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ARTICLE INFO ABSTRACT
Keywords: Graph Convolutional Networks (GCNs) have recently been used to predict the remaining useful life (RUL) of
Bearing bearings due to its effectiveness in revealing correlations in condition monitoring data. However, traditional

Remaining useful life

Graph convolutional network
Attention mechanism

Deep learning

GCNs use a single graph only, either a temporal-correlated graph or a feature-correlated graph without
considering both temporal and feature correlations of condition monitoring data. Additionally, traditional
GCNs rely heavily on pre-defined graphs to aggregate correlated features. However, the topology of these pre-
defined graphs may vary depending on a pre-defined threshold for cosine similarity or covariance which might
affect prediction accuracy and robustness. To address these issues, we introduce a spectral graph convolutional
operation that can handle both temporal-correlated and feature-correlated graphs, which allows one to consider
both the temporal and feature correlations simultaneously. Moreover, we introduce a self-attention mechanism
to construct the temporal-correlated and feature-correlated graphs automatically without defining a threshold.
Such a mechanism allows the predictive model to learn graphs automatically during training so that the
prediction accuracy and robustness can be significantly improved. The proposed method is demonstrated on
two bearing datasets, and the experimental results have shown that it outperforms both traditional GCNs and
other deep-learning methods in predicting RUL of bearings.

1. Introduction

A bearing is a machine component that constrains relative mo-
tion to only its desired motion and reduces friction between moving
parts [1,2]. Bearings play a critical role in numerous fields, such as
the aerospace industry, industrial machinery, agriculture equipment,
and so on. For example, bearings are used in wind turbines to support
the rotating blades and ensure smooth and efficient operation [3]; and
bearings are also used in aircraft and satellites to support rotating
parts and provide smooth motion in high-speed and demanding envi-
ronments [4]. Like all other machine components, the performance of
bearings degrades over time, also known as bearing degradation [5].
Bearing degradation can occur due to a variety of factors, including
wear and tear, corrosion, contamination, improper installation, and
overloading [6]. Bearing degradation can have negative effects on a
system or machine in which it is used, including reduced efficiency,
reduced lifespan, downtime, and even safety hazards [7,8]. To avoid
or alleviate the negative effects of bearing degradation, it is critical
to acknowledge the health condition as well as predict the remaining
useful life (RUL) of bearings so that predictive maintenance can be

* Corresponding author.
E-mail address: yupeng.wei@sjsu.edu (Y. Wei).

https://doi.org/10.1016/j.a€i.2023.102143

performed in a timely manner to restore the degraded bearing to its
proper performance [9].

Over the past decade, machine learning has been widely used to
predict the RUL of bearings. The machine learning methods that are
used for RUL prediction of bearings can be broadly classified into
two categories: classical machine learning methods and deep learning
methods. The classical machine learning methods include, but are not
limited to, ensemble learning [10], support vector regression [11], the
Gaussian process [12], fuzzy logic [13], and so on. For example, Shi
et al. [14] employed an ensemble learning method to estimate the
RUL of rolling bearings and explored the influence of various base
learners and features on the prediction accuracy. Experiments have
demonstrated that increasing the diversity of base learners and features
in ensemble learning leads to a significant improvement in prediction
accuracy. Kumar et al. [15] utilized a Gaussian process regression
model to predict the RUL of bearings, and the prediction process was
assisted by a health index that was developed using the Kullback-
Leibler divergence constraint. The numerical results have demonstrated
that the learned health index can effectively infer the health condi-
tion of bearings, and the Gaussian process regression model provides
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a highly accurate prediction of RUL. Huang et al. [16] proposed a
Takagi-Sugeno fuzzy logic approach to predict the RUL of bearings.
The approach employed maximum likelihood estimation for parameter
estimation and numerical experiments have demonstrated its ability to
predict the RUL, even with limited data.

Classical machine learning algorithms are not effective in han-
dling complex problems that involve non-linear relationships or large
amounts of data [17]. To address this issue, deep learning meth-
ods have been increasingly used for RUL predictions of bearings as
they are able to learn hierarchical representations from complex and
unstructured data, thereby improving prediction accuracy. The most
popular deep learning methods include convolutional neural network
(CNN) [18,19], long short-term memory (LSTM) [20], gated recur-
rent units (GRU) [21,22], recurrent neural network (RNN) [23], and
some generative models such as variational autoencoder (VAE) [24,25]
and generative adversarial network (GAN) [26]. For example, Yao
et al. [27] combined a 1D CNN with an RNN for the purpose of
predicting the RUL of bearings. The 1D CNN was utilized to gather
temporal information from condition monitoring signals, while the
RNN was utilized to process this information. To prevent overfitting,
a global maximum pooling layer was utilized in place of a traditional
fully connected layer. Ma and Mao [28] introduced a Convolutional
LSTM network for estimating the RUL of rotating bearings. The LSTM
network was designed to incorporate convolutional operations in both
the input-to-state and state-to-state transitions, allowing it to take
advantage of the strengths of LSTM while also incorporating time-—
frequency features. The results of their experiments demonstrate that
the proposed Convolutional LSTM network surpasses both traditional
LSTM and CNN models. Aside from the previously mentioned deep
learning methods, generative models are also gaining popularity for
generating various features and health indices. These features and
indices can improve the accuracy of predicting the RUL of a bearing.
As an example, Suh et al. [29] utilized a GAN to produce multiscale
features for predicting the RUL of bearings. They utilized a U-Net
architecture to capture sequence patterns in 1-D vibration signals. The
results showed that the proposed approach effectively extracts features,
resulting in improved prediction accuracy. Jing et al. [30] presented a
VAE for predicting the RUL of bearings. This VAE is designed with a
transformer backbone to capture the temporal correlations in condition
monitoring data.

Although the deep learning methods mentioned above have been
demonstrated to be effective in predicting the RUL of bearings, they
are not effective in revealing the correlation of condition monitoring
data [31,32]. This correlation can be utilized to identify and combine
condition monitoring data with high affinity or similarity to improve
model robustness and accuracy [33]. To address this issue, undirected
graphs have been increasingly used to reveal such data correlations,
where a graph vertex represents a data vector and the edges represent
the similarity or affinity of condition monitoring data [34,35]. Graph
Convolutional Networks (GCNs) are very effective in dealing with these
undirected graphs because GCNs can consider the topological architec-
ture of undirected graphs. GCNs predict RUL by using multiple repeated
spectral graph convolution layers. Each layer performs two key opera-
tions: first, it aggregates similar data based on a pre-defined graph, and
second, it projects the aggregated data into a higher-dimensional space
to enhance the feature representation. To the best of our knowledge,
GCNs have been used in the field of prognostics health management
(PHM) to deal with two types of graphs: temporal-correlated graphs
and feature-correlated graphs. The temporal-correlated graph is an
undirected graph built in the time domain, where each vertex of the
graph represents multiple features at a particular moment. GCNs that
deal with temporal-correlated graphs can aggregate multiple features at
distinct times, enabling them to consider temporal correlation in RUL
predictions [36]. The feature-correlated graph is an undirected graph
built in the feature channel, where each vertex of the graph repre-
sents a single time-series feature. GCNs that handle feature-correlated
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graphs can aggregate similar features so that feature correlations are
considered in RUL predictions [33,37].

