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ABSTRACT                                                                                                            

A MORPHOLOGICAL STUDY OF ERIOGONUM NORTONII 

(POLYGONACEAE) AND IMPLICATIONS FOR ITS BIOGEOGRAPHY             

by Lisa Deree Morton 

Morphological characters, phenology, and abiotic parameters were 

measured to determine whether divergence has occurred between populations of 

Eriogonum nortonii E. Greene on the east and west sides of the Salinas Valley.  

Morphological variability was demonstrated across all populations but not 

between populations on opposite sides of the valley.  Investigations into present 

and paleoenvironmental factors as well as dispersal factors suggest recent 

episodes of long distance dispersal were responsible for the disjunct distribution 

of E. nortonii populations. 
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INTRODUCTION 

Taxonomy 

Eriogonum Michx. (Polygonaceae), or wild buckwheat, is one of the 

largest genera in the North American flora.  Most of the approximately 250 

species of Eriogonum occur in arid, isolated regions of the American west and 

southwest.  However, they are also found in Canada, Alaska, northern Mexico, 

and parts of the eastern United States (Reveal 2005).   

Eriogonum is separated into eight subgenera that represent three lines of 

evolutionary development.  The second line of development diverged between 

the late Miocene to early Pliocene (8 – 5 Ma) from an extinct line and is 

represented by the subgenera Eucycla, Oligogonum, Eriogonum, and 

Pterogonum (Reveal 1969b, 1978; Shields and Reveal 1988).     

The third line of development diverged from Eucycla and is represented by 

the subgenera Oregonium, Ganysma, and Micrantha (Reveal 1969b, 1978; 

Shields and Reveal 1988).  The subgenus Oregonium diverged in the southern 

California Coast Ranges around the late Pliocene (3 – 2 Ma), which was also the 

driest part of the Tertiary (Reveal 1978).  Oregonium is comprised entirely of 

annuals (Reveal 1969b).  Separation of species in Oregonium generally occurs 

by use of minor character distinctions or, commonly, geographic location (Reveal 

1969b, 1978).  

Eriogonum Michx. subg. Oregonium (S. Watson) Green nortonii E. 

Greene, (Polygonaceae), or Pinnacles wild buckwheat (Greene 1892; Fig. 1), 
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was reduced by Stokes (1936) to the subspecies level under Eriogonum 

vimineum Douglas ex Bentham subsp. nortonii (Greene) S. Stokes.  Reveal 

(1969b) later re-established E. nortonii as a distinct species.      

                    

                         FIG. 1.  Eriogonum nortonii.  Photo courtesy Dr. Rod Myatt. 

 
Eriogonum nortonii is an erect annual with ± ascending red, glabrous 

stems ranging in height from 0.5 – 20.0 cm.  Both basal and cauline leaves are 

red to greenish-red, 0.5 – 1.5 cm wide, with round to reniform, wavy margined 

blades that are adaxially glabrous to puberulent and abaxially white-tomentose.  

The cymose inflorescence is subtended by a glabrous involucre having eight 
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teeth, which is further subtended by glabrous bracts 1 – 2 mm long.  Flowers are 

1 – 2 mm in diameter, and perianths are deep pink to white.  Each flower 

produces a single, light brown, glabrous achene, which typically falls from the 

parent plant with the calyx intact (Reveal 1969b; Hickman 1993).  The flowering 

period has been observed as early as February and as late as September, but 

primarily occurs March through June. 

Ecology 

Eriogonum nortonii is a rare species restricted to the Monterey and San 

Benito County Coast Ranges, California (Fig. 2).  Populations occur in the 

Gabilan, Sierra de Salinas, and Santa Lucia Ranges between 300 and 1000 

meters in elevation.      

                

FIG. 2.  Range of E. nortonii.  Known populations (circle).  Map data © Google, INEGI 2012. 
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The northern Salinas Valley is a sedimentary basin (Kilkenny 1948) 

between 12 km and 8 km wide that separates eastern populations of E. nortonii 

from western populations.  Populations in the Gabilan Range, east of the Salinas 

Valley, occur where climate is more variable and has a wider range of extremes.  

Populations in the northern Sierra de Salinas and Santa Lucia Ranges, west of 

the Salinas Valley occur where the maritime climate is more moderate.   

Eriogonum nortonii occurs in open pockets of chaparral; rarely do 

individuals occur under the shelter of adjacent shrubs (Fig. 3).  The soils are 

generally shallow and gravelly.   

 

FIG. 3.  Shrub interspaces in chaparral habitat at Pinnacles National Monument.  Photo 
courtesy Dr. Rod Myatt. 
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Population Divergence 

Divergence between plant populations may occur where gene flow is 

limited between isolated populations or where populations occur under different 

environmental conditions.  The separation of E. nortonii populations by the 

Salinas Valley and their occurrence in sites with different climate patterns 

suggest that divergence has occurred.  However, other factors indicate that E. 

nortonii and its distribution are of recent origins and, thus, have not accrued the 

time for divergence to occur.  

Stebbins and Major (1965) suggested that species with restricted 

distributions that are separated from their conspecifics by minor character 

distinctions have recently speciated.  As previously mentioned, Eriogonum 

nortonii is a member of the subgenus Oregonium, which is comprised of member 

species that are morphologically very similar.  In addition, most species in 

Oregonium, including E. nortonii, have narrow distributions, which suggests they 

have not had time to expand their ranges.   

Moreover, there may be an association between environments of recent 

origin and young plant taxa (Stebbins and Major 1965).  Recent changes in the 

topography in the northern Salinas Valley have occurred within the last two 

million years (Christensen 1965; Page et al. 1998; Ducea et al. 2003).  The 

Mediterranean climate regime in the northern Salinas Valley and the chaparral 

associations where E. nortonii occurs may also be relatively youthful (~ 2 Ma – 

10 ka; Axelrod 1981).      
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Additionally, the range expansion of small annuals like E. nortonii was 

likely made possible by the range expansion of surrounding xeric shrubland as 

climate became more arid.  Given the relatively recent origins of the present 

climate regime and consequent changes to a more xeric flora, it is likely that the 

occurrence of E. nortonii on opposite sides of the Salinas Valley is also recent.   

Thus, the possibility that divergence between populations on opposite sides of 

the Salinas Valley has occurred is less likely.  

The primary objective of this study was to determine whether divergence 

has occurred between populations of E. nortonii on opposite sides of the Salinas 

Valley through comparison of morphological features and habitat parameters.  

Additionally, a literature review focuses on the biogeography of E. nortonii by 

considering the paleoenvironment of Eriogonum as well as contemporary 

environmental and dispersal parameters that may have contributed to the 

present distribution of E. nortonii.   

MATERIALS AND METHODS 

Study Sites 

A total of 14 E. nortonii study sites spread across five locations were 

sampled within the Gabilan, Sierra de Salinas, and Santa Lucia Ranges in 

Monterey and San Benito Counties, California (Fig. 4).   Sites were selected 

based on the extent of E. nortonii’s range.  At each site, abiotic factors were 

measured and plots were established to sample individual plant traits.    
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FIG. 4.  Study area in Monterey and San Benito Counties (inset) with 14 study sites (circle) 
and associated parent material (A, G, R, S).  Map data © Google, INEGI 2012. 

 
Gabilan Range.  One site was sampled at Hollister Hills State Vehicular 

Recreation Area (HHSVRA; 36° 47' N, 121° 25' W) located at the northern end of 

the Gabilan Range, 9.6 km southeast of Hollister, California.  While HHSVRA is 

used year-round for off-road vehicle recreation, the study site is in a protected 

area of the park to the side of a hiking trail.  Annual precipitation of 30 – 50 cm 

falls primarily between late October and late April.  Temperatures range between 

lows of –8 °C and highs of 43 °C (California Irrigation Management Information 

System, CIMIS 2009).  Soils are derived from granitic parent material (Dibblee 

1975).  Associated shrubs outside sampling plots included Adenostoma 
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fasciculatum Hook. & Arn. (chamise), Salvia mellifera E. Greene (black sage), 

and Mimulus aurantiacus Curtis (monkey flower; Table 1).   

 
A second site was sampled in Gloria Valley (36° 31' N, 121° 18' W), ~ 6.7 

km west of the PNM border and ~ 13.2 km east of Gonzalez, California, and eight 

sites were sampled at Pinnacles National Monument (PNM; 36° 29' N, 121° 10’ 

W) located at the southern end of the Gabilan Range, 22.5 km east of Soledad, 

California (Fig. 5).  Average daily summer temperatures range from 10 °C in the 

morning to 45 °C in the afternoon.  Precipitation ranges from 16 to 35 cm 

between December and March (California Climate Data Archive, CCDA 2008). 

Gloria Valley and North Border were the two most northern sites within the 

Pinnacles area.  Both sites occurred in chamise-dominant chaparral.  Whereas 

the parent material at Gloria Valley was granitic, the North Border site was near 

Miocene marine diatomaceous shale (Matthews 1976; Soil Survey Geographic 

TABLE 1.  PARENT MATERIAL AND DOMINANT VEGETATION AT E. NORTONII STUDY 
SITES. 

 

Study Site 

  

Parent Material 

  

Dominant Vegetation 

 

HHSVRA Granite Chamise, black sage, monkey flower 
Gloria Valley Granite Chamise 
North Border Shale Chamise 
Chalone Creek Fanglomerate Chamise 
Bear Creek Fanglomerate Chamise, buckbrush, grey pine 
High Peaks Rhyolite Chamise 
Little Pinnacles Rhyolite Chamise, wild buckwheat, black sage 
North Chalone Peak Rhyolite Chamise, spike moss 
South Chalone Peak Rhyolite  Chamise 
West Pinnacles Rhyolite Chamise, buckbrush 
Toro 1 Granite Chamise, black sage, manzanita 
Toro 2 Granite Chamise, black sage, manzanita 
HNHR Granite Chamise, black sage 
Palo Corona Granite Chamise, monkey flower, manzanita, coffee 

berry, poison-oak 
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Database, USDA 2004).  Soils with this shale are extremely white and infertile.  

Woody plants on this soil are often widely spaced with sparse understory. 

 

FIG. 5.  Gloria Valley and Pinnacles National Monument study sites.  Map data © Google, 
INEGI 2012. 

 
The Chalone Creek site, dominated by chamise, lay east of the Chalone 

Creek on soils from Miocene-aged alluvial fan material composed primarily of 

granite with some volcanics (Matthews 1976; USDA 2004).  Southeast of the 

Chalone Creek site and also on alluvial fan soils was the Bear Creek site near 

the intersection of Chalone and Bear Creeks.  This area had chamise, 

Ceanothus cuneatus (Hook.) (buckbrush) and Pinus sabiniana Douglas (grey 

pine). 
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The High Peaks, Little Pinnacles Crest, North Chalone Peak, South 

Chalone Peak, and West Pinnacles sites were all on soils from rhyolite parent 

material (Matthews 1976; USDA 2004).  The High Peaks site was completely 

surrounded by chamise.  Further south, the Little Pinnacles site to the east of the 

North Chalone Peak Trail was in a relatively open area surrounded by chamise, 

Eriogonum fasciculatum Benth. (wild buckwheat), and black sage.  The North 

Chalone Peak site, southwest of Little Pinnacles, was completely encircled by 

dense chamise for several meters on all sides.  The most southerly site, South 

Chalone Peak, was in an open area of scree upslope from chamise with an 

understory of Selaginella bigellovii L.  while the overstory at West Pinnacles was 

chamise and buckbrush. 

Sierra de Salinas Range.  Two sites were sampled at Toro County Park 

(TCP; 36° 35' N, 121° 41' W) located at the northern end of the Sierra de Salinas 

Range, 9.0 km southwest of Salinas, California on Highway 68.  Both sites were 

at the side of trails used for hiking and mountain biking.  Annual temperatures 

range between –2 °C and 36 °C.  Annual precipitation, between 21 and 48 cm, 

occurs principally between November and April (CCDA 2008).  Soils are derived 

from granitic parent material (Wagner et al. 2002), which supported associated 

woody taxa such as chamise, black sage, and Arctostaphylos sp. (manzanita) 

outside of sample plots. 

