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ABSTRACT 

KINETIC MODELING OF METHANOL SYNTHESIS FROM CARBON 
MONOXIDE, CARBON DIOXIDE AND HYDROGEN OVER A Cu/ZnO/Cr2O3 

CATALYST 
 

by Daaniya Rahman 

The main purpose of this study was to investigate kinetic models proposed in the 

literature for methanol synthesis and select the best fit model using regression techniques 

in POLYMATH.  Another aim was to use the results from the best fit model to explain 

some aspects and resolve some questions related to methanol synthesis kinetics.  Two 

statistically sound kinetic models were chosen from literature based on their goodness of 

fit to the respective kinetic data.  POLYMATH, the non-linear regression software, was 

used to fit published experimental data to different kinetic models and evaluate kinetic 

parameters.  The statistical results from POLYMATH were used for comparison of the 

models and selection of the best fit model.  The results obtained from the best fit kinetic 

model were then used to analyze the trends and kinetic features related to methanol 

synthesis.  The study was primarily concentrated on the effect of reaction conditions on 

the relative contribution of CO and CO2 in producing methanol.   

The combined model that included both CO and CO2 hydrogenation rate terms 

was the best fit kinetic rate expression that described methanol synthesis kinetics most 

appropriately.  A number of reaction conditions such as conversion, pressure, CO/CO2, 

and hydrogen content in the feed can have marked effects on the relative contribution of 

CO and CO2 in synthesizing methanol.  Therefore, no generalizations can be made 

regarding the main carbon source in methanol.  
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CHAPTER 1 

INTRODUCTION 

Kinetic modeling is an important tool in the design and optimization of chemical 

synthesis processes.  Kinetic studies aid in reactor design and are important means to gain 

a better insight of the overall process so that it can be modified for optimum operating 

conditions and better yields.  A detailed knowledge of the reaction scheme can often lead 

to betterment of the production process resulting in appreciable profits [1].  One such 

industrially important process is the synthesis of methanol. 

Methanol is a widely used industrial feedstock and a promising alternative energy 

resource.  It is mainly produced from a mixture of carbon monoxide, carbon dioxide, and 

hydrogen under high pressure and temperature using Cu/ZnO- based catalysts.  Synthesis 

of methanol takes place via three main reactions [2]:  

• hydrogenation of carbon monoxide 

   CO +2H2      CH3OH    Reaction (1) 

                (∆H = -91 kJ/mol; ∆G = -25.34 kJ/mol)      

• hydrogenation of carbon dioxide     

  CO2 + 3H2         CH3OH + H2O   Reaction (2) 

     (∆H = -49.5 kJ/mol; ∆G = 3.30 kJ/mol) 

• water-gas shift reaction 

   CO + H2O      CO2 + H2           Reaction (3) 

     (∆H = -41.2 kJ/mol; ∆G = -28.60 kJ/mol) 
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Cu/ZnO-based catalysts have been reported to be the most beneficial for this 

process due to their high activity, selectivity, and stability which is further enhanced by 

using supports and promoters [2, 3].  Major kinetic studies for methanol synthesis were 

done as early as 1977, and, even recently, authors are trying to model the process kinetics 

[2].  Although reaction mechanisms for this process have been studied for decades now, 

there has been no agreement on one exact scheme.  There are concerns regarding the role 

of carbon dioxide in the methanol synthesis process, the identity of the active sites on the 

catalyst, and the role of ZnO [3, 4 and 5]. 

There have been several efforts to improve the methanol synthesis process since 

its inception by BASF (Baden Aniline and Soda Factory) in the 1920’s by developing 

new, more efficient, and stable catalysts, new reactor configurations, and optimizing the 

reaction conditions like temperature, pressure, and space velocity.  Catalyst innovation 

involves using effective supports like ZnO and ZrO2, promoters like alumina, zirconia, 

and other elements like boron, cobalt, gallium, and magnesium to enhance the catalyst 

performance at varied reaction temperatures [3, 6].  Since methanol synthesis is an 

exothermic reaction, high temperatures enhance methanol yield but only up to an 

optimum temperature due to thermodynamic limitations.  These limitations result in 

decreasing the equilibrium yield with very high temperatures.  Therefore, new methods of 

synthesis at low temperatures have been developed [7].  The pressure range has also been 

lowered over the years considering the economics of the process [6].  However, the 

reaction mechanism remains a topic of debate and is still being investigated. 
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1.1 Significance 

Methanol synthesis is of large industrial significance.  Its global production was 

around 45 million metric tons in 2010 and is expected to increase to 85 million metric 

tons per year by 2012 [8].  Chemical Market Associates Inc., in their 2010 World 

Methanol Cost Study Report stated “The global methanol industry is in the midst of the 

greatest capacity buildup in its history” [9].  The 2011 report stated “Global methanol 

demand growth was robust in 2010 and is expected to continue at about the same pace” 

[37].  This high methanol production caters to a wide variety of applications.  Methanol is 

used as a feedstock for many important chemicals like formaldehyde, acetic acid, methyl 

tert-butyl ether, and chloromethane which in turn are used in various applications like 

paints, plastics, and plywood to explosives [6].  Methanol, either in pure form or blended 

with gasoline is also used as a transportation fuel.  It holds excellent promise as an 

alternative source of energy since it offers several advantages clean burning properties, 

low emissions, high octane rating, high volatility, high energy density, easy transport, and 

ability to be incorporated in the existing engines without major modifications in the 

infrastructure [2, 10, and 11].  Methanol is also being used as an energy carrier in fuel 

cell research applications [11].  The world methanol industry has a significant impact on 

the global economy, generating over $12 billion in annual economic activity while 

creating over 100,000 direct and indirect jobs [8]. 

Another aspect of importance is the production of methanol from hydrogenation 

of carbon dioxide which may help utilize the excess CO2 from the atmosphere, thereby 
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reducing one of the major greenhouse gases and mitigating the main cause of global 

warming [2, 6].   

Since methanol offers so many benefits as an alternative energy source and is of 

use in a multitude of applications, optimizing and enhancing its production by modeling 

its reaction kinetics could be of considerable importance.  Due to the disagreement on the 

methanol synthesis reaction scheme, there is always a scope to develop new and effective 

kinetic models which can prove to be useful in the improvement of the process resulting 

in high methanol yields and greater profits. 

1.2 Focus of Study 

The focus of my study is to investigate and compare the validity of kinetic models 

proposed in literature for methanol synthesis from CO/CO2/H2 over a Cu-based 

ZnO/Cr2O3 catalyst by fitting them to published experimental data over a range of inlet 

CO2 partial pressures and analyze the kinetic aspects of methanol production using the 

results predicted by the best fit kinetic model. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

Methanol production was first carried out in the 1920’s by BASF.  It holds 

immense industrial significance due to the wide variety of applications it caters to.  It has 

been reported that global methanol consumption reached 40.4 million metric tons in 2007 

and is expected to increase to 58.6 million metric tons by 2012 [12].  Due to its industrial 

importance and high consumption, numerous investigations have been carried out in 

order to improve the methanol production process.  Among various means, kinetic 

modeling is one of the most important tools in optimizing and enhancing the overall 

process.  A large number of experimental results have been reported in literature 

regarding the reaction kinetics of methanol synthesis but some questions and doubts still 

remain unanswered.  The main controversies revolve around the reaction mechanism 

(role of CO and CO2) and identity of active sites.  The literature review analyzes the 

following aspects of methanol synthesis kinetics: 

• Reaction Mechanism 

• Kinetic Models 

• Reaction Conditions 

• Catalyst  

2.2 Reaction Mechanism 

Methanol synthesis occurs via three reactions namely: hydrogenation of carbon 

monoxide, hydrogenation of carbon dioxide, and water gas shift reactions as shown in 
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Chapter 1.  There have been a number of studies on methanol synthesis kinetics involving 

Cu-based catalysts for decades now but controversies still remain regarding the reaction 

mechanism.  One of the major concerns has been the role of CO2 in methanol production.   

Initial kinetic studies on methanol synthesis by Natta et al. and Leonov et al. 

considered only CO and H2 as the main reactants and neglected any contribution from 

CO2 [13].  Later, Klier et al. in 1982 showed that methanol was mainly formed from CO 

and H2 that adsorbed on the catalyst and CO2 acted only as a promoter and not as a main 

reactant.  They also suggested that methanol production rate was maximum at a CO2/CO 

ratio of 2:28 which was governed by a balance between the promoting effect of CO2 and 

retarding effect due to strong adsorption of CO2 [14].  In another study, Liu et al. 

conducted initial rate experiments in a batch reactor to determine the effect of feed 

composition on methanol production rate and obtained conflicting results.  They showed 

that methanol formation rate increased with increasing CO2 pressure.  A year later, they 

presented a more detailed study and proposed that hydrogenation of CO2 was the primary 

reaction in producing methanol at low temperature, low conversion, and in the absence of 

water but at high temperature, high conversion, and in the presence of water, methanol 

was primarily produced via CO hydrogenation [15]. 

