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Abstract: A significant challenge encountered in mmWave and sub-terahertz systems used in 5G and
the upcoming 6G networks is the rapid fluctuation in signal quality across various beam directions.
Extremely high-frequency waves are highly vulnerable to obstruction, making even slight adjust-
ments in device orientation or the presence of blockers capable of causing substantial fluctuations in
link quality along a designated path. This issue poses a major obstacle because numerous applications
with low-latency requirements necessitate the precise forecasting of network quality from many
directions and cells. The method proposed in this research demonstrates an avant-garde approach
for assessing the quality of multi-directional connections in mmWave systems by utilizing the Liquid
Time-Constant network (LTC) instead of the conventionally used Long Short-Term Memory (LSTM)
technique. The method’s validity was tested through an optimistic simulation involving monitoring
multi-cell connections at 28 GHz in a scenario where humans and various obstructions were mov-
ing arbitrarily. The results with LTC are significantly better than those obtained by conventional
approaches such as LSTM. The latter resulted in a test Root Mean Squared Error (RMSE) of 3.44 dB,
while the former, 0.25 dB, demonstrating a 13-fold improvement. For better interpretability and to
illustrate the complexity of prediction, an approximate mathematical expression is also fitted to the
simulated signal data using Symbolic Regression.

Keywords: liquid neural networks; extremely high frequency; mmWave; 5G network; genetic
programming

1. Introduction

Wireless communication systems, particularly the 5G and the upcoming 6G networks,
are increasingly adopting the extremely high-frequency (EHF) millimeter-wave (mmWave)
and tremendously high-frequency (THF) sub-terahertz T-waves. The wavelength of the
mmWave frequencies is between one centimeter and one millimeter, hence the name. They
offer a large amount of available spectrum, greater capacity, and more bandwidth than
traditional bands. This means that they can be used to provide very high data rates. The 5G
and 6G wave technology for mobile network operators enable many important applications
such as autonomous driving [1], precision agriculture [2], mobile virtual reality [3], and
high-definition video broadcasting [4]. They offer faster deployment and higher return on
investment (ROI). Multi-link prediction refers to the process of forecasting the quality of
potential connections between a user device and a base station. Unlike traditional cellular
networks where there is a single connection between a device and a tower, mmWaves use
narrow, steerable beams and follow a process called beamforming. Therefore, connections
along multiple paths can be formed simultaneously. The quality of the connection is often
measured by the Signal-to-Noise Ratio (SNR). Higher values indicate a stronger signal
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relative to background noise. By predicting the quality, the device can seamlessly switch to
the predicted high-quality link without losing the connection.

However, owing to their short wavelength, EHF and THF waves have a strict Line
of Sight requirement. This means that they cannot travel through walls or trees and
are highly sensitive to obstacles. The channel changes very quickly as the user moves.
Wireless systems using them are impacted by fluctuating channel quality when the beam
propagates in various directions simultaneously. Millimeter-wave communication is also
not energy efficient. Slight deviations in the path of the transceivers or the presence of
interfering elements can cause significant alterations in link quality unpredictably. Low-
latency applications necessitate the ability to accurately forecast the link quality across
different cells and directions. Previous attempts to address the challenge of predicting
multiple links using AI/ML techniques involved certain Recurrent Neural Network (RNN)
models like Long short-term memory (LSTM) for the link prediction [5].

Link prediction is the important task of estimating the quality of the signal between
nodes in a network. It plays an important role in EHF and THF systems because these
signals are inherently flaky and unpredictable, but the low-latency applications require
accurate prediction. Link prediction helps in optimizing network performance, making
routing decisions, and resource allocation.

