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ABSTRACT

CHI-SQUARED DISTANCE AND METAMORPHIC VIRUS DETECTION

by Annie H. Toderici

Malware are programs that are designed with a malicious intent.

Metamorphic malware change their internal structure each generation while still

maintaining their original behavior. As metamorphic malware become more

sophisticated, it is important to develop efficient and accurate detection techniques.

Current commercial antivirus software generally try to scan for malware signatures

within files and match them against a known set of signatures; therefore, they are

not able to detect metamorphic malware that change their body from generation to

generation, with each copy comprised of its own unique signature. Machine learning

methods such as hidden Markov models (HMM) have shown promising results in

detecting metamorphic malware. However, it is possible to exploit a weakness in

HMMs and avoid detection by morphing and merging the malware with contents

from normal files. As an alternative approach, we consider combining HMMs with

the statistical framework of the chi-squared test to build a new detection method.

This paper will present the experimental results of our proposed hybrid detector in

metamorphic malware detection.
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CHAPTER 1

Introduction

Over the past decade, computers have become a tool in our daily lives. People

use email to write their correspondence instead of using traditional paper letters

and the postal service. Driven by the advances in Internet and cloud computing

technology, most businesses and organizations offer online services. Banks and

financial organizations provide online access to their customers, allowing them to

initiate transactions (for example, their customers can pay their bills through this

system), and offer other services including depositing checks without having to go to

the local branch of the bank. Government agencies such as the Department of

Motor Vehicles now also allow drivers to renew driver licenses or car registrations on

their websites [1]. Public transportation agencies such as the Bay Area Rapid

Transit also rely on computers to transmit the route locations and schedules to their

operators to make sure that they are safe [2].

This convenience of computers and the massive importance they play in our

daily lives also drew an increase in malware (malicious software) attacks [3].

Malware writers are enticed by the potential profit they can obtain by controlling a

massive number of computers and potentially extracting high value information

from them (for example, credit card numbers, bank accounts, user names, and

passwords to email accounts). Since our society relies so much on computers,

malware poses a very serious threat to virtually all people using computers.

Due to the potential profit malware writers can make, the number of

malicious software application has been rising speedily, and some of the attacks
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caused extensive financial damage and interruption. According to McAfee,

MyDoom is a massive spam-mailing malware that caused the most monetary

damage of all time, an estimated $38 billion, and Conficker is a password-stealing

botnet that caused an estimated of $9.1 billion in damages [4]. The most common

types of attacks against users are designed to commit identity theft or credit card

fraud. Sometimes they cause damage on the computer by overwriting data on the

hard disk, encrypting important data, or blackmailing the user.

In order to prevent infections by computer viruses, or malware attacks,

antiviral defense is generally applied. There are many antivirus defense systems

based on algorithms such as signature detection, code emulation, heuristic code

analysis, and machine learning. Signature detection is the most commonly used

algorithm for detecting viruses [5]. It relies on a large database of known signatures

for viruses and malware, and it matches them against all the files on the user’s

computer. If any one signature is matched to a file, it means that the file is likely to

be infected by the corresponding malware such as a virus. Traditionally, this

method has been very effective for detecting most näıve viruses. The weakness of

the signature detection technique is that it cannot detect new or previously

unknown variants of viruses.

Malware writers know this weakness and have been creating variations of

viruses by employing a variety of code obfuscation methods [6]. The most common

methods for code obfuscation are reordering instructions, renaming registers,

making spaghetti code, substituting sets of equivalent instructions, and inserting

junk code. Metamorphic viruses normally apply these methods. They are the most

difficult type of virus to detect since they morph into a new copy at each infection.

Previous research has shown that machine learning methods such as hidden
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Markov models (HMMs) can be used to detect metamorphic viruses [7]. However,

the new metamorphic virus generator created by Lin [8] has been shown to be

capable of defeating the HMM-based detection methods.

We studied the statistical properties of the χ2 test (which is also written in

literature as “chi-squared test”) and its relevance to virus prediction tasks, as

suggested by Filiol and Josse’s theoretical framework [9]. We show that the χ2

distance test, which is computed directly on instruction frequencies, can benefit

virus detection and identification. We present our proposed hybrid virus detector

based on the HMM and the χ2 distance and its results. The goal of this project is to

determine whether simple statistics can be used to predict the presence and absence

of viruses.

The thesis is structured as follows: Chapter 2 gives background information

on various computer viruses and the code obfuscation techniques. Chapter 3

provides an overview of the antivirus defense mechanisms. Chapter 4 introduces our

proposed hybrid virus detector. Chapter 5 briefly discusses the performance

evaluation techniques. Chapter 6 presents our experimental setup. Chapter 7

discusses the experimental results. The conclusion is presented in Chapter 8.
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CHAPTER 2

Malware

Malicious software or malware is software designed for malicious purposes.

Some malware may delete, overwrite, or steal user data. In general, this type of

software can cause damage to the user’s computer and may steal vital information.

Since this is a broad definition, malware can be classified into categories such as

viruses, worms, trojan horses, spyware, adware, or botnets. Since there is

substantial overlap between these type of malware, we refer to them simply as

“viruses” [5]. We can further classify viruses based on the way they try to conceal

themselves from being detected by antivirus programs [10]. These categories are

“encrypted,” “polymorphic,” and “metamorphic.”

2.1 Encrypted Viruses

“Encrypted viruses” refer to those viruses that encrypt their body using a

specified encryption algorithm but using different keys at every infection. Each

encrypted virus has a decryption routine that usually remains the same, despite the

fact that the keys change between infections. Therefore, it is possible to detect this

class of viruses by analyzing the decryptor in order to obtain a reasonable signature.

Figure 1 shows an encrypted virus example.

Encrypted viruses tend to use simple algorithms for encryption. Common

variants use algorithms such as XORing the body of the virus with the encryption

key. Despite its effort to encrypt its body, this type of viruses can be easily detected

by signature detection. Listing 2.1 illustrates a simple encryption code written in

assembly using the XOR function in the decryption loop with the key 0x55.
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Figure 1: Encrypted virus before and after decryption.

dec rypt l oop :

lodsd ; l oad a doub le word
xor eax , 0 x55555555 ; xor each by t e wi th 0x55 ( encrypt or decryp t )
stosd ; s t o r e back the word
sub ecx , 4 ; decrease the counter by 4 ( b y t e s )
jnz dec rypt l oop ; as long as t he r e are b y t e s l e f t , cont inue

Listing 2.1: An example of a simple decryptor code.

2.2 Polymorphic Viruses

Polymorphic viruses are similar to encrypted viruses, but they obfuscate the

decryption code by mutating it. Even though there are many variants of these

decryptors, it is still possible to locate all the signatures of these decryptors. In

addition, if a part of the code of a program looks “suspicious,” we can test it by

running it in a virtual machine and analyzing the effect it has on its own code

segment. When the code finally decrypts itself, we can look for the signature for that

decryptor or even the decrypted body of the virus. Therefore, polymorphic viruses

can still be detected by signature detection, although it is time consuming to find

the reliable signature patterns given the possible diversity of decryptor bodies and

possibly the high cost of having to run the virus inside a virtual machine for cases in

which the detection algorithm cannot determine whether the file is infected or not.
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Figure 2: Multiple shapes of a metamorphic virus at each generation.

2.3 Metamorphic Viruses

Related to polymorphic viruses, metamorphic viruses change their internal

structure on each generation. Unlike polymorphic viruses, the entire virus changes

at each generation while still maintaining its original behavior. Figure 2 illustrates

the multiple shapes of a metamorphic virus. Virus writers have tried various

techniques when implementing metamorphic engines such as reordering subroutines,

inserting garbage instructions, exchanging register usage, or substituting equivalent

instructions. As metamorphic viruses become more sophisticated, it is important to

develop efficient and accurate detection techniques. Current generation antivirus

software applications generally try to scan for virus signatures within files to locate

any known virus. This technique is used very often simply because it is not only

effective in detecting known viruses but it is also very efficient. However, since

metamorphic viruses change their body from generation to generation, each

generation has its own unique signature. Therefore, current antivirus software

program cannot detect variants of these viruses with ease.

Even though it is difficult to detect this type of virus, it is also difficult for

malware writers to implement it correctly. The problem is that virus writers need to

be able to make their malware mutate without arbitrarily increasing in size.

Moreover, in the case of metamorphic viruses, the virus writers may need also to be

6



able to detect whether any particular file is infected so that the virus will not try to

reinfect it again. All these issues are very difficult to address programmatically,

without causing bugs in the code or potentially providing the antivirus programs an

easy way of detecting the virus.

Many malware writers claim that they have implemented virus generators

that are metamorphic. However, studies [7, 11] that analyzed such generators, have

shown that only very few of them exhibit true metamorphic behavior. The studies

included the following examples of generators that claimed to be metamorphic but

were not: Phalcon/Skism Mass-Produced Code generator (PS-MPC), Second

Generation virus generator (G2), Mass Code Generator (MPCGEN), and Virus

Creation Lab for Win32 (VCL32) [12]. Out of all the generators that claimed to be

metamorphic, only the Next Generation Virus Construction Kit (NGVCK) is indeed

metamorphic [7, 11].

2.3.1 Virus Obfuscation Techniques

Code obfuscation techniques are generally applied when creating metamorphic

viruses. These techniques when used in combination are able to create a vast

number of distinct copies with equivalent code and behavior.

2.3.1.1 Register Renaming

Register renaming is one of the simplest techniques use in metamorphic

generators. This is done by simply replacing the registers that the instructions use

with different ones. See Figure 3 for an example. This technique does not fool the

human eye when applied, since it is easy to spot by looking at the disassembled

code, but it changes the binary bit pattern from the executable files and thus
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generates a slightly different signature. Since the opcode sequences are not changed,

it is still possible to detect this register renaming technique by using wildcard

strings [13]. An example wildcard would need to be able to match sequences of MOV

Reg, 4, MOV Reg, Reg, SUB Reg, 1. Reg represents the register used, and it can be

ax, bx, cx, eax, ebx, etc.

Figure 3: Register renaming example.

2.3.1.2 Equivalent Instruction Replacement

The instruction set for many modern Complex Instruction Set CPUs (CISC)

have instructions that can either be substituted by an equivalent instruction with

the same effect or with a sequence of other instructions that cause the same

behavior. An example of such instruction-level equivalence is MOV eax, 0 which is

equivalent to SUB eax, eax or XOR eax, eax. Figure 4 illustrates an example

where a single instruction is replaced with a sequence of instructions with an

equivalent effect.

Figure 4: Equivalent instructions substitution.
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2.3.1.3 Instruction Reordering

Instruction reordering is done by transposing instructions that do not depend

on the output of previous instructions to generate a different but equivalent

sequence of instructions. Due to the fact that now the instructions are reordered,

the signature of the code is different, but since none of the instructions with

dependencies were changed, the actual outcome of the code is identical to the

original. Figure 5 shows that the last instruction can be transposed since it does not

affect the outcome of the other instructions. However, the first instruction has to

come before the second instruction; therefore, the ordering cannot be changed there.

In addition, the figure also demonstrates that register renaming can be employed

simultaneously with instruction reordering. This results in a powerful method for

avoiding detection, since making wildcard signatures that are able to capture this

behavior becomes much more difficult and computationally expensive.

Figure 5: Instruction reordering and equivalent instructions substitution.

