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ABSTRACT 

REPRODUCTION OF TWENTIETH CENTURY INTRADECADAL TO  

MULTIDECADAL SURFACE TEMPERATURE VARIABILITY IN  

RADIATIVELY FORCED COUPLED CLIMATE MODELS 

by Patrick T. Brown 

Coupled Model Intercomparison Project 3 simulations that included time varying 

radiative forcings were ranked according to their ability to consistently reproduce 

twentieth century intradecadal to multidecadal (IMD) surface temperature variability at 

the 5° by 5° spatial scale.  IMD variability was identified using the running Mann 

Whitney Z method.  Model rankings were given context by comparing the IMD 

variability in preindustrial control runs to observations and by contrasting the IMD 

variability among the ensemble members within each model.  These experiments 

confirmed that the inclusion of time-varying external forcings brought simulations into 

closer agreement with observations.  Additionally, they illustrated that the magnitude of 

unforced variability differed between models.  This led to a supplementary metric that 

assessed model ability to reproduce observations while accounting for each model's own 

degree of unforced variability.  These two metrics revealed that discernable differences in 

skill exist between models and that none of the models reproduced observations at their 

theoretical optimum level.  Overall, these results demonstrate a methodology for 

assessing coupled models relative to each other within a multi-model framework.
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1. Introduction 

Coupled general circulation models (CGCMs) have become the primary tools for 

making projections of future surface temperature changes.  In order for these projections 

to instill confidence, models should have a history of accurately reproducing spatial and 

temporal characteristics of past climate variation.  Despite this, much of the work 

regarding CGCM validation has focused on time-mean state climate statistics that infer 

little about climate variation through the historical record (e.g., Giorgi and Mearns 2002; 

Knutson et al. 2006; Pierce et al. 2009; Reichler and Kim 2008; Tebaldi et al. 2005).  

While it is important that a model be able to produce the correct climatic mean and 

variance of a given variable, ideally models should also be able to reproduce historical 

variations of such variables in time. 

One reason for restricting climate model evaluation to time-mean state statistics is 

that free-running CGCMs cannot be expected to reproduce unforced variability 

throughout the historical record (variability that emerges simply from the internal 

dynamics of the coupled climate system).  For instance, the El-Niño Southern Oscillation 

(ENSO) influences global temperature change on the interannual time scale (Neelin et al. 

1998).  Free-running CGCMs have their own ENSO variability, and the phasing of this 

cycle is not expected to match historical observations.  Even on the multi-decadal scale, 

continental temperature is heavily constrained by oceanic temperature variation (Compo 

and Sardeshmukh 2009).  As a result, it is likely that unforced oceanic circulations, such 

as those associated with Pacific Decadal Variability (PDV) and the Atlantic Meridional 
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Overturning Circulation (AMOC), have heavily influenced global surface temperature 

evolution on the multi-decadal scale (DelSole et al. 2011; Kravtsov and Spannagle 2008; 

Swanson et al. 2009; Wu et al. 2011; Zhang et al. 2007).  A portion of this oceanic 

variability, however, may be constrained by external radiative forcings (Goosse and 

Renssen 2004; Ottera et al. 2010).  In this case, retrospective CGCM simulations may be 

expected to correctly reproduce some portion of the multidecadal scale temperature 

variability over the twentieth century.  Indeed, the influence of external radiative forcings 

on the global surface temperature has been shown to exceed that of internal variability as 

the time scale of interest increases from the interannual to the multidecadal level 

(Solomon et al. 2011; Hegerl et al. 2007). 

The present study evaluated intradecadal to multidecadal (IMD) temperature 

variability in retrospective CGCM simulations from the World Climate Research 

Program's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP 3) multi-

model dataset.  The simulations investigated here included historical estimates of 

radiative boundary forcings but were initialized from arbitrary times in each model's 

preindustrial control run.  Therefore, this study implicitly examined the degree to which 

observed IMD variability was reproducible via the inclusion of time-varying forcings.  A 

methodology was developed that assesses model ability to reproduce observations while 

also accounting for variation in the magnitude of modeled unforced variability. 
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2. Data 

Observational surface temperature data were obtained from the HadCRUT3v 

combined land and marine gridded surface temperature dataset (Jones et al. 1999; Rayner 

et al. 2003).  Only those grid points with completely uninterrupted monthly records 

between 1902 and 1999 were investigated (for details on the aggregation of raw station 

data to the regular 5° by 5° grid; see Jones et al. (1999) and references wherein).  The 211 

locations that met this criterion are numbered in Fig. 1.  The monthly temperature series 

at each location was averaged to form an annual temperature series.   

 

 

FIG. 1. 211 grid locations investigated where the colors identify regions in Figs. 4, 

5, and 8-10. 

It should be noted that these grid areas represent a limited portion of the Earth's surface 

(~10%), and it is unknown if the results discussed below would hold for a dataset 
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covering the entire globe.  Additionally, these grid points have a strong spatial emphasis 

on the Northern Hemisphere, particularly the United States and Europe.  The impact of 

this particular spatial distribution is investigated in section 4b. 

