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Abstract

We introduce a version of Nim played on a Boolean matrix. Each player, in turn,
removes a nonzero row or column. The last player to remove a row or column wins.
We investigate the Boolean matrices that represent the Ferrers diagram of an integer
partition. An integer partition in which each summand is greater than the number
of terms in the partition is said to be strong. The Grundy numbers of Boolean
matrices that represent the Ferrers diagram of any integer partition consisting of
three or fewer terms are determined. This allows us to classify the P-positions and
N -positions of Boolean matrices that represent the Ferrers diagram of any strong
integer partition.

1. Introduction

Combinatorial game theory (CGT) developed in the context of recreational math-

ematics. In their seminal work and with a spirit of playfulness, Berlekamp, Con-

way and Guy [3, 6] established the mathematical framework from which games of

complete information could be studied. The power of this theory would soon be-

come apparent and was utilized by many researchers (see Fraenkel’s bibliography

[8]). Along with its natural appeal, combinatorial game theory has applications
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in complexity theory, logic and biology. Literature on the subject continues to in-

crease and the interested reader can find comprehensive introductions to CGT in

[2, 3, 6, 14]. Additional research articles with a theoretical flavor can be found in

[1, 10, 11, 12, 13].

We first recall some basic concepts from CGT which are used in this paper. Terms

which are not explicitly defined can be found in [14]. A combinatorial game is one

of complete information and no element of chance is involved in gameplay. Each

player is aware of the game position at any point in the game. Under normal play,

two players (Player 1 and Player 2) alternate taking turns and a player loses when

he cannot make a move. An impartial combinatorial game is one where both players

have the same options from any position. A finite game eventually terminates (with

a winner and a loser, no draws allowed). It is understood that Player 1 makes the

first move in any combinatorial game.

For any finite impartial combinatorial game Γ, there is an associated nonnegative

integer value Gr(Γ). This value immediately tells us if Γ is a P-position (previous

player win) or an N -position (next player win). In particular, Gr(Γ) = 0 if and

only if Γ is a P-position. To compute Gr(Γ), we need the following definitions.

The minimum excluded value (or mex ) of a multiset of nonnegative integers is

the smallest nonnegative integer which does not appear in the multiset. This is

denoted by mex{t1, t2, t3, . . . , tk}. Let Γ be a finite impartial game. Then, the

Grundy number (or Grundy-value) of Γ is defined to be

Gr(Γ) = mex{Gr(∆) : ∆ is an option of Γ}.

The sum of finite impartial games is the game obtained by placing the individual

games, side by side. On a player’s turn, a move is made in a single summand.

Under normal play, the last person to make a move wins. For any finite impartial

game Γ = γ1 + γ2 + · · ·+ γk, the Grundy number of Γ is computed in the following

way. First, convert Gr(γi) into binary. Then, compute
⊕

Gr(γi), where the sum is

BitXor (Nim-addition). Finally, convert this value back into a nonnegative integer.

Nim is a short impartial combinatorial game, which is played in the following

manner:

• There are n heaps, each containing a finite number of stones. Two players

alternate turns, each time choosing a heap and removing any number (> 1)

of stones in that heap. The player who cannot make a move loses the game.

In 1902, Bouton [5] gave a beautiful mathematical analysis and complete solution

for Nim. Since then, the game of Nim and its variants have been the subject of

many CGT research papers. Within the literature, studies on Nim variants with

modified rule sets, Nim played on different configurations (circular, triangular and

rectangular), and Nim played on graphs can be found. Variants of Nim played on

Boolean matrices were analyzed in [4, 7, 9].
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2. A Matrix Game

In this paper, we introduce and analyze yet another variant of Nim played on a

Boolean matrix. A matrix M of zeros and ones is chosen. A line of the matrix is

either a row or a column. A line is nonzero if some entry in the line is not zero. Two

players alternate turns. At each turn, a player selects a nonzero line and removes

that line from the matrix. The player who makes the last move wins.

Is there a general strategy that can force a win for the first player for a reasonable

collection of matrices?

Remark 1. We note that a line which has all zeros has no effect on the game and

can be deleted. Whenever a line consists entirely of zeros after a player’s move, we

will remove all lines consisting entirely of zeros without affecting the outcome of

the game.

Remark 2. Given a matrix game A, any permutation of rows of A and any per-

mutation of columns of A yield games that are equivalent to A. Also, the transpose

AT is equivalent to A.

Our first result applies to permutation matrices.

Proposition 1. Let Pn be any n× n permutation matrix. Then,

• Gr(Pn) = 0 whenever n is even and

• Gr(Pn) = 1 whenever n is odd.

Proof. By Remark 2, any permutation matrix Pn is equivalent to the the n × n

identity matrix In. We observe that Gr(I0) = 0. We apply induction on n. Since

every row and column of In has exactly one entry with a value of 1, removing

any column or row will leave a corresponding column or row consisting entirely

of zeros. By Remark 1, we may remove this column or row consisting entirely of

zeros. Thus, every allowable move results in the (n − 1) × (n − 1) identity matrix

In−1. If n is odd, then Gr(In) = mex{Gr(In−1)} = mex{0} = 1. If n is even, then

Gr(In) = mex{Gr(In−1)} = mex{1} = 0.

Let Jm,n denote the m × n matrix with every entry 1. Observe that there are

at most two moves from Jm,n, up to isomorphism, these being Jm,n → Jm−1,n
or Jm,n → Jm,n−1. Thus, Gr(Jm,n) 6 2. We take J0,k and Jk,0 to denote the

game with the 0 × 0 matrix. Since there are no moves possible from this game,

Gr(J0,k) = Gr(Jk,0) = 0.

Theorem 1. Suppose that m,n > 1.

• If 1 ∈ {m,n} and m+ n is odd, then Gr(Jm,n) = 2.
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• If 1 ∈ {m,n} and m+ n is even, then Gr(Jm,n) = 1.

• If 2 ∈ {m,n} and m+ n is odd, then Gr(Jm,n) = 2.

• If m,n > 2 and m+ n is even, then Gr(Jm,n) = 0.

• If m,n > 3 and m+ n is odd, then Gr(Jm,n) = 1.

Proof. By Remark 2, the games Jm,n and Jn,m are equivalent. Thus, we may

assume that m 6 n.

For m = 1, the only possible moves are J1,n → J0,0 and J1,n → J1,n−1. We

observe that Gr(J1,1) = mex{0} = 1 and Gr(J1,2) = mex{1, 0} = 2. By induction

on k > 1,

Gr(J1,2k+1) = mex{Gr(J1,2k), 0} = mex{2, 0} = 1, and

Gr(J1,2k+2) = mex{Gr(J1,2k+1), 0} = mex{1, 0} = 2.

For m = 2 and n > 1, the possible moves are J2,n → J1,n and J2,n → J1,n−1.

Since Gr(J2,1) = 2 and Gr(J2,2) = mex{Gr(J2,1),Gr(J1,2)} = mex{2, 2} = 0, we

have, by induction on k > 1,

Gr(J2,2k+1) = mex{Gr(J2,2k),Gr(J1,2k+1)} = mex{0, 1} = 2, and

Gr(J2,2k+2) = mex{Gr(J2,2k+1),Gr(J1,2k+2)} = mex{2, 2} = 0.

For n > m > 3, we proceed by induction on k = m + n. If k is odd, then

Gr(Jm−1,n) = 0, and Gr(Jm,n−1) = 0. Thus, Gr(Jm,n) = 1. If k is even, then

Gr(Jm−1,n) ∈ {2, 1}, and Gr(Jm,n−1) ∈ {2, 1}. Thus, Gr(Jm,n) = 0. This completes

the proof.

Let Un denote the upper triangular n× n matrix whose (i, j) entry is 1 if i 6 j

and 0 if i > j. A computer program yields the following calculations: Gr(Un) = 1

for n = 1, 3, 5, Gr(Un) = 2 for n = 7, 9, and Gr(Un) = 0 for n = 2, 4, 6, 8, 10.

Conjecture 1. For any even integer n ≥ 2, Gr(Un) = 0.

We now introduce some notation for games that arise from Un. After deleting

some lines, the resulting matrix will have at least as many ones in row i as in

row i + 1, and at least as many ones in column i + 1 as in column i. Also, each

row has its ones in the last positions of the row, and each column has its ones in

the first positions of the column. Thus, the position can be described by a vector

[a1, a2, . . . , ak], where row i has ai ones, in the last ai positions of row i. We use λ

for the null string, and [λ] for the lone partition of zero (the list with no elements).