One site was sampled at Hastings Natural History Reservation (HNHR; 

36° 23' N, 121° 32 W) on the west side of the Sierra de Salinas Range within the 
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Carmel Valley ~ one km west of Carmel Valley Road.  The E. nortonii population 

there had emerged after a prescribed burn during winter 2007.  Two prior 

observations of E. nortonii were made after the Poison Oak Hill fire in 1981 and 

the Haystack Hill fire in 1944.  Both of those burns occurred in chaparral.  Only 

one individual of E. nortonii was spotted after the Poison Oak Hill burn (Griffin 

1995).  Annual temperatures range from –4.5 °C to 38 °C.  Precipitation falls 

between late October and April and ranges from 28 to 65 cm (CCDA 2008).  

Common associated overstory taxa included chamise and black sage on granitic 

soils (Wagner et al. 2002). 

Santa Lucia Range.  One site was sampled at Palo Corona Regional Park 

(PCRP; 36° 29' N, 121° 54' W) on the west slope of the Santa Lucia Range in the 

Carmel Highlands ~ 3 km east of Highway One.  Temperatures range from –3 °C 

to 34 °C while annual precipitation ranges from 23 to 104 cm and falls primarily 

between November and March (CCDA 2008).  The E. nortonii population was in 

the middle of an old road that passed through maritime chaparral occurring on 

granitic soils (Wagner et al. 2002) and comprised of chamise, monkey flower, 

manzanita, Frangula californica (Eschsch.) A. Gray (coffee berry), and 

Toxicodendron diversilobum (Torrey & A. Gray) E. Greene (poison-oak).  
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Weather 

Weather data (wind vectors, precipitation, air temperature, and humidity) 

were obtained from the CCDA and the CIMIS as daily climate measurements.  

Precipitation, air temperature, and humidity data are reported as ranges and 

monthly averages for the time period from September 2007 to August 2008.  This 

period of weather data corresponds with a single generation of plants.  The 2007 

– 2008 E. nortonii generation is defined as extending from September 1, 2007, 

when fruit abscission from spring 2007 individuals was completed, to August 31, 

2008, when spring 2008 individuals completed their lifecycles. 

Selected climate stations were located as close to the study sites as 

possible (Fig. 6).  The Hollister station (36° 51' N, 121° 24’ W; 84 m) was located 

approximately 7.1 km NW of the HHSVRA site.  The Pinnacles station (36° 28' N, 

121° 08’ W; 403 m) was located 7.9 km and 12.1 km SE of the North Border and 

Gloria Valley sites, respectively; 0.4 km SW of the Chalone Creek site; 5.1 km E 

of the West Pinnacles site; 3.0 km NW of the Bear Creek site; 3.1 km N of the 

Little Pinnacles site; and 2.1 km, 9.2 km and 10.2 km NE of the High Peaks, 

North Chalone Peak, and South Chalone Peak sites, respectively.  The Fort Ord 

station (36° 35' N, 121° 45’ W; 234 m) was located 10.1 km and 12.2 km NW of 

the Toro 1 and Toro 2 sites, respectively.  The Hastings station (36° 23' N, 121° 

33’ W; 574 m) was located 1.1 km NW of the Hastings site.  The Monterey 

station (36° 36' N, 121° 54’ W; 117 m) was located 9.5 km NE of the Palo Corona 

site.  
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FIG. 6.  Climate stations (weather image) and study sites (circle).  Map data © Google, 
INEGI 2012. 

 
Site and Plot Sampling 

All sampling was done between April and May 2008.  For each site, 

elevation was taken using a GPS unit (Garmin 60CSx, Garmin Ltd., Olathe, 

Kansas), while slope and aspect were derived from the average of 3 - 5 

measurements made with a compass (Suunto MC-2, Suunto, Vantaa, Finland).     

At each site, random 1 m2 plots were established to sample 10% of the 

site area.  Some sites required more plots than others.  Morphological and 

phenological measurements were made on plants within plots.  Morphological 

measurements included plant height, width of largest leaf, and total number of 

inflorescences.  A simple phenological scale was utilized to describe the relative 
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stage of flowering for each population at the time of sampling where 1 = all buds, 

2 = mixture of buds and open flowers, and 3 = all open flowers.   

Statistical Analyses 

Wind roses were created to model potential paths for dispersal of E. 

nortonii seed.  Raw wind data were aggregated by compass direction at 45° 

intervals and weighted by wind speed.  The resulting datasets were expressed as 

wind roses overlain on 8 SRTM (Shuttle Radar Topography Mission) one-arc 

second digital elevation datasets downloaded from the USGS Seamless Server 

using ARCMAP 9.2 (ESRI 2006, Redlands, CA).   

Normalized (NORM) monthly averages of temperature (T), relative 

humidity (H), and precipitation (P) were used to compute drought coefficients 

(DC) where DC = TNORM + (100% - HNORM) + (100% - PNORM).   

A nested General Linear Model (GLM) analyzed climate variables (relative 

humidity, air temperature, and cumulative precipitation), morphological variables 

(largest leaf width, height, and number of inflorescences), habitat characteristics 

(slope, aspect, and elevation), and population density by incorporating a four-

level geographic hierarchy: orientation, range, location, and population (Fig. 7).  

Orientation, the most inclusive level of the hierarchy, defined the range of 

E. nortonii in terms of the location of populations relative to the Salinas Valley.  

Therefore, populations could be oriented either east or west of the Salinas 

Valley.  Mountain range, the second level, classified populations based on their 

locations within the Gabilan, the Sierra de Salinas, or the Santa Lucia Range.   
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FIG. 7.  Nested GLM model incorporating four geographic levels within the distribution     
of E. nortonii.  Map data © Google, INEGI 2012. 

 
Location, the third level, divided the distribution of E. nortonii by five distinct 

locations: the northern Gabilan Range represented by HHSVRA, the southern 

Gabilan Range represented by the Pinnacles and Gloria Valley populations, the 

northern Sierra de Salinas represented by the Toro County Park populations, the 

central Sierra de Salinas represented by the Hastings population, and the 

northern Santa Lucia represented by the Palo Corona population.  Individual 

study sites, the most discrete units within the range of E. nortonii, formed the 

fourth level, population.  The resultant model required the geographic levels be 

incorporated or “nested” within more inclusive geographic areas.  As such, 

population was nested within location, range, and orientation; location was 
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nested within range and orientation; mountain range was nested within 

orientation. 

All analyses were completed using Minitab 15 Statistical Software (Minitab 

Inc., State College, PA, 2006).  Levene’s test evaluated residuals for 

homogeneity of variance while the Anderson-Darling test assessed for the 

normal distribution of data.  Post hoc tests on significant results (α = 0.05) were 

analyzed using Tukey-Kramer Simultaneous Tests.  Data that did not meet the 

assumptions of normality and homogeneity were transformed.  A log 

transformation was used for leaf width, plant height, and slope.  Despite 

transformation, relative humidity, air temperature, and precipitation failed to meet 

the assumptions of normality and homogeneity.   

RESULTS 

Weather 

Wind rose models indicated variable patterns of flow across sites.  

Dominant ESE vectors flowed from the coast across the Salinas Valley and from 

the NW down the Salinas Valley from September 2007 to August 2008.  The Fort 

Ord climate station reported a dominant eastward wind off of Monterey Bay with 

secondarily important NE vectors (Fig. 8).  The Hollister and Pinnacles stations 

indicated strong southeast flows down San Benito Valley and secondary westerly 

winds across the Gabilan Range.  The Hastings station indicated approximately 

equivalent east and west-flowing winds with a secondarily important southeast 

wind up Carmel Valley.   
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FIG. 8.  Eight SRTM one-arc digital elevation datasets for the northern Salinas Valley 
region overlain by dominant wind vectors (arrows) for September 2007 – August 2008     
and covering the range of E. nortonii (circles).  SRTM data courtesy of the USGS 2007. 

 
Weather patterns varied across climate stations as well as between the 

east and west sides of the Salinas Valley.  Drought coefficients defined general 

climate trends in terms of moisture received at each of the five climate stations 

(Fig. 9).  Climate stations east of the Salinas Valley generally received less 

moisture than climate stations west of the Salinas Valley as also indicated by 

individual climate parameters, precipitation, temperature, and humidity (Fig. 10).   

Most variation across the five climate stations was reflected in 

precipitation patterns primarily from December 2007 through March 2008.  

Precipitation at Hastings (47.8 cm) was greatest while inland stations generally 

received less than coastal stations.   
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FIG. 9.  Drought coefficients from weather data across five climate stations for the             
September 2007 to August 2008 study period. 

 
Temperature and humidity varied most between coastal and inland sites 

from June to August 2008.  Average temperatures at Fort Ord and Monterey 

ranged between 10 to 15 °C and Pinnacles between 20 to 25 °C.  Hastings, 

located in the rain shadow of the Santa Lucia Range, behaved more like an 

inland site during the summer months where temperature ranged between 18 to 

22 °C.    

Summer fog resulted in higher humidity at coastal sites (60 – 85%) than at 

inland sites (35 – 75%), where humidity values generally declined throughout the 

summer drought period. 
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FIG. 10.  Monthly averages of daily mean precipitation (cm/day), temperature (ºC), and 
relative humidity (%) for five climate stations from September 2007 to August 2008.   
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Topographic Parameters 

Multiple comparisons of topographic parameters (elevation, aspect, and 

slope) across 14 E. nortonii sites indicated little significant variability overall with 

some exceptions (Fig. 11).  Comparisons between elevations did not yield 

significant results at the orientation (F1, 2 = 0.001; P = 0.929), range (F1, 3 = 0.01; 

P = 0.934), or location levels (F2, 5 = 0.48; P = 0.626).   

Multiple comparisons did indicate variability in aspect at the orientation 

level (F1, 2 = 5.87; P = 0.042), but not the range level (F2, 4 = 2.04; P = 0.193; Fig. 

11).  Aspects at E. nortonii study sites east of the Salinas Valley ranged from 

SSE to SW (209 ± 31°) while study sites west of the Salinas Valley had a broader 

range of aspects from SE to W (177 ± 34°; Tukey-Kramer Post Hoc Test, P = 

0.0416). 

Multiple comparisons of slope indicated variability at the orientation, 

range, and population levels (Fig. 11; Table 2).  Mean slopes (F1, 2 = 35.91; P < 

0.0001) east of the Salinas Valley (19.7 ± 7.0%) were steeper than slopes west 

of the Salinas Valley (12.5 ± 7.2%; Tukey-Kramer Post Hoc Test, P < 0.0001).  

Of the three mountain ranges (F1, 3 = 72.87; P < 0.0001), the Santa Lucia Range 

(8.6 ± 3.0%) differed significantly from the Gabilan (19.7 ± 7.0%; Tukey-Kramer 

Post Hoc Test, P < 0.0001) and the Sierra de Salinas Ranges (20.8 ± 6.6%; 

Tukey-Kramer Post Hoc Test, P < 0.0001).  Slope comparisons across study 

sites  (F9, 14 = 2.69; P = 0.009) indicated steepest slopes at HHSVRA and 

Hastings.  Palo Corona had the gentlest slope.  
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FIG.  11.  Elevation (m), aspect (°), and mean slope (%; ± SE) at 14 E. nortonii study            
sites arranged north to south and aggregated by orientation east or west of the Salinas 
Valley. 
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 Morphological Characters 

Overall, multiple comparisons of morphological characters did not indicate 

significant differences between populations east of the Salinas Valley with 

populations west of the Salinas Valley.  However, there were some noticeable 

trends when comparisons of morphological characters were made across all 

populations.  Average number of inflorescences per individual did not vary 

significantly by orientation (F2, 1 = 0.02; P = 0.889), range (F2, 1 = 0.02; P = 

0.889), location (F3, 1 = 0.13; P = 0.723), or population (F2, 1 = 0.33; P = 0.953).  

