual users, such as product recommendations in
e-commerce platforms (e.g., Amazon, Walmart, and Target), curated playlists in streaming
platforms (e.g., YouTube and Spotify), targeted ads in online advertising, and many others.
The primary purpose of recommender systems is to recommend a product or service
to a user, and recommender systems do this by consuming the users’ historical data to
find patterns, learn users’ preferences, and predict the likelihood of the user liking the
product or service. Moving beyond the traditional collaborative filtering (CF) modeling,
where the main input to such systems is the past (explicit or implicit) preferences of
users, most modern RSs leverage additional sources of information, such as context and
social network data. In particular, social RSs, where the user’s social network is also
used as input to the recommendation process on the premise that these users are more
similar and thus better predictors in terms of user preferences, have been shown to be very
effective and computationally efficient [1,2]. Social networks are naturally represented as
graphs, and this representation has allowed researchers to model concepts such as influence
propagation, trust, etc. Social network analysis tools [3] can enhance a recommender system
by considering the local and global characteristics of users in the corresponding social
network of users, such as centrality scores, discovery of weak/strong ties, community
detection, neighborhood overlap, positive and negative edges, behavior analysis, etc.

Algorithms 2023, 16, 515. https://doi.org/10.3390/a16110515 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16110515
https://doi.org/10.3390/a16110515
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-0332-1347
https://orcid.org/0000-0002-4711-3366
https://doi.org/10.3390/a16110515
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16110515?type=check_update&version=1

Algorithms 2023, 16, 515 2 of 18

In recent years, deep learning (DL) models have emerged as the dominant underlying
architecture for RSs, garnering substantial interest in both academic research and industrial
applications [4–9]. The allure of deep learning lies in its ability to capture complex and
non-linear relationships between users and items. By leveraging sophisticated neural
architectures, DL models excel at capturing intricate user–item dynamics, thus enhancing
the accuracy and relevance of recommendations. Additionally, these models offer the
flexibility to seamlessly integrate diverse data sources, such as contextual information,
textual data, and visual cues, thereby enriching the recommendation process with a wealth
of information.

Within the realm of DL algorithms, there exists a distinct category known as graph
learning-based methods, which offer a unique perspective in RSs. In these methods, RS
data are represented and analyzed through the lens of graphs. Specifically, the interactions
between users and items can be depicted as interconnected nodes in a graph, where the
links reflect the relationships between them. By leveraging graph-based representations,
RSs gain the advantage of incorporating structured external information, such as social
relationships among users, into the recommendation process. This integration of graph
learning provides a unified framework for modeling the diverse and abundant data present
in RSs.

Early explorations in graph learning-based RSs have focused on utilizing graph em-
bedding techniques to capture the relationships between nodes. These techniques can be
further categorized into factorization-based methods, distributed representation-based
methods, and neural embedding-based methods [10]. Their main aim is to learn mean-
ingful representations of nodes in the graph that capture their inherent relationships and
characteristics.

Recently, there has been a surge of interest in employing Graph Neural Networks
(GNNs) for recommendation tasks, owing to their exceptional ability to learn from graph-
structured data [8,11–13]. GNN-based recommendation models have attracted significant
attention due to their capacity to effectively capture the complex relationships and depen-
dencies among users, items, and other relevant features within the graph structure. By
leveraging the expressive power of GNNs, these models hold great promise for enhancing
the accuracy and effectiveness of recommender systems.

The utilization of graph learning techniques in RSs provides a valuable avenue for
leveraging the rich and interconnected nature of user–item interactions. By incorporating
graph structures and employing advanced methods like GNNs, RSs can effectively harness
the power of heterogeneous and interconnected data sources to generate more accurate and
personalized recommendations. As the field continues to advance, graph learning-based
methods are poised to play a pivotal role in the evolution of RSs, offering novel approaches
to address the challenges posed by diverse and interconnected data.

In this paper, we propose RelationalNet, an architecture that leverages GNNs to repre-
sent the relationships between users and items using various graph forms, which in turn
are fed into the prediction process to yield more accurate recommendations. In particular,
the proposed architecture encompasses the collaborative filtering notion of user–item and
item–item connections, while also incorporating the users’ social network relationships
(user–user). Such a rich and robust representation allows for more accurate predictions,
even in the case of sparse user–item input data, which is most often the main characteristic
of such systems, and can be used to address the cold-start problem, as item–item connec-
tions are inherent to the application domain and not dependent on the users’ ratings (or
absence thereof). Our approach is an extension of the successful DiffNet++ architecture [13]
that introduces additional types of embeddings. Via experimental evaluation using the
Yelp dataset, we demonstrate that our approach not only outperforms more established
graph-based social recommendation models but also improves on the recently proposed
DiffNet++ in generating accurate top-n recommendations for the user.

The rest of the paper is organized as follows: in Section 2, we review in detail the state
of the art (SOTA) in the areas of social recommenders, GNNs, and their intersection; in

Algorithms 2023, 16, 515 3 of 18

Section 3, we discuss in detail the proposed architecture of the RelationalNet model; in
Section 4, we present our methodology as well as the results of the experimental evaluation
that compares RelationalNet with SOTA architectures, demonstrating the strengths of our
approach; finally, we conclude with our plans for future work in Section 5.

2. Related Work

With the widespread adoption of online social platforms, social RSs have emerged
as a highly promising approach that leverages social networks among users to enhance
recommendation performance [14–16]. Grounded in sociological concepts, such as ho-
mophily and social influence [17], this field of study operates under the premise that
users’ preferences are more profoundly shaped by those of their interconnected peers
than by those of unfamiliar users [18]. Tang et al. [15] give a narrow definition of social
recommendation as “any recommendation with online social relations as an additional
input, i.e., augmenting an existing recommendation engine with additional social signals”.
Researchers have long recognized the influence of social connections on individuals, high-
lighting the phenomenon of similar preferences among social neighbors as information
diffuses within social networks [1,2,11,19–23]. Social regularization [1,2] has been shown to
be effective in social recommendation scenarios, operating under the assumption that users
with similar preferences exhibit shared latent preferences within popular latent factor-based
models [24].

In the realm of social recommendations, GNNs have emerged as a powerful tool for
capturing the intricate relationships between users, items, and other contextual features,
such as time and location [11–13,22]. The incorporation of GNNs into social recommenda-
tion models allows for a comprehensive understanding of the complex dynamics present
in social networks, resulting in more accurate and contextually relevant recommenda-
tions. Recent studies investigate various aspects, such as modeling user–item interactions,
capturing social influence, incorporating contextual information, and addressing scala-
bility challenges. Through a deeper understanding of these developments, researchers
and practitioners can gain insights into the potential benefits and challenges associated
with integrating GNNs into social recommendation frameworks, thereby fostering further
innovation and advancements in this exciting research area.

