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Abstract: The ability to accurately predict flight time of arrival in real time during a flight is critical
to the efficiency and reliability of aviation system operations. This paper proposes a data-light and
trajectory-based machine learning approach for the online prediction of estimated time of arrival
at terminal airspace boundary (ETA_TAB) and estimated landing time (ELDT), while a flight is
airborne. Rather than requiring a large volume of data on aircraft aerodynamics, en-route weather,
and traffic, this approach uses only flight trajectory information on latitude, longitude, and speed.
The approach consists of four modules: (a) reconstructing the sequence of trajectory points from
the raw trajectory that has been flown, and identifying its best-matched historical trajectory which
bears the most similarity; (b) predicting the remaining trajectory, based on what has been flown
and the best-matched historical trajectory; this is achieved by developing a long short-term memory
(LSTM) network trajectory prediction model; (c) predicting the ground speed of the flight along its
predicted trajectory, iteratively using the current position and previous speed information; to this
end, a gradient boosting machine (GBM) speed prediction model is developed; and (d) predicting
ETA_TAB using trajectory and speed prediction from (b) and (c), and using ETA_TAB to further
predict ELDT. Since LSTM and GBM models can be trained offline, online computation efforts are
kept at a minimum. We apply this approach to real-world flights in the US. Based on our findings,
the proposed approach yields better prediction performance than multiple alternative methods. The
proposed approach is easy to implement, fast to perform, and effective in prediction, thus presenting
an appeal to potential users, especially those interested in flight ETA prediction in real time but
having limited data access.

Keywords: data-light and trajectory-based prediction; estimated time of arrival; trajectory reconstruction;
matching; long short-term memory; gradient boosting machine

1. Introduction

Air travel demand has experienced continuous growth over the past few decades
despite a few temporary disruptions such as 9/11, the 2007–2009 economic recession, and
the COVID-19 pandemic, leading to the increased density and complexity of air traffic
and flight delays. With this context, the ability to accurately predict flight estimated
time of arrival (ETA), especially in an online environment, is of critical importance to not
only terminal airspace traffic control and management but also to airlines and airports
for gate assignment, ground crew, and equipment deployment, and passenger pickup
and connection services at the destination airport. Moreover, with the proliferation and
popularity of air travel mobile apps, the need for a high-fidelity real-time prediction of flight
time of arrival has grown substantially. While air navigation service providers (ANSPs)
have access to rich information about airspace congestion, weather conditions, and air
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traffic control, which can be used to generate flight ETA, airlines, airport authorities, and
air travel mobile app developers generally do not have access to such information. For
airlines, they rely on flight plans and infrequent crew updates to generate their own ETA,
which is less accurate than that generated using air traffic control [1,2]. Airports, when
broadcasting flight arrival information, use the same ETA as is received from airlines (note
that airport authorities are different from air traffic control at airports, which is part of an
ANSP). Air travel mobile app developers mostly use data that are open-sourced or can
be purchased at a reasonable price, such as from Flightradar24 [3]. Thus, developing an
approach to predicting ETA that has a light use of easily accessible data will be useful and
of interest to airlines, airports, and air travel mobile app developers.

This paper focuses on online ETA prediction while a flight is airborne. Two types
of ETA are considered. The first type is ETA at the terminal airspace boundary, termed
ETA_TAB. The second type is estimated landing time (ELDT), or time of touchdown.
Dynamic and frequent updates of ETA while a flight is airborne are desirable to improve
situation awareness and preparedness by potential users of the ETA information. As
opposed to this, prior studies on trajectory-based ETA prediction involve the predictions
of either when the flight arrives at or is within the terminal airspace boundary, or before
the flight takes off. To serve the online prediction purpose, this study develops a machine
learning approach that relies only on light, easily accessible data and is intended to provide
a reasonably good online prediction of flight ETA while a flight is airborne, for intended
users including airlines, airport authorities, and air travel mobile app developers, who do
not have access to extensive real-time information such as en-route weather conditions but
have needs for reasonably good ETA prediction.

To be more specific, the proposed data-light and trajectory-based machine learning
approach only requires flight trajectory information, which can be easily accessed in real
time from databases such as Flightradar24 [3]. This approach entails training long short-
term memory (LSTM) neural networks for the prediction of trajectory point sequence
and gradient boosting machine (GBM) for the prediction of flight ground speed along
the predicted trajectory point sequence. LSTM, initially developed by Hochreiter and
Schmidhuber [4], is an effective method for long-range sequential learning with numerous
applications, including speech recognition [5–7], machine translation [8], and image cap-
tioning [9,10]. In our approach, historical flight trajectories are used to train LSTM models
that are then used to iteratively predict the remaining trajectory of a flight under study. In
doing so, a salient feature lies in introducing a construction layer that performs interval
correction and trajectory prediction smoothing. For the prediction of flight ground speed, a
GBM is employed, which builds on the idea of a sequential decision-tree-based ensemble.
GBMs have multiple strengths and are also reported to have achieved significant success in
performing prediction tasks [11–15]. The proposed approach is easy to implement and fast
to perform. Our numerical results show that the prediction accuracy is better than that of
several benchmark methods.

Next, we present a review of the existing literature on ETA prediction. Based on the
review, our contributions are described in detail. The organization of the remainder of the
paper is given last.

1.1. Literature Review

Multiple methods have been developed in the literature to predict flight ETA. An
important stream of methods is based on flight trajectories. Trajectory-based methods
can be grouped into two categories. The first category uses aircraft kinetic and kinematic
models. Krozel et al. [16] develop a probabilistic model to determine an optimal flight path
and ETA at the runway with a planning horizon of 20–30 min or 60–100 mile radius of
the runway, by accounting for the fact that a flight often modifies its trajectory to avoid
hazardous weather. Bai et al. [17] employ a kinematic trajectory generator to predict
flight trajectory and air speed based on nominal speed profiles, to determine ETA at a
downstream point. A probabilistic trajectory predictor for a multi-segment cruise when a
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flight is airborne is proposed in [18]. An averaged ground speed given wind uncertainties
is used together with a nonparametric probabilistic transformation method to calculate
flight time traversing each segment. Then, the total flight time is computed as the sum
of flight times across all segments. Using kinematic and kinetic models, Zhang et al. [19]
propose an online 4D trajectory prediction method to predict flight trajectories and ETA at
waypoints inside the terminal airspace. Their method updates aircraft intent by calculating
kinematic and geomatic constraints if a deviation occurs. Employing kinetic and kinematic
models often requires a large number of data inputs, which may not be easily accessible or
observable [20]. In addition, knowledge about aircraft kinetics and kinematics is needed
for using and adapting such models, which can impose a challenge for some practitioners
(e.g., airport authorities and air travel mobile app developers).

The second category of trajectory-based methods for ETA prediction is data-driven.
Huang et al. [2] develop a probabilistic, hybrid linear system for predicting flight trajectory
during the final approach (a planning horizon of around 8 nautical miles (nm) from
landing) and ETA. The flight path is modeled as a state-dependent, discrete mode transition.
Ayhan et al. [21] focus on predicting flight ETA before the flight actually departs. However,
different from the study of Huang et al. [2], the trajectory is not part of the prediction.
Instead, historical flight trajectories, along with a large number of airports, time, airline,
aircraft type, weather, and air traffic congestion (both en-route and at airports) attributes,
are used as input features to train several machine learning models. De Leege et al. [22] take
actual flight trajectory data and meteorological data to train generalized linear models to
predict flight trajectory and time of arrival at a significant point with a prediction horizon up
to 45 nm from the runway. Wang et al. [23] introduce a two-part model which first performs
cluster-based preprocessing and then multicell neural network-based prediction using
Automatic Dependent Surveillance–Broadcast (ADS-B) data including aircraft position,
heading, and horizontal and vertical speed, for short-term trajectory prediction in the
terminal maneuvering area. Using similar ADS-B data, Wang et al. [24] extend the previous
work by clustering flights based on runway-in-use data and introducing an ensemble
learning strategy called stacking to predict flight ETA, when predictions are made at the
entry point of the terminal maneuvering area. Overall, these trajectory-based methods
typically require a significant volume of data (such as en-route weather information)
compared with our proposed approach. In addition, the predictions are performed either
when a flight arrives at or is within the terminal airspace boundary, or before a flight takes
off. These methods do not deal with more general predictions when a flight is anywhere
while airborne.