Nevertheless, E. nortonii individuals in the Chalone Creek population had, on 

average, more inflorescences (average of 3 inflorescences per individual) than 

did individuals in other populations east or west of the Salinas Valley.  Individuals 

in the North Border, South Chalone Peak, and High Peaks populations had fewer 

TABLE 2.  MEAN SLOPE (%) COMPARISONS BETWEEN E. NORTONII STUDY SITES 
AGGREGATED BY ORIENTATION EAST AND WEST OF THE SALINAS VALLEY.   
P-values for each comparison indicate a significant difference between two study sites.    HH = 
HHSVRA; NB = North Border; GV = Gloria Valley; WP = West Pinnacles; HP = High Peak; CC 
= Chalone Creek; BC = Bear Creek; LP = Little Pinnacles; NC = North Chalone Peak; SC = 
South Chalone Peak; T1 = Toro 1; T2 = Toro 2; HA = Hastings; PC = Palo Corona.  * P < 
0.0001; ** P < 0.005; *** P < 0.05 Tukey-Kramer simultaneous tests used in nested GLM. 

 East of Salinas Valley  West of Salinas Valley 

 HH NB GV WP HP CC BC LP NC SC  T1 T2 HA PC 
HH   ** ** ** * ***   ***  **   * 
NB               ** 
GV **   *          **  
WP **             **  
HP **             ***  
CC *             **  
BC ***              ** 
LP               * 
NC               ** 
SC ***              ** 
T1 **             ***  
T2               ** 
HA   ** ** *** **      ***   * 
PC * **     ** * ** **   ** *  
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inflorescences (average of one inflorescence per individual) than did individuals 

in other populations east or west of the Salinas Valley (Fig. 12).   

 

FIG.  12.  Average number of inflorescences (± SE) per E. nortonii individual at 11 sites          
arranged north to south and aggregated by orientation east or west of the Salinas Valley. 

 
Multiple comparisons of mean leaf width between E. nortonii populations 

east versus populations west of the Salinas Valley did not yield significant 

differences (F1, 2 = 1.42; P = 0.234; Fig. 13; Table 3).  However, there were 

significant average leaf width differences from comparisons made across all E. 

nortonii populations (F8, 11 = 9.64; P< 0.0001) where North Chalone Peak and 

West Pinnacles populations had wider leaves (3.1 mm and 2.7 mm, respectively) 

than five and six other populations, respectively, and the South Chalone Peak 

population had narrower leaves (1.1 mm) than eight other populations. 
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FIG.  13.  Average leaf width (mm; ± SE) across 11 E. nortonii populations arranged        
north to south and aggregated by orientation east or west of the Salinas Valley. 

 

TABLE 3.  MEAN LEAF WIDTH COMPARISONS BETWEEN E. NORTONII POPULATIONS 
AGGREGATED BY ORIENTATION EAST AND WEST OF THE SALINAS VALLEY.  P-values 
for each comparison indicate a significant difference between two populations.  HH = 
HHSVRA; NB = North Border; GV = Gloria Valley; WP = West Pinnacles; HP = High Peak; CC 
= Chalone Creek; BC = Bear Creek; LP = Little Pinnacles; NC = North Chalone Creek; SC = 
South Chalone Peak; T1 = Toro 1.  * P < 0.0001; ** P < 0.005; *** P < 0.05 Tukey-Kramer 
simultaneous tests used in nested GLM. 

 East of the Salinas  Valley  West of the Salinas Valley 

 HH NB GV WP HP CC BC LP NC SC  T1 
SC ***  ** * ** * *** * *    
NB    *  ** *** *** *    
WP * *      ***  *  * 
NC ** *      ***  *  ** 
LP  *  ***     *** *   
BC  *  *      *   
HP          **   
CC  *        *   
GV          **   
HH    *  ***   ** ***   
T1    *     **    
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While significant average plant height differences were not found in 

comparisons between E. nortonii populations east of the Salinas Valley and E. 

nortonii populations west of the Salinas Valley (F2, 1 = 1.36, P = 0.244), there 

were differences found amongst all 11 populations (F8, 11 = 14.35, P < 0.0001; 

Fig. 14; Table 4).  Chalone Creek and Bear Creek Pinnacles populations had 

taller plants (35.7 mm and 32.7 mm, respectively) than six and eight other 

populations, respectively, while the High Peaks and South Chalone populations 

had shorter plants (18.3 mm and 15.4 mm, respectively) than five and seven 

other populations, respectively.   

 

FIG.  14.  Mean plant height (mm; ± SE) across 11 E. nortonii populations arranged        
north to south and aggregated by orientation east or west of the Salinas Valley. 
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Aspect and plant height were the only two significantly correlated variables 

(N = 11; r 2 = 0.39; P = 0.04; Fig. 15).  Taller plants were found on southwest-

facing slopes and shorter plants were found on south to southeast-facing slopes.  
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FIG. 15.  Relationship between average plant height (mm) and aspect (º) across E. nortonii 
populations. 

TABLE 4.  MEAN PLANT HEIGHT COMPARISONS BETWEEN E. NORTONII  
POPULATIONS AGGREGATED BY ORIENTATION EAST AND WEST OF THE SALINAS  
VALLEY.  P-values for each comparison indicate a significant difference between two 
populations.  HH = HHSVRA; NB = North Border; GV = Gloria Valley; WP = West Pinnacles; 
HP = High Peak; CC = Chalone Creek; BC = Bear Creek; LP = Little Pinnacles; NC = North 
Chalone Creek; SC = South Chalone Peak; T1 = Toro 1.  * P < 0.0001; ** P < 0.005; *** P < 
0.05 Tukey-Kramer simultaneous tests used in nested GLM.     

 East of the Salinas Valley  West of the Salinas Valley 

 HH NB GV WP HP CC BC LP NC SC  T1 
HH     ***  ***   *   
NB      ** *      
GV      *** ***      
WP     ***  ***   *   
HP ***  *** ***  * * ***    ** 
CC  **   *   **  *   
BC *** * *** *** *   *  *  ** 
LP     *** *** *   *   
NC          **   
SC *   *  * * * **   *** 
T1     **  **   ***   
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Phenology 

Although bloom period was widely variable across space and time, one 

general pattern emerged (Fig. 16).  Palo Corona had no flowers in bloom despite 

being sampled toward the end of the sampling period.  Most individuals had not 

produced flowering stalks.  This phenological pattern may be partially explained 

by its direct coastal location in the Carmel Highlands, which receives 

considerable maritime influences.                                                                                                            
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FIG.  16.  Percent inflorescences per plant in bud, flower, or mixed phenology across 13            
populations aggregated by orientation east or west of the Salinas Valley.  Sampling period 
occurred 25 April 2008 to 30 May 2008. 
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 DISCUSSION 

Habitat and Morphology 

 The rich diversity of Eriogonum species has been attributed to their 

typically isolated populations, particularly in arid, open habitats.  Like other 

members of the genus, E. nortonii populations demonstrate this general pattern.  

Eriogonum nortonii populations are often found on southerly aspects where they 

are more or less positioned within an environment that encourages little 

competition from surrounding neighbors.  Steep, south-facing slopes typically 

support minimal vegetation composed of species more tolerant of intense 

sunlight and decreased moisture availability.  Higher elevations are generally 

associated with shallow, nutrient-poor soils.  Consequent to those conditions is a 

sparse, open vegetation structure more favorable to small annuals.   

The potential for divergence between E. nortonii populations may be 

influenced by at least two factors. The Salinas Valley acts as a strong barrier to 

gene flow between inland and more coastal populations of E. nortonii.  In 

addition, those same coastal and inland populations also occur in sites with 

markedly different weather patterns.  However, while the most coastal population 

at Palo Corona showed clear phenological differences, there were no significant 

differences in morphological characters between E. nortonii populations on 

opposite sides of the valley.   

The late flowering at Palo Corona may result in spatial and temporal 

differences in plant-pollinator interactions between coastal and inland 
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populations.  On a spatial scale, E. nortonii populations may be pollinated by 

different bee species whose individuals likely would not traverse great distances 

between populations of E. nortonii.  Differences in spatial and temporal factors 

influencing pollination across E. nortonii populations could potentially influence 

divergence between populations. 

The lack of significant morphological differentiation between populations 

on opposite sides of the Salinas Valley suggest one of two possibilities: 1) either 

divergence has occurred, but has gone undetected or 2) divergence has not 

occurred.  The morphological characters measured may not be useful for 

indicating divergence.  Leaf size, plant size, and inflorescence numbers are all 

plastic characters that may respond readily to local environmental conditions, but 

may not necessarily be useful for establishing divergence on an evolutionary 

scale.  Because the subgenus Oregonium, of which E. nortonii is a member, 

often relies on minor morphological characters to separate species, the detection 

of divergence between populations of E. nortonii may be difficult to determine 

from a morphological perspective.  Thus, the use of microsatellites may provide 

resolution at the molecular level. 

On the other hand, the results of this study may indicate that divergence 

has not occurred between populations of E. nortonii on opposite sides of the 

Salinas Valley.  Although this explanation would be unexpected given the barrier 

to gene flow between E. nortonii populations on opposite sides of the Salinas 

Valley, it may be that E. nortonii has recently speciated and thus has only 
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recently dispersed.  If the present distribution of E. nortonii has only recently 

been established, then divergence may have not yet occurred.   

Factors that may have influenced the recent speciation and range 

expansion of E. nortonii may be found in paleoenvironmental records.  The 

present climate regime and topography are both relatively recent (between 2 Ma 

and 10 ka).  The rapid radiation associated with Eriogonum was most likely 

spurred by the expansion of arid climate that had progressed since the early 

Tertiary.  Early forms were shrubs and perennial herbs while later events resulted 

in the proliferation of the annual form in Eriogonum.  Thus, the speciation of E. 

nortonii may have been the result of recent spikes in aridity (~ 8 – 4 ka).  

Consequent to climate and landscape changes was the transition of floral 

elements from mesic woodland to the expansion of xeric, open shrubby habitat 

such as chaparral.  Chaparral supports a different suite of potential dispersal 

agents from those found in mesic woodlands.  Thus, the expansion of chaparral 

may have led to the concomitant expansion of dispersal agents closely 

associated with chaparral while the range expansion of potential dispersal agents 

may have led to the range expansion of E. nortonii.   

Dispersal 

Seed dispersal has important implications for the exchange of genetic 

material, range expansion, and persistence of species.  Short-distance dispersal 

events have the potential to result in the endurance of the parent population, 
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while long-distance dispersal events may result in the establishment of new 

populations.   

Agents and patterns of short-distance dispersal are often more easily 

explained while the rarity of long-distance dispersal events makes identification 

and prediction of likely vectors difficult to pinpoint.  Nor may observations of 

short-distance dispersal processes adequately explain dispersal to greater 

distances; long-distance dispersal may be due to unusual or multiple vectors or 

deviation in behavior from a standard vector associated with short-distance 

dispersal (Higgins et al. 2003; Nathan et al. 2008).   

The distribution of E. nortonii suggests both long and short-distance 

dispersal have occurred.  Long-distance dispersal may be evident from the 

separation of populations by the Salinas Valley as well as the species’ 

distribution throughout the length of the Gabilan Range while short-distance 

dispersal is evident within individual populations.  The potential for either long or 

short distance dispersal may be determined by the diaspore morphology of E. 

nortonii as well as the dispersal mechanisms that operate on E. nortonii. 

Diaspore Morphology and Dispersability 

 Traditional explanations for diaspore dispersal use a morphological-based 

approach that relates specialized diaspore adaptations to an associated 

dispersal vector.  For example, the plumose pappus of dandelions is thought to 

be strongly associated with wind dispersal.  However, dispersal described within 

the limited framework of morphology does not consider species without 
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specialized dispersal adaptations and, thus, does not adequately account for 

long-distance dispersal of unspecialized diaspores (Chambers and MacMahon 

1994; Tackenberg et al. 2003).  In addition, morphological approaches 

emphasize processes that often move the majority of diaspores short distances, 

rather than those rare events that move a small number of diaspores long 

distances (Howe and Smallwood 1982; Van der Pijl 1982; Higgins et al. 2003; 

Tackenberg et al. 2003).  Finally, morphological approaches may not consider 

important spatial factors such as topography and vegetation or temporal factors 

such as phenology or availability of a dispersal agent, thus excluding important 

components from a complete understanding of seed dispersal (Chambers and 

MacMahon 1994; Tackenberg et al. 2003; Higgins et al. 2003; Levin et al. 2003).  