Chinchen et al. reported in their study that CO2 was the primary reactant in 

methanol production using 14C-labeled reactants [16].  Takagawa and Ohsugi, in 1987, 

determined the empirical rate equations for all the three methanol synthesis reactions and 

showed that methanol production rate increased with increase in CO2/CO ratio in the 

beginning of the reaction but decreased as the ratio increased and water started to form.  
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They claimed their results to be in accordance with both Klier et al. and Liu et al. [17].  

McNeil et al. in their experimental study found that 2 mole % CO2 in the feed yielded 

optimum methanol production rate.  They also found the contribution of CO2 to methanol 

formation to be more at lower temperatures.  Unlike other studies, they developed a rate 

expression based on mechanistic information which included the effects of CO2, both as a 

methanol producer as well as a rate inhibitor [18]. 

Another group of researchers led by Rozovskii et al. showed that there was no 

direct path for hydrogenation of CO to methanol.  They reported in their earlier study, 

using C-14 labeling techniques and in a more recent study using Temperature 

Programmed Desorption technique that methanol formation takes place through CO2 

hydrogenation [19].  In a methanol synthesis study conducted by Fujita et al. at 

atmospheric pressure in a flow reactor, it was found that CO2 produced methanol via 

hydrogenation of formate species formed on Cu and CO produced methanol via 

hydrogenation of formate species formed on ZnO.  CO2 hydrogenation rates were found 

to be more rapid than CO hydrogenation rates.  They reported that the presence or 

absence of water and the difference in the reactivity of the former and latter formate 

species mainly caused a difference in the methanol production rates from CO and CO2 

[20].   

In 1998, Sun and co workers studied methanol synthesis and water gas shift 

reaction using IR technique and found that CO2 hydrogenation was the principle pathway 

in methanol production for both CO2 and CO2/CO hydrogenation reactions.  The rate 

determining step was found to be the hydrogenation of formate species.  They suggested 
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that CO addition lowers the activation energy of the production process, in addition to 

affecting the reaction path [4].  In another study, Sahibzada et al. showed that the 

intrinsic rate of CO2 hydrogenation was twenty times faster than CO hydrogenation and 

at CO2 > 1%, it was the main source of methanol production.  They reported that 

methanol formation rate increased linearly with increase in CO2 concentration in the 

absence of products [21].  Further establishing the role of CO2 in methanol production, 

Ostrovskii, studied methanol synthesis mechanism on Cu/Zn containing catalyst under a 

wide range of experimental conditions and showed that CO2 was the principal source of 

methanol production [22].   

Recently, Lim et al. conducted a comprehensive study assuming CO and CO2 to 

adsorb on different Cu sites and water to adsorb on a ZnO site.  They found that CO2 

hydrogenation rate was slower than CO hydrogenation rate which decreased methanol 

formation rate but since CO2 decreases WGS reaction rate, it, therefore decreases the 

production of DME, a byproduct from methanol.  It was therefore, concluded that 

methanol production rate can be indirectly enhanced by finding an optimum CO2 

concentration.  They claim to be the first study among the various ones reporting the role 

of CO2 in methanol synthesis, suggesting a kinetic mechanism relating CO and CO2 

hydrogenation reactions [2].  In a more recent study by the same authors, they have used 

the developed kinetic model to evaluate the effect of carbon dioxide fraction on the 

methanol yield, and have also devised an optimization strategy to maximize methanol 

production rate taking CO2 fraction and temperature profile into account [30].   
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2.3 Kinetic Models   

A number of kinetic models have been proposed in the literature and kinetic 

parameters have been evaluated, each based on a different set of assumptions regarding 

the reaction pathway and reaction conditions.  Leonov et al. were the first to present a 

kinetic model for methanol synthesis over a Cu/ZnO/Al2O3 catalyst.  However, they did 

not consider the effect of CO2 in the feed [13].  Later Klier et al. and Villa et al. proposed 

models which included the pCO2 terms but did not treat CO2 as the main reactant [13, 14].  

The model proposed by Villa et al. was developed based on the scheme that methanol 

was produced from only CO and a CO2 adsorption term was included since CO2 adsorbs 

strongly at high concentrations.  Takagawa and Ohsugi derived empirical rate expressions 

for the three methanol synthesis reactions under a wide range of experimental conditions 

[17].  Graaf et al. derived a kinetic model taking into account both CO and CO2 

hydrogenation and the water gas shift reaction. They derived 48 reaction schemes by 

assuming different elementary steps to be rate limiting and then selected the best possible 

kinetic model using statistical discrimination [31]. The kinetic model derived by Graaf et 

al. is shown in Table 1.  McNeil et al. developed a carbon dioxide hydrogenation rate 

expression based on mechanistic information reported in literature in contrast to the 

earlier models based on empirical expressions [18].  Skrzypek et al. derived their kinetic 

model based on Reactions (2) and (3) since they have shown through their experiments 

that methanol synthesis prefers CO2 in spite of CO as a carbon source [32]. 

A kinetic model for methanol synthesis was presented by Askgaard et al. and the 

kinetic parameters were evaluated using gas phase thermodynamics and surface science 
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studies.  They found that the calculated rates when extrapolated to actual working 

conditions compared well with the measured rates [23].  Froment and Buschhe conducted 

experiments and developed a steady state kinetic model based on a detailed reaction 

scheme assuming CO2 to be the main source of carbon in methanol.  Their model 

described the effects of temperature, pressure, and gas phase composition on methanol 

production rates even beyond their own experimental conditions [13].  In another kinetic 

study by Kubota et al., kinetic equations for methanol synthesis were developed 

assuming CO2 hydrogenation to be the predominant reaction.  The authors found their 

equations to be reasonably accurate since the yield values obtained from their equations 

and those from experiments conducted in a test plant compared well [24]. 

Šetinc and Levec proposed a kinetic model for liquid phase methanol synthesis in 

2001 and showed that methanol production is proportional to the CO2 concentration and 

not to the CO concentration [33]. 

Rozovskii and Lin proposed two reaction schemes to build the theoretical kinetic 

models which could fit the experimental data well.  They used two different gas phase 

compositions, one enriched with CO2 and the other with CO to test the applicability of 

their models.  They found that both the schemes proved to be effective when dealing with 

a CO2 enriched mixture, but, the kinetic model based on scheme 1 did not match with the 

experimental data well when using a CO enriched mixture [19].  Lim et al. developed a 

comprehensive kinetic model consisting of 48 reaction rates based on different possible 

rate determining steps.  They showed through parameter estimation that, among the 48 

rates, surface reaction of a methoxy species was the rate determining step for CO 
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hydrogenation, hydrogenation of a formate intermediate was the rate determining step for 

CO2 hydrogenation and formation of a formate intermediate was the rate determining step 

for the water-gas shift reaction.  However they used a Cu/ZnO/Al2O3/Zr2O3 catalyst [2].  

Grabow and Mavrikakis have developed a comprehensive microkinetic model using 

density functional theory calculations to deal with the uncertainties regarding the reaction 

mechanism and nature of active sites [34].  

Table 1 summarizes the various kinetic models, proposed in literature along with 

the experimental reaction conditions. 

Table 1. Summary of Kinetic Models proposed in literature for methanol synthesis. 
 
Operating 
Conditions 

Kinetic Model Author, 
Year 

Ref. 

493-533 K; 
40-55 atm 

 

Leonov 
et al., 
1973 

13 

498-523 K; 
75 atm 

 

Klier et 
al., 
1982 

14 

N/A 

 

Villa et 
al., 
1985 

13 
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Operating 
Conditions 

Kinetic Model Author, 
Year 

Ref. 

483-518 K; 
15-50 bar 

Graaf et 
al., 1988 

31 

483-513 K; 
2.89-4.38 
MPa 

McNeil 
et al., 
1989 

18 

483-563 K; 
1-4 bar 

 

Askgaar
d et al., 
1995 

23 

453-553 K; 
15-51 bar 

Froment 
and 
Bussche 
1996 

13 
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Operating 
Conditions 

Kinetic Model Author, 
Year 

Ref. 

473-548K; 
4.9 MPa 

 

Kubota 
et al., 
2001 

24 

473-513 K; 
34-41 bar 

 

Šetinc 
and 
Levec, 
2001 

33 

513 K; 5.2 
MPa 

 

Rozovs-
-kii and 
Lin, 
2003 

19 

523-553 K; 5 
MPa 

 

Lim et 
al., 2009 

2 
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2.4 Reaction Conditions 

The main reaction conditions to be considered in methanol synthesis are 

temperature, pressure, and space velocity. 

2.4.1 Temperature 

Methanol synthesis is usually carried out at 493-573 K [1, 23].  Since, 

hydrogenation reactions of CO and CO2 are exothermic; their rates increase with 

temperature but only up to a certain temperature.  At higher temperatures, the rates begin 

to decrease as the thermodynamic equilibrium constant decreases as temperature 

increases.  Therefore, very high temperatures are not suitable.  It was reported by Bill et 

al. that methanol yield increased with temperature but only up to 493 K [6].  Similarly it 

was found by Xin et al. that maximum CO2 conversion and yield were possible at around 

523 K.   They also reported that methanol synthesis was more sensitive to reaction 

temperature than the water gas shift reaction.  Figure 1 shows the dependence of CO2 

conversion and methanol yield on reaction temperature [25]. 