Apart from the above trajectory-based ETA prediction studies, other methods have
also been considered in the literature. Glina et al. [25] propose quantile regression forests,
a tree-based ensemble method, to estimate flight landing time while the flight is within
60 nm of the destination airport. In this method, flight trajectory data, time of day, weather
conditions, and runway availability are considered. Kim [26] applies spline smoothing-
based nonparametric additive techniques to predict flight ETA at the time when a flight
departs, considering departure delay, scheduled airborne time, weather conditions at the
destination airport, time of day, day of the month, and month of the year as predictor
variables. Achenbach and Spinler [27] predict flight ETA at the point of gate departure,
using an ensemble of GBM and linear regression as the prediction method. In total,
71 predictor variables encompassing flight data, weather forecasts, and departure and
arrival airport congestion are included. Lui et al. [28] predict the flight time inside the
terminal maneuvering area before landing using random forest with flight altitude, ground
speed, vertical rate, heading angle at the terminal control area entry point, and time of day
as input features. Again, these methods consider prediction either when a flight is very
close to the destination airport or prior to departure. The predictions are not dynamic and
are performed at specific time or location points.
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1.2. Contributions of the Paper

In view of the existing literature, the contribution of this paper lies in proposing a new
data-light approach to real-time ETA prediction while a flight is airborne. Our approach
requires light data as only the flown trajectory of the flight under study and historical
trajectories of similar flights are needed. The fundamental idea is to perform separate and
iterative predictions of flight positions and corresponding ground speeds using LSTM and
GBM for the remaining trajectory of a flight while airborne. Based on the predicted flight
positions and speeds, flight ETA_TAB and ELDT are computed. As LSTM and GBM models
can be trained offline, the prediction takes small online computation efforts and can be
performed in real time.

In performing the ETA prediction, two salient features, namely trajectory points recon-
struction and a smoothing procedure, are designed and incorporated into the proposed
approach. For trajectory points’ reconstruction, we recognize that raw trajectory points are
unevenly distributed and reconstruct trajectory point sequences to be of equal distance in-
tervals, to enable effective LSTM prediction, instead of with equal time intervals [20,29–31].
The implementation of the smoothing procedure is motivated by the understanding that the
LSTM-predicted flight trajectory may not always be smooth. To mitigate this, we propose
to smooth the LSTM-predicted trajectory using a historic trajectory with the most similarity.
The smoothing procedure is embedded in a tailored construction layer in LSTM prediction.

1.3. Organization of the Paper

The remainder of the paper is organized as follows: Section 2 presents the methodology,
starting with the definition of a flight trajectory, the overall methodology framework, and
its component modules. Section 3 shows the implementation of the approach using real-
world flight data, with a detailed demonstration of flight trajectory matching, trajectory
prediction, speed prediction, and ETA_TAB and ELDT prediction. The results on a larger
number of historical flights are also presented, including a comparison with alternative
approaches. Section 4 summarizes the paper, offers further discussions of the proposed
approach, and suggests possible directions for extending the research.

2. Methodology
2.1. Definition

To perform flight trajectory prediction, it is necessary to define a flight trajectory. As
aircraft ground speed is used for predicting ETA_TAB and ELDT, altitude information
is not needed in characterizing a flight trajectory. Instead, a flight trajectory is repre-
sented by a sequence of points each specified by longitude, latitude, and ground speed, as
defined below.

Definition 1: Flight trajectory. A flight trajectory consists of a sequence of points:
TP = [p1, p2, . . . , pR], where pi =

[
λi, ϕi, vi

g

]
denotes longitude λi, latitude ϕi, and ground

speed vi
g at point i. R is the total number of points in the trajectory.

Information on pi for the numerical implementation of the proposed approach will
be obtained from Flightradar24 (Section 3.1 describes more details). At each point on a
flight trajectory, we further introduce dGCD

remain, the remaining great-circle distance (GCD) to
the destination airport. dGCD

remain is calculated based on (λ, ϕ) of the trajectory point and the
longitude and latitude of the destination airport, which are obtained from the OpenFlights
database [32].

2.2. Overall Framework for ETA_TAB and ELDT Prediction

As mentioned earlier, when a flight is airborne, ETA_TAB is calculated by adding an
estimate of the remaining en-route time up to the terminal airspace boundary, to the current
time. Once ETA_TAB is obtained, ELDT is calculated by further adding an estimated
terminal approach time, i.e., the time between when the flight enters the terminal airspace
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and touchdown. The remaining en-route time up to the terminal airspace boundary is
estimated using the predicted remaining flight trajectory and ground speed at predicted
trajectory points. As ground speed is horizontal speed relative to the ground, a flight
trajectory only concerns the horizontal part of the trajectory. During the terminal approach,
a flight’s ground speed varies more drastically and irregularly depending on traffic density
and control, weather, and other factors. As such, it will be more difficult to accurately
predict the terminal arrival route of a flight. In view of this, in the paper, we estimated the
terminal approach time through the sampling of historical terminal approach times.

Our proposed approach consists of four modules: (a) reconstructing the sequence
of trajectory points from the raw trajectory that has been flown and identifying its best-
matched historical trajectory that bears the most similarity; (b) predicting the remaining
trajectory, based on what has been flown and the best-matched historical trajectory, which is
achieved by developing an LSTM trajectory prediction model; (c) predicting ground speed
of the flight along its predicted trajectory, iteratively using current position and previous
speed information, and for this purpose, a GBM speed prediction model is developed;
and (d) predicting ETA_TAB using trajectory and speed prediction from (b) and (c), and
using ETA_TAB to further predict ELDT. The connections of the four modules are shown in
Figure 1.

Figure 1. The overall framework for ETA_TAB and ELDT prediction.

A few notations are worth mentioning in Figure 1. For trajectory prediction, x and y
represent the input and output sequences of the historical trajectories. h denotes the hidden
layer of the LSTM neural networks for trajectory prediction. x′ and y′ are the input and
output sequences of the current trajectory. vi−1

g and vi
g indicate flight ground speed in the

(i− 1)th and ith steps in the distance sequence of a flight’s trajectory.

2.3. Trajectory Point Reconstruction and Matching
2.3.1. Trajectory Point Reconstruction

The raw flight trajectories were obtained from Flightradar24, which come from ADS-B
data and consist of a sequence of trajectory points each with longitude, latitude, and time



Aerospace 2023, 10, 675 6 of 33

information [3]. The raw trajectory points are of unequal time or distance intervals, making
them unsuitable for LSTM modeling. Different from the previous LSTM studies for flight
trajectory prediction that are based on using/constructing a sequence of trajectory points
of equal time intervals, we opted for reconstructing a sequence of trajectory points of equal
GCD. In Figure 2, the upper half presents the raw trajectory points, which are unevenly
spaced. We connected each pair of neighboring trajectory points using a straight line. The
lines form an approximate trajectory of the flight. Then, starting from the first trajectory
point, we placed a sequence of points that are a nm apart along the continuous trajectory.
In this paper, we considered a = 1 nm. (Considering that 1 nm is very small compared with
the length of a flight trajectory (which is hundreds or thousands of miles), any residual
after taking the integer value of the total trajectory length, which is less than 1 nm, can
be reasonably neglected.) In this way, the sequence of reconstructed trajectory points was
obtained, as shown in the lower half of Figure 2.

Figure 2. Flight trajectory before and after construction.

It is worth noting that, compared with other methods in which trajectory points
are reconstructed with equal time intervals, a notable advantage of our approach is that
the determination of trajectory points is purely based on distance. No time or speed
information is required. By contrast, to identify the next reconstructed trajectory point (in
terms of latitude and longitude) with a given time separation from the current reconstructed
trajectory point, flight speed information would be needed in addition to latitude/longitude
information of the current reconstructed trajectory point. However, precise information on
flight speed between the two trajectory points is not available to us. A workaround could
be taking an average speed between two consecutive raw trajectory points, to approximate
the true speed along the flight trajectory. However, doing so would incur errors. For
example, the approximation would not be able to capture speed variations between any
two raw trajectory points, consequently generating and propagating errors in reconstructing
trajectory points.

2.3.2. Trajectory Matching

The objective of trajectory matching is to identify a flight trajectory among historical
trajectories of the same airport pair and flight number that is most similar to the trajectory
of the current flight. The best-matched historical trajectory is then used in a smoothing
procedure while performing trajectory prediction. The rationale is that if the flight under
study—based on what has been flown—follows a very similar trajectory pattern as a
historical flight, then pilots on the two flights are likely to have similar intents in flying.
Consequently, the remaining part of the flight under study may also bear a close similarity
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to that historical flight. Note that both historical and current trajectories were reconstructed
following Section 2.3.1 before matching was performed.

To be sure, one might think of estimating ETA_TAB and ELDT based on flight plans.
However, very detailed flight plans were not available to us, nor are they available to
potential non-airline users of the proposed approach, such as airport authorities and
air travel mobile app developers. Moreover, a flight plan only represents the planned
airborne route. The actual flight path may deviate—sometimes considerably—from the
flight plan due to unexpected en-route traffic congestion and weather conditions. Thus,
predicting the flight trajectory based on the flight plan could lead to inaccurate estimates
(our benchmarking results will show this; see Section 3.5.2). On the other hand, unlike
relying on flight plans, flight path deviations due to unexpected situations are implicitly
reflected in the realized flight trajectories (both historical and current flights) and thus can be
taken into account by matching the current flight’s trajectory with the most similar historical
flight trajectory and learning the common flying behavior from the latter trajectory.