The CGCM runs that were evaluated were those of the CMIP 3 climate of the 

twentieth century experiment (20C3M: Meehl at al. 2007a) as well as the associated 

preindustrial control experiment (PICNTRL).  Models were considered that had at least 

three ensemble members available for the 20C3M experiment as well as at least 220 

years available for the PICNTRL experiment.  The twelve models that met these criteria 

are listed in Table 1. 

Before assessment was conducted, model output was bilinearly interpolated to the 

same 5° by 5° grid used in the HadCRUT3v dataset (spatial weighing was also performed 

as is discussed in section 4a).  This interpolation was designed to minimize biases 

associated with grid-resolution differences between models.  Additionally, the 5° by 5° 

spatial scale was larger than any of the individual models' grid scales.  Because of this, 

subgrid-scale influences (e.g., local topography) were unlikely to have introduced any 

significant biases when model output was compared with observations.  Also, this spatial 

scale is near the minimum required for the influence of twentieth century external 

forcings to be apparent on surface temperature (Karoly and Wu 2005).   
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Table 1. Information for the 12 models investigated.  20C3M forcing abbreviations are 

identified as follows: GHG - well-mixed greenhouse gases, H - halocarbons, Su - sulfate 

tropospheric aerosols, L - land use, V - volcanic aerosols, O3 - ozone, B - other aerosols, 

and So - solar irradiance. 

Model Originating Group(s) 
20C3M 

Forcing 

Number of 

20C3M 

Ensemble 

Members 

Number of 

20C3M versus 

20C3M Pair 

Wise 

Comparisons 

Number of 

98 Year 

PICNTRL 

Segments 

CCSM3 
National Center for 

Atmospheric Research 

GHG, So, 

Su, V, O3, 

H, B 

8 28 9 

CGCM3.1(T47) 

Canadian Centre for 

Climate Modeling & 

Analysis 

GHG, Su 5 10 15 

CSIRO-Mk3.0 
CSIRO Atmospheric 

Research 
GHG, Su, O3 3 3 4 

ECHAM5/MPI-OM 
Max Planck Institute for 

Meteorology 

GHG, Su, H, 

O3 
4 6 6 

ECHO-G 

Meteorological Institute of 

the University of Bonn, 

Meteorological Research 

Institute of KMA, and 

Model and Data group. 

GHG, So, 

Su, V, O3 
5 10 4 

GFDL-CM2.0 

US Dept.  of Commerce / 

NOAA / Geophysical 

Fluid Dynamics 

Laboratory 

GHG, O3, 

Su, V, So, L 
3 3 6 

GFDL-CM2.1 

US Dept.  of Commerce / 

NOAA / Geophysical 

Fluid Dynamics 

Laboratory 

GHG, O3, 

Su, V, So, L 
3 3 6 

GISS-EH 
NASA / Goddard Institute 

for Space Studies 

GHG, So, 

Su, V, O3, 

H, L, B 

5 10 5 

GISS-ER 
NASA / Goddard Institute 

for Space Studies 

GHG, So, 

Su, V, O3, 

H, L, B 

9 36 6 

MIROC3.2 

(medres) 

Center for Climate System 

Research 

(The University of 

Tokyo), National Institute 

for Environmental 

Studies, and 

Frontier Research Center f

or Global Change 

(JAMSTEC) 

GHG, So, V, 

O3, L, Su, 

B, H 

3 3 6 

MRI-CGCM2.3.2 
Meteorological Research 

Institute 

GHG, H, So, 

Su, V, O3 
5 10 4 

PCM 
National Center for 

Atmospheric Research 

GHG, So, 

Su, V, O3 
4 6 8 
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3. Identification of IMD Variability in Time Series Data 

Modeled and observed time series were analyzed via the running Mann Whitney-

Z (MWZ) method.  This method has been used previously to identify significant IMD 

variation in observational time series (Masiokas et al. 2010; Mauget 2003, 2004; Cordero 

et al. 2011).  Here, this work has been extended to comparisons between modeled and 

observed time series in a similar manner to Mauget et al.  (2011).  Specifically, the 

running MWZ method is used to highlight IMD regimes of arbitrary onset and duration in 

both modeled and observed annual temperature time series (from 1902 to 1999) at each 

of the 211 grid locations investigated (Fig. 1).  This method is described in the six steps 

below and illustrated in Fig. 2. 

1. All the data values in the given annual temperature series at a particular grid 

location (e.g., Fig. 2a) are ranked from lowest to highest. 

2. The temperature series is sampled by a moving window of incrementally varying 

size from 6 to 30 years.  For each window size, every possible sample in the time 

series is investigated.  For example, when the window is six years in length, the 

first sample contains the years 1902-1907, the second sample contains the years 

1903-1908 and the last sample contains the years 1994-1999.  This same 

procedure is followed for all the remaining window sizes (7-30 years in duration).   

3. A Mann Whitney-U statistic (Mann and Whitney 1947) is calculated for each of 

the samples described in step 2.  The U statistic is defined as the total number of 

years outside the sample that precede each year inside the sample in rank.  Stated 
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in another way, the number of non-sample years that were cooler than each year 

within a given sample is summed to obtain the U statistic.  The U statistic can also 

be calculated using  

 

2

]1[ 
 II

II

nn
RU ,                                                (1) 

where RI is the sum of the ranks for the sample I and nI is the size of the window 

in years (Mendenhall et al. 1990; Wilks 1995).   