Ying et al. [22] introduced PinSage, a novel framework based on GNNs, designed
specifically for personalized feed recommendations. The motivation behind PinSage stems
from the scalability limitations observed in traditional CF methods. PinSage revolutionizes
the landscape of personalized feeds (news) recommendations by constructing a graph
representation that encompasses both items and users. Leveraging the expressive power
of GNNs, PinSage efficiently learns personalized feed representations for each user. This
graph-based approach enables the model to capture the complex relationships between
items and users, thereby facilitating accurate and relevant pin recommendations. PinSage
innovatively combines content-based and collaborative filtering approaches.

In their paper, Fan et al. [11] presented GraphRec, an innovative recommendation
algorithm that leverages the power of graphs. They highlight the limitations of tradi-
tional recommendation techniques, particularly in dealing with the cold-start problem
and effectively capturing intricate user–item connections. GraphRec aims to overcome
these challenges by using graphs to model user–item interactions in the form of a diverse
graph, rating scores, and differentiating the ties strengths by considering the heterogeneous
strengths of social relations.

Wu et al. [12] proposed Diffnet, a neural influence diffusion model for social recom-
mendations. Please note that this term refers to information diffusion in a social graph in
this context (not to be confused with Generative AI diffusion). Diffnet utilizes a user’s social
network data to provide personalized recommendations. Its neural architecture comprises
four main components: the embedding layer, the fusion layer, the layer-wise influence
diffusion layers, and the prediction layer. Once the influence diffusion process reaches
stability, the output layer predicts the final preference for a user–item pair. Compared

Algorithms 2023, 16, 515 4 of 18

to other existing social recommendation models, the Diffnet architecture leverages both
user–item interaction data and social network information to enhance the recommendation
accuracy.

In subsequent research work, Wu et al. [13] introduced an enhanced version of the
Diffnet model, called Diffnet++. This enhanced model builds upon the neural influence
diffusion framework for social recommendations. In addition to learning user embeddings
through influence diffusion from their social network, Diffnet++ incorporates user interest
embeddings acquired through interest diffusion from user–item interactions. As each
user is connected to their social connections, they form a user–user graph used to learn
the user influence embeddings. Similarly, the user is connected to items, enabling the
learning of user interest embeddings from item interactions, represented as user–consumed
items graphs.

Diffnet++ incorporates a neural architecture consisting of four essential components:
the embedding layer, the fusion layer, the layer-wise influence diffusion layers, and the
prediction layer. To ensure the efficacy of the user embeddings in both influence and
interest diffusion graphs, a node attention layer is employed to selectively emphasize
the most relevant information from the surrounding connections. Subsequently, after
training the user–influence embeddings and user–interest embeddings separately, they
are aggregated in a graph attention layer to generate the final user embeddings from the
influence and interest perspectives. The model predicts the final preference for a user–item
pair once the influence and interest diffusion processes have reached a stable state. This
comprehensive architecture empowers the model to effectively capture both influence and
interest dynamics.

By incorporating item relations, the RelationalNet algorithm emphasizes both user and
item influences and interests by adding the layer-wise item diffusion layer. This extension
enables the algorithm to capture and leverage the complex relationships between users
and items. Consequently, the algorithm aims to provide enhanced user recommendations
by considering the individual interests of users and the intricate interplay between users
and items. The inclusion of the item–item graph and the item–consumed users graph in
RelationalNet further enriches the modeling capabilities, allowing for a more comprehen-
sive representation of the user–item ecosystem. Through the integration of these additional
relational graphs, the RelationalNet model aspires to deliver more accurate and contex-
tually relevant recommendations to users, considering a broader spectrum of influences
and connections.

3. Methodology

In this section, we discuss in detail the proposed architecture of the RelationalNet
model for social recommendations utilizing GNNs.

3.1. Problem Statement

Within a RS, there exist two groups of entities:

• Users’ set U with m users |U| = m
• Items’ set: V with n items |V| = n

In such a system, we assume that as users interact with items, we can collect (or infer)
their preferences. Such preferences can be explicitly stated in the form of likes/dislikes
(e.g., “thumps up/down”) or ratings but can also be implicit and inferred from their actions
(e.g., purchasing an item and binge-watching a TV series). Similar to other graph-based
RS architectures, in RelationalNet, we model the user preference rui as a binary variable,
where rui = 1 if user u liked item i; else, rui = 0. These preferences rui are kept in a m× n
utility matrix R consisting of the ratings.

As previously mentioned, social RSs differentiate from traditional RS in that they
incorporate the social graph in the recommendation process; in other words, they leverage
the user–user relations. A user–user-directed graph GS = (U, US), where US represents
the social connections between users (edges), can be constructed. We represent graph

Algorithms 2023, 16, 515 5 of 18

GS using an adjacency matrix S of size Rm×m, where each element su1u2 = 1 if user u1 is
friends with/follows/trusts user u2; otherwise, it is equal to 0. Note that in the case of
friendships (bidirectional edge), the adjacency matrix S is symmetric, whereas in the case
of follows/trust (unidirectional edge), the matrix is asymmetric.

Similar to user–user social connections, item–item relations are modeled as a graph
GT = (V, VT), where VT represents the item–item connections (edges) between items
(nodes). We represent graph GT using an adjacency matrix T of size Rn×n, where each
element ti1i2 = 1 if item i1 is similar to item i2; otherwise, it is equal to 0. Consequently, this
is a symmetric adjacency matrix. We can define a similarity function that is domain based,
like common characteristics, category, etc.

Additionally, every user is associated with a real-valued embedding denoted as xa
in the user embedding matrix X ∈ RD×m, where D is the number of embedded features
(or dimensions) of each user a. Similarly, every item is associated with a real-valued
embedding denoted as yi in the item embedding matrix Y ∈ RD×n, where D is the number
of embedded features (or dimensions) of each item i.

As previously mentioned, in CF RSs, the objective is to predict unknown/unseen
ratings (or, in general preferences) of users for items given as input a utility matrix that
includes the past users’ ratings (or preferences) for items. In our work, we generalize this
objective to incorporate additional relations, as follows.