If π = [a1, . . . , ak] and ρ = [a
′

1, . . . , a
′

j ] is a position that can be reached from π in

a single move, we write π → ρ.
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Definition 1. Let M be an m× n matrix whose entries are 0’s and 1’s. The game

weight of M , denoted by wt(M), is the number of entries of M that have value 1.

Definition 2. Given A = [a1, a2, . . . , ak], the length of A, denoted by len(A), is

the number of terms in the sequence (a1, a2, . . . , ak). Thus, len(A) = k.

Observe that [a1] is the 1× a1 matrix of all ones.

Corollary 1. Suppose a1 > 1.

• If a1 is odd, then Gr([a1]) = 1.

• If a1 is even, then Gr([a1]) = 2.

Proof. By Theorem 1, Gr([a1]) = Gr(J1,a1
) = 1 if a1 is odd, and Gr([a1]) =

Gr(J1,a1
) = 2 if a1 is even.

3. Grundy Numbers of [a1, a2]

We determine the Grundy number of [a1, a2] for all a1 > a2 > 1.

Theorem 2. Suppose a1 > a2 > 1.

• If a1 is even, then Gr([a1, a2]) = 0.

• If either a1 and a2 are both odd with a2 > 1, or a1 = a2 = 1, then

Gr([a1, a2]) = 2.

• If a1 > 1 is odd and either a2 is even or 1, then Gr([a1, a2]) = 3.

Proof. By Theorem 1, Gr([1, 1]) = Gr(J2,1) = 2. The proof will be by induction on

the game weight wt([a1, a2]) = a1 + a2 of [a1, a2].

Case 1. Assume a1 is even and a2 = 1. If a column of [a1, 1] is removed, the

allowable positions are [a1−1, 1] and [a1−1]. By the inductive hypothesis, Gr([a1−
1, 1]) = 2 if a1 = 2 and Gr([a1 − 1, 1]) = 3 if a1 > 4. Also, by Corollary 1,

Gr([a1 − 1]) = 1.

If a row of [a1, 1] is removed, the allowable positions are [a1] and [1]. By Corollary

1, Gr([a1]) = 2 and Gr([1]) = 1. Thus, if a1 = 2,

Gr([a1, 1]) = mex{1, 2} = 0,

and if a1 > 4,

Gr([a1, 1]) = mex{1, 2, 3} = 0.
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Case 2. Assume a1 > 1 is odd and a2 = 1. If a column of [a1, 1] is removed,

the allowable positions are [a1 − 1, 1] and [a1 − 1]. By the inductive hypothesis,

Gr([a1 − 1, 1]) = 0, and by Corollary 1, Gr([a1 − 1]) = 2.

If a row of [a1, 1] is removed, the allowable positions are [a1] and [1]. By Corollary

1, Gr([a1]) = 1 and Gr([1]) = 1. Thus,

Gr([a1, 1]) = mex{0, 1, 2} = 3.

Case 3. Assume a1 is even and a2 > 1 is odd. If a column of [a1, a2] is removed,

the allowable positions are [a1 − 1, a2] and [a1 − 1, a2 − 1] which have Grundy

numbers 2 and 3, respectively, by the inductive hypothesis. If a row of [a1, a2] is

removed, the allowable positions are [a1] and [a2] which have Grundy numbers 2

and 1, respectively, by Corollary 1. Thus,

Gr([a1, a2]) = mex{1, 2, 3} = 0.

Case 4. Assume both a1 and a2 are even. If a column of [a1, a2] is removed, the

allowable positions are [a1 − 1, a2] and [a1 − 1, a2 − 1]. We observe that Gr([a1 −
1, a2]) = 3 by the inductive hypothesis. Also, if either a1 = a2 = 2 or a2 > 4, then

Gr([a1−1, a2−1]) = 2; otherwise, if a1 > 4 and a2 = 2, then Gr([a1−1, a2−1]) = 3.

If a row of [a1, a2] is removed, the allowable positions are [a1] and [a2] which both

have Grundy number 2 by Corollary 1. Thus,

Gr([a1, a2]) = mex{2, 3} = 0.

Case 5. Assume both a1 and a2 > 1 are odd. If a column of [a1, a2] is removed,

the allowable positions are [a1 − 1, a2] and [a1 − 1, a2 − 1] which both have Grundy

number 0 by the inductive hypothesis. If a row of [a1, a2] is removed, the allowable

positions are [a1] and [a2] which both have Grundy number 1 by Corollary 1. Thus,

Gr([a1, a2]) = mex{0, 1} = 2.

Case 6. Assume a1 is odd and a2 is even. If a column of [a1, a2] is removed, the

allowable positions are [a1 − 1, a2] and [a1 − 1, a2 − 1] which both have Grundy

number 0 by the inductive hypothesis. If a row of [a1, a2] is removed, the allowable

positions are [a1] and [a2] which have Grundy numbers 1 and 2, respectively, by

Corollary 1. Thus,

Gr([a1, a2]) = mex{0, 1, 2} = 3.
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4. Grundy Numbers of [a1, a2, a3]

For the game [a1, a2, a3], there are effectively only six possible moves: delete one

of the three rows, or delete a column with one, two or three ones in it. Hence, the

Grundy number of [a1, a2, a3] is at most 6.

Theorem 3. Suppose a1 > 1. Then,

• Gr([1, 1, 1]) = 1,

• Gr([a1, 1, 1]) = 0 if a1 > 1 is odd, and

• Gr([a1, 1, 1]) = 3 if a1 is even.

Proof. Since [1, 1, 1] is isomorphic to [3], we have Gr([1, 1, 1]) = Gr([3]) = 1 by

Corollary 1. We induct on a1.

Case 1. Assume a1 is even. If a column of [a1, 1, 1] is removed, the allowable

positions are [a1 − 1, 1] and [a1 − 1]. We have Gr([a1 − 1, 1, 1]) = 1 for a2 = 2,

and Gr([a1 − 1, 1, 1]) = 0 for a2 > 2 by the inductive hypothesis. By Corollary 1,

Gr([a1 − 1]) = 1.

If a row of [a1, 1, 1] is removed, the allowable positions are [a1, 1] and [1, 1]. By

Theorem 2, Gr([a1, 1]) = 0 and Gr([1, 1]) = 2. Thus,

Gr([a1, a2]) = mex{0, 1, 2} = 3.

Case 2. Assume a1 > 1 is odd. If a column of [a1, 1, 1] is removed, the allowable

positions are [a1− 1, 1] and [a1− 1]. We have Gr([a1− 1, 1, 1]) = 3 by the inductive

hypothesis, and Gr([a1 − 1]) = 2 by Corollary 1.

If a row of [a1, 1, 1] is removed, the allowable positions are [a1, 1] and [1, 1]. By

Theorem 2, Gr([a1, 1]) = 3 and Gr([1, 1]) = 2. Thus,

Gr([a1, a2]) = mex{2, 3} = 0.

Theorem 4. Suppose a1 and a2 are integers such that a1 > a2 > 1.

• If a1 is odd, then Gr([a1, a2, 1]) = 1.

• If a1 is even with a1 > 4 and either a2 is odd or a2 = 2,

then Gr([a1, a2, 1]) = 2.

• If a1 and a2 are both even with a2 > 4, or a1 = a2 = 2,

then Gr([a1, a2, 1]) = 3.
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Proof. The proof is by induction on the game weight of [a1, a2, 1]. We prove the

result assuming a1 > a2. We leave the proof of the case a1 = a2 to the reader.

Case 1. Assume a1 is even with a1 > 4 and a2 = 2. If a column of [a1, 2, 1] is

removed, the allowable positions are [a1 − 1, 2, 1], [a1 − 1, 1, 1] and [a1 − 1, 1]. We

have Gr([a1 − 1, 2, 1]) = 1 by the inductive hypothesis, Gr([a1 − 1, 1, 1]) = 0 by

Theorem 3, and Gr([a1 − 1, 1]) = 3 by Theorem 2. If a row of [a1, 2, 1] is removed,

the allowable positions are [a1, 2], [a1, 1], and [2, 1] which all have Grundy number

0 by Theorem 2. Thus,

Gr([a1, a2, 1]) = mex{0, 1, 3} = 2.

Case 2. Assume a1 and a2 are odd with a2 > 3. If a column of [a1, a2, 1] is removed,

the allowable positions are [a1− 1, a2, 1], [a1− 1, a2− 1, 1] and [a1− 1, a2− 1] which

have Grundy numbers 2 by the inductive hypothesis, 2 if a2 = 3 or 3 if a2 > 3 by

the inductive hypothesis, and 0 by Theorem 2, respectively. If a row of [a1, a2, 1] is

removed, the allowable positions are [a1, a2], [a1, 1], and [a2, 1] which have Grundy

numbers 2, 3, and 3, respectively, by Theorem 2. Thus,

Gr([a1, a2, 1]) = mex{0, 2, 3} = 1.