Traditionally, the parameters for Artificial Neural Networks (ANNs), including RNNs
like LSTM are fixed after training. ANNs use these fixed parameters to make decisions, a
process called inferencing. Liquid Neural Networks (LNNs) are a better type of RNN that
can learn even at the time of decision-making and are therefore better suited to real-world
applications [6]. LNNs are a progression of Neural Ordinary Differential Equations (ODEs).
Neural ODEs [7] use an approximation to evolve the hidden state by using a fixed time
interval or a “time constant”. Liquid Time-Constant Networks or LTCs are a special type
of LNN that use a time constant that is not fixed, giving it the flexibility to dynamically
adapt to changes in the data [8], which for this work is the wireless EHF and THF signal.
We hypothesize that LTCs are better suited to the problem of multi-link prediction for
mmWave and sub-terahertz because of the highly unpredictable nature of the signal, and
the experiments detailed later confirm this. LTCs adapt to the rapid fluctuations in the
data even during inferencing [9]. Their behavior is more explainable, they can learn from
smaller amounts of data, and are computationally effective, requiring a smaller number of
neurons [8]; hence, they can run on edge devices like smartphones.

The simulation in this work is based on the Urban Microcellular Infrastructure (UMI)
Channel model [10], an indoor scenario that typically uses 28 GHz as the operating carrier
frequency. Therefore, the EHF and THF waves are generated for the experimental setup
using a real-time simulation involving multiple links with trajectories of moving individuals
and obstructing vehicles in a scenario set at 28 GHz. The simulation uses appropriate noise
figure and path loss encompassing both Line-of-Sight (LOS) and Non-Line-of-Sight (NLoS)
propagation paths following the 3GPP Channel model [11]. The parameters set for the
simulation are as specified in Table 1. Also, the current literature [5] uses 28 GHz for
experiments with LSTM. Using the same 28 GHz frequency for this work helps ensure a
fair evaluation of the results.

The experiments hypothesize that more precise and reliable predictions regarding the
link quality in complex wireless communication scenarios can be achieved using LTCs.
The proposed LTC-based Multi-Link Prediction model seeks to enhance the accuracy
and efficiency of link quality predictions by leveraging recent developments in artificial
intelligence technologies. The experiments are intended to validate the effectiveness of
LTCs in a practical simulation environment to confirm the hypothesis that LTCs address
the challenges associated with predicting link quality in dynamic wireless communication
systems. This research contributes to the evolution of predictive modeling in wireless
communication, paving the way for robust and adaptive systems in the future as wireless
communication systems evolve towards 6G networks and beyond.
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Table 1. NYUSIM simulation parameters for generating the data.

Parameter Value

Environment Urban microcell indoor
Area 200 × 200 m2

Carrier frequency 28 GHz
Path loss model 5G urban microcell indoor

Number of base station antennas 64
Number of user equipments 8

Bandwidth 400 MHz
Radius of base station 100 m
Height of base station 10 m

Height of user equipment 1.7 m
Blocker dimensions 1.7 m × 0.3 m
Transmission power 23 dBm

Noise figure 9 dB
Sampling interval 20 ms

In the case of mmWave frequencies, it is expected that the distance between cellular
base stations remains consistent. With carrier frequencies progressing towards terahertz,
the wider bandwidth of the channel allows for covering similar distances. This is achieved
through the exponential growth in antenna gains as frequencies rise, assuming the physical
antenna remains unchanged [12].

The LSTM model is impacted by certain shortcomings when used for link prediction
for EHF and THF. LSTM outcomes tend to be less accurate, particularly in scenarios
where prediction involves data that are not continuous. EHF and THF waves are prone to
attenuation due to the oxygen and other matter in the atmosphere. The waves are absorbed
by certain compounds such as water vapor in the atmosphere. The higher the frequency,
the greater the absorption. Also, as mentioned earlier, EHF and THF waves propagate only
along the Line-of-Sight paths. They cannot bend around obstacles. Due to the varying
distances between the transmitter, receiver, and any obstructing objects present on each
link, the signal could be choppy. Consequently, for such scenarios, when the LSTM model
is applied, the results may not be accurate to the desired extent. In scenarios where there
are more links between the transmitter and the receiver, the effectiveness of an LSTM model
might diminish, resulting in suboptimal predictions [13,14].