To identify the most similar (best-matched) historical flight trajectory, a similarity
score was introduced to quantify the similarity between two trajectories. Figure 3 shows
how the similarity score of trajectory 1 (T1), which corresponds to the current flight, with a
historical trajectory T2. In the figure, T1 has five trajectory points: T1 =

[
p1

1, p1
2, p1

3, p1
4, p1

5
]
.

Similarly, T2 =
[
p2

1, p2
2, p2

3, p2
4, p2

5
]
. For each trajectory point on T1, we check if there exists

any point on trajectory T2 that is close enough. To illustrate, p1
2 is a trajectory point on

T1. To determine if point p1
2 is close enough to T2, GCD between p1

2 and each trajectory
point on T2 is computed, denoted by d1, d2, . . . , d5, as shown in Figure 3. If there exists an
i = 1, 2, . . . , 5 such that di ≤ ε, where ε is the threshold for measuring closeness, then p1

2
is considered close enough to T2. All points on T1 are checked in this way. The similarity
score of T2 to T1, ST2→T1 , is calculated as follows:

ST2→T1 =
NT2→T1

NT1

(1)

where NT2→T1 is the number of points on T1 that are identified close enough to T2. NT1 is
the total number of points on T1. For example, if three points, p1

1, p1
2, and p1

3, on T1 are close
enough to T2, then NT2→T1 = 3. Given that NT1 = 5, ST2→T1 = 3

5 = 0.6.

Figure 3. Illustration of how to identify close enough points on a historical flight trajectory (T2) when
calculating the similarity score of trajectory T2 to trajectory T1.
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Once similarity scores of all historical flight trajectories of the same airport pair and
flight number to the current flight trajectory are obtained, the trajectory with the highest
similarity score is identified as the best-matched historical trajectory. Based on the above
description, the overall computation complexity of trajectory matching is O(mnk + klogk),
where m is the number of trajectory points of the current flight, n is the maximum number
of trajectory points on a historical trajectory, and k is the number of historical trajectories.
The first part in O(·) pertains to distance calculation, while the second part in O(·) relates
to identifying the historical trajectory with the maximum similarity score, which requires
sorting the similarity scores of all k historical trajectories.

2.4. Trajectory Prediction
2.4.1. LSTM Neural Network

The LSTM neural network model was employed to predict the remaining trajectory
of the current flight. LSTM neural networks are a specific implementation of recurrent
neural networks (RNNs) capable of learning the order dependence in sequence (Hochreiter
and Schmidhuber, 1997) [4]. Compared with RNNs, LSTM networks have the advantage
of overcoming the drawbacks of long sequence remembering and gradient explosion or
vanishing during training. In this section, we describe the structure and mechanisms of
general LSTM networks, based on which we discuss how LSTM is adapted and refined for
trajectory prediction in Section 2.4.2.

LSTM networks have a chain-like structure with repeating blocks, as shown in Figure 4.
The internal structure of an LSTM block is specified in the middle block. LSTM can remove
or add information to the cell state (Ct), which is key to LSTM and runs through the entire
chain, by structures known as gates, which selectively allow information to pass through.
An LSTM block has three gates with the sigmoid activation function to control the cell state.
More specifically, the sigmoid function is used to output a value in the range between 0
and 1 and describe the amount of information that passes through.

Figure 4. The architecture of LSTM neural networks [33].

The data fed to the LSTM gates include input at the current step, xt, and the hidden
state of the previous step, ht−1. In flight trajectory prediction, a step corresponds to a
trajectory point. xt and ht−1 are processed to compute the values of the three gates: input,
forget, and output, denoted by it, ft, and ot, as follows:

it = σ(Wi[ht−1, xt] + bi) (2)
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ft = σ(W f [ht−1, xt] + b f ) (3)

ot = σ(Wo[ht−1, xt] + bo) (4)

where σ is the sigmoid function. Wi, W f , and Wo are weight parameters. bi, b f , and bo are
bias parameters.

In Figure 4, a candidate cell state
∼
Ct is introduced for the calculation of cell state Ct.

The computation of
∼
Ct is similar to that of the three gates, with a hyperbolic tangent (tanh)

function ranging from −1 to 1 used as the activation function:

∼
Ct = tanh(Wc[ht−1, xt] + bc) (5)

where Wc is a weight parameter; bc is a bias parameter.
To calculate Ct, four variables are involved, as shown in Equation (6). In the equation,

the forget gate ft defines the amount of the past cell state Ct−1 to be retained. The input

gate it governs how the new data are considered via
∼
Ct.

Ct = ft ◦ Ct−1 + it ◦
∼
Ct (6)

where ◦ is the Hadamard product, for which the elements corresponding to the same
rows and columns of two matrices are multiplied to form a new matrix. If ft and it are,
respectively, one and zero, the previous cell state Ct−1 would be saved and passed to Ct.

With the three gates and the cell state introduced, the hidden state ht is defined using
Equation (7). The tanh value of the cell state ensures that the value of ht is between −1 and
1. If the output gate ot equals one, then all the information of Ct is passed to ht. In contrast,
an ht value of zero indicates that no information of Ct is passed into the next step as the
hidden state value.

ht = ot × tanh(Ct) (7)

The above description is for a single LSTM block. In practice, multiple LSTM blocks
are stacked to enable learning more complex patterns from sequence data.

2.4.2. LSTM Network for Trajectory Prediction

We adopted LSTM for flight trajectory prediction in the following way: Our LSTM
network had two stacked LSTM layers with 64 hidden units with five inputs and one output.
The batch size in training was 10. Each input consisted of three features describing the flight
state at a given position: longitude, latitude, and the remaining GCD from the position to
the destination airport, denoted by dGCD

remain. Each of these three features was normalized
using min–max scaling with the minimum and maximum taking from all historical flights
of the same airport pair and flight number so that the feature value would always be
between 0 and 1. Although in principle, dGCD

remain can be calculated using longitude and
latitude, our experiments reveal that explicitly including dGCD

remain improves the prediction
accuracy of the trained LSTM model. A possible reason for this is that the sequence of
dGCD

remain along a flight’s trajectory is expected to follow a decreasing trend. As a result,
explicitly having dGCD

remain helps guide the trajectory prediction in the direction of reducing
dGCD

remain. Figure 5a illustrates the process of LSTM training, where x denotes the input and
y denotes the output. Subscript c denotes “current”. A dropout layer was added with a
dropout rate of 0.5 between the two LSTM layers to reduce overfitting.
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Figure 5. The architecture of the proposed trajectory prediction approach using LSTM: (a) training;
(b) inference.

Once an LSTM model was trained using the historical trajectories, a one-step-ahead
strategy was adopted to perform trajectory point prediction for the current flight’s trajectory.
To illustrate, consider the current trajectory point c. Then, xc, xc−1, xc−2, xc−3, xc−4 are used
by the LSTM model to generate the prediction of xc+1, denoted by x̂c+1. As mentioned
above, each xc = (λc, ϕc, dGCD

c,remain), where λc, ϕc, dGCD
c,remain denotes longitude, latitude, and

the remaining distance to the destination airport. The prediction of xc+1 involves feeding
the output of the last LSTM block of hidden layer 2 to a dense layer and a construction layer.
The construction layer is used to adjust the predicted position of trajectory point c + 1, so
that the predicted point is smoothed and a nm from trajectory point c, where a = 1 nm is
the prespecified separation distance (see Section 2.3.1). Once x̂c+1 is generated, x̂c+1 is used
together with xc, xc−1, xc−2, xc−3 to generate x̂c+2. x̂c+2 and x̂c+1 along with xc, xc−1, xc−2
are further used to generate x̂c+3. This iterative process continued until reaching the
terminal airspace boundary of the destination airport.

The construction layer consisted of four procedural steps, as shown in Figure 6. Sup-

pose the output of the dense layer is x̂0
c+1 = (λ̂0

c+1, ϕ̂0
c+1, d̂GCD,0

c+1,remain). In the first step, an

interval correction procedure was employed to adjust λ̂0
c+1 and ϕ̂0

c+1 so to have the GCD
between the current position (λc, ϕc) and the adjusted prediction position, denoted by(
λ̂1

c+1, ϕ̂1
c+1
)
, equal to a = 1 nm. In the second step, we constructed a sub-trajectory of

the best-matched historical trajectory obtained in Section 2.3 for the purpose of trajectory
prediction smoothing. To illustrate how this is achieved, let us use Tb = [pb

1, pb
2, pb

3, . . .] to
denote the reconstructed trajectory point sequence of the best-matched historical trajectory
(we use superscript b to represent the ”best-matched trajectory” in this paper). We “virtu-
ally” insert (λc, ϕc) into the point sequence of Tb, in the position right after the point closest
to (λc, ϕc). The sub-trajectory is an artificial trajectory starting from (λc, ϕc) and connecting
to the subsequent points in the sequence till the end of Tb. To ensure equal-distance sepa-
ration, the points are further reconstructed following the same procedure in Section 2.3.1,
so that starting from (λc, ϕc), the subsequent reconstructed points are a = 1 nm apart.