Case 3. Assume a1 is odd and a2 is even. If a column of [a1, a2, 1] is removed, the

allowable positions are [a1−1, a2, 1], [a1−1, a2−1, 1] and [a1−1, a2−1]. The Grundy

number of [a1 − 1, a2, 1] is 2 if a1 > 5 and a2 = 2 by the inductive hypothesis, or 3

if a2 > 4 by the inductive hypothesis. Also, the Grundy number of [a1−1, a2−1, 1]

is 3 if a1 > 5 and a2 = 2 by Theorem 3, or 2 if a2 > 4 by the inductive hypothesis.

In addition, the Grundy number of [a1 − 1, a2 − 1] is 0 by Theorem 2. If a row of

[a1, a2, 1] is removed, the allowable positions are [a1, a2], [a1, 1], and [a2, 1] which

have Grundy numbers 3, 3, and 0, respectively, by Theorem 2. Thus,

Gr([a1, a2, 1]) = mex{0, 2, 3} = 1.

Case 4. Assume a1 is even and a2 is odd. If a column of [a1, a2, 1] is removed, the

allowable positions are [a1−1, a2, 1], [a1−1, a2−1, 1] and [a1−1, a2−1] which have

Grundy numbers 1, 1, and 3, respectively, by the inductive hypothesis and Theorem

2. If a row of [a1, a2, 1] is removed, the allowable positions are [a1, a2], [a1, 1], and

[a2, 1] which have Grundy numbers 0, 0, and 3, respectively, by Theorem 2. Thus,

Gr([a1, a2, 1]) = mex{0, 1, 3} = 2.

Case 5. Assume a1 and a2 are both even with a2 > 4. If a column of [a1, a2, 1] is

removed, the allowable positions are [a1−1, a2, 1], [a1−1, a2−1, 1] and [a1−1, a2−1]

which have Grundy numbers 1, 1, and 2, respectively, by the inductive hypothesis
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and Theorem 2. If a row of [a1, a2, 1] is removed, the allowable positions are [a1, a2],

[a1, 1], and [a2, 1] which all have Grundy number 0 by Theorem 2. Thus,

Gr([a1, a2, 1]) = mex{0, 1, 2} = 3.

Theorem 5. Suppose a1 and a2 are integers such that a1 > a2 > 2.

• If a1 and a2 are both odd, then Gr([a1, a2, 2]) = 0.

• If a1 is odd and a2 is even, then Gr([a1, a2, 2]) = 1.

• If a1 is even, then Gr([a1, a2, 2]) = 2.

Proof. The proof is by induction on the game weight of [a1, a2, 2]. We prove the

result assuming a1 > a2. We leave the proof of the case a1 = a2 to the reader.

Case 1. Assume both a1 and a2 are odd. If a column of [a1, a2, 2] is removed, the

allowable positions are [a1 − 1, a2, 2], [a1 − 1, a2 − 1, 2], and [a1 − 1, a2 − 1, 1]. The

Grundy numbers of [a1 − 1, a2, 2] and [a1 − 1, a2 − 1, 2] are each 2 by the inductive

hypothesis. Also, the Grundy number of [a1− 1, a2− 1, 1] is 2 if a1 > 5 and a2 = 3,

or 3 if a2 > 5 by Theorem 4. If a row of [a1, a2, 2] is removed, the allowable positions

are [a1, a2], [a1, 2], and [a2, 2] which have Grundy numbers 2, 3, and 3, respectively,

by Theorem 2. Thus,

Gr([a1, a2, 2]) = mex{2, 3} = 0.

Case 2. Assume a1 is odd and a2 is even. If a column of [a1, a2, 2] is removed, the

allowable positions are [a1 − 1, a2, 2], [a1 − 1, a2 − 1, 2], and [a1 − 1, a2 − 1, 1]. The

Grundy numbers of [a1 − 1, a2, 2] and [a1 − 1, a2 − 1, 2] are each 2 by the inductive

hypothesis. Also, the Grundy number of [a1−1, a2−1, 1] is 3 if a2 = 2 by Theorem

3, or 2 if a2 > 4 by Theorem 4. If a row of [a1, a2, 2] is removed, the allowable

positions are [a1, a2], [a1, 2], and [a2, 2] which have Grundy numbers 3, 3, and 0,

respectively, by Theorem 2. Thus,

Gr([a1, a2, 2]) = mex{0, 2, 3} = 1.

Case 3. Assume a1 is even and a2 is odd. If a column of [a1, a2, 2] is removed, the

allowable positions are [a1 − 1, a2, 2], [a1 − 1, a2 − 1, 2], and [a1 − 1, a2 − 1, 1] which

have Grundy numbers 0, 1, and 1, respectively, by the inductive hypothesis and

Theorem 4. If a row of [a1, a2, 2] is removed, the allowable positions are [a1, a2],

[a1, 2], and [a2, 2] which have Grundy numbers 0, 0, and 3, respectively, by Theorem

2. Thus,

Gr([a1, a2, 2]) = mex{0, 1, 3} = 2.
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Case 4. Assume a1 and a2 are both even. If a column of [a1, a2, 2] is removed, the

allowable positions are [a1 − 1, a2, 2], [a1 − 1, a2 − 1, 2], and [a1 − 1, a2 − 1, 1]. The

Grundy numbers of [a1− 1, a2, 2] and [a1− 1, a2− 1, 2] are 1 and 0, respectively, by

the inductive hypothesis. Also, the Grundy number of [a1−1, a2−1, 1] is 0 if a2 = 2

by Theorem 3, or 1 if a2 > 4 by Theorem 4. If a row of [a1, a2, 2] is removed, the

allowable positions are [a1, a2], [a1, 2], and [a2, 2] which each have Grundy number

0 by Theorem 2. Thus,

Gr([a1, a2, 2]) = mex{0, 1} = 2.

Theorem 6. Suppose a1 > a2 > a3 > 3.

• If both a1 and a2 are odd, then Gr([a1, a2, a3]) = 0.

• If both a1 and a2 are even, then Gr([a1, a2, 3]) = 1.

• If a1 is even and a3 > 3, then Gr([a1, a2, a3]) = 1.

• If a1 is odd, a2 is even, and a3 is even, then Gr([a1, a2, a3]) = 2.

• If a1 is even and a2 is odd, then Gr([a1, a2, 3]) = 3.

• If a1 is odd, a2 is even, and a3 is odd, then Gr([a1, a2, a3]) = 4.

Proof. The proof is by induction on the game weight of [a1, a2, a3]. We prove the

result assuming a1 > a2 > a3. We leave the proof of the cases when either a1 = a2
or a2 = a3 to the reader.

Case 1. Assume both a1 and a2 are odd. If a column of [a1, a2, a3] is removed, the

allowable positions are [a1− 1, a2, a3], [a1− 1, a2− 1, a3] and [a1− 1, a2− 1, a3− 1].

The Grundy number of [a1 − 1, a2, a3] is 3 if a3 = 3 or 1 if a3 > 3 by the inductive

hypothesis. Similarly, the Grundy number of [a1−1, a2−1, a3] is 1 by the inductive

hypothesis, and the Grundy number of [a1−1, a2−1, a3−1] is 2 if a3 = 3 by Theorem

5 or 1 if a3 > 3 by the inductive hypothesis. If a row of [a1, a2, a3] is removed, the

allowable positions are [a1, a2], [a1, a3], and [a2, a3]. We have Gr([a1, a2]) = 2, and

Gr([a1, a3]) = Gr([a2, a3]) = 2 if a3 is odd or Gr([a1, a3]) = Gr([a2, a3]) = 3 if a3 is

even by Theorem 2. When a3 = 3 or a3 is even,

Gr([a1, a2, a3]) = mex{1, 2, 3} = 0,

and when a3 is odd,

Gr([a1, a2, a3]) = mex{1, 2} = 0.

Case 2. Assume a1 and a2 are both even. If a column of [a1, a2, a3] is removed, the

allowable positions are [a1 − 1, a2, a3], [a1 − 1, a2 − 1, a3] and [a1 − 1, a2 − 1, a3 − 1]
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which have Grundy numbers 2 if a3 is even or 4 if a3 is odd, 0, and 0, respectively,

by the inductive hypothesis and Theorem 5. If a row of [a1, a2, a3] is removed, the

allowable positions are [a1, a2], [a1, a3], and [a2, a3] which each have Grundy number

0 by Theorem 2. When a3 is even,

Gr([a1, a2, a3]) = mex{0, 2} = 1,

and when a3 is odd,

Gr([a1, a2, a3]) = mex{0, 4} = 1.