2.3.1.4 Inserting Junk Code

Junk code is code that once executed will not affect the behavior of the

program. Typically, junk code is inserted randomly throughout the body of the

virus during the morphing process. The intention is that such junk code will confuse

signature-based antiviruses. The most common example of junk code is randomly

inserting the NOP instruction. This instruction simply does nothing in terms of

affecting the CPU state, and modern detection algorithms usually have a rule to

9



remove or treat specially the NOP instructions encountered in executable files.

However, there are other examples of junk code such as MOV eax, eax, ADD eax, 0,

and SUB eax, 0.

It is possible to create relatively long sequences of instructions that, once

chained together, have absolutely no effect except for making the detection of the

“live” code more difficult. A jump instruction can be added right in front of this

long sequences of junk instructions in order to completely skip it during runtime.

Since the location of such code can be random, it can make signature-based

approaches less likely to succeed, and multiple signatures must be used in order to

properly detect such viruses.
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CHAPTER 3

Malware Detection

Antiviruses and malware detection programs have been developed to combat

these threats. Most antivirus programs are built with the assumption that the virus

does not change its structure or code. With the constant evolution of virus creation,

there are many areas of improvement, and both academia and antivirus software

developers continually conduct research in order to lessen the threat from virus

makers. This section discusses several detection approaches such as signature

detection, heuristic detection, and the use of machine learning techniques.

3.1 Signature Detection

Commercial antivirus software typically uses signature detection to identify

malicious files. A signature is created by analyzing the binary code of a virus body,

and selecting a sequence of byte code that is unique to that virus [5]. This string of

bytes extracted from the virus must be uniquely different from normal benign files.

The signature has to be long enough that it would not appear in normal files, which

would also almost guarantee that this signature will not be shared with other

viruses either. An example of a signature extracted from the Chernobyl/CIH virus

can be detected with the following sequence of bytes [14]:

E800 0000 005B 8D4B 4251 5050

0F01 4C24 FE5B 83C3 1CFA 8B2B

String matching algorithms are normally applied as the scanning mechanism

in antiviruses. Algorithms such as Aho-Corasick, Veldman, and Wu-Manber are a
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few string matching algorithms used [10]. The Aho-Corasick algorithm can only

scan for exactly matching signatures, thus a slight variation will escape being

detected [15]. Veldman and Wu-Manber proposed the use of wildcard search strings

to help detecting these slight variants of the viruses [6].

After locating a malware signature, antivirus software vendors incorporate

this signature into their database of virus signatures which they maintain and push

out to their users. This has created a market for antivirus makers, since they now

charge subscription fees for updating the virus signature database for the user.

Scanning files against a large database of virus signatures is simple and

efficient. Users of antivirus software only need to click on the “start scanning”

button or set a recurring scanning schedule, and the antivirus will do the work of

scanning the hard-drive. However, this ease of use, and the relatively high speed of

scanning comes at a cost: the virus database needs to be kept up to date. Moreover,

the antivirus software is not able to detect all existing malware, because if none of

the current signatures match a particular new malware, it will not be known until

the antivirus makers acquire the signature for it. Thus, unknown viruses are very

unlikely to be detected during a signature-based scan.

Antivirus software makers maintain the database of virus signatures by

constantly searching the Internet for new viruses and generating suitable signatures

for all viruses they find. This leads to a completely reactive scenario where the

antivirus manufacturers are unable to combat a new virus until after it has caused

damage. Fortunately, it is possible to find new viruses by simply reading the right

internet forums where users trade new viruses. In addition, keeping contact with

customers who found suspiciously behaving files is an invaluable source of

information on new malware.
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3.2 Heuristic Detection

Heuristic analysis can be used to detect unknown viruses and variants of

known viruses. Heuristic analysis is either done using static or dynamic analysis.

When encountering a suspicious program, static heuristic analysis will disassemble

it for further study. The code is analyzed to see whether there are matching viral

code patterns that are close to known viruses. The code will be evaluated and given

a percentage of similarity to viruses, and if it surpasses a threshold, this program

will be marked as infected [10].

In the case of dynamic heuristic analysis, the suspected program is executed

under a virtual machine which is monitored for any viral behaviors. Once the

program exhibits any viral behaviors, this program will be marked as infected.

Examples of viral behavior include attempting to open other executable files with

the intent of modifying their content, attempts to change the Master Boot Record

(in case of boot sector viruses), or attempts at concealing themselves from the

operating system. In addition, most modern antiviruses now provide programs

which run in the background, and constantly monitor for suspicious behavior [10].

3.3 Machine Learning Techniques

Machine learning techniques have gained popularity in recent years. Tom

Mitchell defines machine learning as the study of computer algorithms that improve

through experiments [16]. Examples of such techniques are Näıve Bayes [17],

decision trees [18], hidden Markov models [7, 11], and other statistical learning

methods [9].

Back in 1986, Cohen [19] proposed an undecidability theorem of virus

detection which indicates that it is impossible to find a single algorithm that can
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detect all possible viruses. Chess and White [20] also further supported this idea by

showing that there exist viruses which cannot be detected by any algorithm.

Therefore, we are focusing on the detection of metamorphic viruses generated using

the NGVCK virus and Lin’s metamorphic generator [8]. Machine learning

techniques such as the HMM and χ2 statistical framework will be the main focus of

this project, which we will introduce in the following two sections.

3.4 Hidden Markov Model

A hidden Markov model (HMM) is a statistical modeling method that has

been used in speech recognition, bioinformatics, mouse gesture recognition, credit

card fraud detection, and computer virus detection research. The HMM is one of

the most popular models to use for sequential data. It is widely used because it is

simple and it is computationally fast.

The popularity of HMMs within the virus detection community stems from

the fact that programs can be represented as sequences of instructions. The CPU

executes them one at a time, which effectively means that programs can be treated

as time series: the type of data that HMMs excel on.

A hidden Markov model is a stochastic model which assumes that the

underlying data can be expressed as a Markov process with hidden states. In

essence, it can be viewed as a variant of a probabilistic state machine, where the

transition probabilities from one state to another depend only on the current state.

A Markov model assumes that sequential data can be modeled based solely on

the current state, with absolutely no memory. What happens next in the sequence

depends only on the current state with nothing in the past influencing the state

transition. In a typical Markov chain, the states are fully observed. In the case of
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Table 1: The list of symbols and their meanings.

Symbol Description

T The length of the observation sequence
N The number of states in the model
M The number of distinct observation symbols
O The observation sequence O = {O0,O1, . . . ,OT−1}
Q The set of states of the Markov process
V The set of observation symbols
A The state transition probability matrix
B The observation probability matrix
π The initial state distribution
λ The hidden Markov model, as defined by its parameters A, B, π, is

depicted as λ = (A,B, π)

hidden Markov model, as its name implies, the states are never observed, as they

are “hidden.” We can only estimate these states while observing sequences of data.

HMM will choose the sequence of states that jointly maximizes the probability of

the entire observation sequence [21].

3.4.1 Notation

In order to mathematically describe the HMM, we will use the notation

summarized in Table 1. The main components for the HMM are the state transition

probability matrix (A), the observation probability matrix (B) which gives the

likelihood of observation given the state, the initial state distribution (π),

observation sequence (i.e. O = {O0,O1,O2,O3}), and the hidden states (i.e.

X = {x0, x1, x2, x3}). The first three elements define the HMM model (λ) such that

λ = (A,B, π). Matrices A and B are row stochastic, so each row must sum up to 1.

πx0 is the probability of starting in the first state (x0). ax0,x1 is the probability of

transitioning from state x0 to state x1. Finally, bx0 (O0) is the probability of

observing O0 at state X0.
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Figure 6 shows a graphical representation of a generic HMM. The Markov

process gives the transition between states. However, in the case of hidden Markov

model, the transition between states is not observed, as the states are “hidden.”

The state transitions are placed above the dashed line, in order to indicate the fact

that we do not “know” what the transitions should be. The transitions are

“learned” by analyzing the observations (below the dashed line). Only the

observation sequence is available for study while the state transition sequence of the

Markov process is hidden behind the dashed line. The Markov process is estimated

by knowing the initial state x0 and the state-to-state transition probabilities

obtained from the matrix A. The observation sequence is related to the states of the

Markov process by the matrix B, which describes the probability of observing a

particular symbol in a given state.

Figure 6: Markov Process. Reprinted with permission from [21].

HMM is used to solve three problems:

1. For the first problem, we want to find the probability of this observed

sequence O happening under a given model λ. An example use for this is

computing the probability of a file being a virus. The forward algorithm, or

α-pass, is used to determine the likelihood of the observed sequence.

2. The second problem intends to find the hidden state sequence from the

sequence of observations and a given model λ. The Viterbi algorithm and
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backward algorithm, or β-pass, are used to find the optimal state sequence. An

example application of this, assuming a HMM with two hidden states would

be to determine the most “virus-like” areas of a file, where “virus-like” would

be associated with the model being in a specific state. In practice, however, it

is enough to simply determine the probability of a file being a virus.

3. The last problem finds the model λ that maximizes the probability of a given

observation sequence O. The Baum-Welch algorithm can provide an

estimation for the model parameters given the observations.

Here, we are interested in the application of these algorithms and to ensure

consistency across our research, we utilized the HMM library from [21].

3.4.2 Example HMM

An example from [21] will be used to illustrate the concepts of HMM. Suppose

we are meteorologists working to determine the average annual temperature of a

particular location over a series of years. Let’s assume that the years of interest

occurred before the invention of thermometers. Given this, there is no way of

knowing exactly what the temperature was during the time of interest. However,

let’s say that researchers found evidence of the temperature being related to the

growth of the trees. In this case, we can estimate the temperature based on the

observation of tree ring sizes instead. The temperature will be either hot (H) or cold

(C), and the tree ring sizes are either small (S), medium (M), or large (L).

Suppose that researchers have evidence which gives them the temperature

transition probabilities and relationship between the temperature and the tree ring

sizes. For the temperature to transition from a hot year to a cold year, the
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probability is 0.3, and thus there is a higher chance of 0.7 for the temperature to

remain hot. The probability for the next year to stay hot is therefore 0.7. For a cold

year to transition to a hot year, the probability is 0.4, and again, there is a higher

chance of 0.6 to remain cold for another year. Equation 1 is the matrix

representation of the temperature transition probability which we have described

thus far. This is the state-to-state transition matrix A:

H C
H
C

[
0.7 0.3
0.4 0.6

]
(1)

In a hot year, the probabilities of the small, medium, and large tree ring sizes

are 0.1, 0.4, and 0.5 respectively. In a cold year, the probabilities are 0.7, 0.2, and

0.1 for the small, medium, and large tree ring sizes respectively. Table 2 shows the

matrix for the observation-to-state transition probabilities B.

The initial state probability distribution for a hot year is 0.6 and 0.4 for a cold

year. Now the goal is to observe a four year period of tree ring sizes to determine

the most likely state sequence of the Markov process. In this four year period, the

tree ring sizes are S, M, S, L. To simplify the observation notation, S is represented

as 0, M as 1, and L as 2. Using this notation, the observation sequence O is

{0, 1, 0, 2}. Table 2 summarizes the parameters for this particular HMM:

Let’s set X = {x0, x1, x2, x3} to be a generic state sequence of length four.