In summary, although traditional GCNs are effective in predicting
the RUL of bearings, there are two issues that need to be addressed
to improve their accuracy and robustness. Firstly, existing GCNs only
use a single graph, either a temporal-correlated or feature-correlated
graph, to predict RUL. This means that they can only consider ei-
ther the temporal or feature correlation of the condition monitoring
data. To the best of our knowledge, very few studies have been con-
ducted to develop GCNs that can handle both temporal-correlated
and feature-correlated graphs. Secondly, traditional GCNs rely heavily
on pre-defined graphs to aggregate correlated features. However, the
topology of these pre-defined graphs may vary depending on a pre-
defined threshold for cosine similarity or covariance which might affect
prediction accuracy and robustness. To address these two issues, we
introduce a spectral graph convolutional operation that can handle
both temporal-correlated and feature-correlated graphs, allowing us
to consider both temporal and feature correlations of the condition
monitoring data simultaneously. Additionally, we introduce a self-
attention mechanism to construct the temporal-correlated and feature-
correlated graphs automatically without defining a threshold. Such a
mechanism allows the predictive model to learn graphs automatically
during training, so that the prediction accuracy and robustness can
be largely improved. Furthermore, we use another attention-based
selection method to select the most important features generated by
the proposed attention-awared graph convolutional operation. This
method uses a multi-head attention mechanism to identify the most
important features and dynamically weigh their contributions to the
RUL prediction, thereby improving the accuracy and robustness of the
model. The primary contributions of this work can be summarized as
follows:

A spectral graph convolutional operation that can handle both
temporal-correlated and feature-correlated graphs is developed
to consider both temporal and feature correlations of condition
monitoring data simultaneously.

+ A self-attention mechanism is introduced to construct graphs
automatically during training. By constructing more accurate
graphs, we can further improve the prediction accuracy and
robustness.

The remaining sections of this paper are organized in the following
manner. Section 2 introduces the proposed attention-awared graph con-
volutional network. Section 3 and Section 4 provide two case studies
to demonstrate the effectiveness of the proposed method. Finally, in
Section 5, a summary of the work is given, along with a discussion of
future work.

2. Attention-awared graph convolutional network

In this section, we present the attention-awared graph convolutional
network. First, we introduce the spectral graph convolutional operation
that can be used to handle the topology of both temporal-correlated
and feature-correlated graphs, followed by building graphs with the
self-attention mechanism.

2.1. Spectral graph convolutional operation for temporal and feature-
correlated graphs

The spectral graph convolutional operation for both graphs starts
with initializing the temporal-correlated and feature-correlated graphs.
To build the initial graphs, we extract features from the bearings’
condition monitoring data. The extracted features are then sampled
using a moving window of length S and a stride of 1. The wth sampled
features for bearing i is denoted as X, , € RS*F, where S denotes the
size of the moving window and the time length of the sampled fea-
tures, and F represents the number of extracted features. To initialize
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the temporal-correlated graph and feature-correlated graph, the cosine
similarity matrix C;, € R5*S and the covariance matrix V, , € RF*F,
respectively, should be calculated from X, ,. The matrix elements ¢/"?

IRON s,s"
of C;, can be obtained by Eq. (1), where xﬁ"“') denotes the sth column
vector of the wth sampled extracted features for bearing unit i; || - || is
the 12-norm of a vector.
= (x0 X ) 7 (IGONGN ) s=1,8 )

(i,w)
) f.f
x(fﬁ’”’) denotes the fth row vector of the wth sampled extracted features
for bearing unit i; E[-] is an expectation of a vector.

] (Y VR [EE T | SRE
With respect to the cosine similarity matrix C;,, a function is applied
to such a matrix to derive the corresponding graph adjacency matrix
A, € RS, and such a function can be written as Eq. (3), where a,
is the element of the graph adjacency matrix A; and ¢ is the threshold
that can be used to determine the value of such a matrix. If a,y = 1,
there is an edge between time node s and time node s’ in the generated
temporal-correlated graph G,. If a;y = 0, there is no edge between
time node s and time node s’ in G,. If there is an edge between two
time nodes in G,, it means that these two time nodes are temporally
correlated, and if there is no edge, they are not temporally correlated.

1 c(i,m) > @,
550 = { 5 3

0 < Q.

The matrix elements v of V;, can be obtained by Eq. (2), where

s,s!
With respect to the covariance matrix V,,, the corresponding graph
adjacency matrix A, € RF*F can be obtained based upon the covari-
ance of two row vectors in the feature matrix X; ,. The element a,
of the graph adjacency matrix A, is set to one if the covariance of two
features is positive, and to zero otherwise. If a; ;» = 1, there is an edge
between feature nodes f and f’ in the feature-correlated graph G 1
meaning that these two features are correlated. If a; ,» = 0, there is no
edge between feature nodes f and f’ in G,, meaning that these two
features are not correlated.

Next, the spectral graph convolutional operation for both graphs
should be employed to handle the topology of two graphs G, and G,
where the spectral graph convolutional operation includes the spectral
graph convolutional operation performed on both temporal-correlated
graph G, and feature-correlated graph G,. Eq. (4) shows the spectral
graph convolutional operation for both graphs, where g, denotes the
graph filter from the temporal-correlated graph G,; g, denotes the
graph filter provided by the generated feature-correlated graph G;
F denotes the graph Fourier transform, and % ~! denotes the inverse
graph Fourier transform;

¢ (46,0, ) Xiw = [F (F@) 0 F(X,,), 77 (Fep o FXL,))|

(€3]

In order to manage Eq. (4) more effectively, the spectral graph convo-
lutional operation performed on both G, and G, can be rewritten in a
format of eigendecomposition of the temporal Laplacian matrix L, and
feature Laplacian matrix L 1 which can be written as Eq. (5),

g (*[@,,Gf] ) Xiow= [Qx Q& 0Q/X,,), Qs (Q;gf O) (Xi,(qu)T)]
)

Eq. (5) can also be expressed as Eq. (6), where Q, denotes the eigen-
vector of L,; 6, represents the parameters in the graph filter g,; A,
denotes the vector of eigenvalues of L,; Q, denotes the eigenvector
of L, 6, represents the parameters in g,, and A, denotes the array of
eigenvalues of L.

g (*[G,,G,] ) X0 = [ngr,e, (4,) Q/ Xi0 Qrro, (Ay) Q?sz] ©)
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The temporal Laplacian matrix L, is defined as shown in Eq. (7), where
I, € RS*S is the identity matrix and D, is a diagonal matrix whose
diagonal entries are the degrees of each node in the temporal correlated
graph G,.

L, =1,-D;'?A,D;'? @

Since the temporal Laplacian matrix L, is a real symmetric matrix, it
can be decomposed into its eigenvectors and eigenvalues as shown in
Eq. (8).