Case 3. Assume a1 is even, a2 is odd, and a3 > 3. If a column of [a1, a2, a3] is

removed, the allowable positions are [a1−1, a2, a3], [a1−1, a2−1, a3] and [a1−1, a2−
1, a3 − 1]. The Grundy number of [a1 − 1, a2, a3] is 0 by the inductive hypothesis.

Also, the Grundy number of [a1 − 1, a2 − 1, a3] is 2 if a3 is even or 4 if a3 is odd by

the inductive hypothesis. Similarly, the Grundy number of [a1− 1, a2− 1, a3− 1] is

4 if a3 is even or 2 if a3 is odd by the inductive hypothesis. If a row of [a1, a2, a3] is

removed, the allowable positions are [a1, a2], [a1, a3], and [a2, a3] which have Grundy

numbers 0, 0, and 3 if a3 is even or 2 if a3 is odd, respectively, by Theorem 2. When

a3 is even,

Gr([a1, a2, a3]) = mex{0, 2, 3, 4} = 1,

and when a3 > 3 is odd,

Gr([a1, a2, a3]) = mex{0, 2, 4} = 1.

Case 4. Assume a1 is odd, a2 is even, and a3 is even. If a column of [a1, a2, a3] is

removed, the allowable positions are [a1−1, a2, a3], [a1−1, a2−1, a3] and [a1−1, a2−
1, a3−1]. The Grundy numbers of [a1−1, a2, a3] and [a1−1, a2−1, a3] are each 1 by

the inductive hypothesis. Also, the Grundy number of [a1 − 1, a2 − 1, a3 − 1] is 3 if

a3 = 4 or 1 if a3 > 4 by the inductive hypothesis. If a row of [a1, a2, a3] is removed,

the allowable positions are [a1, a2], [a1, a3], and [a2, a3] which have Grundy numbers

3, 3, and 0, respectively, by Theorem 2. Thus,

Gr([a1, a2, a3]) = mex{0, 1, 3} = 2.

Case 5. Assume a1 is even, a2 is odd, and a3 = 3. If a column of [a1, a2, 3] is

removed, the allowable positions are [a1 − 1, a2, 3], [a1 − 1, a2 − 1, 3] and [a1 −
1, a2 − 1, 2] which have Grundy numbers 0, 4, and 1, respectively, by the inductive

hypothesis and Theorem 5. If a row of [a1, a2, 3] is removed, the allowable positions

are [a1, a2], [a1, 3], and [a2, 3] which have Grundy numbers 0, 0, and 2, respectively,

by Theorem 2. Thus,

Gr([a1, a2, 3]) = mex{0, 1, 2, 4} = 3.



INTEGERS: 23 (2023) 12

Case 6. Assume a1 is odd, a2 is even, and a3 is odd. If a column of [a1, a2, a3] is

removed, the allowable positions are [a1 − 1, a2, a3], [a1 − 1, a2 − 1, a3] and [a1 −
1, a2 − 1, a3 − 1]. The Grundy numbers of [a1 − 1, a2, a3] and [a1 − 1, a2 − 1, a3] are

1 and 3 if a3 = 3 or 1 if a3 > 3, respectively, by the inductive hypothesis. Also,

the Grundy number of [a1 − 1, a2 − 1, a3 − 1] is 2 if a3 = 3 by Theorem 5 or 1 if

a3 > 3 by the inductive hypothesis. If a row of [a1, a2, a3] is removed, the allowable

positions are [a1, a2], [a1, a3], and [a2, a3] which have Grundy numbers 3, 2, and 0,

respectively, by Theorem 2. Thus,

Gr([a1, a2, a3]) = mex{0, 1, 2, 3} = 4.

5. P-positions and N -positions of [a1, a2, . . . , ak]

In this section we determine whether [a1, a2, . . . , ak] is a P-position or anN -position

when a1 > a2 > · · · > ak > k. First, we introduce some definitions.

Definition 3. We say that a sequence of positive integers S = (a1, a2, . . . , ak) is a

partition sequence if a1 > a2 > · · · > ak. We say that the partition sequence S is

strong if ak > k.

Remark 3. The sequence S = (a1, a2, . . . , ak) is a partition sequence in the sense

that the ai’s represent the descending terms in the partition of N = a1+a2+· · ·+ak.

The partition sequence S is strong in the sense that each term ai in the partition

of N = a1 + a2 + · · ·+ ak is greater than the number of terms k in this partition.

Definition 4. Let S = (a1, a2, . . . , ak) be a partition sequence. The matrix as-

sociated with S is the k × a1 matrix B = [bi,j ] where bi,j = 0 if 1 6 i 6 k and

1 6 j 6 a1 − ai, and bi,j = 1 if 1 6 i 6 k and a1 − ai < i 6 a1. We write

B = mat(S) and refer to B as a partition matrix. Let B be a partition matrix. The

partition sequence associated with B is the sequence S = (a1, a2, . . . , ak) where ai
is the number of 1’s in row i of B, and we write S = seq(B). We say that B is a

strong partition matrix if seq(B) is a strong partition sequence. See Figure 1 for an

example of the strong partition matrix [10, 8, 7, 5].

Remark 4. We make use of the following two observations in order to show that

a game position is either a P-position or an N -position.

• Suppose G is a game position such that for every move G′ that Player 1 can

make, Player 2 can make a countermove G′′ such that G′′ is a P-position.

Then, G is a P-position.
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1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1


Figure 1: The strong partition matrix [10, 8, 7, 5].

• Suppose G is a game position such that Player 1 can make a move G′ that is

a P-position. Then, G is an N -position.

We first establish the conditions on a strong partition matrix [a1, a2, . . . , ak],

where k ∈ {4, 5}, that determines whether it is either a P-position or an N -position.

This serves as the base case of our argument. Then we show that, for k > 6, the

strong partition matrix [a1, a2, . . . , ak] is a P-position if a1 ≡ a2 ≡ k (mod 2), and

we show [a1, a2, . . . , ak] is an N -position if a1 ≡ k + 1 (mod 2). From these two

fundamental cases, we are able to determine whether the strong partition matrix

[a1, a2, . . . , ak] is a P-position or an N -position depending on the parity of ai for

all 1 6 i 6 k − 1.

The following lemma provides a condition on a strong partition matrix A that

allows Player 2 to remove a column with ` 1’s after Player 1 has removed a column

of ` 1’s.

Lemma 1. Suppose k > 3, a1 > a2 > · · · > ak > k, and a` ≡ a`+1 (mod 2)

for some 1 6 ` 6 k − 1. If Player 1 can remove a column with ` 1’s from the

strong partition matrix A = [a1, a2, . . . , ak], then so can Player 2. The resulting

game position after these two moves is B = [b1, b2, . . . , bk] where bi = ai − 2 for all

1 6 i 6 ` and bi = ai for all ` < i 6 k. Furthermore, b1 > b2 > · · · > bk > k,

len(B) = len(A), bi < ai for all 1 6 i 6 `, bi 6 ai for all ` < i 6 k, and bi ≡ ai
(mod 2) for all 1 6 i 6 k.

Proof. Since Player 1 can remove a column with ` 1’s, we have a` > a`+1. Also, since

a` ≡ a`+1 (mod 2), we have a` > a`+1 + 2. So, Player 2 can also remove a column

with ` 1’s. The resulting game positions is B = [b1, b2, . . . , bk] where bi = ai − 2

for all 1 6 i 6 ` and bi = ai for all ` < i 6 k. Thus, b1 > b2 > · · · > bk > k,

len(B) = len(A), bi < ai for all 1 6 i 6 `, and bi 6 ai for all ` < i 6 k. Also,

we have bi = ai − 2 ≡ ai (mod 2) for all 1 6 i 6 `, and bi ≡ ai (mod 2) for all

` < i 6 k.

5.1. P-positions and N -positions of [a1, a2, a3, a4]

We establish the conditions on (a1, a2, a3, a4) that determine whether [a1, a2, a3, a4]

is a P-position or an N -position.
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Theorem 7. Let a1 > a2 > a3 > a4 > 4, and let A = [a1, a2, a3, a4]. Suppose

either

• (a1, a2) ≡ (0, 0) (mod 2) or

• (a1, a2, a3) ≡ (0, 1, 0) (mod 2).

Then, Gr(A) = 0.

Proof. The proof is by double induction on len(A) and wt(A).

Case 1. Assume both a1 and a2 are even. Suppose Player 1 removes a column with

one 1. Since a1 ≡ a2 (mod 2), by Lemma 1, Player 2 may also remove a column

with one 1. The resulting game position is [a1 − 2, a2, a3, a4] where a1 − 2 and a2
are even. By the inductive hypothesis, Gr([a1 − 2, a2, a3, a4]) = 0.