Given a utility matrix R consisting of the ratings rui of users u for items i, the user–user
social network adjacency matrix (S), the item–item network adjacency matrix (T), and
the two associated real-valued embedded matrices for users (X) and items (Y) predict the
unknown/unseen preferences/ratings of users towards items, represented by the m× n
matrix R̂:

R̂ = f (R, S, T, X, Y) (1)

3.2. RelationalNet Algorithm Architecture

In order to meet the objective of Formula (1), we introduce RelationalNet, a GNN-
based architecture that takes as input the utility matrix R as well as the adjacency matrices
S and T, and the user and item embeddings X and Y, respectively, to predict the missing
ratings r̂ui of R̂. Figure 1 depicts the RelationalNet algorithm architecture, highlighting
how each layer is interconnected to produce the final rating for a given pair of user and
item. Note that each layer considers four different graphs created from R, S, and T matrices.
We explain each component of this architecture in what follows.

Figure 1. RelationalNet algorithm with k layers. Top part: User–user graph and user–consumed–
items graph. Lower part: Item–consumed–users graph and item–item graph.

Algorithms 2023, 16, 515 6 of 18

3.2.1. Constructed Graphs

We now review in more detail the four distinct graph structures that our model uses
to facilitate the training process for predicting unknown ratings as illustrated in Figure 2.
These graph structures encompass the following:

• User–user graph GS : The user–user graph captures the social interactions between
users by establishing links between them. This graph emphasizes the significance of
user preferences influenced by their social connections. For instance, within the Yelp
dataset, if user A follows users B and C, we create directed graph edges (links) from
user A to user B and user A to user C.

• Item–item graph GT : The item–item graph establishes links between items that exhibit
similarities to each other. This graph captures the relationship between items based on
shared characteristics. For example, within the Yelp dataset, if two restaurants serve
similar food categories, a link is established between these restaurants.

• User–consumed–items graph GR: The user–consumed–items graph is formed based
on the interactions between users and items derived from each user’s past behavior as
given from the utility matrix R. It represents the items that a user has interacted with.
For example, if user A watches the movies Avengers and Avatar, connections (links)
are established between user A and the movie Avengers and between user A and the
movie Avatar.

• Item–consumed–users graph G′R: The item–consumed–users graph connects items
with the users who have interacted with them as given from the utility matrix R. It
signifies the users who have engaged with a particular item. For instance, if the movie
Avengers is watched by users A and B, links are created between the Avengers movie
and user A, as well as between the Avengers movie and user B. Note that graphs GR
and G′R are the same bipartite graph with the emphasis on user nodes and item nodes,
respectively.

Figure 2. Graphs used in the RelationalNet model.

Compared to existing models, the RelationalNet model introduces the incorporation
of item relations through the item–item graph GT and item–consumed–users graph G′R.
Similar to how users learn from their neighboring users in the user–user graph GS, items
may also learn from their neighboring items. This inclusion of item relations enhances the
model’s capacity to capture complex item–item dynamics, thereby improving the quality
of recommendations generated by the RelationalNet model.

3.2.2. Embedding Layer [13]

The utilization of embedding layers is commonplace in the field of Natural Language
Processing (NLP), as evidenced by numerous works such as [4,25,26]. The embedding layer
is part of the hidden layers in a deep neural network, taking high-dimension input and
outputs into a lower dimension. RSs utilize this technique to represent users and items
with respective free vector encodings.

• Let P ∈ Rm×D represent the free latent embedding matrices of users with D-dimensions.
The embedding layer executes an index selection operation to generate the unre-
strained latent vector of the user pa for user a at ath row. Figure 3 shows that step.

Algorithms 2023, 16, 515 7 of 18

• Similarly, let Q ∈ Rn×D represent the free latent embeddings matrices of items with
D-dimensions. The embedding layer executes an index selection operation to generate
the unrestrained latent vector of the item qb for item b at the bth row.

Figure 3. Embedding layer example for users’ free latent embedding matrix.

3.2.3. Fusion Layer [13]

The fusion layer merges the latent free vector with the real-valued embedding vector
to capture diverse initial interests from the input data. The combination of these two vectors
is essential for effective information integration. Figure 1 shows that step; left side before
Layer 1.

• The fusion layer processes latent free vectors pa from the embedding layer and real-
valued embedding vectors xa from input data X for each user a. The output is the
users’ initial interests u0

a across various input types:

u0
a = g(W1 × [pa, xa]) (2)

where W1 is a trainable weights matrix, and g(x) is a function of the transformation
matrix. Figure 4 shows the fusion layer for the user embedding.

• For each item i, the inputs are the latent free vector qi and the real-valued embedding
vectors yi, and the output is the initial interests v0

i of the items:

v0
i = g(W2 × [qi, yi]) (3)

where W2 is a trainable weights matrix, and g(x) is a function of the transformation
matrix.

Figure 4. Fusion layer example for a user a is u0
a .

Algorithms 2023, 16, 515 8 of 18

3.2.4. Node Attention Layer

In GNNs, each node receives and combines features from its neighboring nodes
to capture the local structure of the graph. Different types of GNN layers use various
aggregation techniques for the message-passing process.

Each of our graphs employs attention from neighboring nodes to enhance each user’s
training. This attention can be computed in various ways, such as taking the mean,
concatenating it into vectors, or selecting the maximum value from neighboring values. By
repeatedly diffusing users’ preferences through propagation in the graph, their preferences
are effectively spread out as shown in Figure 5.

• Let each user a have hk
a as the latent embedding at the kth layer, then the user a latent

embeddings for the neighboring nodes in GS at layer k + 1 is

hk+1
Sa = g(hk

b|b ∈ Sa) (4)

where g(x) is an attention function, and Sa is the neighborhood of a. The user’s a
latent embedding can be trained for layer k + 1 with the combination of its own hk

a
and of the neighboring latent embeddings hk+1

Sa :

hk+1
a = α(Wk × [hk+1

Sa , hk
a]) (5)

where α(x) is a non-linear transformation function similar to DiffNet++.
• Let each item i have lk

i as the latent embedding at the kth layer, then the item i latent
embeddings for the neighboring nodes in GT at layer k + 1 is

lk+1
Ti = g′(lk

b |b ∈ Ti) (6)

where g′(x) is an attention function and Ti is the neighborhood of i. The item i
latent embeddings can be trained for layer k + 1 with the combination of lk

i and lk+1
Ti

neighboring latent embeddings:

lk+1
i = α′(Wk × [lk+1

Ti , lk
i]) (7)

where α′(x) is a non-linear transformation function similar to DiffNet++.