The probability of the state sequence X can be calculated using the formula given in

Equation 3, where Ok refers to the kth element of O.

Normally,

P (X) = πx0P (x1|x0)P (x2|x0, x1)P (x3|x0, x1, x2) (2)
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Table 2: Parameter values and their explanations.

Parameter and Value Explanation

O = {0, 1, 0, 2} The observation sequence for this model
V = {0, 1, 2} The observation symbols of tree ring sizes, corre-

sponding to S, M, and L
Q = {H,C} The states in the model of states are H and C
T = 4 The length of the observation sequence of O =

{0, 1, 0, 2}
N = 2 The number of states in the model with states of

either H or C
M = 3 The number of observation symbols with tree ring

sizes of S, M, and L

A =

[
0.7 0.3
0.4 0.6

]
The state transition probabilities

B =

[
0.1 0.4 0.5
0.7 0.2 0.1

]
The observation probabilities

π =
[

0.6 0.4
]

The initial state transition probabilities

However, under the HMM assumptions, this equation becomes:

P (X) = πx0bx0(O0)ax0,x1bx1(O1)ax1,x2bx2(O2)ax2,x3bx3(O3) (3)

To find out how likely the state sequence of HHCC is to occur, we can use the

formulation from Equation 3. Substituting the symbols for their values, we obtain:

P (HHCC) = (0.6)(0.1)(0.7)(0.4)(0.3)(0.7)(0.6)(0.1) = 0.000212 (4)

Given the observation sequence, in order to find the optimal hidden states

sequence, we can use the Viterbi algorithm and the backward algorithm. The most

probable symbol is chosen at each position based on Table 3. Thus, the optimal

state sequence for O = {0, 1, 0, 2} is CHCH.
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Table 3: Probabilities for Hot/Cold given the four observations.

Element
0 1 2 3

P(H) 0.188170 0.519432 0.228878 0.803979
P(C) 0.811830 0.480568 0.771122 0.196021

3.5 Chi-Squared Distance

Statistical analysis is commonly used by professionals and researchers to

evaluate statements or claims. The two major areas of inferential statistics are

estimation of parameters and hypothesis testing. We will illustrate what these terms

mean with the following example.

A study is commissioned for compiling home prices at location A. After

gathering data on the prices at that location, a histogram of the prices is plotted.

The histogram graph is simply summarizing the possible price ranges, by counting

the number of houses within each possible price bucket. This graph exhibits a

bell-shaped curve demonstrating the normal distribution. The bell shape is centered

at the average (or mean) house price. The majority of the prices should be close to

the average, with a few “outlier” values for prices which either cost a very large sum

of money, or for those houses which are in foreclosure and cost very little.

Now, let us suppose the same study is conducted at another location, B. After

gathering the housing prices, a graph is also plotted using data received. If location

B is from a similar area to A, this graph should yield a similar bell-shaped graph.

Statistical testing will be applied to see whether these two graphs are significantly

similar or different from each other.

Since each graph is assumed to follow a normal distribution, it is useful to

summarize the data before comparing it. The parameters of this distribution are
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estimated from the data at location A, and from the data at location B. Using a

statistical test, we can determine whether the estimated parameters are sufficiently

close or far apart in order to draw a conclusion.

3.5.1 Notation

Suppose that X is a statistical variable coming from a distribution under

observation. The goal is to estimate the main characteristics of X’s probability

distribution P . Let X1, X2, . . . , Xn be a random sample of elements from this

distribution. These samples reveal some information about the unknown parameter

θ that are used to estimate the probability law P . The function that depends on

X1, X2, . . . , Xn which is used to estimate θ is denoted by f(X1, X2, . . . , Xn), and it

is called an estimator function. An estimator function is used to compute the

probability distribution on every sample. The notation θ∗n = f(X1, X2, . . . , Xn) will

be used to measure an estimate for an unknown feature θ of P .

The parameter space from which θ is drawn is completely arbitrary, and it

depends on the problem and the choice of f . For example, it may be equal to the

set of natural numbers, N, or the k-dimensional real numbers, Rk. To further

illustrate this idea with a typical usage scenario, if θ represents the parameters of a

normal distribution, it will have two dimensions, in which the first dimension would

correspond to the mean, µ, and the second to the variance, σ. For the purpose of

malware analysis, the parameter space is restricted to all k-dimensional vectors with

dimensions coming from the set of natural numbers. The form of P is assumed to

be known.

The statistical testing is used to decide which hypotheses will be likely belong

to the observation samples (X1, X2, . . . , Xn). In statistical testing, one or more
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initial hypotheses are proposed which will either be kept or rejected after testing on

the likelihood of these hypotheses with respect to the probabilistic law of X.

There can be many hypotheses but we will only consider two. The initial

hypothesis is denoted H0 and is referred to as the null hypothesis. The alternative

hypothesis is denoted as H1. The tests which we are interested in will either accept

or reject these two hypotheses.

In order to build a test for a given sample, an estimator E is used as the

decision threshold to decide whether to keep or reject the null hypothesis. The

observed value e will be computed on this sample and compared with the estimator

value, E. This threshold will have two sets of disjoint values with acceptance region

A and rejection region B.

There are two types of errors associated with any detection problem:

• The type I error, denoted as α, represents the false positive probability rate.

This error indicates that the probability of falsely rejecting the null hypothesis.

• The type II error, β, represents the false negative probability rate. This error

indicates the non-detection rate where the null hypothesis is kept, while the

alternative hypothesis is actually the correct one.

In an antiviral context, the type I error is more important than the type II

error, and it is usually difficult to determine the type II error due to the unknown

number of non-detections.
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3.5.2 Statistical Testing on Malware Detection

In order to formalize the virus detection framework, we will discuss some

notation proposed by Chess and White [20]. An antivirus uses a detection algorithm

D, which it applies on a program p. The goal of the algorithm is to determine

whether p is infected by a particular virus V . D(p) should return true if and only if

the program p is infected by the virus V . Filiol and Josse further expand on the

ideas from Chess and White’s idea by providing a statistical framework for

describing the detection process [9].

In the case of malware analysis, we will be considering the analysis of

instruction frequencies. We are interested in modelling the behavior of a compiler

which produces “clean” programs. The spectrum of instructions of such a compiler

is obtained by analyzing the instruction frequencies of all possible programs

produced by such a compiler. However, this is impossible to compute in an exact

form in practice. An approximation is to compute the instruction frequencies from a

large set of programs that are known to not be malware, and that are compiled with

the compiler in question.

Most compilers normally only use a small subset of all possible instructions,

whereas malware will consider the whole set or larger set of these instructions.

Knowing this fact, we can develop an estimator function which should be able to

determine whether a particular program has been compiled with the known

compiler, or whether it is malware.

The formal definition of the spectrum is:

spec(C) = (Ii, ni)1≤i≤c (5)

In Equation 5, C represents a particular compiler, Ii represents the ith
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instruction, and ni is ith instruction’s frequency. c denotes the total number of

unique instructions that may ever be output by the compiler.

In our experiments, the spectrum of the compiler represents the expected

value to be observed in the normal set of files. As such, in any normal file, for

instruction i we expect to observe a frequency of ni. In the case of an 80x86

compiler, at the end of 2011, the total number of possible instructions was 501 [22].

When trying to determine whether a particular file comes from a compiler

with a known spectrum, or whether the file is in fact malware, the first step we take

is to compute the instruction frequencies observed in this file. We denote the

observed frequency for instruction i by n̂i.

There are a few important formulae to consider, such as the null hypothesis,

estimator function, and the decision threshold. The null hypothesis H0 (Equation 6)

states that the frequencies are the same for the observed and expected file.

H0 : n̂i = ni, 1 ≤ i ≤ c (6)

H1 : n̂i 6= ni, 1 ≤ i ≤ c (7)

If the frequencies are the same, then the suspected file is likely to be

uninfected, and the null hypothesis will be accepted. However, if the frequencies are

significantly different, then the alternative hypothesis (Equation 7) will be accepted

which means that the suspected file is in fact infected with a virus.

Since there is more than one instruction from a compiler or from a file, these

simple hypotheses will have to be extended to consider more instructions. Filiol and

Josse [9] purposed an estimator function to set up these hypotheses.

One choice for the estimator function, is D2, is also known as the Pearson’s χ2
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statistic test, and is expressed as follows:

D2 =
c∑
i=1

(n̂i − ni)2

ni
(8)

Pearson’s χ2 statistic test is commonly used to check whether the difference

between the expected and observed data is significant. The decision threshold is

obtained by comparing the estimator value given by D2 with the χ2(α, c− 1)

distribution with c− 1 degrees of freedom and a type I error rate of α. Typically,

the type I error rate is set at 0.05, which means that the test tolerates no more than

5% of the files being falsely classified as infected when they are normal files.

The updated null hypothesis and the alternative hypothesis are:{
H0 if D2 ≤ χ2 (α, c− 1)
H1 if D2 > χ2 (α, c− 1)

(9)

The estimator D2 computes the Pearson’s χ2 distance between the spectrum

of the compiler and the current testing file. This value can be compared with the χ2

value for the given number of instructions and the desired false positive rate (in our

case, it is set to 5%).

The main goal of the χ2 statistic test is to determine whether the distribution

agrees with (or “fits”) some expected distribution.

The following steps are needed to perform the Pearson χ2 statistic test given a

compiler, and a file to be tested:

1. Set up the null hypothesis H0 and the alternative hypothesis H1

2. Choose a significance level (for example α = 0.05)

3. Compute the estimator value D2 given the frequencies in the file to be tested

and the compiler’s spectrum
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Table 4: Summary of notations.

Symbol Meaning
F An input file, which comprises of instructions X1, X2, . . . , Xn

D The detection procedure, which decides whether an input file F is in-
fected or not

N The number of assembly instructions in the code
E The estimator which measures the frequency of instructions
H0 The null hypothesis, which assumes the file is an uninfected file
H1 The alternative hypothesis, assumes the file is infected
Θ The theoretical mean value of E
α Type I error rate
β Type II error rate

4. Evaluate the acceptance or rejection of the null hypothesis H0 by using

Equation 9.

3.5.3 Example

Let’s consider a simplified problem involving only three instructions with

three frequencies. Instruction Ii1 has frequency ni1 , instruction Ii2 has frequency ni2 ,

and instruction Ii3 has frequency ni3 .

For this example, the spectrum from the compiler C is listed in Table 5.

Table 5: Example compiler spectrum.

Instruction Opcode Frequency ni
i1 MOV 7
i2 PUSH 10
i3 POP 3

The observation samples for this compiler are (MOV, PUSH, POP). The

corresponding frequencies are (7, 10, 3) ∈ N3. Since we represent the distribution of

interest as a histogram over three instructions, the parameter space of the set θ is

therefore N3.
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Table 6: Example frequencies of instructions in a program.

Instruction Opcode Frequency ni
i1 MOV 6
i3 POP 11

Suppose that we have a file which might be infected. Given the instructions

and the frequencies in Table 6, we would like to perform the χ2 test to see the

likelihood of it being uninfected.

The null hypothesis H0 is that the file is uninfected if the estimator function

D2 yields a score less than or equal to the χ2 value:

D2 =
c∑
i=1

(n̂i − ni)2

ni
≤ χ2 (α, c− 1) (10)

When computing estimator D2, we use all of the frequency counts for each

instruction. However, since χ2 is a probability distribution, the frequencies will be

normalized before performing this test. Normalization is done by dividing the count

of an instruction by the total number of instructions. For example, if there are three

MOV instructions out of a total of ten instructions, then the normalized value is 0.3.