The overall mobile handover operation (HO) probability with respect to both horizon-
tal as well as vertical hand-off needs to be characterized to attain specific mobile coverage
probability in mmWave and sub-terahertz networks [15].

1.1. Related Work

A combination of Convolutional Neural Network (CNN) and Recurrent Neural Net-
work (RNN) deep learning models have been used to predict future blockages and beams
for mmWave systems. This helps with proactive handovers between base stations to en-
sure uninterrupted connectivity for users [16]. Diverse approaches have been tried for
link quality prediction, including using camera images [17]. Predicting link blockages
is important to ensure seamless connectivity. The predictions help to proactively switch
beams and handoff (HO). Computer vision has been used to conduct these predictions
based on camera images in yet another work [18]. Transfer learning using deep neural
networks was attempted to predict the optimal beams for multi-links, resulting in reduced
interference and training overhead [19]. EHF waves suffer from low spectral efficiency,
narrow coverage, and difficulty in Non-Line-of-Sight (NLoS) propagation. It is therefore
important to model path loss accurately for optimal base station placement. There are three
types of path loss modeling methods: empirical, deterministic, and machine learning-based.
Machine learning-based modeling uses measured data to train a model to predict path
loss. A novel machine learning scheme called multi-way local attentive learning has been
proposed to model and predict path loss [20].
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By understanding the environment using a combination of analytical models such as
geometric analysis to recognize the shadowed regions that separate Line-of-Sight (LoS)
and Non-Line-of-Sight (NLoS) scenarios and deep neural networks, researchers have built
systems that can proactively allocate resources for better performance [21]. The allocation is
based on link quality predictions as described in this work but using deep neural networks
for regression. Not just deep learning, but traditional machine learning techniques such
as Support Vector Regression (SVR), Random Forest (RF), and Gradient Tree Boosting
(GTB) have also been used for the task of mmWave link prediction [22]. In yet another
novel approach, researchers extract a sparse feature representation using non-deterministic
quantization and apply deep neural network (DNN) to learn from those features for
mmWave beam prediction [23]. Channel State Information (CSI) is fused with information
about the user’s location to predict the beam [24]. The prediction is still carried out using a
neural network that adopts Adjustable Feature Fusion Learning (AFFL).

Another approach [25] combines Deep Neural Networks (DNNs) with Long Short-
Term Memory (LSTM) networks to create a new prediction method. This approach consid-
ers both past channel information and the position of the device. The proposed method
can predict both large-scale trends and small-scale fluctuations in mmWave channel fea-
tures. The approach achieved over 4.5% improvement in accuracy compared to existing
approaches. To detect the motion of blockers such as a walking person close to the Line-
of-Sight (LoS) path, an mmAlert system was proposed [26] using the passive sensing
technique. It could predict 90% of the LoS blockage, with a sensing time of 1.4 s being
sufficient enough to provide a timely warning. Privacy is important in such applications.
To preserve privacy, instead of cameras, point clouds have been used for predicting signal
strength in millimeter-wave communication systems [27]. Point clouds are 3D representa-
tions of spaces. While cameras may capture sensitive information, point clouds are devoid
of privacy concerns. The approach still achieves accuracy that is comparable to traditional
image-based methods.

As can be seen, link prediction has been attempted via several methods, mostly using
deep learning through Artificial Neural Networks (ANN) and some traditional machine
learning approaches. The accuracy of the prediction is reasonable but, as this work confirms,
LTC predictions are far more accurate than with LSTM, which so far was the most relevant
deep learning framework for the problem.