Figure 5. Diffusion at Node attention layer, i.e., Layer 1 is from 1-hop neighbors, Layer 2 is from
2-hop neighbors, and Layer 3 is from 3-hop neighbors.

Algorithms 2023, 16, 515 9 of 18

Similarly, the consumed items by each user and those consumed for each item are
trained for k layers using attention.

• Let each user a have h̃k
a as latent embedding at the kth layer, then the user a latent

embeddings for the consumed item nodes in GR at layer k + 1 are

h̃k+1
Va = g(h̃k

b|b ∈ Va) (8)

where Va represents the items consumed by user a, and g(x) is a transformation func-
tion. The user a latent embeddings can be trained for layer k + 1 with a combination
of h̃k

a and h̃k+1
Va consumed item latent embeddings:

h̃k+1
a = β(W̃k × [h̃k+1

Va , h̃k
a]) (9)

where β(x) is a non-linear transformation function.
• Let each item i have l̃k

i as the latent embedding at the kth layer, then the item i latent
embeddings for the consumed user nodes in G′R at layer k + 1 are

l̃k+1
Si = g(l̃k

b |b ∈ Si) (10)

where Si represents users who consumed item i and g(x) is an attention function. The
item i latent embeddings can be trained for layer k + 1 with a combination of l̃k

i and
l̃k+1
Si

consumed users’ latent embeddings:

l̃k+1
i = β(W̃k × [l̃k+1

Si , l̃k
i]) (11)

where β(x) is a non-linear transformation function.

Figure 1 shows that step with the use of yellow boxes labeled Node ATT.

3.2.5. Graph Attention Layer

The graph attention layer, depicted in Figure 1 with blue boxes labeled Graph ATT,
generates the latent embeddings for each user and for each item using node attention at
every layer by a combination of suited graph embeddings.

• For user a, using the graph attention layer at the (k + 1)th layer to combine the latent
embeddings learned from neighboring users hk+1

a and from item consumed users l̃k+1
i

for each item i and item latent embeddings from the kth layer, i.e., vk
i , is

uk+1
a = MLP2([hk+1

a , MLP1([l̃k+1
i , vk

i])]) (12)

where MLP1, MLP2 are the multi-layer perceptrons used to learn the complex relation-
ship between social relations and item embeddings. Figure 6 shows an example of
this step.

• For item i, using the graph attention layer at the (k + 1)th layer to combine the latent
embeddings learned from neighboring items lk+1

i and from users consumed item h̃k+1
a

for each user a and item latent embeddings from kth layer, i.e., uk
a, is

vk+1
i = MLP2([lk+1

i , MLP1([h̃k+1
a , uk

a])]) (13)

where MLP1, MLP2 are the multi-layer perceptrons used to gain an understanding of
the intricate connections between item relations and user embeddings.

Algorithms 2023, 16, 515 10 of 18

Figure 6. Example of the graph attention at the (k + 1)th layer for the user embedding uk+1
a only.

3.2.6. Prediction Layer

To predict a user’s rating for an item r̂ai, we consider the latent embedding of each
user a from the final graph attention layer of Equation (12) denoted as uk

a at the kth layer
after the repeated diffusion of neighbors from Equation (4). Similarly, for every item i, we
consider its latent embeddings from the graph attention layer Equation (13) denoted as vk

i :

r̂ai = (vk
i)

T × uk
a (14)

3.2.7. Loss Function

Our focus is on the implicit feedback of users. In line with the commonly used
ranking-based loss function in Bayesian personalized ranking [27], the loss function based
on pairwise ranking for optimization purposes is defined as

minimize(L(R, R̂)) =
M

∑
a=1

N

∑
i∈Da

σ(r̂ai − rai) (15)

where σ(x) is a sigmoid function. Da represents the (previously) rated items of user a.
To implement it, we utilize TensorFlow to execute the suggested model. RelationalNet
optimizes the model parameters using a mini-batch Adam optimizer.

3.2.8. Time Complexity

Following a similar analysis as in DiffNet++ [13], the additional time cost lies in
the influence and interest diffusion layers for users and items, when compared to the
classical matrix factorization-based algorithms. Given m users, and n items and diffusion
depth of K, let us denote the maximum degree of GS by maxDegS, the maximum degree
of GT by maxDegT , the maximum items per user in GR by maxI, and the maximum
users per item in G′R by maxU. At each layer, we need to update the embeddings using
Equations (12) and (13). As noted, in practice, the MLP layers are two, so the time cost
for the graph attention modeling is O(D{m(maxDegS + maxI) + n(maxDegT + maxU)}),
where D is the dimension of the embeddings. Since there are K layers, the total additional
time complexity of our algorithm is O(KD{m(maxDegS +maxI)+ n(maxDegT +maxU)}).
Additionally, we have practically that maxDegS, maxU << m and maxDegT , maxI << n,
thus being almost linear to the number of users and items.

Algorithms 2023, 16, 515 11 of 18

4. Experimental Evaluation
4.1. Dataset

Similar to previous work, we employed the Yelp dataset [28] to evaluate our approach.
The Yelp dataset is ideal, as it includes not only ratings but also additional information
on businesses, reviews, check-ins, tips, and users. It contains data on various types of
businesses, including restaurants, bars, and cafes. These details include their names,
addresses, phone numbers, categories, ratings, operational hours, and reviews. Individual
users provide a rating of 1 to 5 (5 being the best) stars and compose written evaluations
for businesses. Most importantly, the dataset incorporates social network information,
such as the followers of each Yelp user and the number of fans subscribed to a business.
To analyze the Yelp dataset, a preprocessing step is performed by converting star ratings
of 3 or higher to a rating of 1, indicating a positive sentiment towards the business, and
ratings below 3 are converted to 0, indicating negative sentiment. To obtain insights from
the written reviews, the gensim tool and the Word2vec [29] model are employed to generate
the embedding of each word. By doing so, it becomes possible to produce a feature vector
for each user by computing the mean of the trained word vectors that are correlated to their
reviews. A similar process is employed to create feature vectors for every item (business).
The feature vectors for both users and items serve as inputs to the model, denoted as X
and Y, respectively.

Using the user followers’ information, we create the user–user graph. In this graph,
a link is established between user a and user b if user a follows user b, and the link is
assigned a weight of 1, which is used for creating the social adjacency matrix S. The dataset
also contains information on the items (businesses) and their categories. Businesses with
at least seven common categories are considered similar, and a link is assigned between
them to create a business–business (item–item) adjacency matrix T. The user–user and
item–item inputs S and T are respectively used for creating the graphs GS and GT for the
neural network to capture the graph relationships.