The normalized values for the compiler’s spectrum, spec(C) are (MOV, 0.35), (PUSH,

0.5), and (POP, 0.15). The normalized values for the file are (MOV, 0.353) and (POP,

0.647).

D2 =
(0.353− 0.35)2

0.35
+

(0.0− 0.5)2

0.5
+

(0.647− 0.15)2

0.15
∼= 2.1467

We will now test the claim that the observed frequency counts agree with the

claimed distribution. The value we compare D2 = 2.1467 against is

χ2(0.05, 2) = 5.991. Since D2 ≤ χ2(0.05, 2), we accept the null hypothesis claiming

that this file is uninfected and reject the alternative hypothesis.
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CHAPTER 4

Hybrid Virus Detection

We propose a new detection method by combining the HMM detector and the

CSD estimator which we refer to as the hybrid method.

Our experiments show that the HMM detector performs extremely well in

detecting viruses morphed with dead code, while the CSD estimator performs better

in detecting viruses morphed with subroutine code from normal files. We are

interested to find a model that can combine the advantages of both. We tested two

possible approaches to combine the scores from the two algorithms: (1) an additive

model (Equation 11), and (2) a multiplicative model (Equation 12).

The additive model is motivated by the fact that in a probabilistic scenario,

we want to capture detections from either detector. The multiplicative model is

motivated by the case in which we want to emphasize high scores when both

detectors yield high scores. Probabilistically, the additive model corresponds to an

“OR,” whereas the multiplicative model corresponds to an “AND” (assuming the

two algorithms provide independent scores):

Padd(X|virus) = (PHMM(X|virus) + Pχ2(X|virus))÷ 2 (11)

Pmul(X|virus) = PHMM(X|virus) · Pχ2(X|virus) (12)

We ran experiments and evaluated the performance for both the additive, and

the multiplicative models. The better of these two is the multiplicative model, and

in the rest of this section we will discuss the details that make it work equally as

well or better than the best of HMM and CSD-based detection algorithms.
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The HMM allows us to compute PHMM(X|virus) since it is a probabilistic

model (see Equation 3 for an example). We write the probability of X being a virus

as a conditional probability in order to emphasize that the HMM was trained on

virus files. Equivalently, we can compute the probabilities when the training is done

on normal files.

The CSD is simply a score, and we can’t use it directly to compute a

probability. However, the CSD is directly related to the χ2 distribution, and its

cumulative distribution function (CDF). As such, we can write:

Pχ2(X|virus) = P (Y < D2)

P (Y < D2) = CDFχ2(D2)

=
1

Γ(k/2)
γ(k/2, D2/2) (13)

In Equation 13, Γ is the Gamma function, k represents the degrees of freedom,

which in our case is equivalent to the number of unique instructions encountered in

the training phase. γ(k, z) is the lower incomplete Gamma function:

Γ(z) =

∫ ∞
0

tz−1 · e−tdt (14)

γ(s, x) =

∫ x

0

ts−1 · e−tdt (15)

Equation 12 makes the assumption that the scores from the HMM and CSD

are statistically independent. However, since both are trying to detect the same

thing, it is very likely that the independence assumption is not true. Moreover, a

probability given by the HMM may be more reliable in the case in which we deal

with files that have a lot of dead code, whereas the probability given by the CSD

may be more reliable when dealing with files that have been morphed with
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subroutine code. Hence, we need to find appropriate weights to combine these two

scores.

We begin by looking at the log-likelihood for the multiplicative model:

logPmul(X|virus) = logPHMM(X|virus) + logPχ2(X|virus) (16)

In this form, it is possible to assign weights to the HMM and CSD

independently, yielding logPhyb (or the log-likelihood for our method):

logPhyb(X|virus) = w1 · logPHMM(X|virus) + w2 · logPχ2(X|virus) (17)

The final probability Phyb(X|virus) is:

Phyb(X|virus) = Pw1
HMM(X|virus) · Pw2

χ2 (X|virus) (18)

The values of w1 and w2 were obtained by running a grid search over the set

of values between 0 and 1, using a logarithmic scale. The best values were found to

be: w1 = 10−8 and w2 = 10−9.
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CHAPTER 5

Performance Evaluation

5.1 Cross-Validation

When the amount of data is limited, researchers have to make use of it as

efficiently as possible. Nonetheless, in order to compute meaningful statistics, a large

amount of data is necessary. This leads to a dilemma: how to obtain meaningful

results given a relatively small dataset used for both training and testing.

Researchers have used cross-validation, or rotation estimation [23] in order to

alleviate this problem. The basic idea is that since training requires as much data as

possible, it would be beneficial to use most of the data possible for training, while

leaving a small fraction for testing. Of course, just doing this will yield inaccurate

estimates of the performance of the algorithm, since too little data is used for

testing.

However, if the training data and the testing data are selected such that they

do not intersect, and the experiment is repeated many times on different subsets of

data, the accuracy of the performance estimation can be greatly improved.

Typically, researchers use five-fold cross-validation, where 80% of the data is

used for training, 20% is used for testing, and the experiment is repeated five times.

Each such selection (80:20) is called a “fold.” For each fold, the evaluation

performance is recorded. All folds are used for estimating the method’s performance

by computing the mean and standard deviation of the algorithm’s performance. If

the algorithm has multiple operating points, then a graph can be plotted showing

the various operating points as a function of the algorithm’s parameter.
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For each point on the graph, it is possible to also display the error bars

(standard deviation). The generic cross-validation approach has a drawback: if the

folds don’t contain the same distribution of classes as the original data, a biased

error will be computed, which is not desirable. For example, if the real data has a

5:1 ratio of positive to negative classes, and the folds somehow manage to capture a

10:1 ratio due to a sampling problem, then the error estimates will all be incorrect.

Therefore, in practice, an alternative method is used, called “stratified

cross-validation.”

This method ensures that the same proportion of classes is kept for each fold.

The key insight for applying stratified cross-validation is to make the splits based on

each class, as opposed to basing the split on the entire data. This allows the

algorithm to ensure an unbiased split of data.

Even stratified cross-validation is not perfect. The results can be inaccurate if

the training and testing sets contain very similar variants of the malware. As a

result, there are two distinct tasks in which cross-validation can be used: (1)

determining whether a variant of a malware can be detected, in which case it is

desirable to have (hopefully dissimilar) variants in both training and testing; (2)

determining whether the algorithm can generalize and detect previously unseen

malware, while keeping a relatively low false positive rate.

5.2 Evaluation Metrics

The ideal goal of the antivirus defense is to build a detection mechanism that

can identify all malware without misclassification, to yield no false positives and no

false negatives. The ongoing battle between the antivirus industry and the malware

writers is making this situation unreachable as in [9]. Malware writers create a virus
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and then antivirus writers detect it. Once the malware writers find out, they modify

it to defeat the previous detection, and the process just keeps repeating. Unless

there are no more malware, antivirus writers have to continue their efforts to detect

and to eradicate malware.

5.2.1 Accuracy Measure

There are four possible outcomes for detection: true positive (TP), false

positive (FP), true negative (TN), and false negative (FN). A detection is

considered a true positive when a virus is correctly classified as a virus, whereas it is

a true negative when a normal file is correctly marked as non-malicious. TP and TN

are the desirable outcome from any detection. False positives occur when a normal

file is mistakenly classified as a virus. On the other hand, false negatives occur when

a virus file is not detected as a virus, and thus passes the scan as a normal file. For

antivirus makers, the goal is to have false positives as low as possible. Users tend to

be unhappy or even angry if an important normal file is identified as malicious, but

tend to be more forgiving for false negatives. In any case, both false positives and

false negatives will reduce user satisfaction. Table 7 shows the four possible

outcomes for detection.

Table 7: Possible outcomes for detection.

Predicted Class
Virus Normal

Actual Class
Virus True Positive False Negative

Normal False Positive True Negative

The true positive rate (TPR) is the number of viruses correctly identified. It

is calculated based on the number of true positives obtained from the total number

33



of all viruses tested [24]:

TPR =
TP

TP + FN
(19)

The false positive rate (FPR) is the number of false positives obtained from

the total number of normal files tested.

FPR =
FP

FP + TN
(20)

The overall success rate, also know as the accuracy rate, is the total number of

correct classifications obtained from the total virus files and normal files used on

testing.

Accuracy Rate =
TP + TN

TP + TN + FP + FN
(21)

Finally, the error rate is one minus this accuracy rate.

Error Rate = 1− TP + TN

TP + TN + FP + FN
(22)

5.2.2 Mean Maximum Accuracy

Since we performed five-fold cross-validation, we have a total of five models for

this test. Each of these folds will give an accuracy rate, and with these values we

need to evaluate the performance of the algorithms tested. Normally, a single value

is easier for comparing the performance. We propose to use the mean of the values

obtained from the five-fold cross-validation, an operation called mean maximum

accuracy rate (MMA):

MMA =
1

5

5∑
i=1

Accuracyi (23)
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5.2.3 Receiver Operating Characteristic

The receiver operating characteristic (ROC) was developed for applications in

signal detection theory [25]. ROC curves have gained popularity in the machine

learning community as a tool for evaluating the performance of various algorithms

[26, 27].

Typically, a ROC curve is represented as a two-dimensional plot, in which the

X-axis is assigned to the false positive rate, and the Y-axis is assigned to the true

positive rate. Sometimes the false negative rate is used instead of the true positive

rate. In the context of virus detection, the Y-axis represents the true detection rate

corresponding to the true positive rate, and the X-axis represents the false detection

rate (i.e., a non-virus file identified as a virus by the algorithm).

The true positive and false positive rates are commonly represented in

percentage format. The true positive rate is obtained by using the true positive

count divided by the sum of true positive and false negative counts, and then

multiplied by 100 to get a value which represents a percentage. Figure 7 illustrates

an example of some ROC curves.

An algorithm that performs random classification with 50% accuracy will

generate a diagonal line in the ROC space. Anything that lies on the top left

portion of the graph represents a better classification with higher true positive rate.

The blue lines with the diamond-shaped markers from Figure 7 indicates such ideal

classification with 100% true positive rate with 0% false positive rate. The line with

red squared-shape markers correspond to an algorithm that achieves 78% true

positive rate with 10% false positive rate. The triangle-shaped markers show that

this algorithm is performing poorly in this experiment. We will present the ROC
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Figure 7: Example ROC curves.

curves for the HMM detector, the CSD estimator, and our proposed method to

compare their performance on the metamorphic virus detection problem.
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CHAPTER 6

Experimental Setup

6.1 Datasets

The datasets used in this project are 200 base NGVCK family viruses and 40

Cygwin utility files obtained from [7, 12, 28]. These 40 Cygwin utility files will be

used to represent the benign program files. We disassembled these executable files

by using IDA (Interactive Disassembler) Pro [29] to generate assembly files from

which 80x86 instructions have been extracted for experiments. Figure 8 illustrates

this process.

These virus and normal assembly files will be used as the input data to create

morphed versions of the virus by either employing dead code insertion and/or

subroutine copying from the normal files. Lin’s metamorphic virus generator was

modified to enable automatically generation of various morphed variants of these

200 virus files with these 40 normal files [8]. Figure 9 shows the basic steps taken to

generate the various metamorphic versions of the new virus.