1.2. Contribution

To our knowledge, this work is unique in achieving a significantly better prediction
of the Signal-to-Noise Ratio (SNR) of EHF signals using Liquid Time-Constant Networks.
Explainability and interpretability play an important role in machine learning [28]. This
work is also novel in applying Symbolic Regression to fit a mathematical expression to
SNR values of a simulated EHF wireless system for interoperability. The core research
contributions can be summarized as follows:

• Quantitative demonstration of substantial improvement in multi-link prediction for
mmWave wireless communication systems using Liquid Time-Constant Networks
(LTC) over conventional methods such as using Long Short-Term Memory.

• Interpretation of the SNR values of mmWave signal using Symbolic Regression.

The rest of the paper is organized as follows. Section 2 details the approach followed
for the experiments. It briefly explains the concepts, the dataset used, how it was generated,
and the setup for Symbolic Regression. Numerical experiments, including the hyperparam-
eter settings, and results are discussed in Section 3. Section 4 discusses the results from the
experiments and the conclusions are included in Section 5.

2. Materials and Methods

For simulating the mmWave and sub-terahertz wireless channels, an open-source
simulator developed by the New York University called NYUSIM is used. The product
can simulate many real-life environments such as urban macrocell, urban microcell, indoor
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hotspot, and rural macrocell. The performance of a simulated communication channel
is measured by the Signal-to-Noise Ratio (SNR). The SNR is a measure of the quality of
the received signal and is defined as the ratio of the power of the received signal to the
power of the noise present in the channel [29]. The data generated using the simulator are
then used for the experiments with LSTM and LTC. The results from both are compared
to test the hypothesis that LTC achieves better prediction. A mathematical expression is
also fitted to the data using Symbolic Regression through genetic programming [30]. The
mathematical expression gives insights into the nature of variations in the SNR values.

2.1. Long Short-Term Memory—LSTM

For comparison, the results from using LSTM [31] for link quality prediction are
used as the baseline. The training part is performed using a dataset that has Signal-to-
Noise (SNR) values generated during simulation trials, enabling the model to decrypt the
underlying patterns and links. The input layer of the LSTM network takes the SNR value
sequence, followed by a hidden layer, and then an output layer. The LSTM cells in the
model function in a unidirectional manner, aiding in the sequential processing of data. The
training of the model utilizes back-propagation through time, which efficiently propagates
error gradients through the LSTM cells over temporal spans. The results highlight the
effectiveness and assurance of LSTM models in tasks associated with the prediction of new
SNR values as the signal propagates.

2.2. LTC

The experiments are then repeated using LTC instead of LSTM. The SNR values
are now passed as inputs to LTC. LTCs are also a type of Recurrent Neural Networks
(RNN). Unlike the traditional RNNs, which process information in discrete steps, LTC
networks handle information that is more unpredictable over time. Mathematically, they
operate using differential equations, allowing them to model systems that evolve more
dynamically [8]. A key feature of LTC is the concept of a “liquid time constant”, from which
LTC gets its name. This refers to the fact that each neuron in the network has its internal
timescale for processing information. This flexibility allows the network to capture more
granular rates of change in the data even at the time of inferencing.

2.3. Dataset: Simulation

The dataset comprises Signal-to-Noise Ratio (SNR) measurements calculated every
20 ms. SNR is computed by comparing the received signal power to the noise power in
the channel. The efficiency of a telecommunications system model operating in an urban
microcell indoor environment was examined in this work. A frequency of 28 GHz was
used to generate the SNR values in the dataset. The parameters for the environment setup
used for the simulation are as shown in Table 1. The parameters are self-explanatory.

The large-scale path loss model used in NYUSIM is a Close-In free space reference
distance (CI) model with a 1 m reference distance [32]. It includes an extra attenuation term
due to various atmospheric conditions. The model is given by Equation (1).