During the training and testing process, the dataset is filtered to exclude information
that may not be reliable or useful. Users with inadequate information, such as those with
less than ten reviews or ten followers, are removed from the dataset. By applying these
filters, the dataset is refined to ensure that only relevant and reliable information is utilized
for the analysis. Table 1 summarizes the statistics of the original Yelp dataset as well as the
filtered one used in our experiments.

Table 1. Yelp dataset.

Dataset Yelp

Users 1,987,897
Businesses 150,346

Reviews 6,990,280

Filtered Users 15,519
Filtered Businesses 24,648

Filtered Reviews 815,777
Social Links (user–user) 836,186
Item links (item–item) 196,010

Reviews Sparsity 0.213%
Avg no. of ratings/user 37

Median no. of ratings/user 22

4.2. Training Setup

After preprocessing, the dataset is divided into three distinct subsets—the training,
validation, and test datasets, using a ratio of 7:1:2, respectively. At the initialization of
the model, there are fixed input values provided for various parameters, such as the user
feature matrix X, items feature matrix Y, user–consumed–items graph GR, item–consumed–

Algorithms 2023, 16, 515 12 of 18

users graph G′R, user–user graph GS, and item–item graph GT . The fixed input values are
utilized in various layers of the training model. In the training process, the hyperparameters
are fine-tuned using the validation dataset.

During each epoch, different mini-batches of users with varying sizes (100, 250, 500,
and 1000) are tested, and it is found that a batch size of 500 yields comparatively better
results than other batch sizes. The Adam optimizer is utilized to optimize the model, with
an initial learning rate of [0.001, 0.0025, 0.005] and a decay learning rate to minimize the
loss function given by Equation (15). To train the model to be unbiased, a certain number
of false negative ratings are added for each user from randomly selected unrated items.

The GNN models utilize the depth parameter K to gauge the impact of diffusion on
the overall model (as shown in Equations (12) and (13)). To evaluate the performance of
the model, it is trained with different values of K = 2, 3. The size of the user and item-free
embeddings, denoted as D, is determined by the number of dimensions in the fusion layer
as well as the subsequent diffusion layers. For the fusion layers, we use a sigmoid function
as the non-linear function g(x) to transform each value into the range (0, 1) (as shown in
Equations (2) and (3)). The output size of each layer is set to D = 64 dimensions.

4.3. Performance Metrics

We validate our model and evaluate it against SOTA RS algorithms and models using
the Root Mean Square Error (RMSE) metric. Using this as a first indicator on which models
perform the best overall, we then proceed to evaluate in more detail the model’s ability to
generate accurate top-n recommendations. The two main metrics used for this purpose are
hit rate (HR) and Normalized Discounted Cumulative Gain (NDCG).

4.3.1. Root Mean Square Error (RMSE)

First, we calculate RMSE over the entire set of predictions. RMSE is a metric that
penalizes high differences between the predicted ratings r̂i and the ground truth rating ri
over all items i in the test (or validation) set. It is defined as follows:

RMSE =

√
∑N

i=1(r̂i − ri)2

N
(16)

where N is the total number of predicted ratings.
RMSE is a good indicator of how well the system performs overall and is broadly used

for validation (hyperparameter tuning, model selection, etc.). However, as it penalizes
equally both high and low rating predictions, and is applied over the entirety of the
validation/test data, it is not a good indicator of the accuracy of the top-n recommendations
the system generates, compared to HR and NDCG.

4.3.2. Hit Rate (HR)

HR is a metric used to evaluate the performance of the model by calculating the
percentage of times that at least one item from the test set of a user was recommended in
the top-n recommendations suggested by the model:

HR@n =
Number of users with at least one hit in top-n

Total number of users
(17)

Hit rate HR@n for a top-n recommendation list is defined as follows [30]:

HR@n =
|Hu|

m
(18)

where Hu = 1 (i.e., a “hit”) when the algorithm manages to recommend at least one item
that was in the user’s original list (test set), and 0 otherwise; n is the size of the recommen-
dation list considered; and m is the total number of users in the test set. Essentially, HR
assesses whether the model is able to recommend at least one relevant item to the user.

Algorithms 2023, 16, 515 13 of 18

For example, let us consider a test set of 100 users and their corresponding ground
truth sets of movies. The RS generates a list of top-5 movie recommendations for each
user. After evaluating the recommendations, it is found that 30 users have at least one
recommended movie in their ground truth sets. In this case, the hit rate would be calculated
as 30/100 = 0.3 or 30%.

A higher hit rate serves as an indicator of the effectiveness of an RS, as it suggests that
the system is successfully recommending items that match users’ preferences. However,
it is essential to recognize that the hit rate metric solely focuses on whether the recom-
mended items are present in the user’s ground truth set, without considering their ranking
or relevance. As a result, it is common practice to complement the hit rate with other
evaluation metrics to obtain a more comprehensive assessment of the performance of the
RS. By incorporating additional metrics, the evaluation process gains insights into the
system’s ability to provide accurate and highly relevant top-n recommendations to users.

4.3.3. Normalized Discounted Cumulative Gain (NDCG)

Normalized Discounted Cumulative Gain (NDCG) evaluates the quality of the rec-
ommended items’ ranking. This metric accounts for the relevance of items based on their
position in the recommendation list, with items at higher positions being deemed more
relevant. The metric is normalized based on the ideal DCG (Discounted Cumulative Gain).
The ideal DCG represents the cumulative gain of the perfectly ordered items that are most
relevant to each user.

The formula for Normalized Discounted Cumulative Gain (NDCG) is:

NDCG@n =
DCG@n
IDCG@n

(19)

where n represents the position in the recommendation list. The Discounted Cumulative
Gain (DCG) is defined as:

DCG@n =
n

∑
i=1

2reli − 1
log2(i + 1)

(20)

where reli is the score that indicates how relevant the item recommended at position i is,
and IDCG (Ideal Discounted Cumulative Gain) is the DCG score of the ideal (i.e., ground
truth) list of recommended items. The higher the NDCG score (closer to 1), the better
the recommender system is performing in terms of providing relevant and well-ranked
recommendations.

In this paper, HR and NDCG are evaluated on the test data to determine how well the
models perform. By utilizing these top-n metrics, we can effectively gauge the ability of
the model to make accurate recommendations and compare the effectiveness of different
models.