The resulting sub-trajectory is denoted by Tb,r
c = [pb,r

0 , pb,r
1 , pb,r

2 , . . .] where pb,r
0 = (λc, ϕc)

and pb,r
k = (λb,r

c+k, ϕb,r
c+k) for k = 1, 2, . . . (subscript b means the best-matched trajectory;

subscript r means the remaining trajectory after the current position). In the third step, a
smoothing procedure using Tb,r

c was applied to
(
λ̂1

c+1, ϕ̂1
c+1
)
, leading to updated longitude
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and latitude
(
λ̂2

c+1, ϕ̂2
c+1
)
. Finally, in the fourth step, the interval correction procedure was

again employed, now to
(
λ̂2

c+1, ϕ̂2
c+1
)
, to ensure that the predicted point c + 1 is a = 1 nm

apart from point c after smoothing. The output is
(
λ̂c+1, ϕ̂c+1

)
. Based on

(
λ̂c+1, ϕ̂c+1

)
,

d̂GCD
c+1,remain is also calculated. Thus, x̂c+1 = (λ̂c+1, ϕ̂c+1, d̂GCD

c+1,remain) is generated. Below, we
describe the interval correction and smoothing procedures in detail.

Figure 6. Illustration of the four steps performed in the construction layer to generate
(
λ̂c+1, ϕ̂c+1

)
using

(
λ̂0

c+1, ϕ̂0
c+1

)
from the dense layer, (λc, ϕc), and the best-matched historical trajectory.

The interval correction procedure works as follows: Again, consider the output of
the dense layer to be x̂0

c+1 =
(

λ̂0
c+1, ϕ̂0

c+1, d̂GCD,0
c+1,remain

)
. As the GCD between (λc, ϕc) and(

λ̂0
c+1, ϕ̂0

c+1
)

may not be the prespecified separation distance of a = 1 nm, the interval cor-
rection procedure makes an adjustment by identifying the trajectory point that is a = 1 nm
from (λc, ϕc) toward

(
λ̂0

c+1, ϕ̂0
c+1
)
. To this end, we first identify the tracking angle θ clock-

wise from true north between (λc, ϕc) and
(
λ̂0

c+1, ϕ̂0
c+1
)

(Figure 7).

θ = arctan

(
sin
(
λ̂0

c+1 − λc
)
· cos ϕ̂0

c+1

cos ϕc · sin ϕ̂0
c+1 − sin ϕc · cos ϕ̂0

c+1· cos
(
λ̂0

c+1 − λc
)) (8)

Figure 7. Illustration of the interval correction procedure.
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Keeping the tracking angle θ fixed, the longitude and latitude of the corrected point(
λ̂1

c+1, ϕ̂1
c+1
)

are calculated using Equations (9)–(11) [34], where R = 6371 km is the
Earth’s radius.

δ =
a
R

(9)

ϕ̂1
c+1 = arcsin(sin ϕc · cos δ + cos ϕc · sin δ · cos θ) (10)

λ̂1
c+1 = λc + arctan

(
sin θ · sin δ · cos ϕc

cos δ− sin ϕc · sin ϕ̂1
c+1

)
(11)

For the smoothing procedure, as the LSTM model was trained based on a number of
historical trajectories, our experiments show that some “zigzags” can occur to the predicted
trajectories, which is not consistent with the real-world flying behavior. To mitigate this, we
employed a procedure through which the LSTM-predicted trajectory is smoothed with the
sub-trajectory of the best-matched historical trajectory. Specifically, for the kth predicted
trajectory point from the current flight position c, the smoothed longitude and latitude
(λ̂2

c+k, ϕ̂2
c+k) are calculated using Equations (12)–(14). In Equation (12), αc+k is the smoothing

coefficient as the ratio of GCDs from the kth predicted trajectory point and from the current
flight position to the destination airport (dGCD

c+k,remain/dGCD
c,remain). The farther the prediction

is (i.e., larger k), the smaller the value of dGCD
c+k,remain and consequently αc+k. With αc+k, the

smoothed longitude of the kth predicted trajectory point is αc+kλ̂1
c+k + (1− αc+k)λ

b,r
c+k. The

rationale is that when the LSTM prediction gets farther into the future, more prediction
errors can accumulate, making the prediction less reliable. As a result, less weight is given
to the LSTM prediction λ̂1

c+k and more reliance on the best-matched trajectory λb,r
c+k.

A potential issue with using αc+kλ̂1
c+k + (1− αc+k)λ

b,r
c+k is that when the predicted

trajectory point is near the destination airport, the role of LSTM will diminish to zero.
To still have LSTM play a role in prediction, we took an additional weighted sum of
αc+kλ̂1

c+k + (1− αc+k)λ
b,r
c+k and the LSTM prediction λ̂1

c+k, weighted by ω and 1− ω. ω
indicates the extent of using smoothing. ω = 0 means no smoothing. ω = 1 corresponds to
full smoothing.

αc+k =
dGCD,c+k

remain

dGCD,c
remain

(12)

λ̂2
c+k = ω

[
αc+kλ̂1

c+k + (1− αc+k)λ
b,r
c+k

]
+ (1−ω)λ̂1

c+k (13)

ϕ̂2
c+k = ω

[
αc+k ϕ̂1

c+k + (1− αc+k)ϕb,r
c+k

]
+ (1−ω)ϕ̂1

c+k (14)

The above prediction procedure iteratively generated future trajectory points, until
we identified the first trajectory point that reached the boundary of the destination
terminal airspace or fell within the boundary (Figure 8). Considering the random
initialization of the weights of the LSTM neural network, a different model may be
obtained each time we train the LSTM neural network using the same training data,
which may result in a different trajectory. To account for the randomness, multiple
LSTM models were trained for each historical trajectory. Thus, multiple predictions
were performed, each corresponding to one trained LSTM model and generating one
predicted trajectory.
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Figure 8. Illustration of when the iterative trajectory point prediction stops (when a trajectory point
reaches the boundary of the destination terminal airspace or falls within the boundary).

As a final note, the way the LSTM-predicted trajectory points were adjusted is based
on equal distance separation for trajectory points. As opposed to this, there would be
a lack of basis for adjusting the LSTM-predicted trajectory points if they are required to
be of equal time separation. This is because a predicted trajectory point is defined by
longitude, latitude, and dGCD

remain, but not time or speed information. Even if speed were part
of the LSTM prediction, the predicted trajectory point location and speed may result in a
time separation different from the prespecified time interval between the predicted and its
preceding trajectory points (to our knowledge, there is no way to force the time separation
computed based on the LSTM-predicted trajectory point location and speed to be equal to
the prespecified time separation). Therefore, time separation inconsistency can occur. This,
along with the way raw trajectory points were reconstructed, as explained in Section 2.3.1,
justified the consideration of equal distance separation.

2.5. Ground Speed Prediction

GBM was used to predict flight ground speed at every trajectory point of the predicted
remaining trajectory. GBM belongs to the class of decision-tree-based ensemble prediction
methods that build a bucket of relatively simple models (also termed “base learners”) to
obtain a strong ensemble prediction. In particular, multiple single decision tree models were
strategically combined rather than fitting the best single decision tree model. Compared
with the random forest method, which is another popular decision-tree-based ensemble
method based on bagging (rather than boosting), GBM adds new trees to the ensemble
sequentially. At each iteration, GBM accounts for the error of the previously ensembled
trees and tries to recover the error when performing prediction in the next tree. As such,
the error keeps decreasing in the subsequent tree ensemble. In contrast, a random forest
model trains multiple trees individually each with a subset of the training data. The final
prediction comes from the average of all individual tree-based predictions. As a result
of these differences, GBM has been reported to outperform the random forest method in
prediction accuracy [15,35].

In this paper, multiple GBM models were trained using historical flight trajectories for
each combination of flight number and aircraft type. To develop a GBM model, the speed at
the reconstructed trajectory points was used, which was estimated in the following way: As
shown in Figure 9, the first point on the reconstructed trajectory point sequence is the same
as the first point on the raw trajectory point sequence. Thus, the speed of the first point
on the reconstructed trajectory, v0

g, is the same as the speed of the first point on the raw
trajectory, v0

g,raw. The speed at any intermediate point on the reconstructed trajectory is
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approximated via interpolation using the speeds of two neighboring raw trajectory points.
For example, in Figure 9, v2

g = v1
g,raw + |AB|

a2

(
v2

g,raw − v1
g,raw

)
.