L, = QrAxQ,_l = QzAxQ;r ®

The feature Laplacian matrix L 7 is defined as shown in Eq. (9), where
I, € RF*F is the identity matrix and I, is a diagonal matrix whose
diagonal entries are the degrees of each node in the feature-correlated
graph G .

_ _1)2 _1/2
Lf—]If—]D)f Af]D)f 9

Likewise, Eq. (9) can be decomposed into its eigenvectors and eigen-
values as shown in Eq. (10).

L :=Q;4,Q;' =Q,4,Qf (10)

Then, Eq. (11) can be derived by substituting Egs. (8) and (10) into
Eq. (6).

g (*[@,,G,] ) Xiw= [gr,e, (L) Xi0r 810, (Ly) sz] an

Due to the high computational cost of solving Eq. (11), it is widely
accepted to use an approximation technique that involves the first-
order Chebyshev polynomials for the spectral convolutional opera-
tion [38]. Eq. (12) presents the formulation of the 1st-order Chebyshev
polynomials approximation of Eq. (11). Here, O = 1 denotes the
first order approximation, L, represents the scaled temporal Laplacian
matrix, €,(-) is the oth order Chebyshev polynomials, and I:f represents
the scaled feature Laplacian matrix.

0 0

¢ (*fe,6,)) Xiw = [Z 0,,%, (L)X, Y 6,,%, (L)) Xfw] a2
o=1 o=1

Eq. (12) can also be expanded as Eq. (13)

¢ (4o, Xeo = [ (0 (07407 1) ) X,

“1/2, 172 T
(o (0} 7a,07 2 1) )X, | a3
Next, we set A, equals A, +1, and A, equals A, + I, and substitute A,
and Af into Eq. (13), Eq. (14) can be derived.

¢ (e ) X,, = [A,X,.,m@,, AXT 0 f] 14)

In Eq. (14), ©, € RF*F' is the matrix format of the parameters in the
graph filter g,, and ©, € RS*S" js the matrix format of the parameters in
the graph filter g /. A, is the scaled temporal adjacency matrix, which
is expressed as Eq. (15), here D), denotes the diagonal matrix whose
diagonal entries are the degrees of A,, and A, can be written as A, +1,.

A, =D7'?A,D? 15

In addition, A ¢ is the scaled feature adjacency matrix, which is ex-
pressed as Eq. (16), here D  denotes the diagonal matrix whose diag-
onal entries are the degrees of A 7> and A + can be written as A, +1,.

A Rm-1/2% =172
A, =D;'A,D; 16)

To enhance the effectiveness of the spectral graph convolutional opera-
tion for both graphs, a bias weighted vector and an activation function
are introduced into Eq. (14). The resulting equation is denoted as
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Build Graphs

Perform Spectral Graph Convolutional Operation

Aggregate at the 1st temporal and feature node

Fig. 1. Framework of the proposed spectral graph convolutional operation for both temporal-correlated and feature-correlated graphs, including the graphs construction and the

spectral graph convolutional operation.

Eq. (17), where b, denotes the temporal bias weighted vector, b, de-
notes the feature bias weighted vector, and ¢ represents the activation
function.

¢ (*feue,) ) Xiw =0 [AX,00, + b A,X,0, +b,] an

Fig. 1 displays the proposed spectral graph convolutional operation
for both temporal-correlated and feature-correlated graphs. The oper-
ation begins with constructing both temporal-correlated and feature-
correlated graphs. The temporal-correlated graph G, is constructed
using cosine similarity, while the feature-correlated graph G is con-
structed using covariance. The spectral graph convolutional operation
for both graphs is then applied to exploit the topology of the con-
structed graphs. Mathematically, these two operations can be repre-
sented as g (*[Gr,Gf])Xi,w. In such an operation, both temporal and
feature information are aggregated at each corresponding node based
on its neighbors.

2.2. Building graphs with the self-attention mechanism

Temporal-correlated and feature-correlated graphs that are pre-
constructed based on cosine similarity and covariance have been used
to build predictive models [31,37], as shown in Egs. (1) to (3). How-
ever, the topology of these pre-constructed graphs may vary depending
on a pre-defined threshold ¢ for cosine similarity or covariance. The
pre-constructed graphs significantly affect the accuracy and robust-
ness of the predictive model. To address this issue, we introduce
a self-attention mechanism to construct the temporal-correlated and
feature-correlated graphs automatically without defining a threshold.
Such a mechanism allows the predictive model to learn graphs automat-
ically during training, so that the prediction accuracy and robustness
can be largely improved. The main idea of building attention-awared
graphs using the self-attention mechanism is constructing the temporal
attention adjacency matrix A, and the feature attention adjacency
matrix A ¢ that can perform the same functions as A, and A ¢ There
are two primary reasons why we build the graphs using the self-
attention mechanism. Firstly, it generates an attention matrix that
represents the importance level of the condition monitoring data. The
data aggregation process can be performed based on the coefficients in
the attention matrix instead of using the coefficients in the traditional
scaled adjacency matrix, which ensures that the most relevant and
important data can be aggregated accordingly. Second, it generates
comparable A, and A s values, ranging from O to 1, that prevent severe
gradient explosion and vanishing issues when handling the automati-
cally generated graphs. Further details about attention mechanism can
be found in [39,40].

The temporal attention adjacency matrix A, generated by the self-
attention mechanism can be mathematically represented as Eq. (18),

where SoftMax denotes the normalized exponential activation function
that can be used to generate attention value from O to 1; Tanh refers
to the hyperbolic tangent activation function; both W,, € RS*Pr and
W,, € RP*F denotes the trainable matrices used in the attention
mechanism.

A, = SoftMax (W, - Tanh (W, - X, ) ) as)
Likewise, the feature attention adjacency matrix Af generated by
the self-attention mechanism can be mathematically represented as
Eq. (19), where both W, € RF*Ps and W, € RPs*S denotes the
trainable matrices used in the attention mechanism.

A, = SoftMax (W, - Tanh (W, - X)) (19)

Next, substitute Egs. (18) and (19) into Eq. (17) with replacing A, and
A, by A, and A/, respectively, we can obtain Eq. (20),

o [SoftMax (W, - Tanh (W, X7, )) - X,,0, +b,,

SoftMax (W, - Tanh (W - X;,,)) X 0, +b, (20)

Fig. 2 shows the details about how we construct the temporal
attention adjacency matrix A,. First, the sampled data X; , is projected
into a higher dimensional space using the first parameter matrix W,
and then element-wise applied with a Tanh activation function. Second,
the resulting tensor is projected further using the second parameter
matrix W, , and then passed through a SoftMax activation function to
obtain a probability distribution over the temporal nodes. This proba-
bility distribution is used to construct the temporal attention adjacency
matrix A, for the temporal correlated graph G,. With the obtained
adjacency matrix, a spectral graph convolutional operation performed
on G, is then applied to the sampled condition monitoring data. Such
a operation aggregates information from the temporal nodes and their
neighboring nodes in the graph to capture the temporal correlations of
condition monitoring data.