4.4. Experimental Results

We first evaluate RelationalNet against four SOTA social RSs using RMSE, namely
SocialMF [24], GraphRec [11], and Diffnet++ [13]. The results are shown in Table 2. It is
worth mentioning that there are considerable variations between the metrics obtained by
GraphRec and the other models. Specifically, while GraphRec predicts ratings on a scale of
1–5, the other models predict whether the user likes an item or not, with binary values of 1
or 0. Hence, comparing the performance of these models based on the same metric can be
challenging due to significant differences in the rating scales. Nevertheless, RelationalNet
and Diffnet++ clearly outperformed the other two systems, with the three-layer GNN
architecture yielding slightly better results for both models. We therefore focused the rest
of our experimental evaluation on those two models (four variations).

Algorithms 2023, 16, 515 14 of 18

Table 2. Results metrics: Root Mean Square Error (RMSE).

Model RMSE

SocialMF [24] 2.1990

GraphRec [11] 0.6640

Diffnet++ [13] (GNN Layers K = 2) 0.1676

Diffnet++ [13] (GNN Layers K = 3) 0.1668

RelationalNet Model (GNN Layers K = 2) 0.1701

RelationalNet Model (GNN Layers K = 3) 0.1674

To ensure fairness in our evaluation, we followed a similar evaluation methodology,
using identical datasets and evaluation metrics as in Diffnet++ [13]. Specifically, the Yelp
datasets were used, and the model was evaluated using HR and NDCG metrics.

Table 3 presents the results for the HR metric of RelationalNet and Diffnet++ with
various combinations of hyperparameters (number of layers). RelationalNet, consisting
of a two-layer GNN, gives the best results. Both variations of the RelationalNet model
outperform those of Diffnet++ up to 24% for the top-5 recommendations, with an average
overall improvement of 11.8%. The analysis revealed that increasing the number of layers
led to a decrease in the performance of the recommender system, a pattern that is observed
both for the proposed RelationalNet model and the Diffnet++ model.

Table 3. Hit rate (HR) for top-5, top-10, and top-15 recommendations.

Model HR (5) HR (10) HR (15)

Diffnet++ [13] (GNN Layers K = 2) 0.2722 0.3136 0.3634

Diffnet++ [13] (GNN Layers K = 3) 0.2376 0.2772 0.3320

RelationalNet Model (GNN Layers K = 2) 0.2946 0.3288 0.3739

RelationalNet Model (GNN Layers K = 3) 0.2840 0.3218 0.3694

Table 4 shows the results for the NDCG metrics for the different models, and again
the RelationalNet model with two layers has the best performance. We observe that
both RelationalNet variations perform better than those of Diffnet++ for all sizes of top-n
recommendation lists with up to 10% improvement for top-5 recommendations and an
average overall improvement of 6.2%.

Table 4. Normalized Discounted Cumulative Gain (NDCG) for top-5, top-10, and top-15 recommen-
dations.

Model NDCG (5) NDCG (10) NDCG (15)

Diffnet++ [13] (GNN Layers K = 2) 0.4822 0.5167 0.5267

Diffnet++ [13] (GNN Layers K = 3) 0.4573 0.4924 0.5044

RelationalNet Model (GNN Layers K = 2) 0.5058 0.5347 0.5416

RelationalNet Model (GNN Layers K = 3) 0.4972 0.5283 0.5376

Figure 7a,b illustrate the comparison of the model’s training loss with different learning
rates to analyze their performance under various hyperparameters. The visual representa-
tion of the loss function enables us to evaluate the model’s convergence rate. These figures
reveal that a learning rate of 0.0025 leads to a smoother decrease in training loss than a
learning rate of 0.005, indicating that the former results offer better convergence. Moreover,
the RelationalNet model outperforms the Diffnet++ model in terms of training loss for

Algorithms 2023, 16, 515 15 of 18

most learning rates, indicating its ability to learn from input data effectively and suggesting
that it can achieve higher accuracy than the Diffnet++ model.

Our findings illustrate the efficacy of the RelationalNet model in tackling the social
recommendations generation problem. RelationalNet has achieved accurate user preference
prediction in various (realistic) lengths of top-n recommendation lists and outperformed
several SOTA social recommender systems. The outcomes indicate that integrating GNN
layers to facilitate interest and influence diffusion leads to an enhancement in the recom-
mendation accuracy. The RelationalNet model can potentially enhance the recommendation
accuracy in social RSs and can be effectively used in real-world applications.

(a) (b)
Figure 7. Training loss. (a) Training loss of the Diffnet++ model [13]. (b) Training loss of the
RelationalNet model.

4.5. Ablation Study

We perform an ablation study to explore whether the item–item graph GT that we
create, such that similar items are connected, enriches our embeddings. To evaluate this
hypothesis, we employ an item–item graph G∗T that is created by connecting items randomly.
We achieve that by replacing every edge e = (v, u) ∈ GT (positive edge) with a negative
edge e∗ that connects v with a node u∗ that is not in the neighborhood of v. We then reduce
the degree of each node by 10 but cap the minimum degree at 1. The ablation results, shown
in Table 5, are consistent with our hypothesis that the item–item graph GT enriches our
model, as using an item–item graph with negative edges and fewer connections decreases
the performance of the model in terms of RMSE, HR@5/10/15 and NDCG@5/10/15. It
is important to note that the greatest difference between our experimental results and the
ablation results is in HR@5 and NDCG@5, while HR@10/15 and NDCG@10/15 are closer.
This is expected for the specific dataset since after preprocessing, there exist many items
that have fewer than 10 ratings. When the number of training samples is less than the
number of predicted ratings, the hit rate and NDCG values have less relevance.

Table 5. Ablation study.

Layers Metric RelationalNet with GT RelationalNet with G∗
T

(Tables 3 and 4) (Ablation)

k = 3 RMSE 0.1674 0.1855

k = 2 HR@5 0.2946 0.2901

k = 2 HR@10 0.3288 0.3243

k = 2 HR@15 0.3739 0.3714

k = 2 NDCG@5 0.5058 0.5036

k = 2 NDCG@10 0.5347 0.5324

k = 2 NDCG@15 0.5416 0.5404

Algorithms 2023, 16, 515 16 of 18

5. Conclusions and Discussion

This paper proposes RelationalNet, a novel neural influence and diffusion algo-
rithm for social recommendations based on Diffnet++ [13]. RelationalNet improves upon
Diffnet++ with the addition of item–item and item–user interactions modeled as graphs
used in the GNNs. By incorporating not only user–user relations in the form of the social
graph (similar to other social recommender systems) but also item–item relations that
are independent of any user interactions, RelationalNet addresses the cold-start prob-
lem of little or no user–item ratings. Furthermore, RelationalNet utilizes a multi-layer
diffusion network that employs graph attention to combine graph and node-level represen-
tations, managing to capture the latent features of each graph. The experimental evaluation
showed that the RelationalNet algorithm achieves better performance in generating top-n
recommendations (with a 11.8% improvement of HR and 6.2% improvement of NDCG on
average) as opposed to the current SOTA and predecessor, Diffnet++, showing the potential
of such extensions that enhance the input with additional connections.