Suppose Player 1 removes a column with ` 1’s where 2 6 ` 6 4. We let Player

2 remove row 4. The resulting game position is [b1, b2, b3] where bi = ai − 1 for all

1 6 i 6 ` and bi = ai for all ` < i 6 3. Since b1 = a1 − 1 and b2 = a2 − 1 are odd,

we have Gr([b1, b2, b3]) = 0 by Theorem 6.

Suppose Player 1 removes row `. The resulting game position is [b1, b2, b3] where

bi = ai for all 1 6 i < ` and bi = ai+1 for all ` 6 i 6 3. We let Player 2

remove row 3 of [b1, b2, b3]. The resulting game position is [b1, b2] where b1 = a2
if ` = 1 or b1 = a1 if ` > 1. In either case, b1 is even. By Theorem 2, Gr([b1, b2]) = 0.

Case 2. Assume a1 is even, a2 is odd, and a3 is even. First, suppose Player 1

removes a column with one 1. The new game position is [a1 − 1, a2, a3, a4]. Since

a2 > a3 and a2 6≡ a3 (mod 2), we have a2 > a3. We let Player 2 remove a column

with two 1’s. Next, suppose Player 1 removes a column with two 1’s. The new

game position is [a1 − 1, a2 − 1, a3, a4]. Since a1 − 1 > a2 − 1 and a1 − 1 6≡ a2 − 1

(mod 2), we have a1 − 1 > a2 − 1. We let Player 2 remove a column with one 1. In

either case, the resulting game position is [a1 − 2, a2 − 1, a3, a4] where a1 − 2 and

a2 − 1 are even. By the inductive hypothesis, Gr([a1 − 2, a2 − 1, a3, a4]) = 0.

Suppose Player 1 removes a column with ` 1’s where 3 6 ` 6 4. The new

game position is [b1, b2, b3, b4] where bi = ai − 1 for all 1 6 i 6 ` and bi = ai
for all ` < i 6 4. We let Player 2 remove row 2. The resulting game position is

[b1, b3, b4] where b1 = a1 − 1 and b3 = a3 − 1 are odd, and b3 > 3. By Theorem 6,

Gr([b1, b3, b4]) = 0.

Suppose Player 1 removes row 1. The resulting game position is [a2, a3, a4]. We

let Player 2 remove row 1 of [a2, a3, a4]. The resulting game position is [a3, a4]

where a3 is even. By Theorem 2, Gr([a3, a4]) = 0.

Suppose Player 1 removes row ` where 2 6 ` 6 4. The resulting game position

is [b1, b2, b3] where bi = ai for all 1 6 i < ` and bi = ai+1 for all ` 6 i 6 3. We let
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Player 2 remove row 3 of [b1, b2, b3]. The resulting game position is [b1, b2] where

b1 = a1 is even. By Theorem 2, Gr([b1, b2]) = 0.

Theorem 8. Let a1 > a2 > a3 > a4 > 4, and let A = [a1, a2, a3, a4]. Suppose

either

• a1 ≡ 1 (mod 2) or

• (a1, a2, a3) ≡ (0, 1, 1) (mod 2).

Then, Gr(A) 6= 0.

Proof. Case 1. Assume both a1 and a2 are odd. We let Player 1 remove row 4.

The resulting game position is [a1, a2, a3] where a1 and a2 are odd, and a3 > 4. By

Theorem 6, Gr([a1, a2, a3]) = 0.

Case 2. Assume a1 is odd and a2 is even. Since a1 > a2 and a1 6≡ a2 (mod 2),

a1 > a2. We let Player 1 remove a column with one 1. The resulting game posi-

tion is [a1 − 1, a2, a3, a4] where a1 − 1 and a2 are even. By Theorem 7, Gr([a1 −
1, a2, a3, a4]) = 0.

Case 3. Assume a1 is even, and both a2 and a3 are odd. We let Player 1 remove

row 1. The resulting game position is [a2, a3, a4] where a2 and and a3 are odd, and

a4 > 4. By Theorem 6, Gr([a2, a3, a4]) = 0.

5.2. P-positions and N -positions of [a1, a2, a3, a4, a5]

We now establish the conditions on (a1, a2, a3, a4, a5) that determine whether [a1,

a2, a3, a4, a5] is a P-position or an N -position.

Theorem 9. Let a1 > a2 > a3 > a4 > a5 > 5, and let A = [a1, a2, a3, a4, a5].

Suppose either

• (a1, a2) ≡ (1, 1) (mod 2) or

• (a1, a2, a3, a4) ≡ (1, 0, 1, 1) (mod 2).

Then, Gr(A) = 0.

Proof. The proof is by double induction on len(A) and wt(A).

Case 1. Assume both a1 and a2 are odd. Suppose Player 1 removes a column with

one 1. Since a1 ≡ a2 (mod 2), by Lemma 1, Player 2 may also remove a column

with one 1. The resulting game position is [a1 − 2, a2, a3, a4, a5] where a1 − 2 and

a2 are odd. By the inductive hypothesis, Gr([a1 − 2, a2, a3, a4, a5]) = 0.
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Suppose Player 1 removes a column with ` 1’s where 2 6 ` 6 5. The resulting

game position is [b1, b2, b3, b4, b5] where bi = ai − 1 for all 1 6 i 6 ` and bi = ai
for all ` < i 6 5. We let Player 2 remove row 5 of [b1, b2, b3, b4, b5]. The resulting

game position is [b1, b2, b3, b4] where b1 = a1 − 1 and b2 = a2 − 1 are even, and

b1 > b2 > b3 > b4 > 4. By Theorem 7, Gr([b1, b2, b3, b4]) = 0.

Suppose Player 1 removes row ` where 1 6 ` 6 2. The resulting game position

is [b1, b2, b3, b4] where bi = ai for all 1 6 i < ` and bi = ai+1 for all ` 6 i 6 4.

We observe that b1 = a2 if ` = 1, b1 = a1 if ` = 2, and b2 = a3. We consider the

cases b2 is odd or even separately. If b2 = a3 is odd, we let Player 2 remove row 4

of [b1, b2, b3, b4]. The resulting game position is [b1, b2, b3] where both b1 and b2 are

odd. By Theorem 6, Gr([b1, b2, b3]) = 0. If b2 = a3 is even, we have b1 > b2 since

b1 > b2 and b1 6≡ b2 (mod 2). We let Player 2 remove a column with one 1. The

resulting game position is [b1 − 1, b2, b3, b4] where both b1 − 1 and b2 are even. By

Theorem 7, Gr([b1 − 1, b2, b3, b4]) = 0.

Suppose Player 1 removes row ` where 3 6 ` 6 5. The resulting game position

is [b1, b2, b3, b4] where bi = ai for all 1 6 i < ` and bi = ai+1 for all ` 6 i 6 4. We

let Player 2 remove row 4. The resulting game position is [b1, b2, b3] where b1 = a1
and b2 = a2 are odd. By Theorem 6, Gr([b1, b2, b3]) = 0.

Case 2. Assume a1, a3, and a4 are odd, and a2 is even. Suppose Player 1 removes

a column with one 1. We let Player 2 remove row 5. The resulting position is

[a1− 1, a2, a3, a4] where a1− 1 and a2 are even, and a1− 1 > a2 > a3 > a4 > 4. By

Theorem 7, Gr([a1 − 1, a2, a3, a4]) = 0.

Suppose Player 1 removes a column with two 1’s The resulting game position is

[b1, b2, b3, b4, b5] where bi = ai − 1 for all 1 6 i 6 2 and bi = ai for all 3 6 i 6 5.

Since b1 > b2 and b1 6≡ b2 (mod 2), b1 > b2. So, we let Player 2 remove a column

with one 1. The resulting position is [b1 − 1, b2, b3, b4, b5] where b1 − 1 = a1 − 2

and b2 = a2 − 1 are odd, and b1 − 1 > b2 > b3 > b4 > b5 > 5. By the inductive

hypothesis, Gr([b1 − 1, b2, b3, b4, b5]) = 0.

Suppose Player 1 removes a column with ` 1’s where 3 6 ` 6 5. The resulting

game position is [b1, b2, b3, b4, b5] where bi = ai − 1 for all 1 6 i 6 ` and bi = ai
for all ` < i 6 5. We let Player 2 remove row 5 of [b1, b2, b3, b4, b5]. The resulting

game position is [b1, b2, b3, b4]. We observe that b1 = a1 − 1 is odd, b2 = a2 − 1

is even, b3 = a3 − 1 are odd, and b1 > b2 > b3 > b4 > 4. By Theorem 7,

Gr([b1, b2, b3, b4]) = 0.