Likewise, the construction process of the feature attention adjacency
matrix A + Is similar. First, the sampled data X, , is projected into a
higher dimensional space using W, and then element-wise applied
with a Tanh activation function. Second, the resulting tensor is pro-
jected further using W, , and then passed through a SoftMax activation
function to obtain a probability distribution over the temporal nodes.
This probability distribution is used to construct the feature attention
adjacency matrix A s for the feature-correlated graph G,. Next, the
spectral graph convolutional operation performed on G, is applied
to the sampled condition monitoring data. The resulting tensors of
the proposed attention-awared spectral graph convolutional operation

can be mathematically summarized as Eq. (21), where C;, denotes
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G, : temporal correlated graph @

' © ®

aggregate at Sth node
o | X0, + by

spectral graph convolution

Fig. 2. The framework of generating the temporal attention adjacency matrix A,.

the resulting tensor for bearing unit i and wth sampled condition
monitoring data.

Cio =8 (¥6,5,] ) Xiw =0 [A,xi,w@, +b, A,X" 0, + bf] (21)

Performing the attention-awared spectral graph convolutional oper-
ation on both graphs G, and G, using the same sampled data X, , can
result in redundant and overlapping information. Therefore, directly
utilizing the concatenated matrix C;,, for RUL predictions of bearings
may lead to degraded prediction performance. To address this issue, we
implement the multi-head attention mechanism to select the most perti-
nent information from the concatenated matrix C, , for predictions. The
advantages of the multi-head attention mechanism is two-fold: First,
similar to the self-attention mechanism mentioned above, it can select
the most relevant information from the condition monitoring data to
make predictions; Second, it can project C; , into a higher dimensional
space, allowing for reduction of redundant and overlapping information
in a high dimensional space. In the multi-head attention mechanism,
the concatenated matrix C, , is transformed by multiple parallel linear
projections to create multiple representations of the input, which is
expressed as Eq. (22).
(Qw) K V(")) Cio

h) yy® yyh
Lo’ Tihw? .(WQ’WK’WV )
In Eq. (22), Wg), W(,?), and Wgﬂ respectively refers to the weight

matrices in the hth head to obtain the corresponding query QI(.}Z,
* i

(22)

key

]K(h) and higher dimensional value V" . Next, these multiple represen-

tations of the input are used to obtain the final output O(h) for bearing
unit i, head h, and wth sampled feature, which can be mathematlcally
represented as Eq. (23), where d refers to the dimension of the weight
matrices.

(hy _ ) T (h)
0!") = SoftMax (Q") - k)" /V/a) V) (23)
Next, the O(h) in each head of the multi-head attention mechanism is
concatenated which can be written as Eq. (24), where H denotes the
number of heads and | J denotes the concatenation operation.

H
T
0,, = |J{softMax (@) - k" /v/a) v }
h=1
Finally, the O, , is flatten and transferred into a fully connected (FC)
layer for final predictions, which can be represented as Eq. (25), where
W is the kernel matrix in the FC layer and b is the bias vector in the FC
layer, and j, , is the estimated RUL of bearing i at the time w + 5 — 1.

(24)

910 =0 (W -Flatten (O, ) +b) (25)

The training loss # for all training units can be written as Eq. (26),
where the /, norm regularization terms are added for the parameter
matrix O, in the graph filter g, and the parameter matrix 6, in the
graph filter g, to avoid overfitting.

= ZZ(y,w Biw) + A (16,15 + 16,113) (26)

Ezlglrlwl

In Eq. (26), 4 represents the penalty hyperparameter for the /, norm
regularization terms. ; denotes the amount of windows for bearing i,
while y; , represents the true RUL of bearing unit i at time o + S — 1.
Here, n refers to the number of bearing units. To train the proposed
model, we adopt the Adam optimizer with a learning rate of a. In every
iteration of training, we update the multi-head attention mechanism
parameters, followed by the spectral graph convolutional operation
parameters, and conclude by updating the parameters in the graph
construction model that uses the self-attention mechanism.

2.3. Computational framework for RUL predictions for bearings

Fig. 3 shows the computation framework of the proposed attention-
awared spectral graph convolutional operation, which includes feature
extraction and sampling, building graphs with self-attention mecha-
nism, spectral graph convolutional operation for temporal-correlated
and feature-correlated graphs, and multi-head attention-based RUL
predictions for bearings. First of all, features in the time and frequency
domains are extracted from condition monitoring data collected from
bearings, and these extracted features are sampled using a sliding
window of size .S. The extracted features in the time domain consist
of basic statistical features, while the features in the frequency domain
are extracted using the fast Fourier transform. Further details regarding
the extracted features in both the time and frequency domains can
be found in Section 3.2. The resulting feature matrices X;, € RS*F
are fed into a self-attention mechanism to obtain temporal and feature
attention adjacency matrices, denoted as A, € RS*S and A ;€ RFXF,
respectively. These matrices are used to generate temporal and feature
correlated graphs G, and G, respectively. The spectral graph convo-
lutional operation is then used to process these graphs and obtain a
tensor C; . This tensor is fed into a multi-head attention mechanism
to project it into a higher dimensional space and select the most useful
information. The resulting tensor of each head are concatenated as O; ,,
then flattened and transferred into a fully connected (FC) layer for RUL
estimations.

The attention-awared graph convolutional network usually stacks
multiple attention-awared spectral graph convolutional layers. Table 1
displays the pseudo-code used for training the proposed predictive
model with multiple layers, where L represents the number of layers
and H represents the number of heads. A total of F features are ex-
tracted from both time and frequency domains. These features are then
sampled using a sliding window of size .S to obtain X; , € RS*F for all
bearing units i and windows w. In each layer of the forward propagation
process, the attention-awared spectral graph convolution layer / gener-
ates the temporal attention matrix and the feature attention matrix. The
corresponding temporal-correlated and feature correlated-graphs are
then constructed, and the final matrix C, , is obtained. The multi-head
attention mechanism is then used to obtam O(h) in each head, which
are concatenated into a single matrix O, . Next 0, , is flattened and
fed into a FC layer to obtain the predicted RUL j; , for all i and . The
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Fig. 3. The computation framework of the proposed attention-awared graph convolutional operation for temporal-correlated and feature-correlated graphs, including feature
extraction and sampling, building graphs with self-attention mechanism, spectral graph convolutional operation for both graphs, and multi-head attention-based RUL predictions

for bearings.

Table 1

The pseudo-code for training the proposed attention-awared graph convolutional network with multiple layers.