PLCI( f , d)[dB] = FSPL( f , 1m)[dB] + 10nlog10(d) + AT[dB] + χσ, (1)

where PLCI( f , d)[dB] is the path loss in dB at a distance of d meters and carrier frequency
of f GHz;
FSPL( f , 1m)[dB] is the free space path loss in dB at a distance of 1 m and carrier frequency
of f GHz;
n is the path loss exponent (n = 2 for free space);
AT[dB] is the total atmospheric absorption term;
χσ is the shadow fading (SF) that refers to the signal attenuation due to obstacles in the
Line of Sight, modeled as a log-normal random variable with zero mean;
σ is the standard deviation in dB.
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The Free Space Path Loss (FSPL), an idealized theoretical concept that refers to the at-
tenuation of radio signal strength as it travels through space, with no obstacles or reflections,
is given by Equation (2).

FSPL( f , 1m)[dB] = 20log10(
4π f × 109

c
) = 32.4[dB] + 20log10( f ), (2)

where c is the speed of light.
The path loss exponent is a parameter that describes how the path loss increases with

distance. For free space, the path loss exponent is 2. However, the path loss exponent can
vary depending on the environment. For example, in urban areas, the path loss exponent is
typically greater than 2 due to the presence of buildings and other obstructions. The total
atmospheric absorption term is a measure of the attenuation of the signal due to absorption
by the atmosphere. The absorption is caused by the interaction of the radio waves with
the molecules in the atmosphere. The absorption is frequency-dependent, with higher
frequencies being absorbed more than lower frequencies [33].

Shadow fading is a random variation in the received signal strength due to changes in
the propagation environment. Shadow fading is caused by changes in the terrain, buildings,
and other objects between the transmitter and receiver. Shadow fading is typically modeled
as a log-normal random variable [29] as can be seen from Equation (1).

The large-scale path loss model is used to predict the received signal strength at a
given distance from the transmitter. The model can be used to design wireless networks
and to estimate the coverage area of a wireless network [33].

2.4. Dataset Generation

The program to generate the dataset of SNR values using the simulator is written in
MATLAB R2022b Update 9 (9.13.0.2553342), 64-bit (maci64). The SNR values are produced
by simulating an mmWave wireless communication system operating at a carrier frequency
of 28 GHz, encompassing both Line-of-Sight (LOS) and Non-Line-of-Sight (NLoS) propaga-
tion paths. The procedure emulates a Channel Impulse Response (CIR) for each trajectory,
followed by multiplication with a random input signal to produce a received signal. The
SNR is calculated as the ratio of signal power to noise power, assuming noise power is
directly proportional to signal power, and a fixed SNR of 30 dB is maintained.

2.5. SNR Calculation

There are several imperative tools used for classifying the various patterns of mobility
in wireless communications. These patterns are known as mobility models and include
the Vehicular Mobility Model, the High-Speed Train Mobility Model, the Human Mobility
Model, and the Ship Mobility Model. Through the extraction of extensive datasets, such
mobility models provide researchers with the ability to scrutinize and approximate the
influence of several mobility factors such as vehicular speed, congestion levels, ambiguity,
social interactions, location preferences, and more. To perform an extensive experiment in
this field, it is critically important to assess both the Human Mobility Model (HMM) and the
Vehicular Mobility Model (VMM) as they play a vital role in apprehending and speculating
the dynamics of wireless communications. By concentrating on such specific mobility
models, researchers can attain valuable insights into the complexities of mobility patterns
and enhance the overall efficiency and reliability of wireless communication systems [5].

Using a simulated channel model, an assessment has been conducted to determine the
received signal power and noise power at the user equipment. The received signal power
is calculated as the product of the transmitted power, the antenna gain, and the path loss
between the base station and the User Equipment (UE). The noise power is calculated as
the product of the noise figure, the bandwidth, and the Boltzmann constant. Then, the
Signal-to-Noise Ratio (SNR) is calculated as the ratio of the power of the received signal to
the power of the noise, expressed in decibels (dB) [34].
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The Signal-to-Noise Ratio (SNR) is calculated as the ratio of the power of the received
signal to the power of the noise, expressed in decibels (dB). In the context of this problem,
the SNR can be calculated as

SNR = 10log10(Psignal/Pnoise)

where Psignal is the power of the received signal and Pnoise is the power of the noise.
The parameters required to calculate the SNR for this problem are as follows. Psignal :

The power of the received signal, which is calculated as the product of the channel gain and
the transmitted power. Pnoise: The power of the noise, which is calculated as the product of
the noise figure and the receiver bandwidth [5].