Suppose Player 1 removes row ` where 1 6 ` 6 2. Let `′ ∈ {1, 2} \ {`}. We let

Player 2 remove row `′. The resulting game position is [a3, a4, a5] where a3 and a4
are odd. By Theorem 6, Gr([a3, a4, a5]) = 0.

Suppose Player 1 removes row ` where 3 6 ` 6 5. The resulting game position

is [b1, b2, b3, b4] where bi = ai for all 1 6 i < ` and bi = ai+1 for all ` 6 i 6 4. We

let Player 2 remove row 2 of [b1, b2, b3, b4] The resulting game position is [b1, b3, b4].
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Since b3 = a4 if ` = 3 or b3 = a3 if ` ∈ {4, 5}, b3 is odd. Thus, b1 and b3 are odd.

By Theorem 6, Gr([b1, b3, b4]) = 0.

Theorem 10. Let a1 > a2 > a3 > a4 > a5 > 5, and let A = [a1, a2, a3, a4, a5].

Suppose either

• a1 ≡ 0 (mod 2) or

• (a1, a2, a3, a4) ≡ (1, 0, x, y) (mod 2) where (x, y) 6≡ (1, 1) (mod 2).

Then, Gr(A) 6= 0.

Proof. Case 1. Assume both a1 and a2 are even. We let Player 1 remove row

5. The resulting game position is [a1, a2, a3, a4] where a1 and a2 are odd, and

a1 > a2 > a3 > a4 > 5. By Theorem 7, Gr([a1, a2, a3, a4]) = 0.

Case 2. Assume a1 is even and a2 is odd. Since a1 > a2 and a1 6≡ a2 (mod 2),

a1 > a2. We let Player 1 remove a column with one 1. The resulting game

position is [a1 − 1, a2, a3, a4, a5] where a1 − 1 and a2 are odd. By Theorem 9,

Gr([a1 − 1, a2, a3, a4, a5]) = 0.

Case 3. Assume (a1, a2, a3, a4) ≡ (1, 0, x, y) (mod 2) and (x, y) 6≡ (1, 1) (mod 2).

We let Player 1 remove row 1. The resulting game position is [a2, a3, a4, a5] where

a2 > a3 > a4 > a5 > 4. If x = 0, then (a2, a3) ≡ (0, 0) (mod 2). Also, if (x, y) =

(1, 0), then (a2, a3, a4) ≡ (0, 1, 0) (mod 2). By Theorem 7, Gr([a2, a3, a4, a5]) =

0.

5.3. Some Preliminary Results on P-positions and N -positions

We show that when ai ≡ k (mod 2) for all i ∈ {1, 2}, the game position [a1, a2, . . . ,

ak], where a1 > a2 > · · · > ak > k, is a P-position.

Theorem 11. Let k > 4. Suppose a1 > a2 > · · · > ak > k, ai ≡ k (mod 2) for all

i ∈ {1, 2}, and let A = [a1, a2, . . . , ak]. Then, Gr(A) = 0.

Proof. The proof is by double induction on len(A) and wt(A) of A. Let

A =
{

[a1, a2, . . . , ak] : k > 4, a1 > a2 > · · · > ak > k and

ai ≡ k (mod 2) for all i ∈ {1, 2}
}

and consider the partial order on A given by

[b1, b2, . . . , br] � [c1, c2, . . . , cs] if and only if

r 6 s and bi 6 ci for all 1 6 i 6 r.
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By Theorem 7, for all A ∈ A such that len(A) = 4, Gr(A) = 0. By Theorem 9, for

all A ∈ A such that len(A) = 5, Gr(A) = 0. Thus, the theorem holds for k = 4 and

k = 5. This establishes the base case.

Let k > 6 and A = [a1, a2, . . . , ak] ∈ A. Suppose Gr(B) = 0 for all B ∈ A such

that B ≺ A. We want to show that Gr(A) = 0.

Suppose Player 1 removes a column from A = [a1, a2, . . . , ak] that contains ` 1’s.

We consider the cases ` = 1 and ` > 1 separately. Suppose ` = 1. Since a1 ≡ a2
(mod 2), by Lemma 1, we have a1 > a2 + 2. So, Player 2 can also remove a column

with one 1. The resulting game position is B = [b1, b2, . . . , bk] where b1 = a1 − 2,

and bi = ai for all 2 6 i 6 k. By Lemma 1, B ∈ A and B ≺ A. By the inductive

hypothesis, Gr(B) = 0.

Suppose Player 1 removes a column from A = [a1, a2, . . . , ak] that contains `

1’s where 2 6 ` 6 k. We let Player 2 remove row k. Let `′ = ` if ` < k, and

`′ = k − 1 if ` = k. The resulting game position is B = [b1, b2, . . . , bk−1] where

bi = ai − 1 for all 1 6 i 6 `′, and bi = ai for all `′ < i 6 k − 1. We observe that

b1 > b2 > · · · > bk−1 > k − 1 and bi = ai − 1 ≡ k − 1 (mod 2) for all i ∈ {1, 2}.
Thus, B ∈ A. Since len(B) < len(A) and bi 6 ai for all 1 6 i 6 k − 1, B ≺ A. By

the inductive hypothesis, Gr(B) = 0.

Suppose Player 1 removes row ` from A = [a1, a2, . . . , ak]. The resulting game

position is B = [b1, b2, . . . , bk−1] where bi = ai for all 1 6 i < ` and bi = ai+1

for all ` 6 i 6 k − 1. We consider the cases ` 6 2 and ` > 3 separately. First,

suppose ` > 3. We let Player 2 remove row k− 1 of B. The resulting game position

is C = [c1, c2, . . . , ck−2] where ci = ai for all 1 6 i < ` and ci = ai+1 for all

` 6 i 6 k − 2. Then c1 > c2 > · · · > ck−2 > k − 2, and ci = ai ≡ k − 2 (mod 2) for

all i ∈ {1, 2}. Thus, C ∈ A. Since len(C) < len(A) and ci 6 ai for all 1 6 i 6 k−2,

C ≺ A. By the inductive hypothesis, Gr(C) = 0.

Next, suppose ` 6 2. Let `′ ∈ {1, 2} \ {`}. We further consider the cases

a3 ≡ k (mod 2) and a3 ≡ k + 1 (mod 2) separately. On the one hand, if a3 ≡ k

(mod 2), we let Player 2 remove row k − 1 of B. The resulting game position is

C = [c1, c2, . . . , ck−2] where c1 = a`′ and ci = ai+1 for all 2 6 i 6 k − 2. Since

ci ≡ k − 2 (mod 2) for all i ∈ {1, 2} and c1 > c2 > · · · > ck−2 > k − 2, C ∈ A.

Since len(C) < len(A) and ci 6 ai for all 1 6 i 6 k − 2, C ≺ A. On the other

hand, if a3 ≡ k + 1 (mod 2), then b1 6≡ b2 (mod 2). Since b1 > b2, b1 > b2 + 1.

So, we let Player 2 remove a column with one 1. The resulting game position is

C = [c1, c2, . . . , ck−1] where c1 = a`′ − 1 and ci = ai+1 for all 2 6 i 6 k − 1. We

observe that c1 > c2 > · · · > ck−1 > k − 1, c1 = a`′ − 1 ≡ k − 1 (mod 2), and

c2 = a3 ≡ k − 1 (mod 2). Thus, C ∈ A. Since len(C) < len(A) and ci 6 ai for

all 1 6 i 6 k − 1, C ≺ A. In either case, we have Gr(C) = 0 by the inductive

hypothesis. This completes the proof.

The next result provides a condition on (a1, a2, . . . , ak) to ensure that the game
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position A = [a1, a2, . . . , ak] is an N -position.

Theorem 12. Let k > 5. Suppose a1 > a2 > · · · > ak > k, a1 ≡ k + 1 (mod 2),

and let A = [a1, a2, . . . , ak]. Then, Gr(A) 6= 0.

Proof. We consider the cases a2 ≡ k (mod 2) and a2 ≡ k + 1 (mod 2) separately.

First, suppose a2 ≡ k (mod 2). Since a1 > a2 and a1 6≡ a2 (mod 2), a1 > a2 + 1.

So, we let Player 1 remove a column with one 1. The resulting game position

is B = [b1, b2, . . . , bk] where b1 = a1 − 1 and bi = ai for all 2 6 i 6 k. Then

b1 > b2 > · · · > bk > k, b1 = a1 − 1 ≡ k (mod 2), and b2 = a2 ≡ k (mod 2). By

Theorem 11, Gr(B) = 0. Thus, Gr(A) 6= 0.