Extreme temperatures limit the efficiency of methanol production due to 

thermodynamic limitations.  Therefore, a low temperature route of methanol synthesis 

has been proposed by Tsubaki and co workers.  They conducted the experiments at 443 K 

on a copper based catalyst using ethanol as a catalytic solvent.  They showed that the 

reaction mechanism at low temperature followed:  formate to methyl formate to methanol 

pathway instead of formate to methoxy to methanol route.  They proposed that low 

temperature methanol production enabled high conversions up to 50-80% and reduction 

of production cost without any thermodynamic equilibrium [7]. 
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Figure 1. Relationship between reaction temperature and CO2 conversion and methanol 
yield from experimental results and thermodynamic predictions (Reprinted with 
permission from [25]).  

 

2.4.2 Pressure 

Methanol production was initially carried out at very high pressures when it was 

first started in 1920’s by BASF.  Later, ICI lowered pressures to 50-100 atm using a 

Cu/ZnO/Al2O3 catalyst [6].  In 1988, Graaf et al. studied the kinetics of methanol 

synthesis form CO, CO2 and H2 over the same catalyst and developed a kinetic model 

operative at pressures of 15-50 atm.  They claimed their low pressure methanol synthesis 

kinetic model to be more precise in illustrating the experimental values compared to the 

previously proposed models [26].  It was reported by Deng et al. that methanol 

production could be carried at 20 atm using Cu/ZnO/Al2O3 catalyst [6].   
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Xin et al. reported that high pressure was advantageous for CO2 hydrogenation as 

shown in Figure 2 [25]. 

 

Figure 2. Relationship between reaction pressure and CO2 conversion and methanol yield 
from experimental results and thermodynamic predictions (Reprinted with permission 
from [25]). 
 
However, very high pressures tend to increase the production cost and are unsafe.  

Therefore, present efforts are to decrease the operating pressure without affecting the 

yield by developing novel catalysts. 

2.4.3 Space Velocity                                                                                                         

 Space velocity can have complicated effects on methanol yield.  Xin et al. 

reported that both CO2 conversion and methanol yield decreased as space velocity was 

increased for a given value of CO2 concentration.   

Their results are shown in Figure 3 [25]. 
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Figure 3. Relationship between space velocity and CO2 conversion and methanol yield 
(Reprinted with permission from [25]). 
 
However, in another study, Lee and co workers found that methanol yields increased at 

low space velocities but only up to a particular value of CO2 concentration after which it 

began to decrease.  They reported that maximum rate of methanol production could be 

achieved with an optimum value of space velocity, as shown in Figure 4 [27].  
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Figure 4. Rates of methanol formation as a function of space velocity for methanol 
synthesis over Cu/ZnO/Al2O3 catalyst with synthesis gas containing 10 vol% CO2. 
Reaction conditions: T =523 K, P=3.0 MPa, H2/COx=4 (Reprinted with permission from 
[27]). 
 
2.5 Catalyst 

Cu/ZnO/Al2O3 is the catalyst mostly chosen for methanol synthesis due to its high 

selectivity, stability, and activity.  Copper acts as the main active component, ZnO acts as 

a supporter and Al2O3 acts as a promoter.  Another promoter used in the catalyst system 

is chromia [2, 6].  However, there are many controversies and questions regarding the 

individual catalyst components, the role of ZnO, and the identity of active sites.  Most of 

the authors are of the view that metallic copper is the active component of the catalyst 

and the role of ZnO is to enhance dispersion of copper particles.  Ovesen et al. concluded 

from their results that Cu was the active catalytic component in methanol synthesis [23].  
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Froment and Bussche also assumed Cu to be the active catalytic site and ZnO to provide 

structural promotion in the development of their detailed kinetic model for methanol 

formation [13].  Another group of researchers led by Fujitani et al., however, have 

demonstrated conflicting results.  They showed using surface science techniques that the 

role of ZnO was to form active sites in addition to dispersing Cu particles [5].  Ostrovskii 

also reported that methanol synthesis occurs on the ZnO component of the catalyst [22]. 

Since, CO and CO2 hydrogenation is believed to occur on two different sites, it is 

proposed that doubts regarding the identity of active sites could be resolved [2,18].  There 

are also efforts to develop novel catalysts that can effectively operate at lower 

temperatures, lower pressures, and exhibit water tolerance since water acts as an inhibitor 

for the catalyst [12]. 

2.6 Summary 

A large volume of literature is contributed to studying methanol synthesis reaction 

kinetics owing to its importance in the industry.  However, a number of controversies still 

remain unresolved regarding the reaction mechanism, in particular.  Although CO2 has 

been accepted to be the primary source of carbon in methanol, its role and its effect on 

methanol production rates has not yet been described clearly.  Modeling of reaction 

kinetics can, therefore, prove to be beneficial in understanding the overall process.  A 

number of kinetic models have been proposed in literature and there is still scope to 

develop newer and more effective models which could help improve the process and 

enhance methanol yield. 
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CHAPTER 3 

RESEARCH OBJECTIVES 

The primary objective of this study was to investigate different kinetic models 

that have been proposed in literature for methanol synthesis over a copper- based 

zinc/chromia catalyst.  Another aspect of this work was to compare the goodness of fit of 

different models and select the best fit model by fitting experimental kinetic data over a 

range of inlet carbon dioxide partial pressures.   

Models based on a mechanism considering CO hydrogenation to be the principal 

pathway in forming methanol were compared to those derived from the scheme 

considering CO2 to be the primary reactant in methanol synthesis over different ranges of 

CO2 partial pressures in the feed.  Each of these models was also compared to a 

combined kinetic rate expression.  The aim was to select the kinetic model and rate 

expression that fits the data best and can describe methanol synthesis kinetics most 

appropriately.   

It was hypothesized that the model based on the CO hydrogenation pathway 

should fit the rate data better in case of low CO2 feed partial pressures, while the model 

based on the CO2 hydrogenation pathway should fit the data with high CO2 content more 

effectively.   It was also presumed that the combined rate expression including both CO 

and CO2 hydrogenation rate terms will prove to be the best fit kinetic model.  The study 

also used the results from the best fit model to explain some aspects and resolve some 

arguments related to methanol synthesis kinetics.   
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CHAPTER 4 

METHODOLOGY 

4.1 Overview 

This study comprises of analyzing and comparing different kinetic models and 

selecting the best fit kinetic rate expression for methanol synthesis from CO, CO2, and 

H2O over a Cu/ZnO/Cr2O3 catalyst.  Non linear regression techniques in POLYMATH 

were used to determine the rate parameters and goodness of fit of the models.  The 

methodology included the following steps: 

• Selection of statistically sound kinetic models 

• Data evaluation 

• Parameter estimation 

• Evaluation of models 

• Comparison of models 

• Analysis of Results 

4.2 Selection of statistically sound kinetic models 

A kinetic rate expression is derived from the reaction mechanism by assuming a 

particular rate limiting step.  Rate laws are written in the following form: 

   rate  =  (Kinetic term).(Potential term)  Equation (1) 
           (Adsorption term)n  
 

A rate equation should fit a set of data better than other alternative rate 

expressions to prove its effectiveness.  However, any one kinetic model cannot be 

considered the most accurate since rate laws often exhibit the same form and more than 
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one model can fit a set of data with equal efficacy.  Another aspect of importance is 

developing a kinetic model that can be applied at temperatures and pressures pertinent to 

the industry. 

As mentioned in Sections 2.2, methanol synthesis kinetics has been a point of 

controversy despite of the fact that a large volume of literature and experimental results 

have been reported regarding the mechanism and kinetic modeling.  One of the main 

unresolved issues is the source of carbon in methanol and the role of CO2 in methanol 

synthesis.  Some researchers believe that CO2 is the primary reactant in forming methanol 

while many others are of the view that carbon in methanol comes from CO.  As a result, 

different mechanistic schemes have been written based on which various kinetic models 

have been proposed in literature, as shown in Table 1 in Section 2.3. 

Among the kinetic models proposed in literature, two models have been selected 

for this study based on their goodness of fit to the respective kinetic data.  The validity 

and effectiveness of the developed rate models was tested by determining how well they 

fit the experimental data compared to other proposed models.  The model based on the 

reaction scheme which considers CO to be the primary reactant in methanol synthesis is:  

2 3 2

2 2 2 2 2 2

3/2 1/2
1 ,1

1 1/2 1/2

[ / ( )]

(1 )[ ( / ) ]
CO CO H CH OH H eq

CO CO CO CO H H O H H O

k K f f f f K
r

K f K f f K k f

−
=

+ + +
         Equation (2) 

where, 

r1 = reaction rate 

f i = fugacity of component i 

ki = reaction rate constant 
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Keq = equilibrium constant for methanol synthesis reaction 

K i = constants relative to adsorption equilibrium terms in the model 

It was proposed by Graaf et al. in 1988.  Graaf and co authors developed three 

independent kinetic equations for CO hydrogenation, CO2 hydrogenation and water gas 

shift reaction.  Among them, the kinetic model based on CO hydrogenation treating CO 

as the main reactant was chosen for this study.  The fugacities in Equation (2) have been 

replaced by partial pressures since the fugacity coefficients calculated for the species at 

the used temperature and pressure are close to unity.  The coefficients were calculated 

using the Fugacity Coefficient Solver of Thermosolver software.   