The distance between the transmitter and receiver, the carrier frequency, and the
properties of the propagation environment determine the channel gain. The transmitter
power and receiver bandwidth are also specified in the problem. The noise figure represents
the noise added by the receiver and is also specified in the problem [5].

Subsequently, an analysis has been conducted to establish the SNR by comparing
the power of the received signal to the power of the noise, resulting in creating a dataset
comprising SNR values recorded at 20 millisecond intervals. These recorded SNR values
offer significant insights into the operational efficiency of the communication system within
an indoor microcellular setting in urban areas [33].

2.6. Genetic Programming Based Symbolic Regression

The dataset is modeled using a mathematical expression to gain deeper insights
into the SNR values generated and predict future SNR values using the mathematical
expression. To find a mathematical expression that best fits a given dataset, Symbolic
Regression is applied to the dataset. It is a type of regression analysis in which the goal
is to find a mathematical expression that best fits a given set of data points. In contrast to
traditional regression methods that use predefined functions such as linear or polynomial
equations, Symbolic Regression allows the model to discover its own functional form
by searching through a space of mathematical expressions. Genetic programming is a
type of evolutionary algorithm that is used to find solutions to complex problems by
mimicking the process of natural selection. In genetic programming, a population of
candidate solutions, known as “individuals” is evolved over multiple generations using
principles of genetic variation and selection. The fitness function is a measure of how well
a particular individual—a potential solution—fits the data.

In Symbolic Regression, the fitness function is typically based on the degree of error
between the actual data points and the predicted values generated by the individual’s math-
ematical expression. Crossover and mutation are two key genetic operators used in genetic
programming. Crossover involves combining genetic material from two parent individuals
to create a new offspring individual, while mutation involves randomly altering the genetic
material of an individual in order to introduce new variations. Tournament selection is
a common method of selecting individuals for reproduction in genetic programming. In
tournament selection, a subset of individuals from the population is chosen at random,
and the individual with the highest fitness within that subset is selected for reproduction.
In genetic programming, individuals are represented as trees of nodes. Terminal nodes
represent input variables or constants, while non-terminal nodes represent mathematical
operations or functions [35].

The above experiment has been performed on the dataset that was generated by
an earlier-simulated model consisting of SNR values. There are predefined arithmetic
functions such as add, sub, mul sin, cos, etc., for the Symbolic Regression. The code is
implemented in Python. The SymbolicRegressor class is imported from gplearn.genetic
package. Custom-defined functions such as ReLU were defined and added to the function
set to provide the algorithm with more flexibility in modeling the data. This can be achieved
using the make_function() method. The other parameters that the SymbolicRegressor
constructor can take to configure the model are as follows:
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1. population_size: The number of individuals (mathematical expressions) in each
generation.

2. function_set: The set of functions and terminals that can be used in the mathematical
expressions.

3. generations: The maximum number of generations to evolve the population.
4. stopping_criteria: The threshold value for the Mean Absolute Error (MAE) to stop

evolution if it falls below this value.
5. p_crossover, p_subtree_mutation, p_hoist_mutation, p_point_mutation: The proba-

bilities of applying crossover, subtree mutation, hoist mutation, and point mutation
operations during evolution.

6. max_samples: The maximum proportion of samples to use in each generation during
fitness evaluation.

7. verbose: Whether to enable verbose output during evolution.
8. parsimony_coefficient: A coefficient to balance between the goodness of fit and the

complexity (parsimony) of the mathematical expressions.
9. random_state: The random seed for reproducibility.