1. Extract features in time and frequency domain, where number of features is denoted as F
2. Sample the extracted features with a sliding window of size S to obtain X;, € RS for all i and w

3. For iteration=1, ..., I, do

3.2. For layer l=ﬂ, ..., L, do

3.3. End iteration and concatenate to obtain C
3.4. For head h=1, ..., H, do

Obtain Qf’z, K®

i’

io

3.6. Flatten and feed O,

3.7. For all head h, update Qm,Kfﬂ,Vfi’g
3.8. For layer /=L, ...,1, do

Update W'}, W) « W, - a (9c/ow) ) W, - a (or /0w

(OERe0) 0l 0

Update WY\, WY, « W, —a(oc/ow,

3.9. End iteration and return updated parameters
4. End and Return the trained predictive model

(D)
12

)W, —a (0 oW,

T
3.5. End iteration and concatenate to obtain O,,, < Ui, {SoftMax (Qf’,’j KM \/c7>

)

f2

3.1. Initialize Hf’:) = Hffw) =X, for all bearing unit i and window , learning rate «

Generate temporal attention matrix A" in layer / < SoftMax (Wf'; - Tanh (Wi’f - transpose (Hf’;)))
Based on the temporal attention matrix, temporal correlated graph Gi” in layer / is constructed
Generate feature attention matrix Ay) in layer /| < SoftMax (W% - Tanh (W(/,)l . (

Y

o

)

Based on the feature attention matrix, feature correlated graph G(/” in layer / is constructed
(1) AD @) o0 (U] (f) AD (f)
Reset H;, <o (A, -H;,0,” +b; ) and reset /) <o (Af - transpose(H,

(0} ()
6! +bf)

o

v < C,,, - (W W, W), and output Of) « SoftMax () - K[ /v/d) Vi)

V(h)

o

J

into a fully connected layer to obtain the predicted RUL j,,Vi,w, and calculate loss #
< Q) - a(0r/0nl) KD - a (0r/0k() Vi — a (0r /(1)

Update 6,60, b", b)) < 6" —a (9¢/06") .6} —a (2¢/06) ) b ~ a (or/b") b (¢ /b))

)

training loss # is calculated using this predicted RUL and the ground
truth of RUL. Finally, the gradient descent method is used to update the
parameters in each head of the multi-head attention mechanism and the
parameters in each attention-awared graph convolutional layer.

3. Case study I: IEEE PHM bearing dataset
3.1. Dataset description

The proposed method’s effectiveness was evaluated using the IEEE
PHM 2012 Bearing dataset, which was collected using the FEMTO-
ST Institute’s PRONOSTIA platform [41]. This platform is specifically
designed to accelerate rolling bearings’ wear and tear, enabling the
detection of faults within hours. The experimental setup consisted
of a gearbox attached to a rotating motor, a pneumatic jack, and a
regulator that controls pressure using digital electro-pneumatic tech-
nology, which are used to manage the speed and load-up pressure of

the bearings. Fig. 4 illustrates the platform, along with normal and
deteriorated bearings. To prevent damage, the run-to-failure experi-
ments were halted if the bearings exceeded an acceleration rate of 20
g-forces. This dataset was collected under three different conditions,
and Table 2 shows the operational conditions used in the IEEE PHM
bearing dataset, as well as the bearing indices associated with dif-
ferent operating conditions. To thoroughly evaluate the performance
of the proposed method on all bearing units, we conducted k-fold
cross-validation on each set of bearings. Specifically, we employed
7-fold cross-validation for IEEE Bearingl_1 through IEEE Bearingl_7.
This allowed us to demonstrate the accuracy of the proposed method
in predicting the RUL of bearings under stable operating conditions,
with each fold containing one bearing unit. Additionally, to showcase
the proposed method’s capability in predicting RUL accurately across
different operating conditions, we performed 5-fold cross-validation on
bearings operated under the second and third operating conditions.
The distribution of bearings in each fold was as follows: the first
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The operational conditions used in the IEEE PHM bearing dataset, as well as the bearing indices associated with different operating conditions.

Condition Angular velocity (rpm) Radial force (kN) Twisting force (N m) Bearing indices

Condition 1 1800 4.0 1.326 IEEE Bearingl_1 to IEEE Bearingl_ 7
Condition 2 1650 4.2 1.447 IEEE Bearing2_1 to IEEE Bearing2_7
Condition 3 1500 5.0 1.591 IEEE Bearing3_1 to IEEE Bearing3_3

(d)

Fig. 4. (a) Force transmission; (b) Pneumatic jack; (c) Shaft support bearing; (d) Normal bearings; (e) Degraded bearings [41].

fold included IEEE Bearing2 1 and IEEE Bearing2 6; the second fold
included IEEE Bearing2 2 and IEEE Bearing2 7; the third fold included
IEEE Bearing2 3 and IEEE Bearing3_1; the fourth fold included IEEE
Bearing2 4 and IEEE Bearing3_2; and the final fold included IEEE
Bearing2 5 and IEEE Bearing3_3.

3.2. Detection of the degradation phase and features extraction

The approach of detecting different phases of degradation has been
widely accepted as a means of improving the prediction performance
of RUL for rotating bearings [14,42]. To identify these phases, we
used an abrupt change point detection method, which is commonly
employed for this purpose [43,44]. Fig. 5 illustrates the vibration
signals for various bearings and the results of our phase detection. It
can be observed that the number of detected phases differs among
the bearing units. For instance, IEEE Bearingl 3 has three detected
phases, including a non-defective phase, a steady degradation phase,
and an accelerated degradation phase. In contrast, IEEE Bearingl_2 and
IEEE Bearing2_7 only exhibit two phases, comprising a non-defective
phase and an accelerated degradation phase. As some bearings do not
manifest a steady degradation phase, we trained one predictive model
to estimate the RUL for both the non-defective and steady degradation
phases, and another predictive model to estimate the RUL for the
accelerated degradation phase. More specifically, during the training
phase, the condition monitoring data collected from the bearing units
was utilized to apply the abrupt change point detection method, which
aimed to identify any significant changes in the data. Based on these
detected change points, the condition monitoring data was divided
into two parts. The first part was used to train one predictive model
to estimate the RUL for both non-defective and steady degradation
phases. The second part, on the other hand, was used to train a separate
predictive model to estimate the RUL for the accelerated degradation
phase. If only one change point was detected, the condition monitoring
data before that change point was considered as the first part, while
the data after the change point was considered as the second part.
However, if two or more change points were detected, the condition
monitoring data before the second detected change point served as the
first part, and the data after the second change point constituted the
second part. Moreover, during the training phase, the abrupt change
point detection method also recorded the maximum increasing rate of
RMS in the first part of the data. This recorded rate was later used to

classify the degradation phases to which a test bearing unit belongs.
In the test phase, the condition monitoring data collected from the
bearing units used for testing was continuously fed into the abrupt
change point detection method in real time. Depending on the detection
results, the data were processed accordingly. If no change point was
detected in the current condition monitoring data, it was fed into the
first trained predictive model for RUL predictions. Similarly, if change
points were detected, but the increasing rate of RMS was lower than
the maximum rate obtained during the training phase, the data was
still fed into the first predictive model for RUL predictions. However, if
change points were detected, and the increasing rate of RMS exceeded
the maximum rate from the training phase, the data was fed into the
second trained predictive model for RUL predictions. More specific and
similar degradation stage detection methods can also be found in [14].