The parameter for the metamorphic virus generator is set to generate

increments of 10% dead code and 10% subroutine code until the maximum of 40%.

Figure 8: Process for obtaining assembly files.
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Figure 9: Process for generating metamorphic viruses.

Some example parameters are: 0% dead code with 10% subroutine code, 0% dead

code with 20% subroutine code, 10% dead code with 10% subroutine code. There

are 25 combinations of possible parameter values, each having 200 files, resulting in

a total of 5000 files.

6.2 Data Processing

The first step is to separate the files into five groups for the five-fold

cross-validation experiments. One set is used for validation during testing phase,

while the remaining four subsets are used for training. From the 200 virus files, we

selected 160 files used for the training, and the remaining 40 files will be used for

testing purposes. In these five folds, each fold will have a set of different training file

built from 160 virus files and 40 virus files used for testing.

The assembly files were read by our program and then converted to a format

compatible with both the χ2 statistical framework that we developed for this thesis,

called the chi-squared distance estimator (CSD) and the HMM-based detector. The

processing of these input assembly files requires several steps:

• Concatenate the randomly selected files to create one training file.

• Each of these assembly files is read in line by line to check the validity of each
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line. Blank lines or labels, and lines that start with DATA or CODE, are

skipped. In addition, if a line is solely composed of a comment (meaning that

it starts with a semicolon), it is promptly removed. Ultimately, the line will be

saved for additional processing.

• For each saved line, we need to remove those lines which do not contain valid

instructions. For this purpose, we use the list of all known 80x86 instructions,

and any line that does not contain a valid instruction is simply removed.

• For all files within the training set of one fold, we build a dictionary by

computing a unique index for each instruction, from zero to N. N is the total

number of unique instructions encountered within the training partition.

• Using the dictionary containing the unique mapping between an instruction

and an index, we represent all files within a fold as a sequence of indices

corresponding to their respective instructions.

The database of instructions was created by analyzing the Core / Pentium /

Phenom documentation from both AMD and Intel. We present the complete list of

allowed instructions in Appendix A.

In order to train the hidden Markov model (HMM), the training files are

concatenated together within each fold. This results in a rather large file, containing

the instructions from 160 training files. It is important to note that the mapping

from an instruction to an index is used for both the training files, and also the

testing files. In particular, it is possible that in the testing files, there may be some

instructions which have not been seen during the training. There are two ways to

handle this: (1) those instructions which miss an index could be ignored; or (2) we

can assign a special index (N+1) to represent this fact. This required tuning on the
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HMM, which is done by assigning a very low probability of ever encountering this

symbol, will allows detection of “suspicious” files. For example, if the training is

done on normal files (as opposed to virus files), and the estimation on a virus file, it

is possible that the virus writer is using some exotic instructions. Thus, these

instructions should also influence the final score, making it less likely to be a normal

file.

We call the mapping between an instruction and an index “an alphabet.” The

first line contains the number of observation symbols (unique instructions). The

following lines contain the ordered list of instructions (ordered in the chronological

appearance in the training set).

We use the same training input files and testing input files for HMM and the

CSD experiments. We implemented a Java program to create the input files for

both the HMM and CSD frameworks as we described. The training observation

sequence and all the testing observation sequences will need to be processed into a

format that the frameworks can understand. Each fold has one alphabet file that is

used to build the rest of the input files. The instruction (which we will also refer to

as opcode) from these observation sequences is remapped into numbers by using the

alphabet file. To further emphasize the remapping process, the first opcode will now

have index 0, and the second opcode will have index 1, and so forth. Any opcode

not in this alphabet file will receive a large number, equal to the size of the

alphabet, as its index. For example, if there are 10 opcodes in the alphabet file, the

indices are ranging from 0 to 9, then 10 indicates that the opcode does not appear

in the training file. All unseen opcodes are grouped together using the same index.

This is intended to make sure all opcodes are considered when building the

validation input files.
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6.3 HMM-based Detector Framework

Once all the input files are created, we pass the training input files as an

argument into the HMM program to build the model file. The maximum iterations

for HMM training is set at 800 and the program terminates either when it converges

or when the maximum iterations are reached. We train the HMM model using the

HMM detector from [7] to ensure consistency amongst the training and testing

performed. After HMM is trained with the input files, the output model files are

used for computing the log-likelihoods per opcode on the rest of the validation input

files.

The HMM detector will compute the log likelihood instead of raw probability

to avoid the issue of underflow. Probability usually yields results between 0 and 1,

thus when floating point numbers are very close to zero, and are multiplied with

similarly small numbers, the outcome is an underflow which will eventually result in

a “NaN”. Therefore, log likelihood is used whenever we deal with probability

problems. We will abbreviate the HMM log likelihood score as HMMLL.

The evaluation of the HMM is very fast. The reason for this operation’s speed

is that only a single pass over the data is necessary to compute the result. We

compute the log-likelihood for all the test files, then we write these scores into one

score file per fold.

6.4 CSD Estimator Framework

The CSD estimator framework is significantly faster when compared to HMM

training. Since the CSD estimator uses calculations that are based on the frequency

of opcodes, it requires very little memory and only one single pass over the training

data.
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The CSD estimator determines how far a file is from the expected distribution

of instructions. The E value, which is the expected file, can be obtained using the

same training file created for HMM training. It is used as the base comparison file

to see how other files are similar to it. The O symbol, which stands for the observed

file, is the testing file for HMM. All the instructions from the expected file will be

saved along with the total number of instructions from this file. We normalized

these counts by dividing each instruction with the total number of all instructions.

Each of the observed files is also normalized, just like the expected file, before

calculating the CSD value. The same expected file is used on one fold of

cross-validation set, while the observed files are the testing datasets. All of the

instruction frequencies from the expected files are retrieved and used to compare

with the instruction frequencies from each of the testing files.

For every instruction in the expected file it computes its contribution to the

D2 value. If there are instructions from the observed file which do not exist in the

expected file, their D2 contribution will be set to zero since dividing by zero will

yield an undefined value. However, if that instruction is not found in the observed

file, then the value is equal to the count from the expected file. The final CSD score,

which is equal to the D2 value, will be used in the experiments.

6.4.1 Bigram Frequencies Test

This test is similar to building the single instruction (unigram) frequency

table on Section 6.2. Two consecutive instructions are connected with an underline

( ) to build a new alphabet, for example, a JMP follows by a MOV will be represented

as “jmp mov”. In this experiment, we build two different sets of input files: the

alphabet in which (1) the ordering of the pair instructions sequence does matter; (2)
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the order of instruction pairs does not matter. For example, the alphabet key built

for the first case will yield “jmp mov” for instructions pair of MOV and JMP regardless

of the ordering. However, in the second case, the alphabet “jmp mov” represents two

consecutive instructions of JMP followed by MOV, and “mov jmp” will represent the

instruction pair of MOV followed by JMP.

6.5 Threshold and Evaluation Framework

Our framework will consider all possible scores obtained from the HMM

detector and CSD estimator as thresholds. Depending on the type of training file,

the score which is set as the threshold will consider all the scores that are below it

as corresponding to a virus file and everything else as a normal file. Then, the

program will calculate the TP, TN, FP and FN from all of the thresholds. These

four metrics will be used to obtain the ROC curves and accuracy scores.

The ROC curve is built by getting the TPR and FPR using the Equations 19

and 20. These values will be written to a “roc” file which is used to plot the ROC

curve. The next step is computing the accuracy using Equation 21. For all possible

thresholds, we obtained all the corresponding accuracy rates and wrote them to a

“score” file.

The final assessment will be the evaluation framework. Our mean maximum

implementation will go through each of these score files, and then return the

maximum accuracy rate. Since we have five-fold cross-validation, we have five

maximum rates - one for each fold. We then compute and compare the mean values

for easier and clearer evaluation (only need to compare two numbers to see which

one has a higher score). Finally, we will use these mean maximum scores to

determine the performance of these two detection algorithms in Chapter 7.
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CHAPTER 7

Results

In this section, we present the results of our experiments using the hidden

Markov model-based detector (HMM detector), chi-squared distance-based

estimator (CSD estimator), and our proposed hybrid virus detector. We used the

Receiver Operating characteristic (ROC) curve and the mean maximum accuracy

(MMA) rate to evaluate the performance of the three detectors. See Appendix C for

the ROC curves for all tests performed.

For consistency, we used the same set of data for all three detectors. Table 8

summarizes the five types of models we set up for these experiments. Moreover, we

will present the results of the HMM model trained on two hidden states since

previous studies [7, 11] show that the number of hidden states have minor impact

on the performance of HMM. The improvement is negligible while training a model

requires much longer time when using more hidden states. The bigrams’ approach

achieves similar or lower scores as the unigram approach, therefore, we will mainly

consider the hybrid model using the unigram CSD. The MMA scores for the

bigrams are listed in Appendix D. Our baseline consists of the performance of the

various detectors on the unmorphed viruses.

7.1 Training Set: Original Viruses

We used 80% of the 200 original NGVCK viruses without any morphing as

training data. For testing purposes, we used the remaining 20% of the files, and all

of the normal files. See Appendix B for discussion of the HMMLL and CSD scores.

Table 9 contains the MMA scores obtained using the HMM detector, the CSD
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Table 8: Files setup per parameter pair for each experiment.

Training Dataset

Normal
Original viruses
Viruses morphed with 10% dead code
Viruses morphed with 10% subroutine code
Viruses morphed with 10% dead code and 10% subroutine code

estimator, and the hybrid model on all the test sets. The score which is in bold (per

row) indicates that the detector performs the best among the other detectors tested

in that category.

HMM: The MMA rates for the HMM detector ranged from 77.25% to 99.75%. The

HMM detector performed best when the test set was the unmorphed viruses. The

lowest score occurred when the testing was done with 40% subroutine code

morphing. Viruses which were morphed with dead code alone were not very

effective, since the HMM still achieved an accuracy rate of more than 90.25%. The

ROC curve confirmed this finding as illustrated in Figure C.14. On the other hand,

as we increased the percentage of the subroutine code, it was much harder for HMM

to correctly detect the viruses. When the morphing algorithm used 40% subroutine

code, the MMA decreased by 22.50%. However, when the algorithm used 40% dead

code, the MMA only decreased by 9.50%. See Figure C.15 for the ROC curves.

The overall average MMA for the HMM detector was 84.09%, with an error

rate of 15.91%.

CSD: The MMA scores for the CSD estimator ranged from 71.46% to 99.50%. The

best MMA rate occurred when trying to detect unmorphed viruses, while the worst

rate occurred when the viruses were morphed with 40% dead code and 40%

subroutine code. Both morphing with dead code and subroutine code contributed to
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the lower accuracy rate for the CSD estimator. When using 40% subroutine code

for morphing, the performance dropped by 23.66% compared to the baseline. The

dead code variants caused a performance drop of 21.68%. The ROC in Figure C.16

illustrates the performance of virus detection with varying amounts of subroutine

code embedded, while Figure C.17 shows the viruses with dead code embedded.

The overall average MMA rate was 79.43% which was almost 5% lower when

compared to the performance of the HMM detector.