Next, suppose a2 ≡ k+ 1 (mod 2). We let Player 1 remove row k. The resulting

game position is B = [b1, b2, . . . , bk−1] where bi = ai for all 1 6 i 6 k − 1. Then

b1 > b2 > · · · > bk−1 > k − 1, and bi = ai ≡ k − 1 (mod 2) for all i ∈ {1, 2}. By

Theorem 11, Gr(B) = 0. Thus, Gr(A) 6= 0.

5.4. The Main Result

We introduce the following notation in order to state when [a1, a2, . . . , ak] is a P-

position or an N -position.

Notation 1. Suppose (b1, b2, . . . , bk) is a sequence of 0’s and 1’s. We let (b1, b2, . . . ,

bk)n represent the concatenation of n copies of (b1, b2, . . . , bk). For example, (1, 0)3 =

(1, 0, 1, 0, 1, 0).

We state the conditions that are needed on the strong partition sequence S =

(a1, a2, . . . , ak) in order to determine whether the strong partition matrix mat(S)

is a P-position or an N -position. Theorems 13 and 14 provide the conditions to

ensure that mat(S) is a P-position or an N -position, respectively, when k is even,

and Theorems 15 and 16 provide the conditions to ensure that mat(S) is a P-position

or an N -position, respectively, when k is odd.

Theorem 13. Let k = 2p > 4 be even, a1 > a2 > · · · > ak > k, and A =

[a1, a2, . . . , ak]. Then, Gr(A) = 0 if and only if either

• (ai : 1 6 i 6 2q + 2) ≡ ((0, 1)q, 0, 0) (mod 2) for some integer 0 6 q 6 p − 3

or

• (ai : 1 6 i 6 k − 1) ≡ ((0, 1)p−2, 0, x, y) (mod 2) and (x, y) 6≡ (1, 1) (mod 2).

Theorem 14. Let k = 2p > 4 be even, a1 > a2 > · · · > ak > k, and A =

[a1, a2, . . . , ak]. Then, Gr(A) 6= 0 if and only if (ai : 1 6 i 6 2q + 1) ≡ ((0, 1)q, 1)

(mod 2) for some integer 0 6 q 6 p− 1.

Theorem 15. Let k = 2p + 1 be odd, a1 > a2 > · · · > ak > k, and A =

[a1, a2, . . . , ak]. Then, Gr(A) = 0 if and only if (ai : 1 6 i 6 2q + 2) ≡ ((1, 0)q, 1, 1)

(mod 2) for some integer 0 6 q 6 p− 1.
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Theorem 16. Let k = 2p + 1 be odd, a1 > a2 > · · · > ak > k, and A =

[a1, a2, . . . , ak]. Then, Gr(A) 6= 0 if and only if either

• (ai : 1 6 i 6 2q + 1) ≡ ((1, 0)q, 0) (mod 2) for some integer 0 6 q 6 p− 2 or

• (ai : 1 6 i 6 k − 1) ≡ ((1, 0)p−1, x, y) (mod 2) and (x, y) 6≡ (1, 1) (mod 2).

In order to establish Theorems 13, 14, 15, and 16, we first demonstrate that The-

orem 13 is equivalent to Theorem 14 when k is even, and Theorem 15 is equivalent

to Theorem 16 when k is odd. Next, we establish the necessity of Theorems 13,

14, 15, and 16. These arguments establish the claims made in Theorems 13, 14, 15,

and 16. Then, we consider the special case k = 7 as an example.

Lemma 2. When k > 4 is even, Theorem 13 is equivalent to Theorem 14. Simi-

larly, when k > 5 is odd, Theorem 15 is equivalent to Theorem 16.

Proof. We demonstrate that when k > 4 is even, Theorem 13 is equivalent to

Theorem 14. The proof that Theorem 15 is equivalent to Theorem 16 when k is

odd is similar, and we leave the proof of that case to the reader.

Let k = 2p > 4 be even. The proof will be by backwards induction on 0 6 q 6
p−2. We show that, for each integer q such that 0 6 q 6 p−2, among the 22p−2q−1

choices of parity of ai where 2q + 1 6 i 6 2p− 1, there are

(22 − 1) + 23 + 25 + · · ·+ 22p−2q−2 = 1
3 (22p−2q−1 + 1)

choices of parity for which [a1, a2, . . . , ak] is a P-position and

1 + 22 + 24 + · · ·+ 22p−2q−2 = 1
3 (22p−2q − 1)

complementary choices of parity for which [a1, a2, . . . , ak] is an N -position.

We let S = (ai : 1 6 i 6 k), A = mat(S), and q = p − 2. By Theorem 13, if

(ai : 1 6 i 6 2p− 1) ≡
(
(0, 1)p−2, 0, x, y

)
(mod 2) and (x, y) 6≡ (1, 1) (mod 2), then

Gr(A) = 0. By Theorem 14, if (ai : 1 6 i 6 2p − 1) ≡
(
(0, 1)p−2, 1

)
(mod 2) or

(ai : 1 6 i 6 2p − 3) ≡
(
(0, 1)p−3, 1

)
(mod 2), then Gr(A) 6= 0. Thus, among the

23 = 22p−2q−1 choices of parity of ai where 2q + 1 6 i 6 2p− 1, 22 − 1 = 1
3 (23 + 1)

choices of parity yield Gr(A) = 0 and 20 + 22 = 1
3 (24 − 1) complementary choices

of parity yield Gr(A) 6= 0. This establishes the base case.

Suppose that, for some integer 1 6 q 6 p − 2, among the 22p−2q−1 choices of

parity of ai where 2q + 1 6 i 6 2p− 1,

(22 − 1) + 23 + 25 + · · ·+ 22p−2q−3 = 1
3 (22p−2q−1 + 1)

choices of parity yield Gr(A) = 0 and

20 + 22 + 24 + · · ·+ 22p−2q−2 = 1
3 (22p−2q − 1)
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complementary choices of parity yield Gr(A) 6= 0. By Theorem 13, if (ai : 1 6 i 6
2q) ≡

(
(0, 1)q−1, 0, 0

)
(mod 2), then Gr(A) = 0. By Theorem 14, if (ai : 1 6 i 6

2q − 1) ≡
(
(0, 1)q−1, 1

)
(mod 2), then Gr(A) 6= 0. Thus, among the 22p−2(q−1)−1

choices of parity of ai where 2(q − 1) + 1 6 i 6 2p− 1,

(22 − 1) + 23 + 25 + · · ·+ 22p−2(q−1)−3 = 1
3 (22p−2(q−1)−1 + 1)

choices of parity yield Gr(A) = 0 and

20 + 22 + 24 + · · ·+ 22p−2(q−1)−2 = 1
3 (22p−2(q−1) − 1)

complementary choices of parity yield Gr(A) 6= 0. This completes the proof.

Remark 5. We let 〈x〉 denote the nearest integer function defined by 〈x〉 ∈ Z such

that x − 1
2 < 〈x〉 6 x + 1

2 . Let A = [a1, a2, . . . , ak] be a strong partition matrix.

For k > 4, among the 2k−1 choices of parity of ai where 1 6 i 6 k − 1, there are

〈 13 2k−1〉 choices of parity that yield Gr(A) = 0 and 〈 13 2k〉 complementary choices

of parity that yield Gr(A) 6= 0.

We provide the proofs of Theorems 13, 14, 15, and 16.

Proof of necessity of Theorems 13 and 15. The proof is by double induction on the

length of A and the game weight of A. Let

E =
{

[a1, a2, . . . , ak] : k = 2p > 4 is even, a1 > a2 > · · · > ak > k, and either

(ai : 1 6 i 6 2q + 2) ≡ ((0, 1)q, 0, 0) (mod 2) for some integer 0 6 q 6 p− 3, or

(ai : 1 6 i 6 k − 1) ≡ ((0, 1)p−2, 0, x, y) (mod 2) and (x, y) 6≡ (1, 1) (mod 2)
}
,

O =
{

[a1, a2, . . . , ak] : k > 5 is odd, a1 > a2 > · · · > ak > k, and

(ai : 1 6 i 6 2q + 2) ≡ ((1, 0)q, 1, 1) (mod 2) for some integer 0 6 q 6 p− 1
}
,

C = E ∪ O,

and consider the partial order on C given by

[b1, b2, . . . , br] � [c1, c2, . . . , cs] if and only if

r 6 s and bi 6 ci for all 1 6 i 6 r.

By Theorem 7, for all A ∈ C such that len(A) = 4, Gr(A) = 0. By Theorem 9, for

all A ∈ C such that len(A) = 5, Gr(A) = 0. Thus, the theorem holds for k = 4 and

k = 5. This establishes the base case.