There is still significant scope to explore, like the different mechanisms for forming
connections between items, calculating user and item similarities, exploring higher-order
connections [31,32] instead of edges, and investigating graph reasoning algorithms to
learn users’ preferences better. In addition, we plan to leverage our previous work on
influential users [2,23,33,34] to refine the user–user similarities and create neighborhoods
of influence. Perhaps one of the main shortcomings of the proposed approach is the
overhead that is introduced by adding one additional graph and expanding the social
network beyond direct neighbors, as the RelationalNet algorithm was 25% slower than
the DiffNet++ algorithm. The biggest cost factor to consider if we want to make our
algorithm scalable is to restrict the attention modules in the nodes and in the graphs. We
can achieve this by reducing the dimensions of the embeddings for the user and item,
respectively. One of the future ideas is to use subgraph sampling for the training. However,
selecting representative subgraphs that will preserve good graph characteristics needs
further investigation, especially in our case, where we have four graphs. While using
subgraph sampling will increase the scalability of the model, this comes with the cost of
accuracy and expressability of the model.

Overall, the RelationalNet algorithm provides a significant step forward in social
recommendation systems by taking advantage of social connections, item correlations, and
leveraging the power of GNNs.

Author Contributions: Conceptualization, D.T. and K.P.; methodology, D.T.; software, D.T.; formal
analysis, D.T. and K.P.; investigation, D.T., K.P. and M.E.; validation, J.W.; resources, D.T. and J.W.;
data curation, D.T. and J.W.; writing—original draft preparation, D.T., K.P. and M.E.; writing—review
and editing, J.W., K.P. and M.E.; visualization, D.T.; supervision, K.P. and M.E.; funding acquisition,
K.P.; project administration K.P. All authors have read and agreed to the published version of the
manuscript.

Funding: Research reported in this publication was supported by the Division of Research and
Innovation at San José State University under Award Number 22-RSG-08-034 for Katerina Potika.
The content is solely the responsibility of the authors and does not necessarily represent the official
views of San José State University.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://www.yelp.com/dataset, accessed on 1 October 2022.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.yelp.com/dataset

Algorithms 2023, 16, 515 17 of 18

Abbreviations
The following abbreviations are used in this manuscript:

CF Collaborative Filtering
DCG Discounted Cumulative Gain
DL Deep Learning
GNN Graph Neural Network
HR Hit Rate
IDCG Ideal Discounted Cumulative Gain
MLP Multi-Layer Perceptron
NDCG Normalized Discounted Cumulative Gain
NLP Natural Language Processing
RMSE Root Mean Square Error
RS Recommender System
SOTA State Of The Art

References
1. Ma, H.; Zhou, D.; Liu, C.; Lyu, M.R.; King, I. Recommender Systems with Social Regularization. In Proceedings of the Fourth

ACM International Conference on Web Search and Data Mining, WSDM ’11, Hong Kong, China, 9–12 February 2011; pp. 287–296.
[CrossRef]

2. Gulati, A.; Eirinaki, M. With a Little Help from My Friends (and Their Friends): Influence Neighborhoods for Social Recommen-
dations. In Proceedings of the World Wide Web Conference, WWW ’19, San Francisco, CA, USA, 13–17 May 2019; pp. 2778–2784.
[CrossRef]

3. Easley, D.; Kleinberg, J. Networks, Crowds, and Markets; Cambridge Books: Cambridge, UK, 2012.
4. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural Collaborative Filtering. In Proceedings of the 26th International

Conference on World Wide Web, WWW’17, Perth, Australia, 3–7 April 2017; pp. 173–182. [CrossRef]
5. Cheng, H.T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; et al. Wide

& deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,
Boston, MA, USA, 15 September 2016; pp. 7–10. [CrossRef]

6. Covington, P.; Adams, J.; Sargin, E. Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM
Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 191–198. [CrossRef]

7. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput.
Surv. (CSUR) 2019, 52, 1–38. [CrossRef]

8. Wu, S.; Sun, F.; Zhang, W.; Xie, X.; Cui, B. Graph neural networks in recommender systems: A survey. ACM Comput. Surv. 2022,
55, 1–37. [CrossRef]

9. Tallapally, D.; Sreepada, R.S.; Patra, B.K.; Babu, K.S. User Preference Learning in Multi-Criteria Recommendations Using Stacked
Auto Encoders. In Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18, Vancouver, BC, Canada, 2–7
October 2018; pp. 475–479. [CrossRef]

10. Wang, S.; Hu, L.; Wang, Y.; He, X.; Sheng, Q.Z.; Orgun, M.A.; Cao, L.; Ricci, F.; Yu, P.S. Graph Learning based Recommender
Systems: A Review. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, Survey
Track, Montreal, QC, Canada, 19–26 August 2021; pp. 4644–4652. [CrossRef]

11. Fan, W.; Ma, Y.; Li, Q.; He, Y.; Zhao, E.; Tang, J.; Yin, D. Graph Neural Networks for Social Recommendation. In Proceedings of
the World Wide Web Conference, WWW ’19, San Francisco, CA, USA, 13–17 May 2019; pp. 417–426. [CrossRef]

12. Wu, L.; Sun, P.; Fu, Y.; Hong, R.; Wang, X.; Wang, M. A Neural Influence Diffusion Model for Social Recommendation. In
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’19,
Paris, France, 21–25 July 2019; pp. 235–244. [CrossRef]

13. Wu, L.; Li, J.; Sun, P.; Hong, R.; Ge, Y.; Wang, M. DiffNet++: A Neural Influence and Interest Diffusion Network for Social
Recommendation. IEEE Trans. Knowl. Data Eng. 2022, 34, 4753–4766. [CrossRef]

14. Jiang, M.; Cui, P.; Wang, F.; Zhu, W.; Yang, S. Scalable Recommendation with Social Contextual Information. IEEE Trans. Knowl.
Data Eng. 2014, 26, 2789–2802. [CrossRef]