Hybrid Model: The hybrid model performed better than both the HMM and

CSD with an overall average accuracy rate of 84.94%. Our hybrid model achieved

2.16% better accuracy rate than the HMM, and a 6.82% improvement over the CSD

estimator. These results show that depending on the morphing parameters, our

proposed hybrid approach either outperformed, or at worst, was on par with the

best of the HMM and CSD methods.

7.2 Training Set: Viruses Morphed with 10% Dead Code

The training dataset consists of virus files which were already morphed with

10% dead code. Table 10 summarizes the MMA scores obtained by the HMM

detector, the CSD estimator, and the hybrid model. See the ROC curves for the

HMM detector in Figures C.18 and C.19. The ROC curves for the CSD estimator

are shown in Figures C.21 and C.20.

HMM: The HMM detector performed best when the testing files were variants of

the virus morphed only with dead code. There was a clear distinction between these

virus variants and the normal files with MMA rates of more than 99.50%, and this

model even achieved 100% accuracy rate when the comparison virus set was

morphed with more than 30% dead code and no subroutine code. This implies that
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Table 9: MMA for all detectors. Training on unmorphed viruses.

Dead Code Subroutine HMM CSD Hybrid
0% 0% 99.75% 99.50% 99.75%

10% 87.50% 85.81% 88.96%
20% 82.00% 81.58% 84.20%
30% 79.75% 80.35% 81.69%
40% 77.25% 76.84% 78.94%

10% 0% 92.00% 90.81% 93.48%
10% 86.00% 83.87% 88.47%
20% 83.00% 79.60% 84.96%
30% 78.50% 76.90% 83.46%
40% 77.50% 74.89% 80.19%

20% 0% 91.50% 86.39% 92.98%
10% 85.50% 82.66% 88.47%
20% 82.75% 78.91% 85.71%
30% 80.25% 75.91% 82.20%
40% 77.75% 74.41% 79.95%

30% 0% 90.75% 81.91% 92.22%
10% 86.50% 79.16% 88.47%
20% 82.25% 76.47% 85.71%
30% 81.50% 74.16% 82.20%
40% 79.50% 73.21% 82.20%

40% 0% 90.25% 77.82% 91.47%
10% 85.75% 76.00% 89.22%
20% 83.00% 73.97% 84.96%
30% 81.25% 73.23% 84.21%
40% 80.50% 71.46% 82.20%

Average 84.09% 79.43% 86.25%
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the obfuscation technique used on Lin’s metamorphic generator applied many

similar junk instructions throughout the morphing process. The performance

weakened when the test viruses were morphed with an increasing amounts of

subroutine code and the lowest score occurred when the viruses were morphed with

40% of subroutine code. Therefore, the higher percentage of the dead code in the

viruses variants, the easier it is for HMM to detect them. On the other hand, higher

percentage of subroutine code has a negative impact on the HMM detector’s

performance.

The overall average MMA for the HMM detector was 88.12%, with an error

rate of 11.88%.

CSD: The MMA scores of the CSD estimator for this experiment ranged from

71.50% to 95.75%. The best accuracy rate occurred when the test set was the same

variant of virus. It performed notably weaker when the test sets consisted of only

variants morphed with subroutine code, and the lowest accuracy occurred for

viruses that were morphed with 40% subroutine. However, it obtained MMA rates

over 92.00% on variants which were only morphed with dead code.

In general, the HMM detector performed better than CSD in this

experimental setup since the average MMA rate for HMM was 88.12% while the

rate for CSD was 82.72%.

Hybrid Model: The new model we proposed performed better than both the

HMM and CSD estimator in this test setup as well. The overall average accuracy

rates for the new model was 89.40%, which was an improvement of 1.28% compared

to HMM detector and 6.68% improvement compared to CSD.

48



Table 10: MMA for all detectors. Training on viruses with 10% dead code.

Dead Code Subroutine HMM CSD Hybrid
0% 0% 99.50% 92.00% 99.24%

10% 87.75% 80.75% 88.46%
20% 81.75% 76.00% 83.95%
30% 80.00% 73.50% 81.18%
40% 76.75% 71.50% 77.18%

10% 0% 99.75% 95.75% 99.24%
10% 90.75% 86.75% 90.47%
20% 85.75% 80.00% 86.46%
30% 81.75% 77.25% 83.46%
40% 80.00% 75.25% 81.20%

20% 0% 99.75% 94.00% 98.49%
10% 90.25% 87.25% 91.73%
20% 86.25% 81.75% 88.21%
30% 82.75% 78.25% 86.71%
40% 81.00% 76.00% 84.20%

30% 0% 100.00% 93.00% 98.24%
10% 93.50% 87.25% 93.47%
20% 88.75% 82.75% 91.22%
30% 84.00% 78.00% 87.46%
40% 83.00% 77.75% 86.96%

40% 0% 100.00% 92.50% 97.99%
10% 93.25% 88.00% 93.47%
20% 87.75% 82.75% 90.97%
30% 85.25% 81.50% 89.22%
40% 83.75% 78.50% 88.46%

Average 88.12% 82.72% 89.40%
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7.3 Training Set: Viruses Morphed with 10% Subroutine Code

In this experiment, the HMM model was built from virus variants that were

morphed randomly with 10% subroutine code from the normal files. For the full list

of MMA rates of all detectors, see Table 11.

HMM: When the training set consisted of virus variants morphed with 10%

subroutine code, the HMM yielded a high number of false negatives. The

metamorphic virus generator made by Lin was designed to “confuse” HMM-type

detectors by making the morphed viruses look like “normal files,” and as such, it is

expected that HMM will do poorly. The morphed files produced by this generator

had scores that were close to those of normal files [8]. The HMM detector obtained

MMA rates as low as 57%, while the best rate was only 71.25%. The HMM

performed slightly better as the percentage of dead code increased but worse when

the percentage of subroutine code increased. The ROC curves also show that HMM

was doing poorly as illustrated in Figures C.23 and C.22.

The overall average MMA rate for the HMM detector was merely 63.46%.

CSD: The CSD estimator performed surprising well when the virus was morphed

with normal files. The MMA results ranged from 86.75% to 96.25%. These results

showed that the CSD estimator performed better than HMM when applying this

obfuscation technique of morphing subroutine code from normal files. The ROC

curves are shown in Figures C.25 and C.24.

The CSD estimator has an overall average MMA rate of 89.74% while HMM

only achieves a rate of 63.46%.

Hybrid Model: Similarly, the new model performed well under this experiment.

The overall average MMA rate was 91.23%, which was higher than HMM’s 63.46%
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Table 11: MMA for all detectors. Training on viruses with 10% subroutine code.

Dead Code Subroutine HMM CSD Hybrid
0% 0% 62.25% 96.25% 97.24%

10% 60.50% 92.25% 94.97%
20% 59.25% 90.00% 92.47%
30% 58.25% 88.50% 90.72%
40% 57.00% 86.75% 88.71%

10% 0% 61.75% 95.00% 97.23%
10% 60.50% 92.50% 96.22%
20% 59.50% 90.00% 93.72%
30% 58.25% 88.75% 92.22%
40% 59.00% 88.50% 91.22%

20% 0% 65.75% 92.00% 95.23%
10% 64.25% 90.25% 94.23%
20% 64.00% 89.50% 92.72%
30% 62.25% 88.75% 91.96%
40% 59.75% 88.25% 90.97%

30% 0% 68.75% 89.50% 91.96%
10% 68.00% 89.75% 92.21%
20% 67.00% 90.25% 92.46%
30% 64.75% 88.50% 90.71%
40% 63.75% 88.25% 90.96%

40% 0% 71.25% 87.50% 90.45%
10% 70.25% 88.75% 91.46%
20% 69.25% 88.75% 91.46%
30% 66.00% 87.75% 90.96%
40% 65.25% 87.25% 89.71%

Average 63.46% 89.74% 92.48%

by 29.02% and higher than CSD’s 89.86% by 2.74%. In this experiment, it

outperformed the two detectors for every possible morphing parameter combination.

7.4 Training Set: Viruses Morphed with 10% Dead Code and 10%
Subroutine Code

In this experiment we examined the scenario in which the training is done on

virus variants which have been morphed with 10% dead code and 10% subroutine

code from random normal files. See Table 12 for comprehensive MMA results.
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HMM: The HMM detector performed poorly as long as the model was trained on

virus variants which were morphed with subroutine code from normal files. The

previous experiments also confirmed the finding that Lin’s method of inserting

subroutine code from normal files is very effective in confusing the HMM detector.

For this experiment, the highest MMA rate was 78.25% when the viruses were

morphed with 40% dead code, while the lowest was 57.00% when the viruses were

morphed with 40% subroutine code. The ROC curves also show that HMM detector

performs poorly under this experimental setup in Figure C.26 and Figure C.27.

The HMM detector only achieved an overall average MMA rate of 66.35%,

with an error rate of 33.65%.

CSD: The CSD estimator has higher MMA rates when compared to the HMM

detector. The CSD estimator performed best when the viruses were morphed with

10% dead code, achieving a MMA rate of 97.75%. The lowest MMA rate occurred

when viruses were morphed with 40% subroutine code, with a rate of 83.50%. This

experiment again showed that the CSD estimator performed better in distinguishing

viruses morphed with subroutine code. Figures C.28 and C.29 show the ROC curves

for this experiment.

The overall average MMA rate of the CSD estimator was 91.45%.

Hybrid Model: The new model performed 0.16% better than the CSD estimator

with an overall average MMA rate of 91.61%. The differences between the best

scores and our model were less than 2.30%. However, compared to the HMM, the

hybrid model has an average MMA rate which is higher by 25.26%.
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Table 12: MMA for all detectors. Training on viruses with 10% dead code and 10%
subroutine code.

Dead Code Subroutine HMM CSD Hybrid
0% 0% 64.50% 90.00% 90.73%

10% 61.50% 90.25% 90.22%
20% 60.25% 87.75% 87.71%
30% 58.00% 86.25% 84.71%
40% 57.00% 83.50% 81.20%

10% 0% 65.00% 97.75% 97.73%
10% 63.00% 95.50% 95.47%
20% 62.00% 92.75% 91.72%
30% 60.50% 91.00% 90.22%
40% 60.50% 88.50% 87.71%

20% 0% 69.25% 96.25% 96.98%
10% 67.00% 94.00% 94.48%
20% 65.00% 92.25% 92.47%
30% 63.75% 90.75% 90.97%
40% 60.75% 89.50% 88.97%

30% 0% 74.25% 95.00% 95.23%
10% 73.50% 93.00% 94.97%
20% 71.50% 92.75% 93.47%
30% 67.75% 89.75% 90.97%
40% 67.50% 89.75% 90.97%

40% 0% 78.25% 93.75% 93.97%
10% 75.75% 93.50% 94.48%
20% 73.50% 91.00% 92.72%
30% 70.25% 91.50% 91.71%
40% 68.50% 90.25% 90.71%

Average 66.35% 91.45% 91.61%
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7.5 Training Set: Normal Files

This experiment was performed using 32 randomly selected normal files for

training. The testing phase used the remaining eight normal files not used during

training, and 40 variants of viruses. Table 13 summarizes the MMA scores

performed by HMM detector, CSD estimator, and the proposed hybrid detector.

HMM: According to the MMA, the HMM detector performed extremely well under

this experimental setup. The MMA scores ranged from 97.50% to 99.17%. We

concluded that the HMM detector trained with normal files yielded an excellent

detection rate and low false positive rate. Figures C.30 and C.31 show the ROC

curves for this experiment.