The authors have shown that the experimental and estimated values of reaction 

rates for methanol and water agree to a satisfactory extent as shown in Figure 5.  Also, 

they found the model statistically appropriate based on the standard χ2 test [26]. 

   

Figure 5. Reaction rates for methanol and water: (○) and (●), p=50 bar, (□) and (■), p=30 
bar, (∆)  and (▲), p=15 bar.  Open symbols= reaction rates for methanol.  Closed 
symbols= reaction rates for water.  Lines = calculated with model (Reprinted with 
permission from [26]). 
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The other model selected for this study was put forth by Rozovskii and co 

workers.  It was based on the fact that methanol was formed from only carbon dioxide 

and not carbon monoxide.  The authors believed that CO hydrogenation to methanol did 

not take place directly.  Instead, CO was converted to CO2 via the water gas shift reaction 

which underwent hydrogenation to form methanol.  The kinetic model is of the form: 

 

2

2

2 2

2 2 2

3 3
( )

2 2 1

(1 )

1 / ( )

m H O
H

p m H CO

H O H O CO

p p
k p

K p p
r

K p K p K p− −

−

=
+ +

   Equation (3) 

where, 

r = reaction rate 

ki = reaction rate constant 

K i = equilibrium constant of step i 

Kp(m) = methanol synthesis equilibrium constant 

pi = partial pressure of component i 

The authors reported that the relative error in the experimental and calculated 

partial pressure values for methanol and water was not more than 15% and 10% 

respectively [19].  

4.3 Data Evaluation 

An extensive set of rate vs. partial pressure data for a reaction carried out using 

Cu/ZnO/Cr2O3 catalyst at relevant temperature and pressure is needed for testing the 

goodness of fit of the proposed rate equation.  It has to be ensured that the selected data is 

good enough for the fitting procedure.  Data was selected based on the number of 
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independent experimental data points (minimum three data points for one parameter), 

repeatability and reproducibility of runs, standard deviation, and errors in measurement. 

In this study, experimental data reported by Calverley was used in kinetic 

modeling.  Calverley conducted methanol synthesis experiments at 100 atm and 285° C.  

Rate vs. partial pressure data derived from Calverley’s experimental results is listed in 

Table 2.  The complete kinetic data set reported by Calverley is shown in Table A.1 in 

Appendix A.   

Calverley used a fixed bed tubular reactor in his experiments.  Since the reactor 

was operated in integral mode, the rates were calculated by fitting a polynomial function 

to conversion and turnover frequency data.  The resulting polynomial was differentiated 

to obtain the rates.  The complete method and graphs are shown in Appendix A. 

Table 2. Rate vs. partial pressure data (modified from [35]).  

Expt. no. Partial pressure in reacting mixture (atm) rate(mole 
g-1h-1) 

 PH2 PCO PCO2 PCH3OH PH2O 

1 23.6611 47.47184 10.2643 7.22825 0.100708 0.036951 

2 22.39149 48.44998 10.74025 6.54032 0.09771 0.036873 

3 22.92911 48.47728 10.64591 6.16146 0.099122 0.036873 

4 26.75057 58.83309 0.261214 4.90524 0.002338 0.057407 

5 25.59639 60.18043 0.352938 4.12758 0.002955 0.057324 

6 26.25064 57.83377 0.21978 2.97 0.001964 0.098346 

7 26.52385 57.85767 0.15642 2.8215 0.001412 0.098346 
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Expt. no. Partial pressure in reacting mixture (atm) rate(mole 

g-1h-1) PH2 PCO PCO2 PCH3OH PH2O 

8 27.25414 56.1685 0.11682 4.5045 0.001116 0.098537 

9 27.57242 56.16534 0.08712 4.2867 0.000842 0.098537 

10 27.43637 54.68739 0.073778 6.62008 0.000729 0.098413 

11 27.53455 54.65099 0.105682 6.52038 0.001048 0.098413 

12 25.80793 58.23389 0.307076 4.00794 0.002679 0.052876 

13 23.61426 53.98524 0.382848 6.05179 0.003297 0.046801 

14 24.75748 52.78336 0.374872 6.70981 0.003461 0.046745 

15 25.63614 55.97083 4.871298 4.0504 0.043921 0.052479 

16 43.12371 39.80287 4.729087 5.71936 0.100859 0.021616 

17 21.5991 60.16416 0.28304 3.24032 0.002 0.059686 

18 26.15155 57.8314 0.23562 3.0294 0.002097 0.097692 

19 26.32651 57.57811 0.218226 3.23407 0.001964 0.098233 

20 27.1295 56.16234 0.13662 4.5837 0.001299 0.097884 

21 18.07447 65.23821 0.231988 2.47716 0.001265 0.067878 

22 23.37286 47.2388 0.176176 2.60876 0.001716 0.048809 

23 39.07473 33.71077 0.071148 3.60822 0.001623 0.020618 

24 16.3641 53.59279 0.1596 1.6128 0.000959 0.065731 

25 14.85073 46.44027 0.109824 1.01376 0.000691 0.098233 

26 15.17839 45.98898 0.102784 1.28832 0.000668 0.098253 
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Expt. no. Partial pressure in reacting mixture (atm) rate(mole 
g-1h-1) 

PH2 PCO PCO2 PCH3OH PH2O 

27 26.70627 54.65583 0.259512 3.84353 0.002496 0.052513 

28 24.19182 47.08725 0.128066 2.50712 0.001295 0.052513 

29 26.04254 18.17773 0.0295 1.49 0.000832 0.010788 

30 25.9988 18.17061 0.0254 1.54 0.000715 0.010788 

31 26.2044 11.15081 7.925114 1.915 0.366614 0.025611 

32 37.11324 15.35355 12.96311 5.9812 0.61683 0.025611 

33 26.34675 11.23801 7.87404 1.755 0.363389 0.025611 

34 26.51445 8.606552 11.45455 1.27 0.694653  

35 15.44279 13.87243 16.92149 0.635 0.370807 0.026659 

36 26.86179 12.69082 6.751975 1.965 0.281328 0.031318 

37 26.57701 13.91582 4.815106 2.23 0.181025 0.029586 

38 26.63701 13.94311 4.80367 2.16 0.180649 0.029688 

39 26.37333 15.58774 3.620792 2.525 0.120593 0.022224 

40 25.63808 16.4711 2.744082 2.48 0.084081 0.01628 

41 26.08267 17.27464 1.17477 2.66 0.034917 0.012843 

42 26.35364 18.75499 0.332431 2.285 0.009195 0.008732 

43 24.48028 53.31206 5.112754 6.17143 0.046215 0.045423 

44 27.12064 17.16944 1.469595 1.055 0.045696 0.065599 

45 28.72466 7.9083 11.37746 0.51 0.813492 0.001358 
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Expt.no. Partial pressure in reacting mixture (atm) rate(mole 

g-1h-1) 
PH2 PCO PCO2 PCH3OH PH2O 

46 28.26576 10.49342 8.2016 0.63 0.434889 0.017594 

47 28.31764 12.25776 6.11422 0.69 0.27805 0.031063 

48 27.66529 16.81097 3.214026 0.91 0.104119 0.06436 

49 27.10585 18.34763 1.61544 0.955 0.04698 0.075925 

50 27.64567 18.08989 0.735522 0.93 0.022127 0.07193 

51 27.55619 18.98943 0.0041 0.445 0.000117 0.077518 

 

The data looks adequate since there are sufficient numbers of experimental runs.  

The results are reported up to 3 significant figures.  A Varian 920 gas chromatograph was 

used to measure H2, CO, and CO2.  Known mixtures of CO and H2 were sampled with the 

GC over a range of compositions to verify the linearity of response.  A Varian 1440 gas 

chromatograph was used to quantify hydrocarbons and methanol.  The author has 

reported that the reproducibility of the experiments was acceptable.  Exit methanol 

concentration remained within 2% for a given run when calculated over time.   

Carbon balance calculated for each run was limited to 1%.  Also, constant 

catalytic activity was maintained throughout the experiment to ensure uniformity in the 

results.  Calverley also showed that the experiments were essentially carried out in the 

kinetic regime and the external and internal mass transfer rates could be neglected at the 

given experimental conditions.  The concentration gradient of CO near the catalyst 

surface was found to be negligibly small.  Methanol yields were found to be independent 
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of catalyst particle size showing that internal mass transfer rates were very small.  The 

author also reported insignificant temperature gradients during the experiments [35]. 

4.4 Parameter Estimation 

Estimation of kinetic parameters was done by fitting the rate equations shown in 

Section 4.1 to the experimental data shown in Section 4.2 using POLYMATH, a non-

linear regression software.  The model proposed by Graaf was fit to only those data 

points which show low or zero CO2 inlet partial pressures while the model proposed by 

Rozovskii was fit to those data points where CO2 partial pressures are high in the feed.  

The combined rate expression was fit to the entire range of data.   

A minimum of three and maximum of seven parameters were estimated including 

the reaction rate constants (k) and the adsorption equilibrium constants (Ki).  The reaction 

equilibrium constants (KP,I) were calculated from THERMOSOLVER software since 

increasing the number of parameters beyond a limit may make the model less realistic.  