These parameters allow us to customize the SymbolicRegressor model to fit the specific
needs. For example, one can increase the population_size to improve the accuracy of the
model, or these values could also be reduced generations to speed up the training process.
After passing the dataset through the Symbolic Regressor, the symbolic expression obtained
for the dataset is as follows.

next_e = sin(0.0667X0)

− sin

(
30.332

X0
+

1
X2

0
· {135.039 · max(0,−0.077X0

+ sin(0.077X0 + sin(0.077X0 + 0.2009))

+
14.385

X0
)}
)

+ sin(0.0667X0 + 1)

+ sin(0.077X0 − 0.563 +
14.385

X0
)

+ sin(0.077X0 + sin(0.077X0 − 0.579)− 0.338)

− sin(sin(0.0667X0 + sin(0.077X0 − 0.579)

− max(0,−0.077X0)− 15.408 +
10.418

X0

))
− 14.595

Also, the above expression can be depicted as a tree diagram using the graphviz python
package as shown in Figure 1. Graphviz helps visualize the complex math expressions
discovered by Symbolic Regression as tree diagrams, making them easier to understand
and analyze. The leaves of the math parse tree [36] are numeric constants and variables
from the symbolic expression. The internal nodes of the tree are arithmetic operations such
as addition, subtraction, multiplication, division, and sine. Traversing the tree to its root
will generate the entire symbolic expression. The tree diagram is a visual indication of the
complexity of the regression.
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Figure 1. The mathematical expression from the Symbolic Regression. Modeling the SNR values is
depicted as a tree diagram for better visualization.

Now, when the trained model is evaluated for Symbolic Regression, the fit of the
model to the data is determined by R2 score. R2 score is also called as the coefficient of
determination. It is a statistical measure that tells how well a regression model, in this case
the mathematical expression, fits the available data. It quantifies the proportion of variance
in the dependent variable, the SNR values in this case, that is explained by the model.
It ranges from 0 to 1, with 0 being the worst fit and 1 being the perfect fit. A higher R2
score means that the model is better at predicting the dependent variable. The evaluation
of the model is illustrated in a scatter plot shown in Figure 2. The x-axis is the timeline
indexed by the observation count. The y-axis refers to the Signal-to-Noise Ratio (SNR).
The blue dotted line represents the observed SNR values. The red dotted line represents
the symbolic function, which is the mathematical formula discovered by the Symbolic
Regression algorithm to approximate the true function. The closer the red line is to the blue
line, the better the fit.

Figure 2. The scatter plot from the Symbolic Regression shows how well the mathematical expression
fits the data.
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As can be seen, the fit is reasonably satisfactory. The R2 score for this fit is 0.82497861499.
The symbolic function captures the general trend of the true function reasonably well. How-
ever, there are some deviations between the two lines, particularly at higher and lower
SNR values. The deviation increases when the SNR is below −18 dB and above −10 dB. The
deviation at lower SNR values may be because of the noise floor, which sets a minimum
limit on how low the SNR can go [37]. In mmWave systems, this noise floor can be caused
by thermal noise in the components, atmospheric noise, and interference from other sources.
The short plateaus of the signal at the bottom may be caused by the noise floor. On the other
hand, the deviation at higher SNR values can be related to non-linear effects in amplifiers
and other components that can distort the signal, reducing the effective SNR even if the
raw signal power is high.

The fit method of the SymbolicRegressor class uses genetic programming to evolve a
population of mathematical expressions that best fit the training data. The predict method
uses the trained model to predict the output values for the test features. The plot shown in
the figure below the true target values (y_test) against the test features (X_test) as points
labeled “True function”, and the predicted values (y_gp1) against the test features as points
labeled “Symbolic function”. Here is a more detailed explanation of each step:

1. fit method: The fit method uses genetic programming to evolve a population of
mathematical expressions. Genetic programming is a type of evolutionary algorithm
that uses natural selection to find the best fit for a given set of data. In this case, the
data are the training set, and the goal is to find a mathematical expression that can
predict the target variable for any given set of features.