4. U statistics for each sample are normalized via a Z transformation, 






U
Z .                                                       (2) 

The Z transformation relies on the assumption that random sampling would produce a 

Gaussian distribution of U values between two extreme cases.  The first extreme case 

would be that the given sample contains all the lowest ranking years in the temperature 

series, and the second extreme case would be that the given sample contains all the 

highest ranking years in the temperature series.  Thus for a 98-year time series divided 

into a 10-year sample and an 88-year non-sample, the highest possible U statistic would 

occur when the sample contains the 10 highest ranked years (U = 88*10).  Conversely, 

the lowest possible U statistic would result from a sample containing the 10 lowest 

ranked years (U=0*10).  The mean (µ) of the null distribution used in the Z 

transformation is simply the average of the two extreme cases,  

2

III nn
 ,                                                      (3) 
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where nI  is the number of years inside the sample and nII  is the number of years 

outside the sample.  The standard deviation (σ) of this null distribution may be 

estimated by 

12

]1[ 
 IIIIII nnnn

                                               (4) 

 (Mendenhall et al. 1990). 

5. After all U statistics for each sample are Z transformed, all the periods significant 

at a 95% confidence level (|Z| > 1.96) are pooled (e.g., Fig. 2b).   

6. The significant periods are screened with the intent of identifying the samples 

with the highest absolute Z values, at all window lengths, that do not overlap in 

time.  This is accomplished in two steps.  First the period with the highest 

absolute Z value is identified and second all overlapping periods with lesser 

absolute Z values are deleted.  This two-step process continues indefinitely until 

no remaining periods overlap in time (e.g., Fig. 2c).  Any year that is not included 

in one of the remaining significant Z periods is assigned a value of zero so that a 

continuous series of Z values can be produced. 
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FIG. 2.  a) Temperature series for HadCRUT3v data at location #42 in Fig. 1.  b) 

All signifigant (|Z| > 1.96) runs of U statistics in the time series.  c) Original temperature 

series and the most significant periods that occured over non-overlapping samples plotted 

together.  All gap years that are not part of a Z period are considered to have a Z value of 

zero. 

 

The resulting Z series highlights IMD variability in time-series data.  The central 

assumption of the method is that climate variations consist of simple, non-cyclic, ranking 

regimes that occur over a range of time scales and have arbitrary onset times.  This 

inclusive assumption gives the method an advantage over some filtering methods that 

may be considered simpler or more intuitive.  For instance, spectral filters make 

assumptions about periodicity in the data that may be inappropriate for the study of 

temperature series affected by non-cyclical radiative boundary forcings.  The ranking-
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based nature of the method also allows for making observed versus modeled and model 

versus model comparisons with biased variance and/or means.  Finally, the method is 

resistant to outliers that may be unrepresentative of the temperature regime being 

experienced at a given time (e.g., 1955 in Fig. 2). 

As mentioned above, the process of Z transforming the U statistics was done by 

utilizing a normal null distribution, which assumed random and independent sampling.  

This is in contrast to how the method had been employed in some previously published 

works (Masiokas et al. 2010; Mauget 2003, 2004; Cordero et al. 2011).  In these cases, 

the null distribution was created from Monte Carlo trials that attempted to embody a 

hypothetical climate characterized by year-to-year temperature persistence but no IMD 

variability.  Thus, the purpose of these previous null distributions was to constrain the Z 

values that could be considered significant in the traditional sense.  In the present 

application, this method would be unfavorable because Monte Carlo trials would produce 

differing σ values for modeled and observed null distributions (equation 2) of a given 

window length.  Accordingly, identically ranked temperature series would result in 

slightly differing Z series.  Because the overall goal of this analysis was to find 

dissimilarity between modeled and observed IMD variability, this would have been 

unacceptable.  In order to guarantee that identical ranking sequences resulted in identical 

Z series, it was necessary to fix null parameters like those in equations 3 and 4 (see 

Mauget et al. (2011) for further discussion). 
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Because observed and simulated temperature series display persistence, the 

assumption of random and independent sampling inevitably caused the detection of what 

would traditionally be considered 'spurious' significance.  Because of this issue, unusually 

large absolute Z values are seen in much of this analysis (e.g., |Z| > 6.0).  It must be 

emphasized that this was not a problem in the current application of the method as the 

ultimate goal of the MWZ transformation was to highlight IMD variability in modeled 

and observed climate data so that they could be compared.  In typical significance testing 

in climate analysis, the goal is to test observed variability against a null hypothesis that 

assumes a hypothetical stationary climate condition.  As these hypothetical conditions are 

normally required to possess the interannual persistence of observed data, that hypothesis 

has to account for the persistence.  Since the goal is not to test for non-stationarity in a 

time series but instead is to compare the ranking sequences of modeled and observed time 

series, consistent normalization of the U statistic trumps the use of realistic assumptions 

regarding the autocorrelation present in the data.   