Species of arid systems often have achenes with morphologies that inhibit 

dispersal (Lorts et al. 2008).  Small size (< 2 mm) and low mass (< 3 mg), in 

addition to diaspore geometry, ensure fewer diaspores are dispersed long 

distances from the parent population.  Rounded diaspores are more likely to 

move vertically into the soil column compared to elongated diaspores that tend to 

remain on the soil surface (Chambers et al. 1991; Chambers and MacMahon 

1994; Lorts et al. 2008). 

Strategies that select for seed survival over dispersal in arid environments 

may carry an advantage.  Extremely variable and wide-ranging abiotic conditions 

in deserts diminish the likelihood of diaspores landing at safe sites similar to the 

parent population where conditions are expected to be most amenable to 
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germination.  Species with diaspores that lack morphologies for dispersal may 

have a greater likelihood of survival nearest the source population, while those 

that disperse farther are exposed to the unpredictability of the desert 

environment.  Thus, seed without specialized morphologies suggests their long 

distance dispersal is more serendipitous than directed (Ellner and Shmida 1981; 

Thompson 1987; Thompson et al. 1993; Willson 1993; Chambers and 

MacMahon 1994).   

Reveal (1969a) suggested the distribution of Eriogonum is due to the lack 

of an active dispersal mechanism; fruits are generally small and smooth and do 

not fall far from the parent plant, making range expansion slow at best.  

Moreover, many extant Eriogonum are found in arid regions.  As such, it seems 

reasonable that the seed of Eriogonum retains traits for optimizing survival within 

arid systems rather than for long distance dispersal.     

The fruit of E. nortonii does not appear to have structures commonly 

associated with a specialized dispersal agent.  It is a 1 mm trigonous achene 

narrowing to a sharp beak (Fig. 17).  The radicle points into the beak and is 

capable of emergence with the perianth intact (Meyer 2008).  Achenes without 

perianths attached have an average weight of 0.11 mg, while those with the 

perianth attached have an average weight of 0.14 mg.  Fruit production of  

E. nortonii is generally abundant with most individual fruits remaining near the 

parent population after abscission. 
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FIG. 17.  Eriogonum nortonii achenes without perianth attached (upper circle) and with 
perianth attached (lower circle). 

 

Eriogonum nortonii fruit may have qualities that could potentially result in 

either vertical transport into the soil column or horizontal transport across the soil 

surface.  Both the small fruit size (~1 mm) and beak of E. nortonii imply a fruit 

morphology adapted for particle capture and vertical transport into the substrate.  

Small fruits become easily trapped by soil particles, while the narrow beak may 

serve to augment this process by insertion between soil particles. 

In addition, because the radicle is located within the beak, capture by soil 

particles anchors the beak into the substrate with the radicle optimally directed 

towards nutrients and the water-retaining capacities of the soil.  These features 

may account for the large number of individuals that do not disperse beyond the 

parent population.  If non-dispersal is an established trait of E. nortonii, potential 

colonization of other sites must rely on those individuals that do not become 

embedded in substrate near the parent population.  The elongated shape of E. 
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nortonii achenes increases the potential for horizontal transport by increasing the 

chances fruits remain on the surface, available for transport by a variety of 

dispersal mechanisms.  However, while all dispersal agents have the potential to 

disperse diaspores short distances, they differ markedly in their effectiveness to 

disperse diaspores long distances (Willson 1993; Chambers and MacMahon 

1994; Hughes et al. 1994).   

Abiotic-Mediated Dispersal 

Water and wind are both potential abiotic agents for dispersal of E. 

nortonii fruits.  Diaspore migration by wind or water in arid systems is most 

effective in areas free of vegetation and leaf litter, which may otherwise act as 

impediments to dispersal.  Shrub interspaces operate as tunnels that increase 

wind velocity or as chutes that funnel rain-wash down-slope  (Bullock 1976; 

Ellner and Shmida 1981; Reichman 1984; Chambers et al. 1991; Davies and 

Sheley 2007; Venable et al. 2008).   

Although Eriogonum achenes have been observed floating with the 

perianth intact (R. Myatt, San José State University, personal communication 

2011), long-distance dispersal of E. nortonii by water may be unlikely as 

populations are typically found on slopes far from streams.  While this does not 

negate the possibility of river capture of achenes washed down-slope, the 

likelihood of captured seeds successfully colonizing new territory along stream 

banks is extremely small.   
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Diaspore dispersal suggests a temporal relationship between the 

availability of a dispersal agent and timing of fruit abscission.  Wind may be 

ubiquitous in the chaparral environment, particularly at higher elevations, 

whereas water is only available during the rainy season.  As such, wind and 

granivory may remove a large portion of fruit production before winter rains 

arrive.   

Despite the constancy of wind in open environments, its effectiveness as a 

long-distance dispersal agent requires a different set of environmental conditions 

that may be less consistent and predictable than environmental conditions 

required for short-distance transport.  Tackenberg (2003) used a trajectory model 

in conjunction with field experiments to determine prime conditions for long-

distance dispersal (> 100 m).  Open landscapes, elevations > 40 m, and steep 

slopes (> 12°) were identified as important topographic parameters that 

influenced long-distance dispersal while the synchronous occurrence of sunny 

conditions, high temperatures (> 25 °C), low humidity (< 50%), and low-velocity 

horizontal winds (< 2 m/s) were ideal climatic parameters to incur thermal 

updrafts strongly correlated with long-distance transport, including that of 

diaspores without specialized dispersal morphologies (Tackenberg 2003; 

Tackenberg et al. 2003).   

Thus, long-distance dispersal of E. nortonii by wind may be seasonally 

restricted (Nathan et al. 2002; Tackenberg 2003; Tackenberg et al. 2003; 

Kuparinen et al. 2009) to June through September when high temperatures and 
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low humidity coincide with fruit abscission.  Wind-rose models in this study 

suggest the direction of dispersal occurs from the NNW to the SSE.  However, 

the intensity and direction of rare atmospheric disturbances are not apparent in 

those models.  As such, use of these models to predict dispersal events should 

be taken with caution. 

Animal-Mediated Dispersal 

Diaspore dispersal by animals is affected by spatial and temporal variation 

in diaspore availability, which, in turn, influences the abundance and availability 

of granivores, including birds, rodents, and harvester ants.  Identification of likely 

granivores for the dispersal of specific taxa is complicated by the preference of 

many granivores for a wide variety of plant taxa.  Thus, dispersal of a single plant 

species may be performed by multiple granivorous agents (Carroll and Janzen 

1973; Mares and Rosenzweig 1978; Chambers and MacMahon 1994; Folgarait 

and Sala 2002).    

Harvester ants, rodents, and birds have been observed foraging for 

Eriogonum seed.  Harvester ants may forage for Eriogonum seed, at times to the 

exclusion of other species (Tevis 1958; Went et al. 1972; Whitford 1978; 

Davidson et al. 1980; Davidson et al. 1985; Kelrick et al. 1986; Fewell and 

Harrison 1991; Crist and MacMahon 1992; Samson et al. 1992; Gordon 1993) 

while rodents (Carleton 1966; Bradley 1968; Bradley and Mauer 1971; Went et 

al. 1972; Meserve 1976; Hallett 1982; Kelt 1988; Samson et al. 1992; Valone and 

Schutzenhofer 2007) and birds (Glading et al. 1940; Twining 1940; Leopold and 
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McCabe 1957; Gullion 1960; Jones 1964; Doerr and Guthery 1983; Barnett and 

Crawford 1994; Repasky and Schluter 1994) may also utilize Eriogonum seed.     

Rodent and Harvester Ant Dispersal.  Although, granivory in arid regions 

is a chief foraging strategy to which rodents (Heteromyidae and Muridae) and 

harvester ants (Formicidae subfam. Myrmicinae) have become particularly 

efficient (Davidson 1977a, b; Nelson and Chew 1977; Whitford 1978; Brown et al. 

1979; Reichman 1979; Pirk and Casenave 2006; Lengyel et al. 2009), dispersal 

of E. nortonii by rodents and ants may primarily contribute to colonization of 

locally available open habitat rather than to long distance dispersal events.     

Harvester ants are reported to be the dominant dispersal agents within 

chaparral (Mills and Kummerow 1989) and may contribute to the restricted 

distribution of E. nortonii where the majority of seed is harvested.  Messor Forel 

and Pogonomyrmex Mayr are the most common granivorous harvester ant 

genera in chaparral habitat (Linsdale 1945; AntWeb 2011) that rely most heavily 

on seed (Whitford 1978; Melhop and Scott 1983; Hölldobler and Wilson 1990; 

Pirk and Casenave 2006; Table 5). 

TABLE 5.  HARVESTER ANT SPECIES SIGHTED NEAR E. NORTONII SITES AT HASTINGS 
NATURAL HISTORY RESERVATION AND TORO COUNTY PARK INCLUDING FORAGING 
STRATEGY AND SEED RELIANCE.  

   
Scientific Name Foraging Strategy Seed Reliance 

c
 

   
Pheidole californicus 

a
 Column Occasional 

Pogonomyrmex subnitidus 
a
 Column Substantial 

P. subdentatus 
b
 Solitary Substantial 

Messor andrei 
a
 Column Substantial 

M. stoddardi 
a
 Solitary N/A 

a 
Linsdale 1945; 

b 
Antweb 2011; 

c
 Hölldobler and Wilson 1990. 
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Members of both rodent families Muridae and Heteromyidae are 

nocturnal, multi-load foragers.  However, Murids consume seed when preferred 

insect resources are limited while Heteromyids are principally granivorous 

(Eisenberg 1963; Brown et al. 1979; Mares 1993).  Murids observed in E. nortonii 

habitat at Pinnacles National Monument (PNM) and Hastings Natural History 

Reservation (HNHR) include Peromyscus spp. Gloger and Reithrodontomys 

megalotis Baird while Heteromyids include Dipodomys spp. Gray, the dominant 

small mammal at both PNM and HNHR, and Chaetodipus californicus Merriam 

(Bradford 1976; Fellers 1994, 2006; Heske 1990; Heske et al. 1997; S. Trewhitt, 

San José State University, personal communication 2011; Table 6).   

The mere presence or abundance of granivores near E. nortonii 

populations may not be enough to ensure its dispersal.  Where preference is 

lacking or where specialized habitat use precludes some granivores from 

encountering or utilizing E. nortonii populations, dispersal even short distances 

TABLE 6.  GRANIVOROUS RODENT ABUNDANCE AT HASTINGS NATURAL HISTORY 
RESERVATION AND PINNACLES NATIONAL MONUMENT.   

   
Scientific Name Common Name Abundance 

b 

   
Heteromyidae   
Dipodomys heermanni 

a
 
b
 Heermanns' Kangaroo Rat Common 

Dipodomys elephantinus 
b
 Elephant-eared Kangaroo Rat Common 

Dipodymys venustus 
a b

 Narrow-faced Kangaroo Rat Common 
Chaetodipus californicus 

a b
 California Pocket Mouse Common 

   
Muridae   
Peromyscus californicus Parasitic Mouse Common 
Peromyscus maniculatus 

a b
 Deer Mouse Common 

Peromyscus boylii 
a b

 Brush Mouse Uncommon 
Peromyscus truei

 a
 Piñon Mouse Abundant 

Reithrodontomys megalotis 
a b

 Western Harvest mouse Common 
a
HNHR (Heske et al. 1997); 

b
PNM (Fellers 2006; Trewhitt, San José State University, 

personal communication 2011). 



 

 40

may be minimal at best.  Thus, inter- and intra-specific differences in habitat use 

and foraging behavior, particularly where they intersect with populations of E. 

nortonii, may be useful criteria for pinpointing major contributors to the dispersal 

of E. nortonii. 