The HMM detector achieved an overall average MMA rate of 98.32%, and an

error rate of 1.68%.

CSD: The MMA scores obtained from this test were reasonably good with scores

ranging from 87.50% up to 98.33%. The virus morphed with 40% dead code and

40% subroutine code had the lowest MMA score of 87.50%. The highest MMA score

was obtained when compared with viruses that had no morphing, achieving a MMA

rate of 98.33%. Figures C.32 and C.33 show the ROC curves for this experiment.

The CSD estimator had an overall average MMA score of 90.74%, which was

7.62% lower than the HMM detector’s score of 98.32%.

Hybrid Model: In this particular experiment, our hybrid model achieved an

overall average MMA rate of 98.26%. It outperformed the CSD estimator by 7.56%

but performed worse than the HMM detector by 0.06%. The results show that our

hybrid model achieved the same level of accuracy with the HMM detector for every

possible morphing parameter combination except in three cases. This difference was
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Table 13: MMA for all detectors. Training on normal files.

Dead Code Subroutine HMM CSD Hybrid
0% 0% 99.17% 98.33% 99.17%

10% 98.75% 93.33% 98.75%
20% 98.75% 91.67% 98.33%
30% 98.33% 91.25% 98.33%
40% 98.33% 91.67% 98.33%

10% 0% 99.17% 95.00% 99.17%
10% 98.75% 91.25% 98.75%
20% 98.33% 90.42% 98.33%
30% 98.33% 90.42% 98.33%
40% 98.33% 90.42% 98.33%

20% 0% 98.75% 92.92% 98.33%
10% 98.33% 89.58% 97.92%
20% 98.33% 90.42% 98.33%
30% 98.33% 87.92% 98.33%
40% 98.33% 88.75% 98.33%

30% 0% 98.33% 92.08% 98.33%
10% 98.33% 89.58% 98.33%
20% 98.33% 89.17% 98.33%
30% 97.92% 88.33% 97.92%
40% 97.92% 88.33% 97.92%

40% 0% 97.92% 91.25% 97.92%
10% 97.92% 90.00% 97.92%
20% 97.50% 89.58% 97.50%
30% 97.50% 88.33% 97.50%
40% 97.92% 87.50% 97.92%

Average 98.32% 90.70% 98.26%

not large enough to conclude that this detector performed significantly worse than

the HMM, since there were only 8 normal files in the testing set, and the difference

was smaller than 1
(8×5) .
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CHAPTER 8

Conclusion

In this project, we made use of the frequency analysis of instructions and

statistical methods in developing a detection model inspired by previous research

[7, 9, 11]. Our goal was to detect metamorphic viruses created by Lin’s

metamorphic virus generator. We explored its weaknesses by analyzing the virus

variants’ ease of detection using both the HMM detector and the CSD estimator.

We found that the HMM detector performed well in detecting virus variants

with dead code morphed from Lin’s generator. The CSD estimator did better in

detecting virus variants that had subroutine code embedded by Lin’s generator.

With these two attributes in mind, we set out to create a hybrid model to better

detect these viruses. We designed a hybrid detection model which uses probabilistic

scores from both the HMM and the CSD detectors. Since the two underlying

algorithms don’t perform equally well, we optimized weights for each of the

detectors by performing a grid search.

The results showed that the proposed hybrid model was able to beat the

scores of both the HMM detector and CSD estimator when the training files are

virus variants. However, it performed at the same level as the HMM alone when the

training is done on normal files.

Future work would include the investigation of more statistical models and

evaluation of their performance in a similar setup as presented in this paper.

Another possible extension would be to analyze other metamorphic viruses, and use

a significantly larger number of normal files.
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APPENDIX A

80x86 Opcodes

Table A.14: Instruction set used to build the dictionary for data processing.

aaa aad aas adc add

addpd addps addsd addss addsubpd

addsubps and andnpd andnps andpd

andps arpl bound bsf bsr

bswap bt btc btr bts

call cbw cdq clc cld

clflush cli clts cmc cmovcc

cmp cmppd cmpps cmps cmpsb

cmpsd cmpss cmpsw cmpxchg cmpxchg8b

comisd comiss cpuid cvtdq2pd cvtdq2ps

cvtpd2dq cvtpd2pi cvtpd2ps cvtpi2pd cvtpi2ps

cvtps2dq cvtps2pd cvtps2pi cvtsd2si cvtsd2ss

cvtsi2sd cvtsi2ss cvtss2sd cvtss2si cvttpd2dq

cvttpd2pi cvttps2dq cvttps2pi cvttsd2si cvttss2si

cwd cwde daa das dec

div divpd divps divsd divss

emms enter f2xm1 fabs fadd

faddp fbld fbstp fchs fclex

fcmovcc fcom fcomi fcomip fcomp

fcompp fcos fdecstp fdiv fdivp

fdivr fdivrp ffree fiadd ficom

ficomp fidiv fidivr fild fimul

fincstp finit fist fistp fisttp

fisub fisubr fld fld1 fldcw

fldenv fldl2e fldl2t fldlg2 fldln2

fldpi fldz fmul fmulp fnclex

fninit fnop fnsave fnstcw fnstenv

fnstsw fpatan fprem fprem1 fptan

frndint frstor fsave fscale fsin

fsincos fsqrt fst fstcw fstenv

fstp fstsw fsub fsubp fsubr

fsubrp ftst fucom fucomi fucomip

fucomp fucompp fwait fxam fxch

fxrstor fxsave fxtract fyl2x fyl2xp1

Continued on Next Page. . .
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haddpd haddps hlt hsubpd hsubps

icebp idiv imul in inc

ins insb insd insw int 3

int n into invd invlpg iret

iretd ja jae jb jbe

jc jcxz je jecxz jg

jge jl jle jmp jna

jnae jnb jnbe jnc jne

jng jnge jnl jnle jno

jnp jns jnz jo jp

jpe jpo js jz jcc

lahf lar lddqu ldmxcsr lds

lea leave les lfence lfs

lgdt lgs lidt lldt lmsw

lock lods lodsb lodsd lodsw

loop loopcc lsl lss ltr

maskmovdqu maskmovq maxpd maxps maxsd

maxss mfence minpd minps minsd

minss monitor mov movapd movaps

movd movddup movdq2q movdqa movdqu

movhlps movhpd movhps movlhps movlpd

movlps movmskpd movmskps movntdq movnti

movntpd movntps movntq movq movq2dq

movs movsb movsd movshdup movsldup

movss movsw movsx movupd movups

movzx mul mulpd mulps mulsd

mulss mwait neg not or

orpd orps out outs outsb

outsd outsw packssdw packsswb packuswb

paddb paddd paddq paddsb paddsw

paddusb paddusw paddw pand pandn

pause pavgb pavgw pcmpeqb pcmpeqd

pcmpeqw pcmpgtb pcmpgtd pcmpgtw pextrw

pinsrw pmaddwd pmaxsw pmaxub pminsw

pminub pmovmskb pmulhuw pmulhw pmullw

pmuludq pop popa popad popaw

popf popfd por prefetchh psadbw

pshufd pshufhw pshuflw pshufw pslld

pslldq psllq psllw psrad psraw

psrld psrldq psrlq psrlw psubb

psubd psubq psubsb psubsw psubusb

Continued on Next Page. . .
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psubusw psubw punpckhbw punpckhdq punpckhqdq

punpckhwd punpcklbw punpckldq punpcklqdq punpcklwd

push pusha pushad pushf pushfd

pxor rcl rcpps rcpss rcr

rdmsr rdpmc rdtsc rep repe

repne repnz repz ret retf

retn rol ror rsm rsqrtps

rsqrtss sahf sal sar sbb

scas scasb scasd scasw seta

setae setb setbe setc sete

setg setge setl setle setna

setnae setnb setnbe setnc setne

setng setnge setnl setnle setno

setnp setns setnz seto setp

setpe setpo sets setz setcc

sfence sgdt shl shld shr

shrd shufpd shufps sidt sldt

smsw sqrtpd sqrtps sqrtsd sqrtss

stc std sti stmxcsr stos

stosb stosd stosw str sub

subpd subps subsd subss sysenter

sysexit test ucomisd ucomiss ud2

unpckhpd unpckhps unpcklpd unpcklps verr

verw wait wbinvd wrmsr xadd

xchg xlat xlatb xor xorpd

xorps
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APPENDIX B

Analysis of HMM and CSD Scores

B.1 Training on Virus Files

When the HMM is trained on virus data, the HMMLL scores for viruses are

always higher than the scores of the normal files. In general, all the five-folds

validation results show a clear separation between the two types with the exception

of one file from one of the test sets. The resulting scores in Figure B.10 show that

the virus files are different from normal files with all the viruses in this test set

scored higher than -5.74, while the normal files scored below -6.60.

The CSD scores are the opposite of HMMLL scores. When training on virus

files, and comparing the CSD score between a virus file and a normal file, the score

for the virus should be lower than for the normal file. The lower the score produced

by CSD, the more similar the compared file is to the training set. Example scores

from the CSD estimator is plotted in Figure B.11. For the first fold of this

experiment, using base viruses as training, the normal files have CSD scores above

0.59, while all the unmorphed virus files have scores below 0.43. Our CSD estimator

performs fairly well in distinguishing the virus variants and normal files in this

setup.
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Figure B.10: HMMLL scores for base viruses generated by NGVCK.

Figure B.11: The CSD scores for the base virus.
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B.2 Training on Normal Files

In this experiment, when applying the HMM, the resulting scores for the

normal files are higher than the virus files. All eight of the normal files score above

-2.45, while all the virus files score below -17.55. Figure B.12 depicts the HMMLL

computed on the first fold of the validation set with base viruses. From the figure, it

is clear that the virus files are different from normal files.

Figure B.12: HMMLL scores for HMM model trained on normal files and tested on
base viruses.

The virus files scores are higher than normal files’ scores. Figure B.13 shows

the scores obtained from the first fold of cross-validation set from the CSD

estimator. In this fold, the observed files are the base virus files. All eight of the

normal files score below 0.47, while the virus files score above 2.40. Since CSD

estimates how close an observed file is to the expected file, the lower the score, the

more similar it is to the expected file (in this case, normal).
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Figure B.13: The CSD scores when trained trained on normal files and tested on
unmorphed viruses.
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APPENDIX C

ROC Curves

We present the ROC curves in order to illustrate how dead code and

subroutine morphing affect the HMM and the CSD detectors.

In the ROC graphs, we plot several parameter combinations for each detector.

The legend of each graphs contains series with names such as 0s0, 0s10, or 20s10.

The number before the letter “s” represents the amount of dead code with which

the virus was morphed with, while the number following the “s” indicates the

amount of subroutine code which was used for morphing.

C.1 Training Set: Original Viruses

Training set consists of original viruses without applying additional morphing.

The ROC curves for the HMM detector is illustrated in Figure C.14 and

Figure C.15.

The following two figures in Figure C.16 and Figure C.17 illustrated the ROC

curves for the CSD estimator. ROC curves show that the HMM detector performed

better than CSD estimator in this experimental setup.
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Figure C.14: ROC for the HMM detector, trained on unmorphed viruses, and tested
on virus variants morphed with dead code.