Next, we extracted 20 features from the signals collected in both
the horizontal and vertical directions. These features comprised 12 in
the time-domain and 8 in the frequency-domain. In the time-domain,
the 12 features included basic statistical measures such as maximum,
minimum, average, standard deviation, root mean square, kurtosis,
skewness, peak-to-peak value, variance, entropy, standard deviation
of inverse sine, and standard deviation of inverse tangent. In the
frequency-domain, the 8 features were extracted using fast Fourier
transform. These features included mean frequency, median frequency,
band power, occupied bandwidth, power bandwidth, maximum power
spectral density, maximum amplitude, and frequency of maximum am-
plitude. These specific features were chosen because their effectiveness
has been demonstrated in predicting the RUL of bearings [14,36].
To enhance the monotonicity of the extracted features, we employed
a cumulative sum function, which has been previously proven to be
effective [36,45]. The cumulative sum function can be represented as
Eq. (27), where X f denotes the fth extracted feature from the wth
sampling window for bearing i, and C,, , ~denotes the fth cumulative
feature for the wth sampling window ah({ bearing i.

1/2

Q Q
Cxi,ﬂ,f = 241 xi,m,f/ 2'1 Xio,f @7
w= w=

In summary, 20 features were extracted from both the time and fre-
quency domains, separately for both the horizontal and vertical direc-
tions, resulting in a total of 40 features. Additionally, a cumulative
function was applied to each of the extracted features, resulting in an-
other 40 cumulative features with improved monotonicity. Therefore,
a total of 80 features were used for predicting the RUL of bearings.
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Fig. 5. The vibration signals for IEEE Bearingl_2, IEEE Bearingl_3, and IEEE Bearing2_ 7, and the results of the phase detection.

3.3. Hyperparameters

The proposed predictive model involves various hyperparameters,
including the batch size, learning rate (a), sliding window size (.5),
number of extracted features (F), dimensions (D, and D ) of trainable
matrices W, W,,, W, ,, and W, , for generating temporal and feature
attention matrices, size of projection matrices (@, and ©,), number
of attention heads (H), dimension of weight matrices of the multi-
head attention mechanism (d), activation function (¢), and number of
attention-awared graph convolutional layer. To optimize the prediction
performance and reduce computational cost simultaneously, we set the
batch size to 20, the number of features to 80, and the learning rate
to 1x 107*. The dimensions of trainable matrices W, ;, W,,, W/, and
W, , for generating temporal and feature attention matrices were set
to D, = D, = 100, and the sizes of the projection matrices 6, and
O, were set to 100. We used one attention head (H = 1) and the
dimension of weight matrices of the multi-head attention mechanism
was set to d = 10. In addition to the hyperparameters mentioned earlier,
the window size (S) also significantly impacts both prediction accuracy
and computational time. The window size determines the historical
condition monitoring data collected over a specific period, which is
used for predicting the RUL of bearings at different time points. A larger
window size may improve prediction performance but comes with
a considerable increase in computational cost. Conversely, a smaller
window size can reduce computational cost but may result in a decrease
in prediction performance. To determine the most suitable window size,
we employed the grid search method and explored values ranging from
5 to 200. The results indicated that increasing the window size from 5
to 20 resulted in improved prediction performance. However, further
increasing the window size from 20 to 200 did not lead to a significant
change in prediction performance. Based on these findings, we aimed
to optimize prediction performance while minimizing computational
costs, and thus, we set the window size to 20. Additionally, we used
the Rectified Linear Unit (ReLU) activation function for the attention-
awared graph convolutional layers and a linear activation function for
the FC layer, and we performed one temporal spectral graph convolu-
tion operation and one feature spectral graph convolution operation in
this case study. In addition, we applied an /, norm penalty of 0.1 to the
proposed predictive model to mitigate the risk of overfitting.

3.4. Temporal attention and feature attention graphs

Fig. 6(a) and (b) respectively show the temporal attention adjacency
matrix A, and the feature attention adjacency matrix Af generated by
the proposed attention-awared graph convolutional operation. Fig. 6(c)
and (d) respectively show the scaled temporal adjacency matrix A,
and the scaled feature adjacency matrix A s generated by the cosine
similarity and covariance, which is a traditional approach reported in
the literature. Based on the figures, we observe that the automatically
generated temporal and feature attention adjacency matrices A, and
A  differ from the scaled temporal and feature adjacency matrices A,

and A +» respectively. These differences can be observed in two ways.
Firstly, the temporal and feature attention adjacency matrices exhibit
more sparsity than the scaled temporal and feature adjacency matrices.
Secondly, the temporal and feature attention adjacency matrices are
asymmetric, while the scaled temporal and feature adjacency matri-
ces are symmetric. The increased sparsity of the attention matrices
indicates that the attention mechanism prioritizes only the most rel-
evant features for making predictions, leading to more accurate and
efficient predictions. The asymmetric property of the attention matri-
ces enables imbalanced aggregation between adjacent nodes in both
the temporal-correlated and feature-correlated graphs, allowing each
node to automatically aggregate the most critical portion of condition
monitoring data and filter out noise, resulting in improved prediction
accuracy.

3.5. RUL prediction results

Note that we rescale the RUL of bearings to a range of 0 to 1 for
comparison purposes, as the majority of studies that used this dataset
reported in the literature also adopted this rescaling method. Fig. 7
shows the RUL prediction results for some of the bearing units. The
proposed attention-awared graph convolutional network is capable of
predicting the RUL with high accuracy for certain bearing units. For
IEEE Bearingl 5 and Bearingl 6, the predicted RUL trajectories are in a
good agreement with the ground truth of RUL. For some bearing units,
some relatively large deviations between the predicted RUL and the
ground truth are observed, however, the predictive model is still able
to accurately track the overall trend. There are two potential causes
of prediction errors and fluctuations. Firstly, bearing degradation is
influenced by multiple stressors, which can all impact the rate of degra-
dation. These stressors are often challenging to account for, resulting
in differences between the predicted and actual RUL. Secondly, the
condition monitoring data utilized to train the RUL prediction model
may include some degree of noise or variability. Minor modifications to
the input data can result in slightly different output predictions, leading
to fluctuations in the RUL predictions.

In order to evaluate the efficacy of our proposed attention-awared
graph  convolutional network for temporal-correlated and
feature-correlated graphs (AGCN-TF), we conducted an ablation study
against other methods listed in Table 3. In Table 3, AGCN-TF is
the name we use to refer to our proposed model; AGCN-T is the
attention-awared GCN for temporal-correlated graphs without using the
self-attention based feature-correlated graph; AGCN-F is the attention-
awared GCN for feature-correlated graphs without using the self-
attention based temporal-correlated graph; GCN-TF is the GCN with
using the traditional temporal-correlated and feature-correlated graphs;
GCN-T is a GCN with only using the traditional temporal-correlated
graph; and GCN-F is a GCN with only using the traditional feature-
correlated graph.