The MWZ method uses six years as the minimum window length for the detection 

of significance because this is near the threshold where external forcings would likely be 

nearly undetectable through the noise of unforced variability.  It is true that many 

external forcings (such as increases in the atmospheric concentrations of long-lived 

greenhouse gasses) are only expected to dominate unforced variability on the 

multidecadal scale and beyond (Boer 2011).  Despite this, other external radiative 

forcings that are incorporated in the retrospective (20C3M) runs likely have a non-

negligible influence on the intradecadal scale (Solomon et al. 2011).  In particular, 
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volcanic eruptions as well as solar variability can influence surface temperature on time 

scales less than a decade in length.  As the time scale approaches the interannual level, 

however, temperature changes would likely be dominated by ENSO as well as other 

modes of unforced variability. 

4. Model Assessment Relative to Observations 

Models were assessed by comparing the Z series from the simulated and observed 

temperature, where the difference between modeled and observed Z series at each year t 

is defined by the Z error,  

)()( tObstModeledt ZZZE  .                                            (5) 

Modeled Z series were scored based on their mean absolute Z error (MAZE) over 

the 98-year period from 1902 to 1999, 

 


98

198

1
t tEZMAZE .                                             (6) 

Smaller MAZE scores imply better agreement between the ranking sequences in 

observed and modeled time series.  Therefore, because the MAZE metric is based on 

rankings, it does not incorporate information about the absolute magnitude of data values 

in a time series.  Fig. 3 shows an example of a modeled temperature series with a ranking 

sequence that matched observations relatively successfully, producing a low MAZE 

value of 1.00 (Fig. 3a), as well as an example of a modeled temperature series with a 

ranking sequence that matched observations relatively poorly, producing a high MAZE 
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value of 4.14 (Fig. 3c).  Figs. 3b and 3d emphasize the degree to which these two 

modeled time series differed from observations by representing the magnitude of each 

year's Z error with a bar.  The temperature series in Fig. 3a had similar phasing (onset and 

duration) of IMD variability as was seen in observations (Fig. 2).  In contrast, the phasing 

of IMD variability shown in Fig. 3c was a relative mismatch to observations. 

 

 

FIG. 3. a) Temperature time series and associated Z Series for Echo-G 20CM3 run 

#2 at location #42.  b) Z error for Echo-G 20CM3 run #2 at location #42.  c) Temperature 

time series and associated Z Series for Echam5/MPI-OM 20CM3 run #2 at location #42.  

d) Z error for Echam5/MPI-OM 20CM3 run 2 at location #42.  Note that the Z error plots 

are relative to the Z series associated with observations at location #42 shown in Fig. 2c. 
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a. Historical IMD Variability in Observations 

Fig. 4 is a spatiotemporal representation of the Z series for the HadCRUT3v 

observational dataset.  In this plot, all 211 Z series in the domain have been collapsed 

onto a single vertical axis that is ordered according to Fig. 1.  This realization of the data 

illustrates that significant cool regimes dominated the first third of the twentieth century 

before warm regimes subsequently became more widespread.  The significance and onset 

of regime changes is seen to vary widely by location.  The most significant late-century 

warm regimes were observed across the southern hemisphere (grid numbers 1-37) as well 

as eastern and central Asia (grid numbers 115-150).  Some instances of anomalous late 

century cool regimes are also observed.  The most significant late-century cool regime 

was seen in the southeastern United States (grid numbers 49-52 and 75-79).  This 

anomalous feature, often referred to as the U.S.  "warming hole" has been well 

documented elsewhere (e.g., Robinson et al. 2002; Pan et al. 2004; Kunkel et al. 2006) 

and is usually attributed to unforced variability or possibly local sulfate aerosol loading.  

In addition to the U.S. warming hole, some late-century cool regimes can be seen in the 

eastern Mediterranean region (grid numbers 156-158) as well as in eastern/northern 

Europe (grid numbers 195-199).   
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FIG. 4. Spatiotemporal Z series plot for the HadCRUT3v dataset at the 211 

locations investigated.  The grid numbers and colors shown in the left legend correspond 

to the numbered locations and colors in Fig. 1. 

 

Overall model performance was assessed by measuring how well a given model's 

simulations matched the spatiotemporal Z series representation of observations.  

Mathematically, models were scored based on their Figure of merit (FM) which is 

defined as the area-weighted average of each Z series' MAZE over the 211 locations, 










211

1

211

1

)(

)(*)(

igrd

igrd

igrdarea

igrdMAZEigrdarea
FM .                                       (7) 
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b. 20C3M versus Obs. Experiment 

Models were ranked based on their 20C3M ensemble members' ability to 

reproduce observations as quantified through the FM.  In total, 57 20C3M simulations 

were examined from the 12 different models listed in Table 1.  Figs. 5a and 5c show the 

spatiotemporal representation of the Z series for two 20C3M simulations from different 

models.  Fig. 5a represents the single simulation with the best (lowest) FM, while Fig. 5c 

represents the single simulation with the worst (highest) FM.   