Table 3 shows the variables, constants and parameters estimated in this study. 

Table 3. Variables, constants and parameters in this study. 

Constants Variables Parameters 

Temperature Partial pressure/product 
composition 

Reaction rate constant (k) 

Space Velocity  Reaction rates Adsorption equilibrium 
constant (Ki) 

Catalyst composition  Reaction equilibrium 
constant (KP,I) 

   
4.5 Evaluation of Models                                                                                                   

 The goodness of fit of the kinetic models was evaluated by comparing the rates 
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obtained from the model with those reported by Calverley.  The statistical information 

and plots reported in the POLYMATH results were used to judge the quality of the 

developed model.  The following points were used as guidelines in determining the 

goodness of fit of the developed kinetic model [29]: 

• R2 and R2
adj: R

2 and R2
adj are the correlation coefficients which determine if the 

model represents the experimental data precisely or not.  A correlation coefficient 

close to one indicates an adequate regression model.  They can also be used for 

comparing various models representing the same dependent variable.  

• Variance and Rmsd: A small variance (< 0.01) and Rmsd usually indicate a good 

model. These parameters can be used for comparing various models representing 

the same dependent variable. 

• Graph: If a plot of the calculated and measured values of the dependent variable 

shows different trends, it signifies an inadequate model. 

• Residual plot: The residual plot showing the difference between the calculated 

and experimental values of the dependent variable as function of the experimental 

values will be used a measure of goodness of fit of the model.  A randomly 

distributed residual plot is an indication of goodness of fit of a model.  If the 

residuals show a clear trend, it is indicative of an inappropriate model.  

• Confidence intervals: The 95% confidence intervals should be smaller and should 

have the same sign as the respective parameter values for a statistically good 

model.  The guidelines are also summarized in Table 4. 



 31 

Table 4. Statistical tests for model evaluation. 
 
 
 
 
 
 
 

 

 

4.6 Comparison of Models 

 The statistical results from POLYMATH form the basis for comparison of the 

kinetic models.  Four main comparisons were done in this study.  They are: 

• Graaf’s model vs. Rozovskii’s model for low CO2 partial pressure data 

• Graaf’s model vs. Rozovskii’s model for high CO2 partial pressure data 

• Combined model vs. Graaf’s model for entire range of data 

• Combined model vs. Rozovskii’s model for entire range of data 

This comparative study was used to select the model that fit the experimental data best 

and described methanol synthesis kinetics most appropriately. 

4.7 Analysis of Results 

The results obtained from the best fit kinetic model were used to analyze the 

trends and aspects related to methanol synthesis.  The analysis was mainly concentrated 

on the effect of different reaction conditions on the relative contribution of CO and CO2 

to producing methanol. 

 

 

Statistical Parameters Expected Behaviour 

R2 > 0.80 

Confidence interval Smaller and of same sign 

Variance <0.01 

Graph Similar trends 

Residual Plot Random distribution 
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4.8 Summary 

Kinetic models proposed by researchers were selected based on their efficacy in 

describing methanol synthesis kinetics.  Experimental data reported by Calverley after 

evaluation was selected for the purpose of modeling.  Multiple non linear regression 

techniques in POLYMATH were used to fit the models to the experimental data in order 

to determine the kinetic parameters and the goodness of fit of the models.  Statistical tests 

in POLYMATH were used to compare the effectiveness of various models in depicting 

kinetics of methanol synthesis and select the best fit kinetic model.  The results predicted 

by the most appropriate model were used in studying some kinetic features of methanol 

synthesis. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Overview 

The models were fit to the experimental kinetic data to study their effectiveness in 

describing methanol synthesis kinetics.  Three different models were compared to select 

the best fit model using regression techniques.  The results and data generated from the 

best fit model were then used to study some trends and kinetic aspects of methanol 

synthesis.  This chapter includes the following content: 

• Regression results and parameter evaluation 

• Role of CO/CO2 in producing methanol 

5.2 Regression Results and Parameter Evaluation 

A wide range of data including both low and high CO2 inlet partial pressures was 

chosen for regression so that the applicability of the kinetic models could be validated 

properly.  The equilibrium constants for CO and CO2 hydrogenation reactions at the 

reaction temperature were calculated using the THERMOSOLVER software.  They were 

found to be 3.88*10-4 for CO hydrogenation and 7.7*10-5 for CO2 hydrogenation 

reaction.  The equilibrium constants were also calculated using the equations presented 

by Graaf et al [36].  The values were found to be very close using the two methods.   

 The statistical features obtained by fitting Graaf's model to low inlet CO2 partial 

pressure data and Rozovskii's model to high inlet CO2 partial pressure data are 

summarized in Table 5. 
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Table 5. POLYMATH results of fitting Graaf’s and Rozovskii’s model. 
 
Model Parameters 

R2 R2adj Variance Rmsd Residuals 95% 
confidence 
intervals 

Graaf 0.81 0.75 1.9*10-4 0.00323 scattered positive, 
smaller 

Rozovskii 0.91 0.89 4.13*10-5 0.0016 scattered positive, 
smaller 

 
The statistical features listed in Table 4 are used as indicators of the quality of the 

regression models.  They are explained below: 

• R2 and R2adj were close to one suggesting the models satisfactorily represent the 

kinetic data 

• Variance and Rmsd was sufficiently small to indicate that both the models represent 

the data accurately 

• Residuals as shown in Figures B.1 and B.2 in Appendix B were randomly distributed 

and did not follow a particular trend signifying the models are statistically 

appropriate 

• Confidence intervals are listed in polymath reports for both the models shown in 

Tables B.1 and B.2 in Appendix B.  The models were statistically stable since the 

confidence intervals were much smaller than the respective absolute values of the 

parameters 

The parameter values obtained from the fitting procedure are shown in Table 6. 
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Table 6. Values of kinetic parameters for Graaf’s and Rozovskii’s model. 
 

Model 
Graaf 

Parameter Value  
k1 ((atm.h)-1) 0.0535 
KCO (atm-1) 0.0022 
KCO2 (atm-1) 0.0185 
Kwh (atm-1) 1011 

Rozovskii 
k3 ((atm.h)-1) 0.0031 
K-2 (atm-1) 5.104 
K1 (atm-1) 9.978 

 

The graphical representation of the results is shown in Figures 6 and 7. 

Figure 6 shows a comparison of experimental values of rate and those calculated from 

Graaf's model when the inlet CO2 partial pressures were negligibly small.      
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Figure 6. Comparison of experimental and predicted (by Graaf’s model) methanol      
production rate. 
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Figure 6 shows that the model proposed by Graaf which was based on CO being 

the primary reactant, fit to the data well where CO2 feed partial pressures were very low.  

The experimental and estimated rates matched each other quite closely, thereby 

confirming the hypothesis.  Figure 7 shows a comparison of experimental and calculated 

values of rate for Rozovskii's model for high CO2 partial pressure data.  The residual 

plots for both the regression models are shown in Figures B.1 and B.2 in Appendix B.  

Also, the polymath reports summarizing the statistical features of the regression are 

shown in Tables B.1 and B.2 in Appendix B. 
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Figure 7. Comparison of experimental and predicted (by Rozovskii’s model) methanol 
production rate. 

 
For CO2 enriched feed, Rozovskii's model that was derived assuming CO2 to be 

the main reactant, provided an effective kinetic description of the methanol synthesis 
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process.  As shown in Figure 7, the rates estimated from Rozovskii's model are in good 

agreement with the experimental rate values. 

Both the models were fit to low and high inlet CO2 partial pressure data in order 

to compare the effectiveness of each for the given range of data. Figure 8 shows a 

comparison of experimental values of rate and those calculated by Graaf's model and 

Rozovskii's model when CO2 partial pressures were negligibly small in the feed.   
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Figure 8. Comparison of experimental methanol production rate and those predicted by 
Graaf’s and Rozovskii’s models at low CO2 inlet partial pressures. 

 
Line column charts have been used to represent the data since it is easier to read 

the data with these plots.  The trend in Figure 8 on the next page shows that Graaf's 

model fit better to the experimental data than Rozovskii's model when CO2 was in 

negligible amounts in the feed.  Figure 9 shows a comparison of experimental rate values 
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and rate values estimated from Graaf’s and Rozovskii’s models when the CO2 partial 

pressures were high in the feed.   
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Figure 9. Comparison of experimental methanol production rate and those predicted by 
Graaf’s and Rozovskii’s models at high CO2 inlet partial pressures. 

 
It can be observed that in this case, Rozovskii's model provided a better kinetic 

description of the process.  Rozovskii's model that was based on treating CO2 as the 

primary reactant does not match the low CO2 content data at all.  However, when CO2 

content in the feed was high, both Graaf's and Rozovskii's model fit to the experimental 

data satisfactorily.  The rates calculated by Graaf also followed the experimental data 

points closely, though not as close as the rates estimated by Rozovskii’s model.  This 
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feature was also observed by Rozovskii in his study.  The models proposed by him fit to 

the experimental results better when CO2 amounts were higher in the feed [19]. 