Numerous variables have been attributed to seed preference by 

granivores including seed distribution patterns (Davidson 1977b; Reichman and 

Oberstein 1977; Reichman 1979; Hay and Fuller 1981) and temporal availability 

of seed (Davidson 1977b; Whitford 1978; M'Closkey 1978).  The potential for 

seed dispersal may be directed, in part, by variable seed densities that attract a 

variety of both ant and rodent granivores (Reichman 1984).  Soil depressions 

and wind shadows of large rocks act as seed traps that deter movement across 

the landscape and encourage dense accumulation of seed.  Where soil 

depressions are absent, shrub understories harbor greater seed densities than 

shrub interspaces (Nelson and Chew 1977; Reichman 1984).   

Seed size and shape also affect the likelihood that seed will form dense 

patches.  Small (< 0.25 mg), round seed form higher density patches than do 

large (> 1.76 mg) or long seed (Reichman 1984).   

Harvester ants will preferentially exploit dense patches of seed.  However, 

their capability for doing so is dependent upon colony foraging behavior 

(Davidson 1977a).  Group foraging is most efficient for exploiting clumped seed 

distributions or resources far from the nest (Davidson 1977a, b; Davidson et al. 

1985).  Numerous workers decrease time required for locating and transporting 
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seed until resources are depleted whereas individual foragers must spend more 

time locating rather than transporting resources.  As such, individual foragers 

tend to concentrate on scattered resources close to their nest site (Went et al. 

1972; Carroll and Janzen 1973).  Where resource availability changes from 

dense to scattered distributions, individual foraging may replace column foraging 

(Carroll and Janzen 1973). 

Like harvester ants, kangaroo rats will selectively forage for dense 

accumulations of seed over scattered distributions of seed, independent of seed 

size.  Peromyscus species are generally less selective (Brown and Davidson 

1977; Reichman and Oberstein 1977; Brown et al. 1979; Reichman 1979; 

Thompson 1982a; Thompson 1987; Brown et al. 1988).    

Further consideration for potential dispersal must be given to spatial and 

temporal habitat partitioning, especially where partitioning intersects with the 

availability of E. nortonii seed.  Harvester ants, too, partition their environment by 

use of discrete foraging behaviors determined by resource abundance (Davidson 

1977a).  The decreased mobility of harvester ants compared to other granivores 

requires more intense use of resources close to the nest entrance (Davidson 

1977a; Reichman 1979; Davidson et al. 1985; Crist and MacMahon 1992) and, 

thus, spatial awareness of resource distribution within their foraging range.     

Sympatric rodents may engage in more complex uses of habitat 

(Hawbecker 1940; Bradford 1976; Thompson 1982a; Best 1986; Best et al. 1996; 

Longland and Price 1991).  Small, quadrupedal genera such as omnivorous 
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Peromyscus may be constrained to foraging within or under shrub canopy, 

particularly when insect resources are available.  Because they frequent shrub 

cover, they may be more likely to encounter and harvest scattered distributions of 

seed found in shrub understories.   

The bipedality of Heteromyids limits climbing ability and restricts them to 

open and understory microhabitat (Meserve 1977; Brown and Davidson 1977; 

Reichman and Oberstein 1977; Smartt 1978; Reichman 1979; Ribble and 

Samson 1987; Thompson 1987; Mares 1993; Laakkonen 2003).  Dipodomys 

venustus Merriam has been observed in open microhabitat in old agricultural 

fields and at PNM in sites where it is the sole kangaroo rat species (Hawbecker 

1940; Fellers 1994) yet at HNHR it prefers the cover of chamise (Bradford 1976; 

Heske et al. 1997).  The disparate selection of habitat at different sites may be 

directed by the complex interplay of competition and predation avoidance.  For 

example, large populations of D. heermanni Le Conte, also found at both PNM 

and HNHR, may inhibit co-occupation of sites by other granivorous rodents due 

to a preference for open areas free of dense herbaceous cover (Kelt 1988). 

Seed dispersal is further affected by differences in foraging behaviors and 

granivore abundances and compositions that reflect temporal availability of 

resources (Davidson 1977a, b).  Seasonal changes in insolation and substrate 

temperature coincide with peak periods of seed drop in arid regions during late 

summer.  While harvester ants may time peak foraging periods to primary seed 

drop, their foraging activities are restricted to periods when temperatures are 
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tolerable.  As a result, common, diurnal foraging activity may shift to crepuscular, 

nocturnal, or bimodal activity when temperatures are particularly extreme (Tevis 

1958; Carroll and Janzen 1973; Brown and Davidson 1977; Davidson 1977a; 

Whitford 1978; Melhop and Scott 1983; MacKay and MacKay 1989).  Among 

rodents, the typically omnivorous Peromyscus may shift food preferences from 

insects to seeds in hotter seasons as insect availability diminishes and seed 

availability increases in (Eisenberg 1963).  

Ultimately, granivores that preferentially forage in open habitat where E. 

nortonii is found may be the most likely dispersers of E. nortonii.  Harvester ants 

may be particularly effective short-distance dispersers due to their capacity for 

modifying foraging patterns based on changes in seed densities and seasonal 

fluctuations, factors that may influence their role as primary dispersers in 

chaparral environments (Mills and Kummerow 1989). 

However, opportunities for dispersal of E. nortonii are likely not uniform 

across all populations.  Inherent differences in micro-topography and vegetation 

composition that create variable patterns of shrub and seed densities may attract 

different species compositions of potential dispersers.   Preferential utilization of 

bush microhabitat may result in concentrated use of seed distributed under shrub 

canopies while species that forage in open microhabitat may be more likely to 

utilize seed found in shrub interspaces and openings (Brown et al. 1975; 

Davidson 1977a; Lemen and Rosenzweig 1978; Hallett 1982; Thompson 1982b; 

Thompson 1987; Brown et al. 1988; Taraborelli et al. 2003).   
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Many E. nortonii populations occur over large areas within a system of 

interconnecting shrub interspaces and wide openings while some populations of 

E. nortonii cover areas less than 2 m2 and are encircled by dense chamise. 

Granivores that have a preference for open sites may not visit small, enclosed 

populations, particularly where shrub boundaries are significantly wide, and 

potential dispersers that do visit enclosed E. nortonii populations may not 

transport achenes beyond the surrounding vegetation.  Even where sufficiently 

open microhabitat occurs, micro-topography may discourage seed accumulation, 

resulting in disproportionately more visitations to some E. nortonii populations 

over others by species that selectively forage for high-density clumps of seed. 

Bird Dispersal.  While birds may not be the primary consumers of seed in 

arid systems, they are key candidates for long-distance seed dispersal (Pulliam 

and Brand 1975; Brown et al. 1979).  Many plant taxa assumed to be wind-

dispersed over long distances might actually be bird-dispersed (Wilkinson 1997; 

Higgins et al. 2003).   

Dispersal of E. divaricatum Hook., a species common to the American 

Southwest but discovered in Argentina, was suggested to have occurred by mud 

stuck to the feet of migratory birds (Reveal 1981).  Thus, the disjunct distribution 

pattern of E. nortonii may be explained by the activity of migratory birds that 

frequent chaparral on both sides of the Salinas Valley. 

The very nature of their high mobility allows birds to utilize habitat at much 

wider spatial scales than do ants or rodents (Brown et al. 1979).  Yet, dispersal of 
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E. nortonii may be constrained by such factors as residency status, foraging 

behaviors, and habitat use (MacArthur and MacArthur 1961; Tomoff 1974; Roth 

1976; Avery and Ripper 1989; Milesi et al. 2008).  As a result, resource use may 

be skewed to sites with characteristics that meet the requirements of potential 

dispersers, thus decreasing the pool of potential dispersers.   

Fringillidae (Old World Finches or “finches”) and Emberizidae (New World 

sparrows or “sparrows”) are two common granivorous families found in arid 

regions of North America including chaparral at PNM and HNHR (Table 7).  

Although other species such as quail (Callipepla californica Shaw) and wrentit 

(Chamaea fasciata Gambel) do forage for seed, their sedentary natures may 

exclude them from being key cross-valley dispersers.   

In addition, seasonal residency status may constrain foraging to periods 

that are not synchronous with seasonal seed drop of E. nortonii (Milesi et al. 

2008).  The residencies of golden (Zonotrichia atricapilla Gmelin) and white-

crowned sparrows (Zonotrichia leucophrys Forster) do not intersect with the 

dominant period of seed rain making them unlikely dispersers of E. nortonii.   

 Foraging behavior of birds may limit access to E. nortonii seed, particularly 

if invertebrates account for a greater proportion of their diet (Table 7).  Finches 

(“seed harvesters”) typically forage in canopies.  Most sparrows are “seed 

collectors” that mainly forage for seed (Greenlaw 1977; Benkman and Pulliam 

1988; Thorngate et al. 2006).



 

 

4
6

 

TABLE 7.  CHAPARRAL AVIAN GRANIVORES AT PINNACLES NATIONAL MONUMENT 
a
 AND HASTINGS NATURAL HISTORY 

RESERVATION 
b
 WITH FORAGE GUILD AND COMMON RESOURCES USED 

c
. 

Scientific Name Common Name Forage Guild Resources Used Abundance 
d 

    J F M A M J J A S O N D 

ODONTOPHORIDAE  

   Callipepla californica California Quail Ground Forager Seed and Invertebrates 

TIMALIIDAE 
   Chamaea fasciata Wrentit Bark Gleaner Seed and Invertebrates 

EMBERIZIDAE 
   Melozone crissalis California Towhee Ground Forager Seed and Invertebrates 

   Pipilo maculates Spotted Towhee Ground Forager Seed and Invertebrates 

   Aimophila ruficeps Rufous-crowned Sparrow Ground Forager Seed and Invertebrates 
   
   Amphispiza belli Sage Sparrow Ground Forager Seed and Invertebrates 
   
     Zonotrichia atricapilla Golden-crowned Sparrow Ground Forager Seed and Invertebrates 
     
    Z. leucophyrys White-crowned Sparrow Seed Collector Seed 
    

FRINGILLIDAE 
    Carduelis lawrencei Lawrence’s Goldfinch Seed Harvester Seed and Invertebrates 
    
    C.  psaltria Lesser Goldfinch Seed Harvester Seed and Invertebrates 

    C. mexicanus House Finch Seed Harvester Seed and Invertebrates 
    

 

Uncommon Common Abundant  Breeding 
Season    

 

a 
Emmons 2011; Daniel George pers comm. 2011; 

b
 Davis et al. 1980;  

c 
Thorngate et al. 2006; 

d 
PNM only 
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Similar to rodents, habitat partitioning by birds may preclude some species 

from being potential dispersers of E. nortonii.  Finches and some sparrows such 

as the rufous-crowned sparrow (Aimophila ruficeps Cassin) and spotted towhee 

(Pipilo maculatus Swainson) may be removed from direct association with 

ground resources due to their preference for foraging in shrub canopies 

(Greenlaw 1996; Collins 1999).  Other sparrows such as the California towhee 

(Melozone crissalis Vigors) and sage sparrow (Amphispiza belli Cassin) prefer to 

forage on open ground (Martin and Carlson 1998; Benedict et al. 2011).  

However, for both sparrows and finches, particularly exposed areas may be 

avoided where the availability of nearby cover is limited (Pulliam and Mills 1977; 

Milesi et al. 2008). 

Both finches and sparrows may further partition resources by seed size.  

Sparrows generally consume smaller seeds (< 2 mg) and have a narrower range 

of seed sizes they can efficiently handle.  Because smaller seeds provide lower 

energetic reward, sparrows are required to expend more “sedentary” time 

foraging in individual sites (Benkman and Pulliam 1988). 

In contrast, the stronger jaw muscles of finches allow them to exploit a 

larger and wider range of seed sizes.  Moreover, finches have mouth and gut 

storage structures that allow them to hoard seed and, thus, relieve necessity for 

continual foraging (Benkman and Pulliam 1988). 
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Seed Fate 

Even where seed densities and site parameters invite potential dispersal 

of E. nortonii achenes, seed survival and dispersal is restricted by the handling 

and digestive processes of potential dispersers.  Ultimately, active seed 

predation is more likely to result in seed mortality than in successful dispersal of 

intact seed (Tiffney 2004).   

Handling and consumption, particularly by ants and rodents, results in 

mortality for the majority of seed (Krefting and Roe 1949; Hughes et al. 1994).  