Figure 9. Estimation of speed at reconstructed trajectory points.

Using the notation yi = vi
g and χi =

(
vi−1

g , dGCD,i
remain

)
for trajectory point i in a recon-

structed historical flight trajectory (i = 2, . . . , N, where N denotes the total number of
points in the trajectory), the prediction function to be trained is y = F(χ). GBM considers
parameterizing F(χ) as follows:

F(χ; {ρm, am}M
1 ) =

M

∑
m=1

ρmh(χ; am) (15)

where {ρm, am}M
1 are the parameters of the GBM model. The values of ρm and am are

iteratively obtained as shown later in Equations (18)–(20). M is the maximum number of
iterations in performing the steepest descent to seek the best F(χ) that minimizes the L2
square loss L(y, F), which measures the deviation of the predicted value from the actual
value of the output. The iterative relationship is as follows:

Fm(χ) = Fm−1(χ)− ρm

{[
∂L(y, F(χi))

∂F(χi)

]
F(χ)=Fm−1(χ)

}
(16)

In Equation (15), h(χ; am), m = 1, 2, . . . , M are usually simple parameterized functions
of χ, characterized by parameters am. Each h(χ; am) is called a “base learner”, for which we
specify the following regression tree:

h(χ; am) = h
(

χ;
{

bj
m, Rj

m

}J

1

)
=

J

∑
j=1

bj
m1
(

χ ∈ Rj
m

)
(17)

where {Rj
m}J

1 are disjoint regions that collectively cover the space of all joint values of
χ. These regions are represented by the terminal nodes of the corresponding tree. The
indicator function 1(·) takes value 1 if the argument is true, and 0 otherwise. bj

m values are
parameters of the base learner. In each iteration, a new tree is added to F(χ).

The question in the mth iteration is to identify am such that h(χ; am) is most parallel to

(most correlated with) −
{[

∂L(y,F(χi))
∂F(χi)

]
F(χ)=Fm−1(χ)

}
. This can be obtained from solving the
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following least-square minimization problem, which is well studied with standard procedures.

am = argmin
a,β

N

∑
i=1

[
−
[

∂L(y, F(χi))

∂F(χi)

]
F(χ)=Fm−1(χ)

− βh(χi; a)

]2

(18)

The resulting h(χi; am) is used to replace −
[

∂L(y,F(χi))
∂F(χi)

]
F(χ)=Fm−1(χ)

in the steepest

descent expression in Equation (16). A new line search is conducted to determine the value
for ρm:

ρm = argmin
ρ

L(y, Fm−1(χ) + ρh(χ; am)) (19)

which is then used to update F(χ):

Fm(χ) = Fm−1(χ) + vρmh(χ; am) (20)

where v ∈ (0, 1] is the learning rate. The process using Equations (18)–(20) is called
“boosting”. Because gradient is used in the steepest descent, the overall procedure is named
“gradient boosting”.

To summarize, the GBM algorithm can be represented as follows in Algorithm 1:

Algorithm1: GBM Algorithm.

1. Initialization : F0(χ) = argminρ∑N
i=1 L(yi, ρ)

2. For m = 1 to M do:

3. am = argmin
a,β

∑N
i=1

[
−
[

∂L(y,F(χi))
∂F(χi)

]
F(χ)=Fm−1(χ)

− βh(χi; a)
]2

4. ρm = argmin
ρ

L(y, Fm−1(χ) + ρh(χ; am))

5. Fm(χ) = Fm−1(χ) + vρmh(χ; am)

6. End for

2.6. ETA_TAB and ELDT Prediction

After the prediction of flight trajectory and aircraft ground speed, discussed in
Sections 2.4 and 2.5, the airborne time for the remaining trajectory was computed. Specifi-
cally, let (λ c, ϕc) and vc

g denote the current position and ground speed of an aircraft (shown
in Figure 10). (λ c+1, ϕc+1

)
, · · · , (λ c+N , ϕc+N

)
and vc+1

g , · · · , vc+N
g denote the predicted

trajectory points and ground speeds, where N is the number of points before reaching the
boundary of the destination terminal airspace. Between two neighboring trajectory points,
flight time is calculated by dividing the distance of the segment (which is a = 1 nm) by
the average ground speed, which is approximated as the average of the predicted ground
speeds at the two points (Equation (21)). The total remaining airborne time up to the
terminal airspace boundary, T̂1, is the sum of flight times between each of two neighboring
trajectory points up to the last point N. ETA_TAB is the current time t0 plus T̂1. These are
shown in Equations (22) and (23).

−
v

i

g =
vi−1

g + vi
g

2
(21)

T̂1 =
N

∑
i

a
−
v

i

g

(22)

ETA_TAB = t0 + T̂1 (23)
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Figure 10. Trajectory and ground speed prediction outputs for remaining airborne time.

When entering the terminal airspace, a flight’s trajectory will be subject to greater
variability [36]. Air traffic controllers may assign different procedures and maneuvers to
different flights making it more challenging to reliably predict flight trajectory within
the terminal airspace. In addition, within the terminal airspace, flight ground speed
decreases drastically. To account for these uncertainties, we opted for the random
sampling of a historical terminal approach time T̂2 among all historical trajectories of
the same OD, aircraft type, and approach entry position (a terminal airspace typically
has a few fixed approach entry positions (this is confirmed by referring to the raw flight
trajectories we present in Section 3). If a predicted trajectory did not exactly touch any
approach entry position, then we considered the approach entry position that was the
closest to the touch point of the predicted trajectory to the terminal airspace boundary,
as the approach entry position of the predicted trajectory) and add the sampled time to
ETA_TAB to obtain ELDT.

ELDT = ETA_TAB + T̂2 (24)

3. Demonstration of the Prediction Approach
3.1. Data

To demonstrate the proposed approach, in this paper, we used flights of two
airport pairs for ETA_TAB and ELDT prediction: Denver to San Francisco (DEN-SFO)
and Chicago O’Hare to San Francisco (ORD-SFO), which have GCDs of 839 nm and
1600 nm, respectively. The involved airports are among the busiest airports in the
US. Flight trajectory data were collected from Flightradar24 for the period between
January 2020 and June 2020. In total, 63 and 136 flight records were collected from
DEN-SFO and ORD-SFO, for flight numbers UA1497 and UA2166, respectively. Each
flight record was composed of a sequence of trajectory points. Each trajectory point
contained information on seven items: monitoring time in Unix timestamp, monitoring
time in coordinated universal time (UTC), flight callsign (i.e., flight number), position
information (longitude and latitude), altitude, ground speed, and heading. An excerpt
of the flight records is shown in Figure 11. For a point, its longitude and latitude
together with the longitude and latitude of the destination airport (collected from
OpenFlights) were used to calculate dGCD

remain. Because SFO was the destination airport,

information about the SFO terminal airspace boundary (i.e., TRACON boundary) was
collected from the official Federal Register documentation [37].
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Figure 11. Sample flight trajectory records in our data.

Building on the raw data, we further added two columns on the right (shown in grey
in Figure 11) which indicate (1) the time difference (in second) and distance difference (in
nm) between a trajectory point and its immediately preceding trajectory point (the row
immediately above the current row). These differences show that the trajectory points were
unevenly spaced in both time and distance.

In the rest of this section, we first present the ETA_TAB and ELDT prediction results
for the two flights in detail: UA1497 on 20 April 2020 from DEN-SFO (flown by a B777-
200 aircraft), denoted as FLT1, and UA2166 on 9 May 2020 from ORD-SFO (flown by
an A320 aircraft), denoted as FLT2. To further investigate the validity of the proposed
approach, we also report the results for 30 randomly picked flights not used in training
from each airport pair. ETA_TAB and ELDT predictions were performed at three airborne
positions: when a flight was at 25th, 50th, and 75th GCD percentiles. In other words,
we predicted ETA_TAB and ELDT with the assumption that a flight has flown 25%, 50%,
and 75% of the GCD. The prediction was performed on a laptop with 16 GB RAM, Intel
Core i7-9850H (2.60 GHz), and NVIDIA Quadro T2000 graphics running in a Windows
environment.

3.2. Trajectory Matching

Figure 12a,b show the 63 and 136 flight trajectories of the two airport pairs. For
DEN-SFO, it can be seen that all the trajectories are quite similar. In contrast, ORD-SFO
flight trajectories exhibit more differences, suggesting the importance of identifying the
best-matched trajectory. For example, in Figure 12b, it would be unlikely to yield an
accurate prediction if using the purple dashed trajectory in the north to train an LSTM
model and then using the trained model to predict the trajectory shown in the dashed green
in the south. According to the FAA, the width of an air route extends 4 nm on each side
from the centerline [38]. Thus, we set ε = 8 nm as the threshold for determining whether
two trajectory points were close enough in trajectory matching.
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Figure 12. Flight trajectory records for the median- and long-haul airport pairs: (a) flight trajectory
records of UA1497 from DEN-SFO from 1 January to 30 June 2020; (b) flight trajectory records of
UA2166 from ORD-SFO from 1 January to 30 June 2020.