The combined rate expression by summing equations 1and 2 can be written 

as,
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          Equation (4) 

The parameters in this expression were fit to the entire range of experimental data 

including low as well as high CO2 inlet partial pressures.  Figure 10 shows a comparison 

of experimental values of rate and rates estimated form the combined model.   
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Figure 10. Comparison of experimental values of methanol production rate and rates 
estimated form the combined model.   
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The graph shows a good agreement between the experimental and simulated data.  The 

kinetic parameters obtained from fitting this expression are listed in Table 7.  The 

residual plot is shown in Figure B.3 in Appendix B.  A polymath report showing the 

statistical features of the regression in detail is listed in Table B.3 in Appendix B. 

Table 7. Values of kinetic parameters obtained from fitting the combined rate equation. 

 
As mentioned in Section 4.5, four main comparisons are done in this study.  The data set 

used for fitting to the combined model was also fit to Graaf's and Rozovskii's model 

separately.  The comparison of the experimental rate values and those estimated from the 

combined kinetic rate expression as well as from Graaf's and Rozovskii's models is 

shown in Figure 11.  The degree of fit obtained with a model was very sensitive to the 

initial parameter value guesses, so attempts were made with a variety of initial guess 

combinations. 

 

Parameter Value 
k1 ((atm.h)-1) 0.0232 
KCO 0.0024 
KCO2 0.0625 
Kwh 11.099 
k3 ((atm.h)-1) 0.0009 
K-2 0.0032 
K1 0.0226 
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Figure 11. Comparison of experimental methanol production rate values and those 
estimated from the combined kinetic rate expression and Graaf's and Rozovskii's models. 

 
The trend in Figure 11 suggests that the combined rate expression fits to the 

experimental data better than the individual models.  Although, the rates calculated from 

Graaf’s model are also in good agreement with the experimental rate values, it is the 

combined rate expression which gives the best results.  The results of fitting for the four 

comparisons are tabulated in Table 8.   
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Table 8. POLYMATH results of fitting for the comparative study of models. 

 

The statistical parameters listed in Table 8 as well as the trend in Figure 11 

indicate that the combined model is the best fit model.  Based on the above mentioned 

results, it can be concluded that the combined rate expression which includes both CO 

and CO2 hydrogenation rate terms describes methanol synthesis kinetics in the best 

low CO2 partial pressure 
Parameter R2 R2adj Variance Rmsd Residuals 95% 

confidence 
intervals 

Model 

Graaf 0.81 0.75 1.9*10-4 0.00323 scattered positive, 
smaller 

Rozovskii 0.106 -0.67 8.5*10-4 0.0071 follow a 
trend 

positive, 
smaller 

high CO2 partial pressure 
 R2 R2adj Variance Rmsd Residuals 95% 

confidence 
intervals 

Graaf 0.71 0.60 1.5*10-4 0.0029 scattered positive, 
smaller 

Rozovskii 0.91 0.89 4.13*10-5 0.0016 scattered positive, 
smaller 

entire range 
 R2 R2adj Variance Rmsd Residuals 95% 

confidence 
intervals 

Combined 0.85 0.78 1.6*10-4 0.0022 scattered positive, 
smaller 

Graaf 0.82 0.79 1.5*10-4 0.0024 scattered positive, 
smaller 

entire range 
 R2 R2adj Variance Rmsd Residuals 95% 

confidence 
intervals 

Combined  0.85 0.78 1.6*10-4 0.0022 scattered positive, 
smaller 

Rozovskii 0.68 0.64 2.6*10-4 0.0033 scattered positive, 
smaller 
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possible manner.  It was also attempted to fit the combined model separately to low and 

high inlet CO2 partial pressure data, however, there were not enough data points in the 

two ranges to achieve proper regression results. 

5.3 Role of CO/CO2 in Producing Methanol 

A number of kinetic models have been proposed in the literature attempting to 

describe methanol synthesis kinetics.  However, the controversies regarding the carbon 

source in methanol and the nature of active sites still remain unsolved.  An effort, 

therefore, was made in this study to come up with a model that can adequately describe 

some features and resolve questions related to methanol synthesis kinetics.  The model 

proposed in this study is based on the fact that CO and CO2 hydrogenation both 

contribute to overall methanol production. 

However, the relative contribution of CO and CO2 hydrogenation in producing 

methanol cannot be generalized.  Instead, the question regarding the main source of 

carbon in methanol depends on specific conditions like conversion, pressure, relative 

amount of CO and CO2, as well as hydrogen content in the feed.  The results have been 

discussed under the following conditions: 

• Conversion 

• Hydrogen content in the feed 

• Pressure 

• CO/CO2 content in the feed 
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5.3.1 Conversion 

Figure 12 shows the Gibb’s free energy change of hydrogenation of CO and CO2 

to methanol as a function of temperature.  It can be observed that CO2 hydrogenation has 

more negative ∆G and thus a higher driving force at very low conversions whereas CO 

hydrogenation is more likely to occur at higher conversions at a temperature of 558 K. 

 

Figure 12. Gibb’s free energy change, ∆G, for CO and CO2 hydrogenation to CH3OH and 
the WGS reaction at P = 75 atm and three different conversion levels as a function of 
temperature (Reprinted with permission from [34]). 
 

These results from thermodynamics prove that conversion levels can affect the 

extent to which CO and CO2 hydrogenation will contribute in producing methanol.  We 

could not show the same behavior using our results since not enough data points were 

available at a constant feed composition and the conversions did not vary much in orders 
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of magnitude.  A similar result was reported by Liu et al. in their study in which they 

showed that hydrogenation of CO2 was the primary reaction in producing methanol at 

low conversion [15]. 

5.3.2 Hydrogen Content in Feed 

Grabow and Mavrikakis have reported that hydrogen content in the feed can have 

a marked effect on methanol production rates for CO rich feeds [34].  Methanol 

production rate decreases almost linearly with increasing CO2 content in the feed when 

the feed is lean in H2 (< 50 %).  A similar trend was predicted by our model.  Figure 13 

shows a plot of methanol synthesis rate and % CO2 in the feed under lean H2 conditions.   
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Figure 13. Plot of methanol synthesis rate and % CO2 in the feed under lean H2 
conditions. 
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It was observed that the rate decreased linearly as CO2 content in the feed 

increased.  This behavior can be attributed the fact that hydrogenation of one mole of CO 

to methanol needs two moles of H2 compared to CO2 which needs three moles of H2 to 

form methanol.  Therefore, under lean hydrogen conditions, CO hydrogenation activity is 

increased.  However, as CO2 % in the feed increased, the overall rate decreased since CO 

hydrogenation was inhibited by increased amounts of CO2 in the feed.  Also, since there 

was no water in the feed in the beginning, CO2 participated competitively in methanol 

synthesis as well as RWGS resulting in lower methanol production. 

At a pressure of 50 atm, when hydrogen in the feed was increased slightly, the 

overall rate showed a maximum value at CO2/(CO+CO2) = 0.036 (encircled in Figure 14) 

as predicted by the model developed in this study.  Calverley and Smith reported similar 

results in their study.  However, they observed the maxima when 0.05 <CO2/(CO+CO2) < 

0.2 [35].  In our study, hydrogen content in the feed never increased beyond 60%.  But at 

lower pressures (50 atm in our case), less hydrogen may be needed in the feed for the rate 

to increase with increasing CO2 amounts.  Figure 14 shows the overall rate plotted as 

function of CO2 % at a pressure of 50 atm.   
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Figure 14. Plot of overall rate as function of % CO2 at a pressure of 50 atm.  

Therefore, at 50 atm and H2 content of around 56% in the feed, overall methanol 

synthesis rate showed an increase in value as % CO2 increased but it decreased again 

possibly due to adsorption of CO2 on active Cu sites necessary for CO activation.  This 

behavior showing maximum rate a particular value of CO2 % has been reported by other 

authors as well like Klier et al. McNeil et al., and Lim et al. [2, 14,and 18]. 

5.3.3 Pressure 

Total pressure also affects the relative contribution from CO and CO2 in 

producing methanol.  Figure 15 shows the relative contribution of CO and CO2 at a 

pressure of 50 atm calculated using the results from our model.   
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Figure 15. Plot of the relative contribution of CO and CO2 at a pressure of 50 atm. 

The plot clearly shows that CO2 contributes more than CO to methanol production 

at a low pressure of 50 atm.  A higher pressure of 99 atm was also reported in the 

experimental data.  However, comparisons could not be made since there was insufficient 

number of data points where CO2 was present in the feed and the pressure was high.  The 

effect of pressure on the relative contribution of CO/CO2 hydrogenation to methanol 

synthesis can be explained using Le Chatelier’s principle.  Le Chatelier’s principle states 

that “if a chemical system at equilibrium experiences a change in concentration, 

temperature, volume or pressure, then the equilibrium shifts to counteract the imposed 

change and a new equilibrium is established [38].” During CO hydrogenation, three 

moles of CO react to form one mole of product, whereas, during CO2 hydrogenation, four 
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moles of CO2 react to form two moles of product.  When the pressure was high, CO 

hydrogenation was favored since it is the pathway which results in lower compression. 