2. predict method: The predict method uses the trained model to predict the output
values for the test features. The test features are a set of data that were not used to
train the model. The model uses the mathematical expression that it evolved during
the fit method to predict the target variable for each test feature.

3. Plot: The plot shows the true target values (y_test) against the test features (X_test)
as points labeled “True function”. The plot also shows the predicted values (y_gp1)
against the test features as points labeled “Symbolic function”. The two sets of
points should be close together, which indicates that the model was able to learn the
relationship between the features and the target variable.

3. Link Prediction Experiments and Results

The LSTM experiment hyper-parameters are shown in Table 2. These are chosen based
on intuition from working with similar problems in the past.

Table 2. LSTM Hyper-parameters.

Parameter Value

Input size 1
Hidden size 32

Number of layers 2
Output size 1

Normalization MinMaxScaler
Optimizer Adam

Learning rate 0.001
Number of epochs 1000

Results for the LSTM experiment are presented in Table 3.

Table 3. LSTM Results at 28 GHz.

Evaluation Metric Value

Validation RMSE 3.9762
Test RMSE 3.4490
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Improvements with Liquid Time-Constant Network

The best results with LTC were obtained in epoch 197. The training loss obtained
in this epoch is 0.04, training MAE (Mean Absolute Error) is 0.16, validation loss is 0.16,
validation MAE (Mean Absolute Error) is 0.38, validation RMSE (Root Mean Square Error)
is 0.41, testing loss is 0.06, testing MAE (Mean Absolute Error) is 0.20, and test RMSE (Root
Mean Square Error) is 0.25.

The RMSE values for the LTC experiment are given in Table 4.

Table 4. LTC Results at 28 GHz.

Evaluation Metric Value

Validation RMSE 0.41
Test RMSE 0.25

4. Discussion

As can be seen from the RMSE values from the experiments with the LSTM and LTC
frameworks, LTC performs thirteen times better than the LSTM framework when it comes
to link prediction. The RMSE obtained using LSTM in this work, 3.44 dB, is comparable
with that in the literature, which is 3.14 and 2.84 for two different use cases [5]. The results
can be interpreted from the Symbolic Regression perspective. As can be seen from the
complexity of Figure 1 and the corresponding mathematical expression, the SNR values
fluctuate substantially, as is characteristic of mmWaves. LSTM is not good at modeling this
level of randomness, at least in comparison with LTC, confirming the initial hypothesis.

It must also be noted that Symbolic Regression has been proven to be NP-hard [38].
There is no known efficient, polynomial-time algorithm to solve it for all cases. As the
problem size increases, the computational cost grows exponentially, making it increasingly
difficult to solve in a reasonable amount of time. Even with the approximate Symbolic
Regression implementation in this work, the computational complexity is high due to the
vast search space, evaluation requirements, and limitations of heuristic approaches. On the
other hand, LSTM is local in space and time with a linear computational complexity per
time step [31] and LTC is similar.

5. Conclusions

The mmWaves that characterize 5G networks pose some unique challenges in model-
ing, even using the most effective machine learning algorithms that have been employed so
far in the literature. This work attempted to better model the SNR values from a simulated
mmWave propagation using LTC and achieved outstanding results that are thirteen times
better than the results from the best framework used in the literature, which is LSTM. Using
LSTM resulted in a test Root Mean Squared Error (RMSE) of 3.44 dB, and LTC, 0.25 dB.
The intricacy of the prediction task that makes LTC more suitable is confirmed by the inter-
pretation using Symbolic Regression, which resulted in a complex arithmetic expression
to model the fluctuations in the SNR values. A future direction is to use other recent and
interpretable deep learning frameworks, such as Kolmogorov–Arnold Networks.
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