 

FIG. 5. a) Spatiotemporal Z series plot for the 20C3M simulation that was the 

closest match to observations (ECHAM5/MPI-OM run #3) and b) its associated 

spatiotemporal Z error plot.  c) Spatiotemporal Z series plot for the 20C3M simulation 

that was the largest mismatch to observations (ECHO G run #2) and d) its associated 

spatiotemporal Z error plot. 
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These results are emphasized in Figs. 5b and 5d, which show the spatiotemporal Z error 

between the modeled and observed Z series.  It is apparent that even the best simulations 

disagree with observations.  This is to be expected as unforced variability inevitably 

played a role in both the simulated and observed evolution of twentieth century climate.   

To investigate the effects of this unforced variability, FMs were calculated for 

every available ensemble member of each model.  The 57 FMs associated with each 

individual ensemble member are plotted in Fig. 6, where the models are ranked according 

to their ensemble mean FM (the simple average of the ensemble member's FMs for each 

model).  For some models, like model #11, the FMs produced by their individual 

ensemble members were relatively consistent.  These ensemble members were initialized 

with differing oceanic conditions and had only external radiative boundary forcings in 

common.  Therefore, it was inferred that models with little spread in their FMs produced 

IMD variability that was heavily influenced by external radiative forcings.  For these 

models, there was high confidence that their ensemble mean FM was representative of 

their ability to reproduce observations.  Conversely, models with large spreads in their 

20C3M versus Obs. FM distributions, such as model #8, were likely to be more heavily 

influenced by unforced variability, and thus there was less confidence that the ensemble 

mean FM for these models was representative of their ability to reproduce observations.  

This concept was formalized with an application of the student's t-test (two tailed, 

assuming unequal variance) to each pair-wise combination of models to test if their 

ensemble mean FMs were statistically distinguishable.  This test was necessary to make 

any meaningful statements about a given model's ability to reproduce observations 
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relative to any other model.  Fig. 7 shows the results of these tests.  Of the 66 model-

model comparisons made, 35 were judged to be statistically unique, while 31 were 

judged to be statistically indistinguishable (at the 90th percentile).  Accordingly, relative 

model performance could only be assessed in those 35 statistically significant 

comparisons (colored cells in Fig. 7).  The models that were ranked 1st, 3rd, and 4th in 

Fig. 6, outperformed the highest number of remaining models (6 each) at a statistically 

significant level.  Conversely, the 12th ranked model was outperformed by 9 of the 11 

models ranked ahead of it at a statistically significant level.   

 

FIG. 6. FM scores for each 20C3M versus Obs. experiment ensemble member 

(green diamonds) as well as the ensemble mean for each model (black star).  Models are 

ranked by their ensemble mean FM in ascending order from left to right. 
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FIG. 7. Results of student t-tests between the 20C3M versus Obs. FM distributions 

for each model.  The value in each cell is the p-value of the t statistic (rounded to the 

hundreds place) for a comparison between the models in the associated row and column.  

Statistically significant values are colored according to their level of significance and 

indicate that the ensemble FM means for those model combinations are distinct from one 

and other. 

 

The sensitivity of the above results to the spatial domain used was also 

investigated.  Model rankings were recomputed using a subset of the spatial domain 

shown in Fig. 1.  This subset consisted of 99 grid cells that were more evenly spaced, and 

had less of an emphasis on the United States and Europe.  This domain resulted in model 

rankings that were slightly different than the ones shown above.  Three models shifted 

two positions each while four models shifted one position each.  The remaining five 

models remained in the same position that they had occupied previously.  These results 
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suggest that the model rankings in question are affected to some degree by the domain 

used and that this analysis favors those models that reproduce observations well over the 

United States and Europe.  Despite this, the model rankings did not change significantly 

under a new domain which indicates that the rankings shown above are relatively robust.   

5.  Average Spatiotemporal IMD Variability in Models 

 Ensemble mean spatiotemporal Z series plots for each model are shown in Fig. 8, 

while Fig. 9 shows the corresponding Z error plots.  These Figs. are averages of the 

spatiotemporal Z series plots of the models' individual ensemble members and are thus 

not the result of applying the MWZ methodology to ensemble mean temperature series.  

It should be noted that the plots associated with numerous ensemble members emphasize 

the forced signal more than the plots associated with fewer ensemble members. 

All the models investigated showed the broad warming pattern that was apparent 

in observations (Fig. 4).  Also, many of the models reproduced the general overall cool-

warm-cool-warm pattern that was seen at many locations.  Most models produced early 

century regimes that were generally too warm compared with observations.  In the middle 

of the century, however, most models tended to produce Z values that were too cold 

compared with observations.  Late century warm regimes were reproduced relatively 

successfully by most of the models.  However, very few late century cool regimes were 

present in these ensemble means, which suggests that their presence in observations was 

either a result of unforced variability or a forced mechanism that was not well modeled. 
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FIG. 8. Ensemble mean spatiotemporal Z series plots for each model from their 

20C3M experiment.  Models are ordered by their rank in the 20C3M versus Obs. 

experiment (Fig. 6). 
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FIG. 9. Spatiotemporal Z error plots for the 20C3M versus Obs. experiment 

ensemble mean for each model.  Models are ordered by their rank in the 20C3M versus 