For each of FLT1 and FLT2, we first reconstructed the trajectory point sequence so
that trajectory points were of equal distance. Because the prediction was performed from
the current position, the best-matched historical trajectory depended on what had been
flown by the flight under study. For example, in the beginning, a flight’s trajectory may
be most similar to the trajectory of a historical flight A. But as the flight continues flying,
its trajectory may become most similar to the trajectory of a different historical flight
B. Table 1 presents the trajectory matching results for FLT1 and FLT2, when the flights
were at 25th, 50th, and 75th GCD percentiles. We found that the best-matched trajectory
for FLT1 was always the trajectory of UA1497 on 19 April 2020 (with a similarity score
of one). For FLT2, which flew longer, the best-matched trajectory was the trajectory
of UA2166 on 13 February 2020 when the flight was at the 25th GCD percentile. The
best-matched trajectory changed to that of UA2166 on 19 January 2020 at the 50th and
75th GCD percentiles. The similarity score was reduced from 1 to 0.99. Figures 13 and 14
illustrate the best-matched trajectories (indicated by the blue dashed lines) at the three
GCD percentiles for FLT1 and FLT2.



Aerospace 2023, 10, 675 19 of 33

Table 1. Trajectory matching results of FLT1 and FLT2.

Airport Pair Current Flight Current Position Best-Matched
Historical Flight Similarity Score Matching Time (min)

DEN-SFO
FLT1

(UA1497(4/20/20))

25th GCD
percentile UA1497 (4/19/20) 1.00 0.01

50th GCD
percentile UA1497 (4/19/20) 1.00 0.04

75th GCD
percentile UA1497 (4/19/20) 1.00 0.09

ORD-SFO
FLT2

(UA2166(5/9/20))

25th GCD
percentile UA2166 (3/3/20) 1.00 0.28

50th GCD
percentile UA2166 (1/19/20) 1.00 0.66

75th GCD
percentile UA2166 (1/19/20) 0.99 1.05

Figure 13. The current flight’s trajectory (in solid pink) with the best-matched historical flight
trajectory (in dashed blue) for FLT1.
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Figure 14. The current flight’s trajectory (in solid pink) with the best-matched historical flight
trajectory (in dashed blue) for FLT2.

In terms of the time needed for trajectory matching, it was quite small, as reported in
the last column of Table 1. For comparison, we also experimented with using dynamic time
warping (DTW) to identify the best-matched trajectories. It was found that DTW yielded
the same best-matched trajectories for FLT1 and FLT2. On the other hand, the computation
time was longer. For example, the best trajectory matching for FLT2 using DTW took
3.67 min, 7.79 min, and 12.79 min when the flight had flown 25%, 50%, and 75% of GCD.
On the other hand, if a much larger number of historical trajectories were considered for
matching, matching time might increase. In this case, similar historical flight trajectories
could be clustered before matching. A representative trajectory from the best-matched
cluster could then be picked for LSTM training. This process could help reduce the time
for matching.
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3.3. Trajectory Prediction

For each airport pair, we used flight trajectories that occurred prior to FLT1 (FLT2)
to train the respective LSTM models. As mentioned in Section 2.4.2, to account for the
random initialization of the weights of the LSTM neural network, multiple LSTM models
were trained for each airport pair. Each trained model was used to generate one predicted
trajectory. We set the number of LSTM models to be trained for an airport pair to 30.
LSTM model training was performed using Keras with a TensorFlow backend [39]. An
Adam optimizer with adaptive learning rates was used to update the network weights
iteratively [40].

Prior to training the LSTM models, the hyperparameters, including the learning
rate and the number of iterations, were tuned with grid search. For each airport pair,
the historical trajectories were split, with 80% as training data and the remaining 20% as
validation data. Given that only historical trajectories were used, the training process
can be carried out offline. The training time of the 30 LSTM models for DEN-SFO
was 50.2 min, and of the 30 LSTM models for ORD-SFO was 568.8 min. To perform a
comparison, standard RNN and gated recurrent unit (GRU) models were also trained in
a similar fashion and used for prediction. The RMSE of training and validation results
are presented in Table 2. Overall, LSTM was found to perform the best among the
three models.

Table 2. RMSE of LSTM, RNN, and GRU models for trajectory prediction.

Methods Features
Training Data Validation Data

DEN-SFO ORD-SFO DEN-SFO ORD-SFO

LSTM
Longitude (degree) 1.04 × 10−4 3.22 × 10−4 2.52 × 10−4 4.09 × 10−4

Latitude (degree) 2.60 × 10−5 6.86 × 10−5 1.36 × 10−5 4.43 × 10−4

dGCD
remain (nm) 0.33 0.84 0.10 1.37

RNN
Longitude (degree) 4.18 × 10−3 5.11 × 10−3 1.42 × 10−3 7.06 × 10−3

Latitude (degree) 6.31 × 10−3 4.10 × 10−3 3.06 × 10−3 3.93 × 10−3

dGCD
remain (nm) 1.71 4.29 1.30 3.35

GRU
Longitude (degree) 2.87 × 10−4 7.68 × 10−4 2.93 × 10−4 8.14 × 10−4

Latitude (degree) 5.29 × 10−5 3.46 × 10−4 2.12 × 10−4 7.09 × 10−4

dGCD
remain (nm) 0.85 1.59 0.79 1.41

With the trained LSTM models, the procedure described in Section 2.4.2 was fol-
lowed for trajectory prediction in which smoothing is one of the key techniques. Recall
that in doing so, ω is a parameter indicating the extent of using smoothing. When ω is
close to 0, the predicted trajectories cannot enter the terminal airspace in some cases. Af-
ter smoothing was performed, the predicted trajectories could enter the terminal airspace
in a reasonable position. To test the sensitivity of the trajectory prediction to ω, we varied
the value of ω from 0.2 to 0.8 in an increment of 0.1. For each OD, we randomly picked
20 flights for trajectory prediction. We found that, as ω increased from 0.2 to 0.5, the
percentage of predicted trajectories entering the terminal airspace increased from 93.3%
to 100% (recall that for a given flight, 30 LSTM models were trained, thus generating
30 predicted trajectories, so in total, 600 predicted trajectories were generated). Once ω
exceeded 0.5, 100% of the predicted trajectories always entered the terminal airspace. We
further measured the average distance between the predicted trajectory point and the
corresponding actual trajectory point (i.e., the point that had the same position number
in their respective trajectory point sequences). We found that as ω increased from 0.2 to
0.5, this average distance decreased, suggesting improvement in the prediction accuracy.
Once ω exceeded 0.5, the average distance stayed more or less the same. In view of
these results, and to have the LSTM-predicted trajectory play an important role, we set
ω = 0.5.
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The time needed for trajectory matching and trajectory prediction was 0.20, 0.24, and
0.27 min at the 25th, the 50th, and the 75th GCD percentiles for FLT1; and 1.32, 1.50, and
1.66 min at the 25th, the 50th, and the 75th GCD percentiles for FLT2. Figures 15 and 16
present the predicted flight trajectories of FLT1 and FLT2. In each figure, a plot corresponds
to the prediction assuming the corresponding flight is at the 25th, 50th, and 75th GCD-
percentile positions. The orange curves denote the actual flight trajectories (ground truth).
The blue dashed curves represent the predicted flight trajectories that can reach the terminal
airspace boundary. We found that the predicted trajectories coincided quite well with the
actual trajectories.

Figure 15. The predicted trajectories for FLT1 at 25th, 50th, and 75th GCD percentiles.

Figure 16. Cont.
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Figure 16. The predicted trajectory for FLT2 at 25th, 50th, and 75th GCD percentiles.

To further examine the quality of trajectory prediction, the distance between each
predicted trajectory point and the corresponding actual trajectory point (i.e., the point that
had the same order position as the predicted point in the actual trajectory point sequence)
was calculated. The distributions of these distances are shown in Figure 17 (left for FLT1
and right for FLT2). Note that each distribution plot includes the trajectory points on all
the predicted trajectories in Figures 15 and 16. The distributions for both flights are right-
skewed, with the average being 3.17, 2.81, and 1.50 nm for FLT1; and 3.97, 1.11, and 0.95 nm
for FLT2, when predicting at 25th, 50th, and 75th GCD percentiles. The distributions and
their small averages relative to flight ground speed during the cruise (around 432 nm/h;
see Appendix A, Figure A1) suggest reasonably accurate trajectory predictions using the
LSTM models.

Figure 17. Cont.
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Figure 17. Distributions of the distance between the predicted and actual trajectory points (the
two points have the same order position in their respective trajectory point sequences) for FLT1 (left)
and FLT2 (right), predicting at 25th, 50th, and 75th GCD percentiles.