5.3.4 CO/CO2 Content in the Feed 

Figure 16 shows a comparison between rates calculated from the combined model 

and those calculated from the CO hydrogenation model described in the previous sections 

when % CO2 in the feed was zero. 
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Figure 16. Plot of rates calculated from combined model and CO hydrogenation model 
when % CO2 in feed = 0. 

 
The values of rates were quite close to each other suggesting the fact that in the 

absence of CO2, the entire methanol was produced entirely from CO.  The deviations 

could be a result of inadequate fitting of the models. 

Results obtained from the combined model form the basis of studying a few 
trends related to methanol synthesis kinetics.  Figure 17 shows overall rate plotted as a 
function of % CO in the feed in the absence of CO2.  
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Figure 17. Plot of overall methanol synthesis rate as a function of % CO in feed when % 
CO2 in feed = 0. 

 
The rate increased as CO amount in the feed increased, while it decreased when % CO 

increased beyond 58 %.  The increasing trend has also been shown by other authors, e.g., 

McNeil et al. [18], as shown in Figure 18. 
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Figure 18. Predicted (-) compared to experimental (■) methanol production rate versus 
mole percent carbon monoxide in the feed at 513 K and 2.89/4.38 MPa (Reprinted with 
permission from [18]). 
 

The decreasing trend can be explained by using the fact that in the absence of 

CO2, catalyst deactivation occurs via the Boudouard reaction resulting in carbon 

deposition and, therefore, decreasing methanol synthesis rate.  The Boudouard reaction 

can be written as [39]: 

  2CO(g) CO2(g) + C(s)   Reaction (4) 

As amount of CO increased, the reaction proceeded in the forward direction at a faster 

rate leading to more carbon deposition and fouling of the catalyst, and therefore, reducing 

methanol production rates.  The volcanic shape of the plot shown in Figure 17 has also 

been reported by Grabow and Mavrikakis [34].  They observed a volcano-shaped curve 

when methanol production was plotted as a function of CO2/(CO+CO2) feed ratio for 

CO- rich feeds [34]. 
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Another trend predicted by our model is that the contribution from CO 

hydrogenation to forming methanol decreased as % CO2 increased.  The relative 

contribution from CO hydrogenation in synthesizing methanol plotted as a function of % 

CO2 is shown in Figure 19. 

0

5

10

15

20

25

30

35

40

45

0 0.5 1.4 3.1 4.2 6.5 8.8 12.5 14.7 21.8 33

% CO2

co
n

tr
ib

u
ti

o
n

 f
ro

m
 C

O
 h

yd
ro

g
en

at
io

n

  
Figure 19. Plot of relative contribution of CO hydrogenation vs. % CO2 in the feed. 

The plot shows expected behavior since a high CO2 content can lead to inhibition 

of CO hydrogenation due to the strong adsorption of CO2 on active Cu sites necessary for 

CO activation. 

It has been predicted by our model that the major fraction of methanol resulted 

from CO2 hydrogenation, as shown in Figure 20.   



 53 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 3 5 7 9 11 13 15 17 19 21 23 25

data point

m
et

h
an

o
l p

ro
d

u
ct

io
n

 r
at

e 
(m

o
l/g

/h
)

rate of CO
hydrogenation

rate of CO2
hydrogenation

 

Figure 20. Comparison of CO and CO2 hydrogenation rate. 

Sahibzada et al. also showed that the intrinsic rate of CO2 hydrogenation was 

twenty times faster than CO hydrogenation and at CO2 > 1%, it was the main source of 

methanol production [21].  This aspect was also studied by Grabow and Mavrikakis who 

showed that larger fraction of methanol was formed from CO2.  However, they used a 

different feed composition [34]. 

5.4 Summary 

Based on the regression results from POLYMATH, the combined model proposed 

in this study was selected to be the best fit kinetic model that describes methanol 

synthesis kinetics most appropriately.  Predictions from this model have been 

successfully used to explain the trends related to methanol synthesis kinetics.  It can be 

concluded that no generalization can be made regarding the carbon source in methanol.  
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Instead, the relative contribution of CO/CO2 hydrogenation in methanol production 

depends on various reaction conditions like conversion, pressure, CO/CO2, and hydrogen 

content in the feed.  Therefore, experimental data and results should be cautiously 

extrapolated and interpreted from low pressure/low conversion laboratory conditions to 

high pressure/high conversion industrial conditions.  
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CHAPTER 6 

CONCLUSION 

This study comprised of investigating various kinetic models proposed in 

literature for methanol synthesis and selecting the most appropriate model using 

regression techniques.  POLYMATH software was the non-linear regression tool used in 

fitting different models to published experimental data collected at a temperature of 558 

K and pressures of 50 and 100 atm over a Cu/ZnO/Cr2O3 catalyst.  The results of fitting 

revealed that the combined model including both CO and CO2 hydrogenation rate terms 

was the best fit model, thereby confirming the hypothesis made in this research.  A 

kinetic model like this one that can describe methanol synthesis kinetics satisfactorily can 

prove to be very useful in kinetic studies of methanol leading to a better understanding of 

the process and improvements in yields and profits.  

Kinetic aspects of methanol synthesis, primarily the relative contribution of CO 

and CO2 hydrogenation in producing methanol was also studied based on the results 

predicted by the best fit kinetic model developed in this work.  The results suggest that no 

generalization can be made regarding the more dominant reaction pathway.  Instead, the 

contribution from each hydrogenation pathway depends on reaction conditions like 

conversion, pressure, CO/CO2, and hydrogen content in the feed.  Methanol production 

can be maximized by optimizing these conditions.  However, it is recommended to 

carefully interpret experimental data and extrapolate results from low pressure/low 

conversion laboratory conditions to high pressure/ high conversion industrial conditions 

when studying the relative importance of CO2 and CO hydrogenation reactions.  Owing 
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to the industrial importance of methanol, there will always be a scope to improve the 

productivity of the process.  Therefore, further studies should be conducted in order to 

reveal more information regarding the kinetic aspects of methanol synthesis.  
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Appendix A 
 

ADDITIONAL DATA 

The experimental results reported by Calverley are listed in Table A.1.  The 

reported results included pressure, feed flow rate, catalyst weight, inlet mole fraction for 

CO, H2, methanol and CO2 and the outlet mole fraction of methanol for a total of 51 runs. 

Table A.1. Experimental results published by Calverley (Reprinted with permission from 
[35]). 
 
Run # Feed 

flow 
rate 
(mol/h) 

Pressure Catalyst 
mass 

Mole fraction in feed exit 
mole 
fraction  

CO H2 CH3OH CO2 CH3OH 

1 1.834 99.7 1.56 0.482 0.312 0.019 0.089 0.0725 

2 1.799 99.7 1.56 0.491 0.318 0 0.091 0.0656 

3 1.799 99.7 1.56 0.491 0.318 0 0.091 0.0618 

4 1.828 99.7 1.56 0.587 0.311 0.019 0 0.0492 

5 1.793 99.7 1.56 0.598 0.317 0 0 0.0414 

6 2.709 99 1.56 0.581 0.309 0 0 0.03 

7 2.709 99 1.56 0.581 0.309 0 0 0.0285 

8 2.786 99 1.56 0.566 0.301 0.027 0 0.0455 

9 2.786 99 1.56 0.566 0.301 0.027 0 0.0433 

10 2.874 99.7 1.56 0.548 0.293 0.053 0 0.0664 

11 2.874 99.7 1.56 0.548 0.293 0.053 0 0.0654 

12 1.774 99.7 1.56 0.58 0.317 0 0 0.0402 
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Run # Feed 

flow 
rate 
(mol/h) 

Pressure Catalyst 
mass 

Mole fraction in feed exit 
mole 
fraction  

CO H2 CH3OH CO2 CH3OH 

13 1.8 99.7 1.56 0.54 0.323 0 0 0.0607 

14 1.833 99.7 1.56 0.53 0.317 0.018 0 0.0673 

15 1.81 97.6 1.57 0.57 0.322 0 0.043 0.0415 

16 1.807 97.6 1.57 0.419 0.501 0 0.042 0.0586 

17 1.805 97.6 1.57 0.611 0.273 0 0 0.0332 

18 2.709 99 1.57 0.581 0.309 0 0 0.0306 

19 2.714 98.3 1.57 0.583 0.307 0.006 0 0.0329 

20 2.786 99 1.57 0.566 0.301 0.027 0 0.0463 

21 1.81 98.3 1.57 0.657 0.226 0 0 0.0252 

222 1.793 84.7 1.57 0.556 0.32 0 0 0.0308 

23 1.839 84.7 1.57 0.407 0.504 0 0 0.0426 

24 1.839 84 1.57 0.634 0.227 0 0 0.0192 

25 2.412 70.4 1.57 0.656 0.235 0 0 0.0144 

26 2.431 70.4 1.57 0.651 0.233 0.008 0 0.0183 

27 1.851 98.3 1.56 0.554 0.327 0 0 0.0391 

28 1.851 84.7 1.56 0.554 0.327 0 0 0.0296 

29 0.959 50 1.56 0.372 0.548 0 0 0.0298 

30 0.959 50 1.56 0.372 0.548 0 0 0.0308 
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Run # Feed 

flow 
rate 
(mol/h) 