Obs. experiment (Fig. 6). 
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Despite the overall reproduction of a warming pattern, models differed 

considerably in their ability to reproduce the specific spatiotemporal signatures of IMD 

variability in the observed record.  The analysis in section 4b suggested that the models 

ranked 1st, 3rd, and 4th were statistically better at reproducing observations than the 

bottom six models, and that the model ranked 2nd was statistically better at reproducing 

observations than the bottom five models.  This is apparent in the spatiotemporal analysis 

as well.  The top four models were consistent in their ability to reproduce the observed 

pattern that the most significant early century cool regimes were located in the southern 

hemisphere (grid numbers 1-37), east/central Asia (grid numbers 115-150) and in 

proximity to the northeastern Atlantic ocean (grid numbers 190-211).  Models #5, #7, and 

#8 displayed some similar behavior but matched observations to a lesser degree.  Models 

#9, #10, #11, and #12 did not produce this pattern at all.  Model #6 as well as the models 

ranked 10th to 12th also failed to reproduce many of the warm regimes that appear in 

observations from the 1930s to the 1960s.  The top three models did the best job of 

representing late century warmth as being most significant in the southern hemisphere 

(grid numbers 1-37) and east/central Asia (grid numbers 115-150).  Some of the poorer 

scoring models also produced this pattern but still produced high Z errors due to 

differences in the magnitude of significance. 
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6.  Context for Model Performance  

Because the methodology outlined in section 4 has not been used in previous 

studies, there is no standard measure for what may be considered good or poor FMs.  In 

order to give the results of the 20C3M versus Obs. experiment some context, two 

additional experiments (PICNTRL versus Obs. and 20C3M versus 20C3M) were 

conducted.  The PICNTRL versus Obs. experiment was intended to identify poor FM 

values associated with de-correlated IMD variability, while the 20C3M versus 20C3M 

experiment was intended to identify good FM values associated with a satisfactory 

reproduction of forced IMD temperature variability.  The latter experiment was also used 

to form a relative performance metric that effectively handicapped model performance 

based on each model's own potential to reproduce observations.   

a. PICNTRL versus Obs. Experiment 

To determine the magnitude of FM values consistent with essentially random 

variability, each model's PICNTRL simulations were compared with observations of the 

twentieth century at the 211 grid locations.  For each model, multiple 98-year segments 

were extracted from their PICNTRL experiment at 60-year lag intervals (e.g., 0-98, 60-

158, 120-218, etc.).  This worked to increase the number of 98-year segments that could 

be produced while still ensuring that run FMs were minimally dependent.  The first 

segment for each model was excluded from evaluation so that any non-physical 

adjustments associated with model spin-up would not contaminate the results.  In total, 

79 98-year PICNTRL runs were investigated from the 12 models (Table 1).   
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In this scenario, high FM values were expected since there was no reason to 

anticipate similar IMD variability between an unforced simulation and the observed 

twentieth century climate.  Fig. 10 illustrates the general characteristics of the IMD 

variability in unforced simulations from different models.  The coincident occurrences of 

significant warm (cool) regimes in given regions indicates that the unforced simulations 

produce IMD variability that is semi-consistent across space and time, suggesting an 

influence from natural oceanic oscillations.   

 

FIG. 10. Spatiotemporal Z series plots for preindustrial control runs from four 

different models. 
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b. 20C3M versus 20C3M Experiment 

To estimate good (low) FMs, an experiment was performed that calculated FMs 

between 20C3M ensemble members of the same model.  FMs for this experiment were 

calculated in the same way described in section 4, except that the Z error was redefined, 

ji tModeledtModeledt ZZZE )()(  ,                                            (8) 

where each modeled Z value came from differing ensemble members within a given 

model (represented by the subscripts i and j, i≠j).  FMs were calculated between each 

possible pair-wise comparison of 20C3M ensemble members for each model (128 total 

comparisons as indicated in Table 1).   

IMD temperature variability can result from both external radiative boundary 

forcings as well as unforced variability (Latif et al. 2010).  Because of the random 

initialization of a model’s CMIP 3 ensemble members, the unforced variability among 

those ensemble members is essentially random.  Consequently, even if a model were to 

represent the climatic response to external forcings perfectly, its 20C3M versus 20C3M 

FMs would still be nonzero due to the unforced component.  Because ensemble members 

within each model incorporate identical radiative boundary forcings, any nonzero FM in 

this experiment can be attributed exclusively to differences in initial conditions and thus 

can act as a quantitative measure of the unforced variability for that model.  As a result, 

these intra-ensemble FMs are consistent with the best possible scores that could be 

expected in the 20C3M versus Obs. experiment. 
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c. FM Results for all Experiments 

The 20C3M versus Obs. FMs are plotted along with the PICNTRL versus Obs. 

and 20C3M versus 20C3M FMs in Fig. 11a.  Intuitively, we expect the PICNTRL versus 

Obs. FMs to be higher than the 20C3M versus Obs. FMs.  This was true for many of the 

models although it was not universal as the models ranked 7th, 9th, 10th, and 11th all had 

at least one of their 20C3M versus Obs. FMs score worse than one of their PICNTRL 

versus Obs. FMs.  This would indicate that these 20C3M versus Obs. ensemble members 

did a particularly poor job of reproducing the observations.   