Seed may only escape predation if viable seed is mistakenly disposed on refuse 

piles, dropped in transport, or enters the soil column undetected.   

Likewise, few seed generally survive the handling and digestive processes 

of birds (Holbrook and Loiselle 2007).  Granivorous birds handle seed either by 

swallowing whole (e.g. doves) or by husking (e.g. finches) (Hrabar and Perrin 

2002).  However, the guts of huskers do not require heavy, grinding stomachs to 

process hard seed coats since husked seed is already partially broken down 

prior to digestion (Murphy et al. 1993).  Thus, a few seed may be evacuated 

undamaged (Coates-Estrada and Estrada 1988; Lambert 1989).   

The length of time seed remains in the gut varies by species (Herrera 

1984; Schupp 1993), suggesting that gut retention times are associated with 

dispersal distance and that those species that retain viable seed longer are more 

likely to distribute E. nortonii further from the source population.  For example, 

the storage structures that allow finches to spend less time foraging also allow 
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them to spend more time in flight, potentially covering wider spatial scales than 

sparrows (Benkman and Pulliam 1988). 

Shared associates across several E. nortonii sites suggest some sites 

receive the same species of long-distance dispersers.  For example, Chorizanthe 

is found in many E. nortonii populations on both sides of the Salinas Valley.  All 

E. nortonii populations studied west of the Salinas Valley were associated with 

Chorizanthe while three populations studied east of the Salinas Valley were 

associated with Chorizanthe.  Although shared associates across populations 

may be due to any number of factors, where bird-dispersed seed occurs, some 

mixtures of seed and, thus, population associates may not be due to chance 

alone (Jordano 1988; Loiselle 1990).  Those sites E. nortonii shares with 

preferred associates may receive preferential visitation over E. nortonii sites 

without a preferred associate.  Ultimately, E. nortonii seed from sites with 

preferred associates may have a greater chance for dispersal long distances 

than seed from sites without preferred associates. 

Dispersal Summary 

The absence of E. nortonii populations beyond its present distribution may 

not be due to a lack of habitat.  Chaparral is ubiquitous outside of its present 

range.  Presumably the same species of birds that occupy chaparral within the 

range of E. nortonii also occupy chaparral outside the range of E. nortonii.  As 

such, the potential for long-distance seed transport should be roughly equivalent 

in all directions.  Otherwise, the restricted distribution of E. nortonii suggests a 
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rarity of movement across the Salinas Valley by the majority of potential 

dispersers while the apparent non-dispersal strategy of E. nortonii seed suggests 

the majority of seed production does not travel far from the parent population.  

The ingestion of E. nortonii fruits is dependent upon the rare intersection of 

habitat and resource requirements and assemblages of likely dispersers while 

the successful long distance colonization by E. nortonii requires survival of the 

digestive processes of potential long-distance dispersers, all of which indicates 

long distance dispersal of E. nortonii seed may proceed by extremely rare events 

that contribute to its restricted distribution.    

Paleoenvironment of Early Eriogonum Species 

The close association of Eriogonums with arid environments suggests 

southerly origins while pollen samples place the earliest presence of Eriogonum 

in grassland and steppe environments ~ 8 Ma on the Columbia Plateau of 

southeast Washington and ~ 16 Ma in the Rocky Mountain foothills of eastern 

Wyoming (Leopold and Denton 1987).   

Reveal (1969a) suggested basal Eriogonums were shrub or sub-shrubs 

that occupied exposed, low slopes within the arid piñon-juniper woodlands of the 

southern Rocky Mountain Range and northern Mexico while more derived taxa 

speciated in chaparral of the California Coast Ranges (Reveal 1978).  

Surrounding communities included mesic woodlands comprised of deciduous 

hardwood species with Asian and eastern North American associations, 

subtropical broad-leaved evergreens, and xeric shrublands that were expanding 
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in response to increasing aridity, cool temperatures, and seasonality (Axelrod 

1950; Graham 1999; Zachos et al. 2001).   

Aridity, in particular, is thought to have influenced the rapid diversification 

of Eriogonum (Raven 1973; Sanchez and Kron 2008).  Diverse sources of aridity 

may co-occur where soil, topographic, and climatic factors intersect and act 

cumulatively or independently resulting in an aridity gradient to which local taxa 

adapt and diversify.     

Edaphic aridity has been a selective force on angiosperm evolution since 

at least the Cretaceous despite a prevailing, equable macroclimate (Axelrod 

1972).  Barren sites of exposed basement rock are nutrient-poor and highly 

porous, shed rain-wash quickly, and invite little competition from mesic-adapted 

taxa.  Thus, xeric-adapted taxa may have persisted on barren patches that 

otherwise inhibited colonization (Callaway and Davis 1993).  Also, the isolation of 

exposed basement during periods of warm, humid climate may have further 

enforced conditions for speciation on sites where edaphic islands were isolated 

by surrounding mesic taxa, thus favoring speciation of xeric taxa (Stebbins 

1952). 

Rain shadows formed from ongoing tectonic processes, as well as an 

increasingly dry and seasonal climate trend, amplified the dry conditions of 

basement exposures (Axelrod 1972).  Consequently, the co-occurrence of three 

prominent sources of aridity (soil, topography, and climate) may have 

accelerated speciation in genera such as Eriogonum where plants were exposed 
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to arid conditions.  

Aridity may have also indirectly contributed to the range expansion of 

Eriogonum.  Expanding dry climate led to the elimination of mesic-adapted taxa 

through extinctions and the extirpation of species intolerant of dry environments 

(Chaney 1947), thus creating openings where extant species could colonize and 

diversify.  Islands of drought-adapted flora that had persisted from more mesic 

periods expanded as elimination of woody taxa left open and increasingly unified 

tracts of colonizable habitat (Axelrod and Raven 1985).        

Salinas Valley and Central Coast Ranges Paleoenvironment 

Miocene (23 – 5 Ma).  Major modern topographic features of the northern 

and central Salinas Valley, now offset by 315 km along the San Andreas Fault 

(SAF), were adjacent to the northwestern border of the Mojave Desert in the 

early Miocene (23 – 16 Ma; Graham et al. 1989; Powell 1993; Sims 1993; 

Dickinson and Wernicke 1997; Barth et al. 2003; Dickinson et al. 2005; 

McQuarrie and Wernicke 2005; Fig. 18).  The Gabilan Range, at the junction of 

the San Emigdio Mountains and the SAF, possibly formed a continuous highland 

with the Ben Lomond region of the Santa Cruz Mountains (Graham et al. 1989) 

while the Sierra de Salinas was more proximal to the southern end of the Gabilan 

Range prior to late Miocene faulting in the Salinas Valley region (Rosenberg and 

Clark 2009). 

Regional volcanism also influenced the early Miocene Salinas Valley 

environment (Dickinson 1997; Stanley et al. 2000).  The Pinnacles Volcanic 
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Formation (PVF) west of the SAF in the Pinnacles National Monument and the 

Neenach Volcanic Formation (NVF) east of the SAF near Lancaster, California, 

together comprise the remnants of an ancient eruption that crossed fault 

boundaries along the northwest border of the Mojave region approximately 24 – 

22 Ma (Turner et al. 1970; Matthews 1976; Sims 1993).  The Pinnacles-Neenach 

Volcanics emerged from a topographic high, but marine fossils in the rhyolite 

breccia stratum suggest at least partial deposition into a marine environment 

(Matthews 1976). 

FIG.  18.  Approximate Miocene restoration of the northern Salinas Valley prior to dextral     
slip on the San Andreas and Rinconada faults (modified from Hall 2002 and Dickinson et 
al. 2005).  CH = Carmel Highlands; FO = Fort Ord; G = Gonzales; GF =  Garlock fault; K = 
King City; M = Monterey; S = Salinas; SC = Santa Cruz; Nv = Neenach Volcanics; Pv = 
Pinnacles Volcanics; RiF = Rinconada fault; SAF = San Andreas fault. 
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Along the coast, marine waters covered Fort Ord, the northern and 

southern Sierra de Salinas, the northern Santa Lucia Range (Clark et al. 1974; 

Dupré 1990; Clark et al. 2000), the Carmel Highlands (Clark et al. 1974), the 

base of the Pinnacles area (Wagner et al. 2002), the northern Gabilan Range 

(Gribi 1967; Clark and Reitman 1973), and the San Joaquin Basin (Hall 2002). 

Although marine transgressions along the central coast and into the 

interior southern Central Valley were widespread from the middle to late Miocene 

(16 – 5 Ma), emergent land is suggested by ancient remnant Tertiary erosion 

surfaces (Snetsinger 1962; Dohrenwend 1975; Page et al. 1998; E. Taylor, 

USGS, personal communication).  Terrace gravels near Junipero Serra Peak in 

the northern Santa Lucia Range are presently found at 1100 m (Snetsinger 

1962), while the average ridgecrest elevation is approximately 1700 m (Tinsley 

1975), which suggests pre-uplift elevations, not considering erosion rates, were 

closer to 600 m. 

Tinsley (1975) suggested the Gabilan Range, with its topography of low, 

broad connected ridges that average 900 – 1000 m, represents an erosion 

surface that has not undergone the extensive faulting and folding of the Santa 

Lucia Range.  Instead, it has remained a relatively rigid block where recent uplift 

is indicated by steep valleys and v-shaped canyons at its margins.  Gloria Valley, 

where an E. nortonii population was located, is a broad, upland valley that may 

have been an erosion terrain prior to Quaternary uplift.       
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Between 17 – 15 Ma the Gabilan Range detached from the Neenach 

segment and was transported approximately 95 km northwest along the SAF 

(Powell 1993; Sims 1993; Nicholson et al. 1994; Dickinson 1996; Dickinson and 

Wernicke 1997; Page et al. 1998; Dickinson et al. 2005; McQuarrie and Wernicke 

2005).  While in the vicinity of the Temblor Range, the Gabilan Range is 

suggested to have been the source for granitic and volcanic conglomerate 

deposits in the marine Santa Margarita Formation between 11 – 6 Ma (Huffman 

1972; Ryder and Thomson 1989).     

Miocene paleofloras in Central and Southern California suggest diverse 

assemblages of genera common to contemporary floras with genera now 

considered exotic to the California and desert floristic provinces.  Deciduous 

hardwood species with Asian and eastern U.S. affinities occurred with subtropical 

broadleaved evergreens and sclerophyllous xeric taxa now associated with the 

American Southwest, Mexico, and South America (Condit 1938; Axelrod 

1939,1944a, 1980, 2000; Renney 1972; Raven and Axelrod 1978).  The 

occurrence of species now found in more tropical and subtropical environments 

suggests the floras were acclimated to a summer-rain, warm-winter climatic 

regime controlled, in part, by inland seas. 

Reconstruction of a proto-northern Salinas Valley (the area encompassing 

all of the Gabilan Range and the northern Sierra de Salinas and Santa Lucia 

Ranges to King City) paleoflora requires evaluation of nearby paleofloras prior to 

and after initiation of right-lateral displacement on the SAF.  The most plausible 
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genera found in the Miocene Salinas Valley region may have been from 

paleofloras temporally and geographically nearest the Salinas Valley as it moved 

northwest along the SAF in addition to shared genera between paleo and present 

floras found in the Salinas Valley and surrounding ranges (Fig. 19).   

The deposition site of the species-rich Tehachapi flora (17 –16 Ma) on the 

leeward flank of the Tehachapi Range, east of the SAF in the western Mojave 

Desert, is presently about 60 km from the Neenach Volcanics.  However, past 

sinistral slip along the Garlock Fault suggests that the deposition site was 

originally about 72 km from the Neenach Volcanics (Powell 1993).  Many genera 

of the Tehachapi flora are still found in the Mojave and Sonoran Deserts (Axelrod 

1939).  Although the western regions of the northern Salinas Valley likely 

supported more mesic flora during the Miocene, the eastern Gabilan Range may 

have created enough of a rain shadow where xeric species associated with the 

Tehachapi flora were found.  