3.4. Ground Speed Prediction

Following the description in Section 2.5, GBM models were trained using reconstructed
trajectory points of all the historical trajectories of the same flight number and the same
aircraft type. Given that each airport pair in our numerical experiments had only one flight
number, an airport pair was associated with one trained GBM model. In GBM training,
a data record included a reconstructed trajectory point i (except for the first point of a
trajectory) consisting of ground speed at the previous trajectory point (vi−1

g ), the remaining

GCD of the current point (dGCD,i
remain), and ground speed at the current trajectory point (vi

g).
Four hyperparameters need to be tuned in GBM training, the number of regression

trees (M), the maximum depth of a tree, the minimum sample leaf of a tree (i.e., the
minimum number of observations a node needs to have to be considered for splitting),
and the learning rate (v) were used. The following procedure was adopted in training:
For an airport pair, the historical trajectory data were divided into five sets of equal
size (i.e., five folds). Considering that each hyperparameter could take several possible
values, we used a grid search of possible combinations of hyperparameter values. For a
given combination, we drew four folds from the data to train a GBM model. Then, the
trained model was applied to the remaining fold of the data to compute RMSE. Since we
had five folds, there were five possible ways to draw four folds of the data, resulting in
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five GBM models and five RMSEs. The five RMSEs were averaged. We repeated this for all
combinations of hyperparameter values and chose the combination that yielded the smallest
average RMSE. The corresponding GBM model was selected for ground speed prediction.

Similar to LSTM model training, the training of GBM models could be performed offline
given that only historical trajectories were used. For FLT1 (on 20 April 2020) and FLT2 (on 9
May 2020), 17 flights with B777 series before 4/20/2020 for DEN-SFO and 6 flights with A320
series before 5/9/2020 for ORD-SFO were used for training. The training took 11.03 min for
DEN-SFO and 47.84 min for ORD-SFO per aircraft type on average. Once the GBM model for
an airport pair was selected, it was applied to all the historical trajectory data that were used
for training, to calculate the RMSE for the predicted ground speed. The resulting RMSEs were
2.2 nm/h for DEN-SFO and 2.3 nm/h for ORD-SFO.

The trained GBM models were further applied, in an iterative manner, to the predicted
remaining trajectory of FLT1 and FLT2. More specifically, standing at the current trajectory
point, we predicted the ground speed of the first predicted trajectory point using ground
speed at the current point and dGCD

remain of the first predicted trajectory point. Then, we
used the predicted ground speed of the first predicted trajectory point and dGCD

remain of the
second predicted trajectory point, to predict the ground speed of the second predicted tra-
jectory point. We calculated RMSEs with respect to ground speeds along the reconstructed
trajectory point sequence of the true trajectory. (It may be possible that the number of
reconstructed trajectory points on the true trajectory would be different from the number
of trajectory points on the predicted trajectory. If this occurred, we considered the smaller
number of the two while calculating RMSE.) Since multiple predicted trajectories were
generated for each flight, and each predicted trajectory yielded one RMSE, the RMSEs were
averaged. The averaged RMSEs when predicting at 25th, 50th, and 75th GCD percentiles
are shown in Table 3. Because ORD-SFO had a larger GCD than DEN-SFO, greater pre-
diction uncertainties were expected. Thus, it was not surprising that the average RMSE
for FLT2 was larger than for FLT1. To make a comparison, random forest models were
also trained in the same fashion as RMSEs reported in Table 3. It can be seen that the GBM
performed better than the random forest model.

Table 3. Averaged RMSE (in nm/h) overall multiple trajectory predictions of the predicted ground
speed for points on the predicted remaining trajectory for FLT1 and FLT 2 at different GCD percentiles.

GBM Random Forest

FLT1 FLT2 FLT1 FLT2

25th GCD
percentile 7.36 10.01 7.63 12.04

50th GCD
percentile 9.41 12.98 9.42 13.97

75th GCD
percentile 9.83 13.56 10.4 15.29

It is worth noting that the RMSEs in Table 3 are larger than the ones mentioned in
two paragraphs above (2.2 nm/h for DEN-SFO and 2.3 nm/h for ORD-SFO), which is
not surprising as here, each speed prediction is based on a predicted trajectory point and
predicted speed of the preceding trajectory point, which was also predicted (except for the
first prediction, which was performed at the current trajectory point). Thus, prediction
errors could propagate along the predicted trajectory. By contrast, the RMSEs in the
two paragraphs above are based on ground truth information for both the current trajectory
point and the speed of the preceding trajectory point. Despite this, the RMSEs remained
relatively small considering the magnitude of flight speed during the cruise (around
432 nm/h, as shown in Appendix A). We also observed a slightly increasing trend of RMSE
with greater GCD percentiles. A possible explanation is that near the end of the predicted
trajectory (approaching the terminal airspace), a flight starts to descend, resulting in a less
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accurate prediction of ground speed. With a smaller GCD percentile, the portion of such
predictions is smaller, leading to a smaller RMSE.

3.5. ETA_TAB and ELDT Prediction
3.5.1. ETA_TAB Prediction

As multiple predicted trajectories were generated for each of FLT1 and FLT2 at a GCD
percentile, multiple ETA_TABs were obtained following Equations (21)–(23). We took the
median of these ETA_TABs as the point estimate. We chose median over mean as the
median is more robust to outliers in multiple predictions. We compared the ETA_TABs
from our approach with two baseline estimates. The first baseline estimate (referred to as
“best match”) was obtained by adding the airborne time to the destination terminal airspace
boundary of the best-matched historical flight to the actual wheels-off time. For the second
baseline estimate (referred to as “average”), the average airborne time from wheels-off to
arriving at the destination terminal airspace boundary was used for all historical flights
of the same OD, flight number, and aircraft type, and then the average time to the actual
wheels-off time of the current flight was added as ETA_TAB. We calculated the difference
between each ETA_TAB and the actual arrival time at the terminal airspace boundary,
termed ∆tterm (ETA_TAB minus the actual arrival time).

Table 4 presents ∆tterm for FLT1 and FLT2 at the three GCD percentiles. We found that
the proposed approach yielded very accurate predictions—indeed significantly better than
the two baseline estimates. Overall, the absolute difference between the estimated ETA_TAB
and the actual arrival time was always below one minute (with only one exception of ORD-
SFO at the 50th GCD percentile).

Table 4. ∆tterm of FLT1 and FLT2 using the proposed approach and two baseline estimates, at the
three GCD percentiles.

25th GCD Percentile 50th GCD Percentile 75th GCD Percentile

DEN-SFO ORD-SFO DEN-SFO ORD-SFO DEN-SFO ORD-SFO

Proposed
approach −0.43 −0.30 0.28 2.75 −0.91 0.31

Best match 6.07 −27.83 1.62 −12.63 7.97 −12.63
Average 11.17 12.54 11.17 12.54 11.17 12.54

To further examine the prediction performance, we tested our approach using 30 ran-
domly picked flights for each airport pair. Because ∆tterm can be positive or negative for a
flight, in Table 5, we report the root mean square of the 30 ∆tterm values for the two ODs. It
can be seen that as flights got closer to the destination airport (from the 25th GCD percentile
to the 75th GCD percentile), the root mean square value kept decreasing for both airport pairs,
meaning the prediction accuracy kept improving, as expected. (For FLT1 and FLT2, the predic-
tion accuracy did not exactly follow a decreasing trend as the percentile increased, which may
be attributed to some randomness associated with the two specific flights selected.) All the
root mean squares were much smaller than those from the two baseline estimates, reaffirming
the high prediction accuracy and advantages of our approach in predicting ETA_TAB.

Table 5. Root mean square of ∆tterm values of 30 randomly picked flights for each of the two ODs
using the proposed approach and two alternative estimates, at the three GCD percentiles.

25th GCD Percentile 50th GCD Percentile 75th GCD Percentile

DEN-SFO ORD-SFO DEN-SFO ORD-SFO DEN-SFO ORD-SFO

Proposed
approach 1.54 2.02 1.36 1.97 1.03 1.79

Best match 9.55 9.84 9.55 8.37 9.38 8.58
Average 7.88 9.68 7.88 9.68 7.88 9.68
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Besides the root mean square of ∆tterm values, which are based on the medium
ETA_TAB as the point estimate, Figures 18 and 19 present the boxplots of ∆tterm values
based on ETA_TABs from multiple trajectory predictions, for each of the 30 flights. It can
be seen that the different predictions for each flight actually overall yielded quite similar
results, which were better than the two baseline point estimates for the vast majority of
the cases.

Figure 18. Boxplot of ETA_TABs using the proposed approach compared with two baseline point
estimates for 30 randomly picked flights on DEN-SFO, at 25th, 50th, and 75th percentile GCD.
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Figure 19. Boxplot of ETA_TABs using the proposed approach compared with two baseline point
estimates for 30 randomly picked flights on ORD-SFO, at 25th, 50th, and 75th percentile GCD.