15. Tang, J.; Hu, X.; Liu, H. Social recommendation: A review. Soc. Netw. Anal. Min. 2013, 3, 1113–1133. [CrossRef]
16. Eirinaki, M.; Gao, J.; Varlamis, I.; Tserpes, K. Recommender Systems for Large-Scale Social Networks: A review of challenges and

solutions. Future Gener. Comput. Syst. 2018, 78, 413–418. [CrossRef]
17. McPherson, M.; Smith-Lovin, L.; Cook, J.M. Birds of a Feather: Homophily in Social Networks. Annu. Rev. Sociol. 2001,

27, 415–444. [CrossRef]
18. Weng, J.; Lim, E.; Jiang, J.; He, Q. TwitterRank: Finding topic-sensitive influential twitterers. In Proceedings of the Third

International Conference on Web Search and Web Data Mining, WSDM 2010, New York, NY, USA, 4–6 February 2010; pp. 261–270.
[CrossRef]

http://doi.org/10.1145/1935826.1935877
http://dx.doi.org/10.1145/3308558.3313745
http://dx.doi.org/10.1145/3038912.3052569
http://dx.doi.org/10.1145/2988450.2988454
http://dx.doi.org/10.1145/2959100.2959190
http://dx.doi.org/10.1145/3158369
http://dx.doi.org/10.1145/3535101
http://dx.doi.org/10.1145/3240323.3240412
http://dx.doi.org/10.24963/ijcai.2021/630
http://dx.doi.org/10.1145/3308558.3313488
http://dx.doi.org/10.1145/3331184.3331214
http://dx.doi.org/10.1109/TKDE.2020.3048414
http://dx.doi.org/10.1109/TKDE.2014.2300487
http://dx.doi.org/10.1007/s13278-013-0141-9
http://dx.doi.org/10.1016/j.future.2017.09.015
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1145/1718487.1718520

Algorithms 2023, 16, 515 18 of 18

19. Anagnostopoulos, A.; Kumar, R.; Mahdian, M. Influence and Correlation in Social Networks. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08, Las Vegas, NV, USA, 24–27 August 2008;
pp. 7–15. [CrossRef]

20. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. AI Open 2020, 1, 57–81. [CrossRef]

21. Micheli, A. Neural Network for Graphs: A Contextual Constructive Approach. IEEE Trans. Neural Netw. 2009, 20, 498–511.
[CrossRef] [PubMed]

22. Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, London, UK, 19–23 August 2018; pp. 974–983. [CrossRef]

23. Gulati, A.; Eirinaki, M. Influence Propagation for Social Graph-based Recommendations. In Proceedings of the IEEE International
Conference on Big Data (IEEE BigData 2018), Seattle, WA, USA, 10–13 December 2018; pp. 2180–2189. [CrossRef]

24. Jamali, M.; Ester, M. A matrix factorization technique with trust propagation for recommendation in social networks. In
Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; pp. 135–142.
[CrossRef]

25. Levy, O.; Goldberg, Y. Dependency-based word embeddings. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), Baltimore, MD, USA, 22–27 June 2014; pp. 302–308.

26. Rendle, S. Factorization Machines with LibFM. ACM Trans. Intell. Syst. Technol. 2012, 3, 1–22. [CrossRef]
27. Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian Personalized Ranking from Implicit Feedback. In

Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, Arlington, VA, USA, 18–21 June
2009; pp. 452–461.

28. Yelp. Yelp Dataset. Available online: https://www.yelp.com/dataset (accessed on 1 November 2023).
29. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. In Proceedings of the 1st

International Conference on Learning Representations, ICLR 2013, Scottsdale, AZ, USA, 2–4 May 2013.
30. Deshpande, M.; Karypis, G. Item-Based Top-N Recommendation Algorithms. ACM Trans. Inf. Syst. 2004, 22, 143–177. [CrossRef]
31. Chavan, N.; Potika, K. Higher-order link prediction using triangle embeddings. In Proceedings of the 2020 IEEE International

Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 4535–4544. [CrossRef]
32. Anjan, K.; Andreopoulos, W.; Potika, K. Prediction of higher-order links using global vectors and Hasse diagrams. In Proceedings

of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 4802–4811.
[CrossRef]

33. Eirinaki, M.; Moniz, N.; Potika, K. Threshold-Bounded Influence Dominating Sets for Recommendations in Social Networks. In
Proceedings of the 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and
Networking (SocialCom), Sustainable Computing and Communications (SustainCom), BDCloud-SocialCom-SustainCom 2016,
Atlanta, GA, USA, 8–10 October 2016; pp. 408–415. [CrossRef]

34. Kaple, M.; Kulkarni, K.; Potika, K. Viral Marketing for Smart Cities: Influencers in Social Network Communities. In Proceedings
of the Third IEEE International Conference on Big Data Computing Service and Applications, BigDataService 2017, Redwood
City, CA, USA, 6–9 April 2017; pp. 106–111. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1401890.1401897
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1109/TNN.2008.2010350
http://www.ncbi.nlm.nih.gov/pubmed/19193509
http://dx.doi.org/10.1145/3219819.3219890
http://dx.doi.org/10.1109/BigData.2018.8622213
http://dx.doi.org/10.1145/1864708.1864736
http://dx.doi.org/10.1145/2168752.2168771
https://www.yelp.com/dataset
http://dx.doi.org/10.1145/963770.963776
http://dx.doi.org/10.1109/BigData50022.2020.9377750
http://dx.doi.org/10.1109/BigData52589.2021.9671432
http://dx.doi.org/10.1109/BDCLOUD-SOCIALCOM-SUSTAINCOM.2016.67
http://dx.doi.org/10.1109/BIGDATASERVICE.2017.46

	Using Graph Neural Networks for Social Recommendations
	Recommended Citation

	Introduction
	Related Work
	Methodology
	Problem Statement
	RelationalNet Algorithm Architecture
	Constructed Graphs
	Embedding Layer Diffnetplus
	Fusion Layer Diffnetplus
	Node Attention Layer
	Graph Attention Layer
	Prediction Layer
	Loss Function
	Time Complexity

	Experimental Evaluation
	Dataset
	Training Setup
	Performance Metrics
	Root Mean Square Error (RMSE)
	Hit Rate (HR)
	Normalized Discounted Cumulative Gain (NDCG)

	Experimental Results
	Ablation Study

	Conclusions and Discussion
	References