 

FIG. 11. a) FM scores for each model and experiment.  b) The mean FMs for each 

model and experiment.  c) Departure from Optimum for each model.  In each plot models 

are ranked by their 20C3M versus Obs. ensemble mean FM in ascending order from left 

to right. 
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Despite this, student t-tests indicated that for each model, the 20C3M versus Obs. FM 

means were statistically distinguishable from their own PICNTRL versus Obs. FM means 

at the 90
th

 percentile or greater.  This illustrated that external radiative boundary forcings 

acted to bring IMD temperature variability into a greater agreement with observations in 

every model investigated. 

Also in accordance with expectations, the 20C3M versus 20C3M FMs generally 

scored better than the 20C3M versus Obs. FMs.  Student t-tests indicated that for each 

model, 20C3M versus Obs. FM means were statistically distinguishable from their own 

20C3M versus 20C3M FM means at the 95th percentile or greater.  This illustrated that 

none of the models reproduced observations at their theoretical optimum (where a 

model's only source of error is due to unforced variability).  Assuming that the 

observational dataset used in this analysis was essentially correct, this would suggest that 

there was substantial room for improvement in the simulation of twentieth century IMD 

variability.   

The performance of the 20C3M versus 20C3M experiment also differed 

perceptibly from model to model.  For example, the mean 20C3M versus 20C3M FM for 

model 8 was 2.18 compared with 1.76 for model 11.  This suggested that there were 

distinct differences in the magnitude of unforced variability between the models.   

Because the spatial domain had a strong emphasis on the United States and Europe, these 

differences in internal variability might be traced to different realizations of the AMOC, 

which have been shown to be distinct between CMIP 3 models (Meehl et al. 2007b).  
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More generally, differences could be attributed to different representations of ocean 

dynamics that can be affected by factors such as the model's oceanic grid resolution 

(Swanson et al. 2009). 

d. Departure from Optimum 

 In addition to providing context to the 20C3M versus Obs. experiment, the 

20C3M versus 20C3M experiment was used to create the Departure from Optimum 

(DFO) metric, where 

DFO = avg(20C3M versus Obs. FMs) – avg(20C3M versus 20C3M FMs).         (9) 

More intuitively, the DFO can be thought of as the lengths of the lines in Fig. 11b.  The 

DFO indicates continuously better model performance as it approaches zero, or as the 

model's 20C3M versus Obs. performance approaches its own 20C3M versus 20C3M 

performance. 

The DFO is relative in the sense that models are scored in relation to their own 

optimum FM expectations based on their 20C3M versus 20C3M experiment.  Physically, 

the DFO handicaps model performance based the amount of unforced variability present 

in each model.  If a given model had a high average FM for the 20C3M versus 20C3M 

experiment (e.g., model #8), then this model incorporated a relatively high amount of 

unforced IMD variability in its representation of twentieth century climate compared with 

other models.  Accordingly, the expectation that this model could reproduce observed 

IMD temperature variability via the inclusion of external radiative forcings should be 
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reduced.  Alternatively, if a given model had a low average FM for the 20C3M versus 

20C3M experiment (e.g., model #11) then this model incorporated a relatively low 

amount of unforced IMD variability and thus the model could be expected to reproduce 

more of the observed IMD variability using only external radiative forcings.   

DFOs for each model are shown in Fig. 11c.  Models that scored better in the 

absolute sense by performing better in the 20C3M versus Obs. experiment also tended to 

produce better DFOs.  In particular, the top two ranked models in the 20C3M versus Obs. 

experiment were also the top two ranked models in the DFO metric.  Additionally, the 

three bottom ranked models (in terms of the 20C3M versus Obs. experiment) had DFOs 

ranked in the bottom three as well.  This suggests that performance in the 20C3M versus 

Obs. experiment was not heavily biased against models with intrinsically more unforced 

variability, and it corroborates the ranking based on the 20C3M versus Obs. experiment 

alone.  However, the DFO does illustrate that the influence of unforced variability should 

be considered when attempting to rank uninitialized models in their ability to reproduce 

observations.  For instance, the models ranked 3rd to 5th in the 20C3M versus Obs. 

experiment were outperformed in DFO by the models ranked 6th to 8th in the 20C3M 

versus Obs. experiment.  This was a result of the models ranked 3rd to 5th containing a 

lower amount of unforced variability, which effectively raised the expectations that they 

could reproduce observed patterns.   

The fact that every model had a positive DFO demonstrated that there is ample 

room for improvement in model performance.  This does not necessarily mean that the 
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improvement should be achieved by lowering the 20C3M versus Obs. FMs to be in closer 

agreement with the 20C3M versus 20C3M FMs.  It could very well be the case that these 

models systematically underestimate the amount of unforced variability in the climate 

system (as has been suggested by Swanson et al. (2009)).  In this case, lower DFOs could 

be achieved through the raising of the 20C3M versus 20C3M FMs.   

e. Combining 20C3M versus Obs. and the DFO 

Because the 20C3M versus Obs. experiment and the DFO results do not produce 

identical model rankings, assessment of model performance relative to other models can 

be ambiguous.  We would recommend that to be confident that a given model is 

performing better than another model, it should have a lower mean 20C3M versus Obs. 