3.5.2. ELDT Prediction
Sampling Terminal Approach Time

As mentioned earlier, the calculation of the terminal approach time is based on per-
forming a random draw from historical distributions. Specifically, historical terminal times
were grouped according to approach entry position, aircraft type, weather condition, and
airport pair, to account for their influences on the standard terminal arrival route (STAR)
taken and ground speed characteristics on a particular STAR. The approach entry position
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of the flight under study was determined as the intersection of its best-matched trajectory
and the TRACON boundary. For terminal airspace weather conditions, the flights were
grouped according to whether good or bad weather, with the latter referring to having
rains, fog, and/or haze, which are likely to cause poor visibility and affect flight time.
Historical records of such weather conditions for the SFO terminal airspace can be accessed
from the METAR weather report, which is publicly available from the National Oceanic and
Atmospheric Administration (NOAA) website (https://www.aviationweather.gov/metar,
accessed on 10 March 2023). The aircraft types for FLT1 and FLT2 were B777 and A320. As
an illustration, the terminal approach time distributions of B777 series (including B777-200,
B777-300, B777-200LR, and B777-300ER) for DEN-SFO and A320 series (including A318,
A319, A320, and A321) for ORD-SFO with entry from east of SFO TRACON are shown in
Figure 20 (here, the distributions include both clear and unclear days).

Figure 20. Illustration of flight terminal approach times: (a) terminal approach time of B777 series
flights for DEN-SFO with entry from east of SFO TRACON; (b) terminal approach time of A320 series
flights for ORD-SFO with entry from east of SFO TRACON.

Results

For a given flight, its ETA_TAB was added with a terminal approach time randomly
drawn from the historical records in the corresponding group, as described in “Sampling
Terminal Approach Time” in Section 3.5.2, to determine an ELDT. To this end, we used
the weather condition for the SFO terminal airspace at the time of prediction, which can
be readily accessed from the NOAA. Because of multiple ETA_TAB predictions, multiple
ELDTs were obtained, forming a distribution of ELDTs for each flight. We used the median
as the point prediction and compared it with six alternative estimates. First is the “best
match” estimate, which was obtained by adding the airborne time of the best-matched
historical flight to the actual wheels-off time. For the second estimate, the “average”
estimate, ELDT was obtained by adding the average airborne time of all historical flights
of the same OD, flight number, and aircraft type to the actual wheels-off time. The third
and fourth estimates were based on flight plans: In one, ELDT was obtained by adding the
en-route flight time from the flight plan to the actual wheels-off time, while in the other,
the scheduled landing time from the flight plan was used as ELDT. Considering that our
proposed approach is based on LSTM, two additional baselines using standard RNN and
GRU models in place of LSTM were also produced. The prediction results are reported in
Tables 6 and 7.

https://www.aviationweather.gov/metar
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Table 6. ∆tland based on ELDT from the proposed approach and four alternative estimates, for FLT1
and FLT2 at the three GCD percentiles.

25th GCD Percentile 50th GCD Percentile 75th GCD Percentile

DEN-SFO ORD-SFO DEN-SFO ORD-SFO DEN-SFO ORD-SFO

Proposed approach—LSTM −0.98 −3.74 0.04 −0.79 −0.83 1.27
Best match 6.08 −27.70 −0.20 −10.07 7.15 −10.07

Average 11.17 16.15 11.17 16.15 11.17 16.15
Proposed approach—RNN −1.23 −4.65 0.54 −1.67 −1.65 1.93
Proposed approach—GRU −1.09 −4.02 0.06 −1.04 −0.98 1.31

Based on en-route flight time from
the flight plan 0 7.00 0 7.00 0 7.00

Using the scheduled landing time
from the flight plan 2.10 −3.00 2.10 −3.00 2.10 −3.00

Table 7. Root mean square of ∆tland values of 30 randomly picked flights for each airport pair based
on ELDT from the proposed approach and four alternative estimates at the three GCD percentiles.

25th GCD Percentile 50th GCD Percentile 75th GCD Percentile

DEN-SFO ORD-SFO DEN-SFO ORD-SFO DEN-SFO ORD-SFO

Proposed approach-LSTM 2.78 4.76 2.65 4.54 2.08 3.96
Best match 9.23 15.04 10.68 21.36 8.69 16.54

Average 7.46 9.09 7.46 9.09 7.46 9.09
Proposed approach-RNN 3.62 6.01 3.95 5.65 2.97 5.64
Proposed approach-GRU 3.21 5.14 3.32 5.02 2.41 4.72

Based on en-route flight time in
the flight plan 3.02 7.34 3.02 7.34 3.02 7.34

Using the scheduled landing time
in the flight plan 28.53 10.16 28.53 10.16 28.53 10.16

The difference between the resulting ELDT and the actual landing time, termed ∆tland,
is reported in Table 6. We repeated this for the same 30 flights for each airport pair as
in Section 3.5.1 and calculated the root mean square of the ∆tland values, as reported in
Table 7. Similar to Table 5, we observe that as flights got closer to the destination airport
(from the 25th GCD percentile to the 75th GCD percentile), the root mean square value kept
decreasing for both airport pairs, as expected. In addition, we found that the proposed
approach with the LSTM model for trajectory prediction yielded prediction errors that
were either the best or close to the best estimates for both FLT1 and FLT2 as well as the
60 randomly picked flights.

4. Summary and Further Discussion

In this paper, we proposed a data-light and trajectory-based machine learning ap-
proach for the online prediction of flight ETA while a flight is airborne, specifically the time
of arrival at the destination terminal airspace boundary and landing. The basic idea of
the approach was to predict the remaining trajectory and ground speed of a flight using
LSTM and GBM models, respectively, and then calculate its ETA based on the predicted
trajectory and speed. First, the trajectories of the current flight as well as similar historical
flights were reconstructed, such that the points on a trajectory were separated by an equal
distance. Based on the reconstructed trajectories, the flown trajectory of the current flight
was matched with a historical trajectory with the greatest similarity. We then used historical
flight trajectories to train the LSTM models, which were used to iteratively predict the
remaining trajectory of the flight under study. For this, a construction layer that performed
interval correction and trajectory prediction smoothing was adopted. Meanwhile, the GBM
models were trained to iteratively predict flight speed along the predicted trajectory. Based
on the predicted trajectory and speed, the arrival time at the destination terminal airspace
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boundary was estimated. We further added a randomly sampled terminal approach time
from historical records to the estimated arrival time at the terminal airspace boundary, to
generate an estimate of the landing time. Through numerical experiments using real-world
data, we found that the proposed approach yielded better prediction performance than
multiple alternative methods.

The strength of our approach lies in needing light data that are also easily accessible.
Given the light and easily accessible data, our approach yields flight ETA predictions
with reasonable accuracy and outperforms several alternative estimates. Nonetheless,
we acknowledge that with additional data such as airspace congestion, en-route weather
conditions, and air traffic control, which may not be readily available to the potential
users of our proposed approach, more sophisticated models could be trained with the
potential to further improve the prediction accuracy. For extensions of this approach, a
few directions could be explored. First, a larger number of historical trajectories may be
available and used for trajectory matching. Recall that the computation complexity of
matching is O(mnk + klogk), with m being the number of flown trajectory points of the
current flight, n being the maximum number of trajectory points on a historical trajectory,
and k being the number of historical flight trajectories. With a larger number of historical
trajectories, two possibilities could be considered to preserve computation efforts. First is
reducing n, for example, by considering only a subset of points in a historical trajectory
whose positions in the trajectory point sequence are similar to the position of the trajectory
point under evaluation in the current flight. Second is reducing k, by clustering historical
trajectories and performing matching with only one or a few representative trajectories
from each cluster.

Second, while we did not include altitude in trajectory prediction, future research
could explore including it as part of xt values in LSTM. Including altitude, however,
would probably demand a more elaborate characterization of the LSTM structure given
the different changing patterns of latitude/longitude and altitude on a flight’s trajectory.
Specifically, the latitude/longitude changes are gradual, as a flight is constantly flying
toward the destination airport. By contrast, a flight would stay more or less at the same
altitude during the cruise and only starts to descend when near the terminal airspace (and
the descent may not be continuous).

Third, research efforts can be directed toward refining the prediction of flight
terminal approach time. In the current approach, the prediction is based on random
sampling, although the sampling does differentiate by potential influencing factors
such as aircraft type and approach entry position. Prediction methods that are more
quantitative and not data-intense could be considered, for example, by developing a
method that combines classification based on flight state at/around the entry of the
terminal airspace and the prediction of terminal approach time in each class using
neural networks.
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Appendix A. Ground Speeds of FLT1 and FLT2

Figure A1. (a) Ground speed of FLT1 (DEN-SFO); (b) ground speed of FLT2 (ORD-SFO).
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