Table 4 summarizes the RMSE of RUL predictions for all bearings
in the IEEE PHM dataset, employing the methods listed in Table 3.
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(d) Scaled feature adjacency matrix

Fig. 6. (a) The temporal attention adjacency matrix A,, (b) the feature adjacency attention matrix A > (€) the scaled temporal adjacency matrix A,, (d) the scaled feature adjacency
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Fig. 7. The RUL prediction results for a selection of bearing units from the IEEE PHM bearing dataset.
Table 3 while the other methods demonstrates an average prediction RMSE
Abbreviations and descriptions of the proposed method and other comparative methods. ranging from 0.123 to 0.156.
Abbreviations Description .
P To evaluate the effectiveness of the proposed approach, the pro-
AGCN-TF Attention-awared GCN for both graphs (proposed) 2 : : : )
AGCN-T Attention-awared GCN for temporal-correlated graphs pf)sed AGCN-TF model was comp.ared WI.th Varlous. deep learning tech
AGCN-F Attention-awared GCN for feature-correlated graph niques that have been reported in the literature in recent years. The
GCN-TF GCN with only using the traditional temporal-correlated graph performance of the proposed AGCN-TF, as well as the methods listed
GCN-T GCN with only using the traditional temporal-correlated graph in Table 3 and other deep learning techniques, was evaluated by
GCN-F GCN with only using the traditional feature-correlated graph

The proposed attention-awared graph convolutional network for both
graphs exhibits superior performance compared to other methods listed
in Table 3. For example, in the case of IEEE Bearing2 2, the proposed
method attains an RMSE of 0.072 for RUL prediction, whereas the
other methods shows RMSE values that varies between 0.101 to 0.147.
Furthermore, for bearings operating under three different conditions,
the proposed method displays an average prediction RMSE of 0.122,

calculating the average prediction RMSE for bearings under three dif-
ferent operating conditions, as presented in Table 5. The deep learning
techniques reflected in Table 5 include C-LSTM (convolutional LSTM),
CNN (convolutional neural network), DAN (deep adversarial network),
GAN (generative adversarial network), and TGRU (transferable bidirec-
tional GRU). The results indicate that the proposed AGCN-TF model
outperforms both the methods listed in Table 3 and other deep learn-
ing techniques reported in the literature, regardless of the operating
conditions. For instance, when considering bearings operating under
condition 1, the average prediction RMSE of the proposed model is
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Table 4
The RMSE of RUL predictions for all bearings in the IEEE PHM bearing dataset.
Operating condition Bearing index AGCN-TF AGCN-T AGCN-F GCN-TF GCN-T GCN-F
IEEE Bearingl_1 0.073 0.086 0.120 0.088 0.067 0.096
IEEE Bearingl 2 0.141 0.172 0.146 0.205 0.141 0.132
IEEE Bearingl_3 0.062 0.080 0.131 0.080 0.076 0.036
Condition 1 IEEE Bearingl 4 0.141 0.203 0.108 0.150 0.230 0.092
IEEE Bearingl 5 0.048 0.058 0.079 0.041 0.061 0.052
IEEE Bearingl 6 0.026 0.045 0.028 0.018 0.037 0.038
IEEE Bearingl_7 0.116 0.124 0.117 0.124 0.126 0.131
IEEE Bearing2 1 0.055 0.062 0.079 0.040 0.031 0.091
IEEE Bearing2_2 0.072 0.101 0.147 0.109 0.132 0.123
IEEE Bearing2 3 0.076 0.071 0.207 0.073 0.084 0.117
Condition 2 IEEE Bearing2 4 0.257 0.272 0.201 0.218 0.245 0.142
IEEE Bearing2 5 0.246 0.280 0.092 0.272 0.246 0.245
IEEE Bearing2_6 0.079 0.103 0.218 0.072 0.048 0.076
IEEE Bearing2_7 0.253 0.263 0.273 0.275 0.248 0.246
IEEE Bearing3_1 0.184 0.246 0.165 0.365 0.340 0.286
Condition 3 IEEE Bearing3_2 0.089 0.177 0.298 0.113 0.160 0.106
IEEE Bearing3_3 0.148 0.163 0.250 0.126 0.137 0.085
Average 0.122 0.147 0.156 0.139 0.142 0.123
Table 5
The average prediction RMSE of the proposed AGCN-TF and other deep learning methods reported in the literature.
Condition AGCN-TF AGCN-T AGCN-F GCN-TF CLSTM [46] CNN [47] DAN [48] GAN [29] TGRU [49]
1 0.087 0.110 0.104 0.101 0.159 0.189 0.206 0.105 0.230
2 0.148 0.165 0.174 0.151 0.173 0.260 0.206 0.187 0.170
3 0.140 0.195 0.238 0.202 0.152 0.290 0.366 - 0.150
Table 6

Details about the operating conditions used in the XJTU-SY bearing dataset.

Radial force (kN)

Bearing index

Condition Angular velocity (rpm)

Condition 1 2100 12
Condition 2 2250 11
Condition 3 2400 10

XJTU-SY Bearingl 1 to XJTU-SY Bearingl 5
XJTU-SY Bearing2_ 1 to XJTU-SY Bearing2 5
XJTU-SY Bearing3_1 to XJTU-SY Bearing3_5

0.087, whereas the average prediction RMSE of other techniques ranges
from 0.105 to 0.230.

4. Case study II: XJTU-SY bearing dataset
4.1. Data description

The efficacy of the proposed method was verified in this case
study using the XJTU-SY bearing dataset, which was jointly acquired
by Xi’an Jiaotong University and Changxing Sumyoung Technology
Company [50]. The dataset consists of vibration signals collected in two
orientations from 15 LDK UER204 bearings, operating under three dis-
tinct conditions. To collect the condition monitoring data, two identical
accelerometers were placed 90 degrees apart on the housing. The exper-
iments ceased if the bearing acceleration exceeded 20 g-forces, similar
to the protocol followed in the IEEE PHM bearing dataset. Further
details on the experimental setup can be found in [50]. Fig. 8 shows
the platform used to collect the dataset, including normal and degraded
bearings with various types of failures. Table 6 provides information
on the operating conditions. Similarly, in order to comprehensively
evaluate the performance of the proposed method on all bearing units,
we conducted k-fold cross-validation on bearings operated under both
conditions 1 and 2. For bearings in each operating condition, a 5-fold
cross-validation was performed, with each fold containing one bearing
unit.

4.2. Detection of the degradation phase and features extraction

In this case study, we applied the identical approach described in
Section 3.2 to detect various degradation phases. Fig. 9 displays the
vibration signals of different bearings and the results of the phase
detection. It is evident that the number of detected phases varies among

10

different bearing units. For example, XJTU-SY Bearingl_1 and XJTU-SY
Bearing2 5 have three detected phases, which include a non-defective
phase, a steady degradation phase, and an accelerated degradation
phase. On the other hand, XJTU-SY Bearingl 4 only exhibits two
phases, comprising a non-defective phase and an accelerated degrada-
tion phase. As some bearings do not display a steady degradation phase,
we trained one predictive model to estimate the RUL for both the non-
defective and steady degradation phases, and another predictive model
to estimate the RUL for the accelerated degradation phase. Similar to
Section 3.2, 80 identical features, including cumulative features, were
extracted and used for RUL predictions of bearings in this case study.