The mesic regions of the northern Salinas Valley during the Tertiary may 

have more closely resembled the microfossil (pollen) assemblages of the 

Wilmington (13.5 – 3 Ma; Martin and Gray 1962), Site 467 (15 Ma – 2 Ma; Ballog 

and Malloy 1981), and Lion’s Head (14 – 10 Ma; Srivastava 1984) microfloras, 

which suggest Quercus, Pinus, Juniperus, Cupressus, Carya, Castanea, 

Juglans, and members of Ericaceae were particularly widespread in coastal 

southern California during the Miocene.  
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FIG.  19.  Miocene macro and microfossil (*) paleoflora locations.  Left figure represents present locations of paleofloras; right 
figure represents locations at time of deposition .  Circled floras have shifted up to 315 km northwest along the San Andreas 
fault.  Latitudes are approximate.  Locations of floras based on Condit 1938; Axelrod 1939, 1944a, 2000; Martin and Gray 1962; 
Renney 1972; Ballog and Malloy 1981; Srivastava 1984.
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Rich and Pirkle (1994) proposed that sedimentation studies on the 

southeast coast of North America suggest Carya, Quercus, and Pinus pollens 

are indicative of coastal marine environments.  This is supported by the Temblor 

flora (16 – 15 Ma; Renney 1972), deposited ~ 230 km from the Salinas Valley 

region on the western border of the San Joaquin Sea and the Carmel flora (12 – 

10 Ma; Axelrod 2000) deposited west of the southern Gabilan Range within the 

present day Carmel River Valley.  In addition to pine and oak, the Temblor flora 

also includes Carya and Castanea while the Carmel flora, comparable to 

contemporary tropical cloud forests of the Sierra Madre of central Mexico, may 

have allowed a broadleaf evergreen lauraceous element  (Bucida, Nectandra, 

Ocotea) to persist due to coastal fog (Renney 1972; Axelrod 2000). 

The Mint Canyon flora to the south (13 – 12 Ma; Axelrod 1940) and the 

Blackhawk (11 – 10 Ma; Axelrod 1944a) and San Pablo (10 – 9 Ma; Condit 1938) 

floras in the San Francisco Bay Area (~ 400 km from the northern Salinas Valley 

region) confirm the widespread occurrence of shared genera and, therefore, 

increase the likelihood that those genera were also present in the Miocene 

northern Salinas Valley.  Thus, the northern Salinas Valley flora of the Tertiary 

may have had a number of recognizable elements with a few species now 

considered to be exotics, many of which were likely segregated by the prevailing 

topography (Table 8).   
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Dry, south-facing slopes with shallow soils such as the volcanic rock of 

Pinnacles or soils of crystalline basement material may have supported genera 

now associated with desert scrub such as Colubrina, Condalia, Dodonaea, 

Forestiera, and Karwinskia.  It is probable that the eastern flank and ridge tops of 

the Gabilan Range supported desert-associated genera, while genera such as 

Arbutus, Cupressus, Myrica, Quercus, Persea, Pinus, and Umbellularia formed 

woodland-savannahs on north-facing slopes and in valleys with deeper soils, 

TABLE 8.  POSSIBLE GENERA IN THE NORTHERN SALINAS VALLEY 17 MA – 
QUATERNARY.  Based on Chaney and Mason 1930, 1933; Mason 1934; Condit 1938; 
Axelrod 1939, 1940, 1944a, b, c, 2000; Martin and Gray 1962; Langenheim and Durham 1963; 
Axelrod 1966, 1983; Helley et al. 1972; Renney 1972; Adam et al. 1979; Ballog and Malloy 
1981; Srivastava 1984.  

 Miocene Pliocene Quat. 
Genera 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
Alnus 
Arbutus 
Arctostaphylos 
Ceanothus 
Cercocarpus 
Cornus 
Cupressus 
Forestiera 
Fraxinus 
Holodiscus 
Lithocarpus 
Mahonia 

Myrica 
Photinia 
Pinus 
Platanus 
Populus 
Prunus 
Quercus 
Rhamnus 
Rhus 
Salix 
Umbellularia 

 

Celtis Persea      

Carya 
Castanea 

Robinia         

Sabal           

Bumelia Cedrela                

Bursera 
Colubrina 
Condalia 
Erythea 

Ficus 
Dodonaea 
Karwinskia 

                

Diospyros Nyssa       

Magnolia       

Bucida 
Ocotea 

Nectandra                

Juglans        

Acer   
Amelanchier 

Castanopsis            

Sapindus               

Ulmus                 

Garrya              
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particularly on the western flank of the Gabilan Range as well as towards the 

more mesic Sierra de Salinas and Santa Lucia Ranges. 

Arctostaphylos, Ceanothus, Cercocarpus, Holodiscus, Mahonia, Photinia 

(Heteromeles), Quercus (scrub), Prunus, Rhamnus, and Rhus, now recognized 

as common contemporary chaparral components, likely occurred as woodland 

understory during the Miocene, but may have mixed with desert scrub taxa 

where conditions permitted.  Sabal and Erythea, common palm genera, may 

have transitioned between upslope and riparian woodlands where Platanus, 

Populus, and Salix were more dominant (Axelrod 1939).  Bucida, Nectandra, and 

Ocotea as well as closed-cone conifer/oak woodlands may have been 

widespread where cool, coastal conditions prevailed including the northern Sierra 

de Salinas, Santa Lucia, and Gabilan Ranges. 

Late Miocene to early Pliocene (~ 8 – 5 Ma) displacement along the 

Rinconada Fault shifted the Santa Lucia and Sierra de Salinas Ranges further 

northwest 20 km (Rosenberg and Clark 2009).  The occurrence of Magnolia, 

Persea, and Sapindus in the Central Valley paleofloras suggests the inner Coast 

Ranges in that area were at elevations low enough to allow for maritime 

influences from the west while southern and northern California paleofloras of the 

same period indicate continued generic segregation (Axelrod 1934, 1944b, c, 

1950, 1980).  

Genera now considered exotic were extirpated from the central coast 

region by the middle Pliocene while the contemporary woody flora in California 
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was essentially established by the driest part of the Tertiary, late Pliocene, 

including widespread expansion of chaparral taxa (Axelrod 1989).  These 

changes may have been reflected on the drier ridges and south-facing slopes of 

the northern Salinas Valley.   

Late Pliocene – Pleistocene (5 Ma – 20,000 ka).  With the onset of 

Pleistocene glaciations, the climate had changed from arid and warm to cool and 

humid, resulting in changes to local vegetation (Chaney and Mason 1930, 1933; 

Potbury 1932; Mason 1934; Axelrod 1966, 1980; Adam et al. 1979; Axelrod and 

Hill 1988; Axelrod and Govean 1996).  The Salinas Valley region reached its 

present position along the SAF by the Pleistocene (2 Ma – 12 ka) while the 

western half of the Salinas Valley shifted another 18 km northwest into its 

present position on the Rinconada Fault Zone (Rosenberg and Clark 2009). 

At ~ 3.5 Ma the central Coast Range orogeny ensued; accelerated folding 

and thrusting occurred post – 2 Ma and as late as 400 ka (Christensen 1965; 

Page et al. 1998; Ducea et al. 2003).  Christensen (1965) suggests average uplift 

between 250 – 1000 m post-Pliocene throughout the central Coast Ranges.  

Early Pleistocene uplift in the Gabilan Range occurred to 500 m (Baldwin 1963; 

Dohrenwend 1975, 1979), while uplift in the Santa Lucia Range occurred to 

about 1000 m (Snetsinger 1962; Compton 1966; Howard 1973).  Activity on the 

Reliz fault, adjacent to the northeastern boundary of the Sierra de Salinas, 

resulted in vertical displacement of the Sierra de Salinas to 3000 m (Dibblee 

1976).  Present elevations reach to 1360 m.  
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Early Quaternary uplift in the central Coast Ranges lead to eventual 

sequestration of the San Joaquin inland sea (Bowersox 2005; Powell et al. 

2007), recession of marine waters and widespread erosion of 1 – 5 km of rock in 

the central Coast Ranges (Page et al. 1998).  Low Pleistocene sea levels 

resulted in incision of valley fill by the Salinas River while interglacial periods 

resulted in the submersion of the northern Salinas Valley that may have 

extended up to Gonzales (Tinsley 1975). 

There are few inland fossil floras from the Pleistocene.  Coastal fossil 

floras suggest closed-cone conifer woodlands had wider Pleistocene distributions 

along the coastal strip than present populations (Fig. 20).  For example, the 

Carpinteria flora (39 – 40 ka) in southern California supported taxa contemporary 

to the closed-cone forests that now occur on the Monterey Peninsula including 

Ceanothus thyrsiflorus, Cupressus goveniana, Garrya elliptica, Juniperus 

californica, Myrica californica, Pinus muricata, P. radiata, P. remorata, P. 

sabiniana, Quercus agrifolia, Toxicodendron diversilobum, and Umbellularia 

californica (Chaney and Mason 1933).   

Closed-cone woodlands of the Pleistocene were limited by the same 

parameters that limit contemporary closed cone woodlands including high 

temperatures, low fog cover, and low precipitation.  Sites such as where the 

Seacliff flora was deposited are now surrounded by coastal sage scrub indicating 

that temperatures are approximately 1.5 °C higher and annual precipitation is 

approximately 41 – 65 cm lower than in the Pleistocene (Axelrod 1983).  
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FIG.  20.  Pleistocene fossil floras.  Locations of floras based on Chaney and Mason 1930, 
1933; Potbury 1932; Mason 1934; Langenheim and Durham 1963; Axelrod 1966, 1983; 
Helley et al. 1972; Adam et al. 1979; Axelrod and Hill 1988; Axelrod and Govean 1996. 
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Because the coastal region was an area of active uplift during the 

Pleistocene, many fossil floras were likely deposited on sites that were formerly 

nearer sea level and, in some cases, may have covered lowland areas as 

exemplified by the Mountain View flora in the southwestern corner of the San 

Francisco Bay Area (Helley et al. 1972).  Widespread distribution of closed-cone 

woodlands during the Pleistocene may have prevented incursions by chaparral 

taxa.  Many coastal Pleistocene floras have limited representation of chaparral 

taxa, indicating source populations of chaparral taxa were from relatively distant 

slopes (Axelrod 1966, 1983). 

The Soboba flora (~ 1 Ma) in southern California, contemporaneous with 

the coastal Seacliff, Potrero Canyon, and Costa Mesa paleofloras (~ 246, 90, and 

148 km from the Soboba flora, respectively) indicates drier conditions inland due 

to the occurrence of chaparral taxa (Ceanothus, Cercocarpus, Garrya, Mahonia, 

Prunus).  However, big cone spruce (Pseudotsuga macrocarpa), Coulter’s, 

sugar, and ponderosa pines (Pinus coulteri, P. lambertiana, P. ponderosa) and 

white fir (Abies concolor) that now occur at higher elevations were also present in 

the Soboba flora and indicate that the Pleistocene environment at the time of 

deposition was more moist than present despite its inland position.  Precipitation 

was 38 – 50 cm greater than present, 20% of which occurred as summer rainfall; 

the mean annual temperature was 4 – 5.5 °C lower than present and there was 

light winter snowfall in the lowlands (Axelrod 1966, 1983). 
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Holocene (20,000 ka).  The last glacial maximum ~ 18 ka was followed by 

deglaciation ~ 12 ka and thermal maximum ~ 6 ka when temperatures were 1.4 – 

2.1 °C warmer than present (Thompson et al. 1993).  Rising temperatures and 

aridity resulted in range contraction and thinning of coastal conifer woodlands, 

local delineation of vegetation by the segregation of mesic and xeric taxa into 

chaparral and coastal sage scrub, and the expansion of those species better 

adapted to an increasingly extreme environment (Axelrod 1958, 1981, 1983, 

1989).  

As previously mentioned, chaparral taxa did not form climax communities 

in the Tertiary but, rather, were seral to and understory associates of woodland 

taxa; contemporary zonal stands of chaparral are a Quaternary phenomenon 

(Axelrod 1989).  In addition, although chaparral taxa were solidly emplaced in 

southern California by the middle Miocene, they were most diverse and wide-

ranging by the Pliocene.  Interestingly, this diversity did not seem to include 

chamise, which is so prevalent today (Axelrod 1958, 1989). 