Figure C.15: ROC for the HMM detector, trained on unmorphed viruses, and tested
on virus variants morphed with subroutine code.
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Figure C.16: ROC for the CSD detector, trained on unmorphed viruses, and tested
on virus variants morphed with subroutine code.

Figure C.17: ROC for the CSD detector, trained on unmorphed viruses, and tested
on virus variants morphed with dead code.
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C.2 Training Set: Viruses Morphed with 10% Dead Code

The training set consists of virus files morphed with 10% dead code. The

ROC curves for the HMM detector is illustrated in Figure C.18 and Figure C.19.

The following two figures in Figure C.20 and Figure C.21 illustrated the ROC

curves for the CSD estimator. The ROC curves show that the HMM detector

outperformed the CSD estimator in this experimental setup.

Figure C.18: ROC for the HMM detector, trained on viruses morphed with 10% dead
code, and tested on virus variants morphed with dead code.
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Figure C.19: ROC for the HMM detector, trained on viruses morphed with 10% dead
code, and tested on virus variants morphed with subroutine code.

Figure C.20: ROC for the CSD detector, trained on viruses morphed with 10% dead
code, and tested on virus variants morphed with subroutine code.

70



Figure C.21: ROC for the CSD detector, trained on viruses morphed with 10% dead
code, and tested on virus variants morphed with dead code.

C.3 Training Set: Viruses Morphed with 10% Subroutine Code

The training set consists of virus files morphed with 10% subroutine code

from normal files. The ROC curves for the HMM detector is illustrated in

Figure C.22 and Figure C.23. The following two figures in Figure C.25 and

Figure C.24 illustrated the ROC curves for the CSD estimator.

The ROC curves show that the HMM detector performed significantly poorer

than CSD estimator when the viruses were morphed with 10% of subroutine code.
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Figure C.22: ROC for the HMM detector, trained on viruses morphed with 10%
subroutine code, and tested on virus variants morphed with dead code.

Figure C.23: ROC for the HMM detector, trained on viruses morphed with 10%
subroutine code, and tested on virus variants morphed with subroutine code.
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Figure C.24: ROC for the CSD detector, trained on viruses morphed with 10% sub-
routine code, and tested on virus variants morphed with dead code.

Figure C.25: ROC for the CSD detector, trained on viruses morphed with 10% sub-
routine code, and tested on virus variants morphed with subroutine code.
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Figure C.26: ROC for the HMM detector, trained on viruses morphed with 10%
subroutine and 10% dead code, and tested on virus variants morphed with dead
code.

C.4 Training Set: Viruses Morphed with 10% Dead Code and 10%
Subroutine Code

The training set consists of virus files morphed with 10% dead code as well as

10% subroutine code from normal files. The ROC curves for the HMM detector is

illustrated in Figure C.26 and Figure C.27. The following two figures in Figure C.29

and Figure C.28 illustrated the ROC curves for the CSD estimator.

The ROC curves show that the CSD estimator performed relatively well when

compared to the HMM detector. In fact, the HMM detector performed extremely

poor in this scenario with high false positive rate.
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Figure C.27: ROC for the HMM detector, trained on viruses morphed with 10%
subroutine and 10% dead code, and tested on virus variants morphed with subroutine
code.

Figure C.28: ROC for the CSD detector, trained on viruses morphed with 10% sub-
routine and 10% dead code, tested on virus variants morphed with dead code.
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Figure C.29: ROC for the CSD detector, trained on viruses morphed with 10% sub-
routine and 10% dead code, and tested on virus variants morphed with subroutine
code.

C.5 Training Set: Normal

The training set consists of normal files. The ROC curves for the HMM

detector is illustrated in Figure C.30 and Figure C.31. The following two figures in

Figure C.32 and Figure C.33 illustrated the ROC curves for the CSD estimator.

The ROC curves show that the HMM detector performed extremely well in

this case. It achieved score closed to 100% true positive rate with 0% false positive

rate.
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Figure C.30: ROC for the HMM detector, trained on normal files, and tested on virus
variants morphed with dead code.

Figure C.31: ROC for the HMM detector, trained on normal files, and tested on virus
variants morphed with subroutine code.
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Figure C.32: ROC for the CSD detector, trained on normal files, and tested on virus
variants morphed with dead code.

Figure C.33: ROC for the CSD detector, trained on normal files, and tested on virus
variants morphed with subroutine code.
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APPENDIX D

Analysis of Unigram and Bigram Features

We tested three different types of features used by the CSD estimator. When

training the unigram model, we simply used instructions as features. The

alternative was to use bigrams. Bigrams are groups of two instructions instead of a

single instruction. When using a bigram model, there are two possible choices in

terms of how to group consecutive instructions. The first is to simply use the two

consecutive instructions in the order they appeared in the file. The other is to

always make sure that the first instruction in the bigram comes alphabetically

before the second (i.e., sorted). We refer to the first approach as “unordered

bigrams” while the second is referred to as “ordered bigrams.”

We demonstrate the concepts described above with the following instruction

sequence: MOV, AND (listed in the order in which they appear in the file). The

unigrams, in this case are simply mov and and. The ordered bigram is and mov,

while the unordered bigram is mov and.

In our four experiments, we observed that the unigram model outperformed

the bigrams in three cases. Therefore, in our hybrid virus detector, we chose to only

use the unigram model.
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D.1 Training on Unmorphed Virus Files

The unigrams performed better overall when compared to bigrams.

Table D.15: MMA for unigrams and bigrams. Training done on unmorphed viruses.

Dead Code Subroutine Unigrams Ordered Bigrams Unordered Bigrams
0% 0% 99.50% 97.00% 88.00%

10% 85.75% 82.75% 89.25%
20% 81.50% 79.50% 90.50%
30% 80.25% 76.00% 89.75%
40% 76.75% 72.25% 89.50%

10% 0% 90.75% 86.00% 78.00%
10% 83.75% 80.75% 79.00%
20% 79.50% 78.00% 78.50%
30% 76.75% 75.75% 78.25%
40% 74.75% 73.50% 79.75%

20% 0% 86.25% 83.00% 68.50%
10% 82.50% 79.50% 69.50%
20% 78.75% 76.75% 72.00%
30% 75.75% 73.50% 72.50%
40% 74.25% 73.50% 73.25%

30% 0% 81.75% 82.00% 61.00%
10% 79.00% 79.50% 64.00%
20% 76.25% 76.50% 65.50%
30% 74.00% 75.00% 67.75%
40% 73.25% 74.50% 67.75%

40% 0% 78.00% 80.75% 55.75%
10% 76.00% 78.00% 58.75%
20% 74.00% 76.00% 59.50%
30% 73.25% 74.50% 61.50%
40% 71.50% 73.50% 63.25%

Average 79.35% 78.32% 72.84%
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D.2 Training on Virus Files Morphed with 10% Dead Code

Out of the four experiments we performed, this is the only case when the

unigram model did not outperform the bigram models. The unordered bigrams

performed better than the unigram model by 0.56%.

Table D.16: MMA for unigrams and bigrams. Trained on morphed viruses with 10%
dead code.

Dead Code Subroutine Unigrams Ordered Bigrams Unordered Bigrams
0% 0% 92.00% 96.25% 69.75%

10% 80.75% 83.25% 71.00%
20% 76.00% 79.75% 72.75%
30% 73.50% 79.25% 73.25%
40% 71.50% 74.75% 73.50%

10% 0% 95.75% 95.50% 85.25%
10% 86.75% 88.25% 85.00%
20% 80.00% 83.00% 84.00%
30% 77.25% 81.00% 83.00%
40% 75.25% 78.50% 81.75%

20% 0% 94.00% 93.75% 89.25%
10% 87.25% 87.00% 87.50%
20% 81.75% 83.00% 87.75%
30% 78.25% 80.25% 87.00%
40% 76.00% 78.75% 86.50%

30% 0% 93.00% 91.75% 87.50%
10% 87.25% 86.75% 86.75%
20% 82.75% 83.00% 85.75%
30% 78.00% 81.00% 86.25%
40% 77.75% 80.75% 85.00%

40% 0% 92.50% 91.00% 87.50%
10% 88.00% 85.00% 86.50%
20% 82.75% 82.00% 86.00%
30% 81.50% 81.25% 86.50%
40% 78.50% 79.75% 87.00%

Average 82.72% 78.32% 83.28%
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D.3 Training on Virus Files Morphed with 10% Subroutine Code

The unigram model performed better than the bigram models in every

parameter combination.

Table D.17: MMA for unigrams and bigrams. Trained on morphed viruses with 10%
subroutine code.

Dead Code Subroutine Unigrams Ordered Bigrams Unordered Bigrams
0% 0% 96.25% 78.50% 78.75%

10% 92.25% 77.25% 75.25%
20% 90.00% 74.50% 76.75%
30% 88.50% 75.50% 75.25%
40% 86.75% 73.00% 75.75%

10% 0% 95.00% 76.00% 68.00%
10% 92.50% 75.00% 68.25%
20% 90.00% 76.25% 67.50%
30% 88.75% 73.50% 68.50%
40% 88.50% 72.75% 67.50%

20% 0% 92.00% 75.75% 62.50%
10% 90.25% 74.50% 61.50%
20% 89.50% 74.75% 65.25%
30% 88.75% 73.75% 66.25%
40% 88.25% 73.00% 66.00%

30% 0% 89.50% 73.25% 56.50%
10% 89.75% 74.00% 57.25%
20% 90.25% 73.25% 58.50%
30% 88.50% 74.25% 58.75%
40% 88.25% 71.50% 59.50%

40% 0% 87.50% 72.25% 53.50%
10% 88.75% 71.50% 55.00%
20% 88.75% 73.00% 56.00%
30% 87.75% 72.50% 55.25%
40% 87.25% 72.50% 56.25%

Average 89.74% 74.08% 64.38%
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D.4 Training on Virus Files Morphed with 10% Dead Code and 10%
Subroutine Code

The unigram model performed better than the bigram models in most

parameter combinations except in three cases.

Table D.18: MMA for unigrams and bigrams. Trained on morphed viruses with 10%
dead code and 10% subroutine code.

Dead Code Subroutine Unigrams Ordered Bigrams Unordered Bigrams
0% 0% 90.00% 88.00% 88.50%

10% 90.25% 81.25% 89.25%
20% 87.75% 80.50% 88.00%
30% 86.25% 79.50% 86.75%
40% 83.50% 79.25% 86.25%

10% 0% 97.75% 83.50% 89.75%
10% 95.50% 80.75% 88.00%
20% 92.75% 77.75% 87.50%
30% 91.00% 75.50% 85.75%
40% 88.50% 75.25% 83.00%

20% 0% 96.25% 75.25% 83.00%
10% 94.00% 72.50% 81.75%
20% 92.25% 71.25% 81.75%
30% 90.75% 69.25% 82.00%
40% 89.50% 68.00% 80.25%

30% 0% 95.00% 65.00% 74.25%
10% 93.00% 65.50% 75.25%
20% 92.75% 66.50% 76.25%
30% 89.75% 63.00% 76.00%
40% 89.75% 63.25% 77.75%

40% 0% 93.75% 60.25% 69.75%
10% 93.50% 60.50% 70.50%
20% 91.00% 61.25% 73.25%
30% 91.50% 61.50% 72.50%
40% 90.25% 61.25% 74.50%

Average 91.45% 74.08% 80.86%
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