Let k > 6 and A = [a1, a2, . . . , ak] ∈ C. Suppose for all B ∈ C such that B ≺ A,

Gr(B) = 0. We want to show that Gr(A) = 0. We consider the cases k is even and

k is odd separately.
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Suppose k is even. First, suppose (ai : 1 6 i 6 2q + 2) ≡ ((0, 1)q, 0, 0) (mod 2)

for some integer 0 6 q 6 p−3. If q = 0, then (a1, a2) ≡ (0, 0) (mod 2). By Theorem

11, Gr(A) = 0. So, we may assume q > 1.

Suppose Player 1 removes a column from A = [a1, a2, . . . , ak] that contains

one 1. We let Player 2 remove row k of A. The resulting game position is

B = [b1, b2, . . . , bk−1] where b1 = a1−1 and bi = ai for all 1 < i 6 k−1. We observe

that b1 > b2 > · · · > bk−1 > k − 1, len(B) = k − 1 is odd, and (b1, b2) ≡ (1, 1)

(mod 2). By Theorem 11, Gr(B) = 0. Thus, Gr(A) = 0.

Suppose Player 1 removes a column from A = [a1, a2, . . . , ak] that contains two

1’s. The resulting game position is B = [b1, b2, . . . , bk−1] where bi = ai − 1 for all

1 6 i 6 2, and bi = ai for all 2 < i 6 k. Since b1 is odd, b2 is even, and b1 > b2,

we have b1 > b2 + 1. So, we let Player 2 remove a column that contains one 1. The

resulting game position is C = [c1, c2 . . . , ck] where c1 = a1 − 2, c2 = a2 − 1, and

ci = ai for all 3 6 i 6 k. We observe that c1 > c2 > · · · > ck > k, len(C) = k is

even, and (c1, c2) ≡ (0, 0) (mod 2). By Theorem 11, Gr(C) = 0. Thus, Gr(A) = 0.

Suppose Player 1 removes a column from A = [a1, a2, . . . , ak] that contains ` 1’s

such that 3 6 ` 6 k. We let Player 2 remove row 2 of A. The resulting game

position is B = [b1, b2, . . . , bk−1] where b1 = a1 − 1, bi = ai+1 − 1 for all 2 6 i < `,

and bi = ai+1 for all ` 6 i 6 k − 1. We observe that b1 > b2 > · · · > bk−1 > k − 1,

len(B) = k − 1 is odd, and (b1, b2) ≡ (1, 1) (mod 2). By Theorem 11, Gr(B) = 0.

Thus, Gr(A) = 0.

If Player 1 removes row 1 of A = [a1, a2, . . . , ak], we let Player 2 remove row

2 of A. If Player 1 removes row 2 of A, we let Player 2 remove row 1 of A.

Then the resulting game position is B = [b1, b2, . . . , bk−2] where bi = ai+2 for all

1 6 i 6 k − 2. Since b1 > b2 > · · · > bk−2 > k − 2, len(B) = k − 2 is even, and

(bi : 1 6 i 6 2q) ≡ ((0, 1)q−1, 0, 0) (mod 2), we have B ∈ C. Since len(B) < len(A)

and bi 6 ai for all 1 6 i 6 k − 2, we have B ≺ A. By the inductive hypothesis,

Gr(B) = 0. Thus, Gr(A) = 0.

Suppose Player 1 removes row ` of A = [a1, a2, . . . , ak] where 3 6 ` 6 k. The

resulting position is B = [b1, b2, . . . , bk−1] where bi = ai for all 1 6 i < ` and

bi = ai+1 for all ` 6 i 6 k − 1. Since b1 is even, b2 is odd, and b1 > b2, we have

b1 > b2 + 1. So, we let Player 2 remove a column with one 1. The resulting position

is C = [c1, c2, . . . , ck−1] where c1 = a1−1, ci = ai for all 2 6 i < ` and ci = ai+1 for

all ` 6 i 6 k − 1. We observe that c1 > c2 > · · · > ck−1 > k − 1, len(C) = k − 1 is

odd, and (c1, c2) ≡ ((1, 1) (mod 2). By Theorem 11, Gr(C) = 0. Thus, Gr(A) = 0.

Suppose k is even and (ai : 1 6 i 6 k − 1) ≡ ((0, 1)p−2, 0, x, y) (mod 2) where

(x, y) 6≡ (1, 1) (mod 2). Suppose Player 1 removes a column with ` 1’s of A =

[a1, a2, . . . , ak] where 1 6 ` 6 k. An argument similar to that in paragraphs 4, 5,

and 6 of this proof shows that Gr(A) = 0. We leave the details to the reader.

Suppose Player 1 removes row ` of A = [a1, a2, . . . , ak] where 1 6 ` 6 k. An

argument as above shows that Gr(A) = 0. We leave the details to the reader.
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Suppose k is odd and (ai : 1 6 i 6 2q + 2) ≡ ((1, 0)q, 1, 1) (mod 2) for some

integer 0 6 q 6 p − 1. The proof is similar to the proof that Gr(A) = 0 when k is

even and (ai : 1 6 i 6 2q+2) ≡ ((0, 1)q, 0, 0) (mod 2) for some integer 0 6 q 6 p−3.

We leave the details to the reader.

Proof of necessity of Theorem 14. Let (ai : 1 6 i 6 2q + 1) ≡ ((0, 1)q, 1) (mod 2)

for some integer 0 6 q 6 p − 1. First, suppose q = 0. Then, by Theorem 12,

Gr(A) 6= 0. Next, suppose q > 1. We let Player 1 remove row 1. The resulting

game position is B = [b1, b2, . . . , bk−1] where bi = ai+1 for all 1 6 i 6 k − 1. Then

(bi : 1 6 i 6 2q) ≡ ((1, 0)q−1, 1, 1) (mod 2). By Theorem 15, Gr(B) = 0. Thus,

Gr(A) 6= 0.

Proof of necessity of Theorem 16. Let (ai : 1 6 i 6 2q + 1) ≡ ((1, 0)q, 0) (mod 2)

for some integer 0 6 q 6 p − 2. First, suppose q = 0. Then, by Theorem 12,

Gr(A) 6= 0. Next, suppose q > 1. We let Player 1 remove row 1. The resulting

game position is B = [b1, b2, . . . , bk−1] where bi = ai+1 for all 1 6 i 6 k − 1. Then

(bi : 1 6 i 6 2q) ≡ ((0, 1)q−1, 0, 0) (mod 2). By Theorem 13, Gr(B) = 0. Thus,

Gr(A) 6= 0.

Let (ai : 1 6 i 6 k − 1) ≡ ((1, 0)p−1, x, y) (mod 2) and (x, y) 6≡ (1, 1) (mod 2).

We let Player 1 remove row 1. The resulting game position is B = [b1, b2, . . . , bk−1]

where bi = ai+1 for all 1 6 i 6 k− 1. Then, (bi : 1 6 i 6 k− 2) ≡ ((0, 1)p−2, 0, x, y)

(mod 2) and (x, y) 6≡ (1, 1) (mod 2). By Theorem 13, Gr(B) = 0. Thus, Gr(A) 6=
0.

Example 1. We consider the special case k = 7. Then, Theorems 15 and 16

specialize to the following two propositions.

Proposition 2. Let a1 > a2 > · · · > a7 > 7 and A = [a1, a2, . . . , a7]. Then,

Gr(A) = 0 if and only if either

• (a1, a2) ≡ (1, 1) (mod 2),

• (a1, a2, a3, a4) ≡ (1, 0, 1, 1) (mod 2), or

• (a1, a2, a3, a4, a5, a6) ≡ (1, 0, 1, 0, 1, 1) (mod 2).

Proposition 3. Let a1 > a2 > · · · > a7 > 7 and A = [a1, a2, . . . , a7]. Then,

Gr(A) 6= 0 if and only if either

• a1 ≡ 0 (mod 2),

• (a1, a2, a3) ≡ (1, 0, 0) (mod 2), or

• (a1, a2, a3, a4, a5, a6) ≡ (1, 0, 1, 0, x, y) (mod 2) and (x, y) 6≡ (1, 1) (mod 2).
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


Figure 2: The strong partition matrix A = [19, 18, 15, 14, 11, 9, 8] is a P-position.

Example 2. We consider the strong partition matrix A = [19, 18, 15, 14, 11, 9, 8]

depicted in Figure 2. Then, seq(A) = (ai : 1 6 i 6 7) = (19, 18, 15, 14, 11, 9, 8).

Since (ai : 1 6 i 6 6) ≡
(
(1, 0)2, 1, 1

)
(mod 2), A is a P-position by Proposition 2.
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