4.3. Hyperparameters

In this case study, to optimize the prediction performance and
reduce computational cost simultaneously, we set the batch size to 20,
the number of features to 80, the learning rate to 1 x 1074, and the
window size to S = 20. The dimensions of trainable matrices W,
W,,, W,,, and W, for generating temporal and feature attention
matrices were set to D, = D, = 100, and the sizes of the projection
matrices ©, and O, were set to 100. We used one attention head (H =
1) and the dimension of weight matrices of the multi-head attention
mechanism was set to d = 10. Additionally, we used the Rectified
Linear Unit (ReLU) activation function for the attention-awared graph
convolutional layers and a linear activation function for the FC layer,
and we performed four temporal spectral graph convolution operations
and two feature spectral graph convolution operations in this case
study. In addition, we applied an /, norm penalty of 0.1 to the proposed
predictive model to mitigate the risk of overfitting.
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(d)

Fig. 8. (a) The experimental platform used in the XJTU-SY bearing dataset; (b) Normal bearings; (c) (d) (e) Degraded bearings [50].
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4.4. Temporal attention and feature attention graphs

Fig. 10(a) and (b) respectively show the temporal attention adja-
cency matrix A, and the feature attention adjacency matrix A ; gener-
ated by the proposed attention-awared graph convolutional operation.
Fig. 10(c) and (d) respectively show the scaled temporal adjacency
matrix A, and the scaled feature adjacency matrix A ¢ generated by
the cosine similarity and covariance, which is a traditional approach
reported in the literature. Based on the figures, we observe that the
automatically generated temporal and feature attention adjacency ma-
trices A, aAnd A Y dAiffer from the scaled temporal and feature adjacency
matrices A, and A, respectively. These differences can be observed
in two aspects that are sparse property and symmetric property, more
details about these differences and the benefit of the proposed temporal
attention matrix and feature attention matrix have been discussed in
Section 3.4.

4.5. RUL prediction results

Fig. 11 presents the RUL prediction results of several bearings in
the XJTU-SY bearing dataset using the proposed attention-aware graph
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convolutional network. From the figure, it is evident that the proposed
method can accurately predict the RUL of bearings. Although there
are some gaps and fluctuations between the predicted and the ground
truth of RUL for certain bearings, the predicted values still follow the
degradation trend of the ground truth of RUL. It should be noted that
the RUL prediction performance for bearings in the XJTU-SY dataset
is not comparable to that of the IEEE PHM bearing dataset. There
are two possible reasons for this discrepancy. Firstly, the XJTU-SY
bearing dataset contains bearings with more failure modes and distinct
failure locations, leading to more distinct degradation trajectories and
increased stochasticity and randomness in RUL predictions. Secondly,
the XJTU-SY dataset has fewer bearings compared to the IEEE PHM
dataset, resulting in a smaller amount of training data being available
for this case study.

Table 7 shows the prediction RMSE for XJTU-SY Bearingl_1 to
XJTU-SY Bearing2_5 in the XJTU-SY dataset using the techniques listed
in Table 3. The results demonstrate that the proposed attention-aware
graph convolutional network outperforms the other methods in Table 3.
For example, for XJTU-SY Bearingl_1, the proposed method achieved
an RUL prediction RMSE of 0.076, while the other methods had RMSE
values ranging from 0.083 to 0.135. Additionally, for all bearings
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Fig. 11. The RUL prediction results for a selection of bearing units in the XJTU-SY bearing dataset.
Table 7
The RUL prediction RMSE for XJTU-SY Bearingl_1 to XJTU-SY Bearing2_ 5 in the XJTU-SY bearing dataset.
Operating condition Bearing index AGCN-TF AGCN-T AGCN-F GCN-TF GCN-T GCN-F
XJTU-SY Bearingl 1 0.076 0.108 0.089 0.102 0.083 0.135
XJTU-SY Bearingl 2 0.189 0.220 0.257 0.305 0.239 0.283
Condition 1 XJTU-SY Bearingl 3 0.067 0.088 0.075 0.117 0.078 0.090
XJTU-SY Bearingl 4 0.251 0.209 0.245 0.211 0.221 0.260
XJTU-SY Bearingl 5 0.223 0.232 0.208 0.185 0.218 0.178
XJTU-SY Bearing2_1 0.097 0.184 0.110 0.121 0.189 0.169
XJTU-SY Bearing2 2 0.180 0.261 0.202 0.189 0.253 0.167
Condition 2 XJTU-SY Bearing2_ 3 0.120 0.149 0.115 0.126 0.137 0.131
XJTU-SY Bearing2 4 0.272 0.336 0.311 0.322 0.339 0.307
XJTU-SY Bearing2 5 0.117 0.149 0.092 0.092 0.110 0.078
Average 0.159 0.194 0.170 0.177 0.187 0.180
Table 8
The average RMSE of the proposed A-BiGCN and other deep learning methods reported in the literature.
Condition AGCN-TF AGCN-T AGCN-F GCN-TF DANN [48] CNN-GRU [27] LSTM [51] SAGCN-SA [36]
Condition 1 0.161 0.171 0.175 0.184 0.297 0.191 0.264 0.166
Condition 2 0.157 0.216 0.166 0.170 0.240 0.184 0.346 0.213

operated under two different conditions, the proposed method had an
average prediction RMSE of 0.159, compared to an average prediction
RMSE ranging from 0.170 to 0.194 for the other methods.

To evaluate the effectiveness of our proposed method, we compared
the proposed AGCN-TF model with various deep learning techniques
reported in recent literature. Table 8 shows the average prediction
RMSE for bearings operated under two different conditions using our
proposed method and other deep learning methods from the litera-
ture. The deep learning methods included in the comparison were
DANN (deep adversarial neural network), CNN-GRU (CNN with gated
recurrent unit), LSTM (long short-term memory), and SAGCN-SA (self-
adaptive GCN with self-attention mechanism). Based on the average
RMSE values in Table 8, we concluded that the proposed AGCN-TF
outperforms other methods in most cases, regardless of the operating
conditions. For instance, when predicting the RUL of bearings operated
under condition 2, our proposed model achieved an average RMSE of
0.157, while the average RMSE of other methods ranged from 0.166 to
0.346.
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5. Conclusion and future work

In summary, we introduced a spectral graph convolutional opera-
tion that can handle both temporal-correlated and feature-correlated
graphs. This operation allows one to take into account temporal and
feature correlations simultaneously. We also introduced a self-attention
mechanism to construct the temporal-correlated and feature-correlated
graphs automatically during training so that the accuracy and robust-
ness of the predictive model were significantly improved. Furthermore,
we used a multi-head attention-based selection mechanism to automati-
cally select the most important high-dimensional features generated by
the attention-aware graph convolutional operation. We demonstrated
the effectiveness of the method on two publicly available bearing
datasets. The experimental results showed that our method achieved
an average RMSE of 0.122 and 0.159 on the two datasets, respectively.
Moreover, our method outperformed traditional GCNs and other deep
learning methods such as convolutional LSTM, generative adversarial
network, and self-adaptive GCN. In the future, we plan to investigate
the effectiveness of our method on other condition monitoring datasets.
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