FM (at a statistically significant level), and it should also have a lower DFO.  Fig. 12 

illustrates where this has occurred by indicating which of the statistically distinguishable 

model-model comparisons (in the 20C3M versus Obs. experiment shown in Fig. 7) were 

also characterized by the lower ranking model (in terms of numerical value) having a 

lower DFO.  Of the 35 statistically distinguishable model-model comparisons shown in 

Fig. 7, 28 comparisons passed this additional constraint that the lower ranking model 

have a lower DFO.  In these 28 cases, we can be reasonably sure that the models being 

compared were characterized by distinct differences in skill.   
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FIG. 12. Model comparison summary chart illustrating where statistically 

distinguishable model-model comparisons (in the 20C3M versus Obs. experiment) were 

also characterized by the lower ranking model (in numerical value, e.g. 1 is ranked lower 

than 2) achieving a lower DFO.  The Ys indicate that the lower ranked model also had a 

lower DFO than the higher ranked model while the Ns indicate that the higher ranked 

model had a lower DFO.  As an example, the model ranked 3rd was found to be 

statistically better than the models ranked 7th-12th in the 20C3M versus Obs. experiment 

but model #3 only had a lower DFO than the models ranked 10th-12th. 

 

One potential explanation for the distinctions in model performance seen above is 

associated with differences in the incorporated external forcings.  Much of the 

hemispheric-scale decadal climate variability of the past 1,000 years has been a result of 

solar and volcanic forcing (Crowley 2000).  These two forcings are also thought to have 

had an influence over the twentieth century, particularly with regard to early century 

warming (Hegerl et al. 2003).  All of the top nine ranked models (in both the 20C3M 

versus Obs. experiment as well as the DFO) incorporated solar and volcanic variability 
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among their forcings while the three bottom ranked models did not.  This is evidence that 

twentieth century IMD temperature variability has been heavily influenced by these two 

factors.  Also, Tett et al. (2002) attributes a portion of early century warming to natural 

variability associated with the AMOC.  AMOC variability, however, may be externally 

forced (Ottera et al. 2010).  Therefore, the degree to which a model can simulate a 

realistic AMOC may also contribute to model performance in this analysis. 

Some of the noted differences in performance may also be attributed to the 

underlying construction of the models themselves.  However, models that are considered 

to be more similar in construction did not necessarily perform similarly in this analysis.  

For example, the models ranked 1st, 3rd, 6th, and 9th (in the 20C3M versus Obs. 

experiment) are considered to be relatively closely related (according to Masson and 

Knutti 2011).  To attribute differences in model performance exclusively to model 

construction, it would be necessary to standardize the external radiative forcings included 

in the retrospective simulations.   

7. Conclusion 

This work demonstrated that the CMIP 3 models investigated varied considerably 

in their capacity to reproduce the timing, significance, and location of historical IMD 

variability.  This was revealed through the process of ranking models based on their 

20C3M versus Obs. ensemble mean FMs and then testing the ensemble distributions for 

statistically different levels of performance.  A spatiotemporal analysis was employed 
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that allowed for a better understanding of the model rankings by identifying distinctions 

between higher and lower ranked models.   

Model ability to reproduce observations was given context by comparing 

preindustrial control runs to observations and by comparing ensemble members within 

each model to each other.  The former experiment demonstrated that the inclusion of 

time-varying radiative forcings did indeed bring modeled IMD variability into closer 

agreement with observations.  The latter experiment demonstrated that model 

performance was not at its theoretical optimum.  This second experiment also allowed for 

a performance metric to be devised that assessed model skill relative to the degree of 

internal variability inherent in each model.  The "Departure from Optimum" metric, in 

conjunction with the original 20C3M versus Obs. metric, were then combined to 

highlight considerable distinctions in model performance.   

Because the external radiative boundary forcings differed between the models, 

differences in model performance could not be attributed exclusively to model 

construction.  In particular, it appears that models must include solar and volcanic forcing 

in order to have a realistic chance of reproducing observed IMD variability over the 

twentieth century.  Nevertheless, certain model/forcing combinations were found to 

outperform other model/forcing combinations by a wide margin in both the 20C3M 

versus Obs. and the DFO metric.  Therefore, future projections of temperature change, 

based on a given radiative forcing trajectory, may see an improvement in predictive 
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power if they are asymmetrically weighted toward the better performing model/forcing 

configurations, as revealed by these two metrics. 

These results, however, do come with a number of caveats.  Most importantly, it 

is unknown if a similar ranking would have been achieved if the entirety of Earth's 

surface were included in the spatial domain or if the spatial resolution had been altered.  

Additionally, when modeled and observed IMD variability differed, it was assumed that 

the model was in error, when in reality it was possible that the observations themselves 

were inaccurate.  Finally, the ranking of models was complicated by the reality that each 

model included different estimates of historical radiative boundary forcings as well as a 

different number of ensemble members.  Despite these uncertainties, our results 

demonstrate a useful methodology for comparing model ability to simulate IMD 

variability that may be helpful in upcoming model assessments. 
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