Pressure Catalyst 
mass 

Mole fraction in feed exit 
mole 
fraction  

CO H2 CH3OH CO2 CH3OH 

31 0.965 50 1.56 0.243 0.558 0 0.147 0.0383 

32 0.965 76 1.56 0.243 0.558 0 0.147 0.0787 

33 0.965 50 1.56 0.243 0.558 0 0.147 0.0351 

34 0.981 50 1.56 0.188 0.553 0 0.218 0.0254 

35 1.03 50 1.56 0.283 0.326 0 0.33 0.0127 

36 0.964 50 1.56 0.272 0.571 0 0.125 0.0393 

37 0.934 50 1.56 0.297 0.57 0 0.088 0.0446 

38 0.932 50 1.56 0.297 0.57 0 0.088 0.0432 

39 0.937 50 1.56 0.33 0.571 0 0.065 0.0505 

40 0.961 50 1.56 0.346 0.557 0 0.049 0.0496 

41 0.959 50 1.56 0.362 0.568 0 0.02 0.0532 

42 0.949 50 1.56 0.387 0.567 0 0.005 0.0457 

43 1.8 99.7 1.56 0.533 0.331 0 0.043 0.0619 

44 3.306 50 1.56 0.35 0.561 0 0.028 0.0211 

45 3.306 50 1.56 0.165 0.583 0 0.223 0.0102 

46 3.306 50 1.56 0.217 0.576 0 0.16 0.0126 

47 3.306 50 1.56 0.252 0.578 0 0.119 0.0138 

48 3.345 50 1.56 0.342 0.569 0 0.062 0.0182 
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Run # Feed 

flow 
rate 
(mol/h) 

Pressure Catalyst 
mass 

Mole fraction in feed exit 
mole 
fraction  

CO H2 CH3OH CO2 CH3OH 

49 3.421 50 1.56 0.372 0.559 0 0.031 0.0191 

50 3.342 50 1.56 0.367 0.569 0 0.014 0.0186 

51 3.381 50 1.56 0.382 0.559 0 0 0.0089 

 

The information given in Table A.1 was used to predict the exit gas composition and the 

partial pressure of each species using material balance calculations. 

 The reactor was operated in integral mode during the experiments.  Therefore, the 

following procedure was used to calculate the rates: 

• At a given temperature and pressure, conversion for each run was calculated using 

the inlet and outlet composition of reactant, CO.  Conversion is calculated using the 

following expression: 

     
0

1 A
A

A

F
X

F
= −  

where,  

XA = conversion 

FA0 = inlet molar flow rate of reactant 

FA = outlet molar flow rate of reactant 

• The ratio of catalyst weight to inlet molar flow rate of CO was also computed 

• For a PFR, the rate equation can be written as, 
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   0A A
A

F dX
r

dW
− =     Equation A.1 

or 

   

0

A
A

A

dX
r

W
d

F

− =
 
  
 

    Equation A.2 

where, 

-rA = rate of reaction 

FA0 = inlet molar flow rate of reactant 

W = catalyst weight 

XA = conversion 

• XA was plotted as a function of W/ FA0 and a curve was fit through the points, with 

the curve passing through the origin. 

• The rates were then calculated by finding the slope of the curve at each data point.  

The polynomial function obtained was differentiated to give reaction rates at the 

corresponding value of conversion.  The plot of XA vs. W/ FA0  is shown in Figure 

A.1.  As shown in the graph, the curve fits to the data points satisfactorily with an 

R2 value of 0.81. 
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y = -0.0008x4 + 0.014x3 - 0.0889x2 + 0.236x - 0.126
R2 = 0.8148
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Figure A.1 Conversion plotted as a function of W/FA0. 

• A fourth order polynomial describes the curve and can be written as 

 X = -0.0008TF4 + 0.014TF3 - 0.0889TF2 + 0.236TF - 0.126   Equation A.3 

TF is the turnover frequency, used interchangeably for W/FA0. 

• Differentiating this polynomial, we get 

( ) ( ) ( )2 3  0.236  2*0.0889 *TF  3*0.014 *TF –  4*0.0008 *TF
dX

dTF
= − + Equation A.4 

Rates are obtained by finding the above mentioned differential at each value of 

conversion.  The calculated values of rates are shown in Table 2 in Section 4.2. 
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Appendix B 

ADDITIONAL RESULTS 

Experimental data including a range of low and high inlet CO2 partial pressures 

was used in the regression procedure.  The model proposed by Graaf was fit to the low 

CO2 inlet partial pressure data and that proposed by Rozovskii was fit to the data with 

high CO2 content in the feed.  As already explained in Section 4.4, residual plots show 

the deviation between the experimental values and the corresponding values calculated 

from the models.  For a good fit, the residuals should be randomly distributed and not 

follow a clear trend around the line of err = 0.  The residual plots generated as a result of 

fitting Graaf’s and Rozovskii’s models to the kinetic data are shown in Figures B.1 and 

B.2. 

 

Figure B.1. Residual plot generated by fitting Graaf’s model to low CO2 inlet partial 
pressure data. 
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Figure B.2. Residual plot generated by fitting Graaf’s model to low CO2 inlet partial 
pressure data. 

 
As shown in the Figures B.1 and B.2, the residuals were distributed in a random 

manner around the line of err = 0 and did not follow a clear trend indicating the goodness 

of fit of the two models.  The polymath reports for the same regression models are shown 

in Tables B.1 and B.2 displaying the statistical features of the regression. 
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Table B.1. Polymath report generated by fitting Graaf’s model to low CO2 inlet partial 
pressure data. 
 
POLYMATH Report No Title 
Nonlinear Regression (L-M) 21-Nov-2011

 
Model: r = (k*Kco*(pco*ph2^1.5-

pm/(ph2^0.5*0.000388)))/((1+Kco*pco+Kco2*pco2)*(ph2^0.5+(Kwh)*ph2o))  

Variable Initial guess Value  95% confidence 

k  0.1  0.0535024 6.141E-05  

Kco  0.01  0.0022467 2.907E-06  

Kco2  0.001  0.0184968 0.0066304  

Kwh  10.  1011.  4.803157  

 
Nonlinear regression settings  

Max # iterations = 64  
 

Precision  
R^2  0.8149573 

R^2adj  0.7532763 

Rmsd  0.0032336 

Variance 0.0001963 

 
General  
Sample size 13 

Model vars  4  

Indep vars  5  

Iterations  29 
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Table B.2. Polymath report generated by fitting Rozovskii’s model to high CO2 inlet 
partial pressure data. 
 

POLYMATH Report No Title 
Nonlinear Regression (L-M) 21-Nov-2011

 
Model: r = (k*Kco*(pco*ph2^1.5-

pm/(ph2^0.5*0.000388)))/((1+Kco*pco+Kco2*pco2)*(ph2^0.5+(Kwh)*ph2o))  

Variable Initial guess Value  95% confidence 

k  0.1  0.0535024 6.141E-05  

Kco  0.01  0.0022467 2.907E-06  

Kco2  0.001  0.0184968 0.0066304  

Kwh  10.  1011.  4.803157  

 
Nonlinear regression settings  

Max # iterations = 64  
 

Precision  
R^2  0.8149573 

R^2adj  0.7532763 

Rmsd  0.0032336 

Variance 0.0001963 

 
General  
Sample size 13 

Model vars  4  

Indep vars  5  

Iterations  29 
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The residual plot generated as a result of fitting the combined model to the entire range of 

data is shown in Figure B.3.  The polymath report of the same regression is shown in 

Table B.3. 

 

Figure B.3. Residual plot generated by fitting combined model to entire range of kinetic 
data. 
 
 
The residuals as shown in Figure B.3 are randomly distributed and no clear trend was 

observed suggesting the combined model represents the kinetic data appropriately. 
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Table B.3. Polymath report generated by fitting combined model to entire range of 
kinetic data. 
 
POLYMATH Report No Title 
Nonlinear Regression (L-M) 21-Nov-2011

 
Model: r = (k*ph2*(1-

(pm*ph2o/(0.000077*ph2^3*pco2))))/(1+Kh2o*ph2o+(Kh2o*ph2o/Kco2*pco2))+(k1*Kco*(pco
*ph2^1.5-pm/(ph2^0.5*0.000388)))/((1+Kco*pco+KCO2*pco2)*(ph2^0.5+(Kwh)*ph2o))  

Variable Initial guess Value  95% confidence 

k  0.001  0.0009681 2.729E-06  

Kh2o  0.01  0.0032128 6.479E-05  

Kco2  0.01  0.0226146 0.0004574  

k1  0.01  0.0231806 4.222E-05  

Kco  0.001  0.0024066 4.973E-06  

KCO2  0.01  0.0624938 0.0015774  

Kwh  0.1  11.09971  0.4651571  

 
Nonlinear regression settings  
Max # iterations = 64  

 

Precision  
R^2  0.8501624 

R^2adj  0.7859462 

Rmsd  0.0022748 

Variance 0.000163  

 
General  
Sample size 21 

Model vars  7  

Indep vars  5  

Iterations  17 

 
 

The statistical information displayed in Table B.3 also indicated that the 

combined model was a statistically sound model. 
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