The origin of chamise is unknown.  It has not been included as an 

important associate of the Madro-Tertiary Geoflora (Axelrod 1958) although its 

extreme isolation from close ancestors, North American desert shrub 

Chamaebatiaria millefolium and deciduous Asian tree, Sorbaria (Potter et al. 

2007; Vamosi and Dickinson 2006), suggests a Tertiary origin (Raven 1973; 

Axelrod 1989; Axelrod and Raven 1985).  This implies the abundance of chamise 
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has been negligible until fairly recently, and certainly not sufficiently prevalent to 

create the vast stretches of monotypic stands that it does today.     

Thus, the present dominance of chamise in the central Coast Ranges may 

be a relatively recent artifact of climate change.  Regional uplift and the onset of 

the Mediterranean climate regime in California resulted in higher summer 

temperatures and less precipitation in the desert regions where chaparral taxa 

were prevalent during the Tertiary.   In turn, chaparral taxa were extirpated from 

the rain shadows of uplifted ranges bordering desert provinces and restricted to 

regions of the southwest where summer rain is still prevalent or to comparatively 

mesic locations in California and Baja California (Axelrod 1973, 1989).  Perhaps, 

the formation of present associations of chaparral also occurred as range 

contraction of chaparral taxa became more pronounced.  During dry periods of 

the Quaternary, the comparatively mesic maritime chaparral in the northern 

Salinas Valley was restricted to coastal locations (the Monterey Bay area and 

Watsonville Basin).  In contrast, the range of chamise may have expanded into 

arid locations. 

Chamise tends to form climax communities where conditions are 

particularly dry such as ridge tops and steep, south-facing slopes but forms more 

diverse associations with other woody taxa where conditions are mesic.  Similar 

to other chaparral associates, chamise may have been seral to woodlands in 

California, particularly where conditions were moister.  As the Coast Range 

topography changed, chamise may have been one of few species that could 
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successfully occupy steep, edaphically dry slopes.  Increasingly arid conditions 

and anthropogenic ignitions introduced after ~ 13 ka (Erlandson et al. 2008) may 

have amplified fire frequencies and resulted in further changes to vegetation 

structure that favored expansion of chamise (Axelrod 1973, 1989).         

The range expansion of chamise may have contributed conditions that 

were favorable for the rapid radiation of diverse annual taxa in the chaparral 

ecosystem.  This is consistent with the suggestions that many annual species are 

relatively recent additions to Quaternary floras (Axelrod 1973, 1989; Raven 1973) 

and recent radiations among annuals most likely occurred in recently formed 

communities such as chaparral (Stebbins and Major 1965; Reveal 1978). 

Endemism and Biogeography of Eriogonum nortonii 

The California Floristic Province has a rich diversity of endemic taxa, 

many of which have particularly narrow distributions; over 60% of endemics in 

California have ranges < 10,000 km2 (Thorne et al. 2009).  Restricted 

distributions have generally been attributed to factors associated with ecological 

inferiority that inhibit exploitation of diverse habitats (Gaston and Lawton 1990; 

Hanski et al. 1993; Walck et al. 1999) including low reproductive investment (i.e. 

low pollen-ovule ratios), production of fewer seed (Walck et al. 1999; Lavergne et 

al. 2004), small features (Lavergne et al. 2004), small population size (Gaston 

and Lawton 1990), and poor dispersability (Hanski et al. 1993; Edwards and 

Westoby 1996; Lloyd et al. 2003).   
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In some cases the distributions of narrowly endemic taxa may be due to 

historical and landscape processes that have resulted in both paleoendemic and 

neoendemic taxa with restricted distributions.  Paleoendemism is the result of 

range contraction due to climate change.  The expanding cold and aridity since 

the early Tertiary that contracted the ranges of extant paleoendemics also 

eliminated or contracted the ranges of close relatives to extents where their 

distributions no longer overlap.  Thus, paleoendemics may not share close ties 

with contemporary taxa, or nearest relatives may occur in geographically distant 

regions.  The long fossil histories of paleoendemics also attest to formerly 

widespread distributions and associations with closely related species (Stebbins 

and Major 1965; Raven and Axelrod 1978).  For example, fossil data of 

Lyonothamnus accounts for four species, some with overlapping Tertiary ranges 

that extended from southern California to northern Oregon and central Nevada 

(Erwin and Schorn 2000).  Today, Lyonothamnus floribundus forms a monotypic 

genus with 2 subspecies and natural populations are restricted to the Channel 

Islands (Wilken 1993). 

Neoendemics may also have restricted distributions resulting from the 

same climate changes that led to range contraction of paleoendemics, but 

represent the opposite end of the evolutionary spectrum.  By virtue of their youth, 

neoendemics have generally never been widespread nor accrued the time to 

build a fossil history, but may share close genetic and geographic ties with a 

number of other taxa (Stebbins and Major 1965; Raven and Axelrod 1978).   
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Studies comparing narrowly distributed and widespread congeneric pairs 

occurring under similar ecological conditions did not find physiological (Lavergne 

et al. 2004) or morphological differences (Lesica et al. 2006).  In such cases, 

labels of ecological inferiority fail to explain the local abundance of narrow 

endemics compared to their widespread congeners.  Even where ecological 

inferiority and its associate factors appear to be a cogent explanation for the 

cause of restricted distributions, this may merely reflect a present physiological or 

morphological state that maintains endemism, but does not address the 

evolutionary and ecological history of the species.   

The central Coast Ranges, chiefly parts of San Benito and Monterey 

counties, are rich in endemic species (Stebbins and Major 1965; Thorne et al. 

2009) and of recent origin (Christensen 1965; Page et al. 1998; Ducea et al. 

2003).  It is thought that geological sites of recent origin are hotspots for plant 

taxa that have recently speciated, particularly where new geologies occur in 

regions with young climate regimes and recently formed vegetation associations.    

Eriogonum has numerous widespread species as well as many narrow 

endemics.  Eriogonums that are taxonomically separated by minor morphological 

differences and have relatively restricted distributions suggest a youthful age 

(Stebbins and Major 1965).  Of the eight subgenera in Eriogonum, Oregonium, 

comprised of all annuals, is considered one of the youngest as most members, 

including E. nortonii, occur in chaparral in the Coast Ranges (Reveal 1969a, 

1978).     
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Eriogonum nortonii has a narrow, disjunct distribution.  This, in addition to 

factors associated with neoendemism, suggest a Pliocene or later origin, while its 

distribution pattern may represent habitat fragmentation or range expansion via 

the mechanisms of vicariance, long distance dispersal, or habitat change.  

A vicariant perspective suggests past geomorphological changes in the northern 

Salinas Valley region have altered a pre-existing Miocene distribution of E. 

nortonii.  The Salinas Valley has most likely been a major structural feature since 

the Miocene (Snetsinger 1962; Tinsley 1975) that has been extended by two 

periods of slip (Miocene and early Pleistocene) on the Rinconada Fault 

(Rosenberg and Clark 2009).  If populations of E. nortonii had been present on 

both sides of the Salinas Valley prior to Miocene slip, its distribution would have 

already been disjunct.  Occupation of the Salinas Valley basin from the Miocene 

to present is not expected given the presence of Tertiary inland seas followed by 

the advancement of woodland taxa as valley habitat became available.  

Subsequent fault movement would have resulted in range expansion and, 

perhaps, greater habitat fragmentation, by rafting populations present on the 

west side of the valley towards the northwest. 

Palynological studies in the southern California borderlands suggest a 

strong abundance of Eriogonum at the start of the Pliocene, the most arid period 

of the Tertiary (Ballog and Malloy 1981).  Certainly, if Eriogonum was present in 

Wyoming and Idaho in the middle Miocene, as suggested by Leopold and 

Denton (1987), it was likely also present in California where inland seas were 
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absent.  Thus, the Pliocene spike in pollen does not suggest a period of origin of 

Eriogonum in southern California but, rather, indicates extant taxa were 

expanding in response to increasing aridity to the extent that their numbers were 

significant enough to contribute to the microflora. 

Erdtman (1964) suggested apocratic pollen, an Eriogonum characteristic, 

is common of opportunistic taxa of arid regions.  Apocratic species are generally 

poor competitors that exploit available habitat during dry conditions or periods of 

climatic instability where open ground is available for colonization.  If true, E. 

nortonii may not have been present in the northern Salinas Valley region until the 

Holocene, or it may have had a range even more restricted than present and has 

only recently expanded as habitat has become available. 

Furthermore, the likelihood that Miocene populations of E. nortonii were 

present on the west side of the Salinas Valley, much less most of the Coast 

Ranges, is diminished by the transgression of Tertiary marine waters over much 

of the lower elevations in the Sierra de Salinas and Santa Lucia Ranges, 

including where E. nortonii populations presently occur.  Where submergence 

was intermittent, colonizable habitat would have been intermittent as well and 

hardwood deciduous forests, oak-laurel woodlands, or closed-cone pine 

woodlands would have dominated sites that were consistently available during 

the Tertiary.   

By the late Pliocene – early Pleistocene, new habitat was made 

increasingly available for colonization as marine waters receded and uplift of the 
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Coast Ranges ensued.  However, due to increased precipitation, much of the 

landmass was likely colonized by the expansion of woodland communities at the 

expense of shrublands (Potbury 1932; Dorf 1933; Chaney and Mason 1933; 

Axelrod 1981, 1983).   For range expansion or further habitat fragmentation of E. 

nortonii to have transpired during the Pleistocene, E. nortonii populations would 

have had to have been present on land west of the Salinas Valley prior to the 

second period of slip along the Rinconada Fault during the early Pleistocene. 

However, colonization by diminutive annuals such as E. nortonii, 

particularly in mesic sites along the coast, would have been severely constrained 

by advancing closed-cone coniferous woodland that had more prolific ranges 

during the Pleistocene.  In drier areas, oak and oak-laurel woodlands would have 

been more extensive (Stebbins and Major 1965; Axelrod 1981).  Edaphically 

extreme sites of exposed rock outcrops, resistant to incursions by woodland taxa, 

as are found around Pinnacles National Monument, may have been refuges for 

small annuals and for the chaparral habitat in which they are found.  As 

Pleistocene uplift proceeded, erosion rates would have increased to the extent 

that basement rock and sedimentary rock would have been further exposed, 

creating more sites for colonization by small annuals such as E. nortonii.  The 

predominance of woodlands and the lack of available open habitat during the 

Pleistocene suggest E. nortonii did not have a Pleistocene distribution similar to 

its present distribution.   
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In contrast, chaparral expanded to the coastal strip in response to 

increasing aridity, warmer temperatures (Axelrod 1966) and restriction of oak 

woodlands, mixed evergreen, and redwood forests during the Holocene.  As 

such, potential habitat for small annuals to colonize also expanded (Axelrod 

1981), which may have increased the likelihood that E. nortonii expanded to the 

western half of the Salinas Valley at this time as well.         

Further support for a Holocene range expansion of E. nortonii relies on 

assertions that divergence of annual forms of Eriogonum may have most recently 

occurred during the Quaternary (Shields and Reveal 1988).  Annuals, having 

smaller effective population sizes and shorter life cycles, are more prone to 

selection under extreme, unstable conditions (Stebbins 1947, 1952; Axelrod 

1958, 1972; Raven 1964, 1973; Raven and Axelrod 1978; Linder and Hardy 

2004).  Even though the Pleistocene climate was generally cooler than present, 

and fluctuated between glacial and interglacial periods, coastal regions were not 

subject to the same extreme climatic changes that occurred in alpine regions 

(Stebbins and Major 1965).  It is likely that those unstable conditions were more 

prevalent at the start of the Holocene, particularly ~ 8 – 4 ka (Thompson et al. 

1993).  

In summary, the geologic and climatic history of the northern Salinas 

Valley region indicates that the present distribution of E. nortonii in the Gabilan, 

Sierra de Salinas, and Santa Lucia Ranges is not a result of vicariance, but of 

recent expansion spurred by Holocene aridity, subsequent expansion of the 
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chaparral habitat, and long distance dispersal, which makes recent divergence 

between populations on opposite sides of the Salinas Valley less likely. 
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