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ABSTRACT 

THE IMPACT OF TRAJECTORY PREDICTION UNCERTAINTY ON RELIANCE 

STRATEGY AND TRUST ATTITUDE IN AN AUTOMATED AIR TRAFFIC 

MANAGEMENT ENVIRONMENT.  

by Sarah M. Hunt 

Future air traffic environments have the potential to exceed human operator 

capabilities.  In response, air traffic control systems are being modernized to provide 

automated tools to overcome current-day workload limits.  Highly accurate aircraft 

trajectory predictions are a critical element of the automated tools envisioned as part of 

the evolution of today’s air traffic management system in the United States, known as 

NextGen.  However, automation accuracy is limited due to the effects of external 

variables: “errors” such as wind forecast uncertainties.  The focus of the Trajectory 

Prediction Uncertainty simulation at NASA Ames Research center were the effects of 

varied levels of accuracy on operator’s tool use during a time based metering task.  The 

simulation’s environment also provided a means to examine the relationship between an 

operator’s reliance strategy and underlying trust attitude. Operators were found to exhibit 

an underlying trust attitude distinct from their reliance strategies, supporting the strategic 

use of the Human-Automation trust scale in an air traffic control environment..
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Introduction 

Dynamic Predictive Systems in Air Traffic Control 

The Federal Aviation Administration (FAA) is currently developing the next stage 

in air traffic-control, known as NextGen (next generation air transportation system).  The 

goal is to advance today’s very safe but antiquated system in anticipation of the rising 

number of flights expected as 2025 approaches (Joint Planning and Development Office, 

2012).  As traffic increases, the ability of air traffic controllers (ATC) to maintain 

personal oversight and manually separate every aircraft in their sectors will potentially 

come under error-causing strain (Prevot, Homola, Martin, Mercer, & Cabrall, 2012).  To 

avert this strain, automated systems with decision-making and predictive skills are being 

developed to work in conjunction with the operators and assist in their duties.  Both 

Europe and the USA are working to develop systems that support this human-automation 

collaboration in air traffic management (Martin, et al., 2011).  As this automation is 

developed to work cooperatively with human operators, issues relating to trust and 

reliance strategies become barriers to both experimentation with and adaptation of these 

new tools.  This thesis focuses on the building blocks of assessing and understanding the 

relationship between an operator’s underlying trust attitude in his / her system and the 

actual behavioral-based reliance strategies resulting from the interaction of the human 

and the automation.  

While there is a body of work in the field focusing on the relationship of an 

operator to automated systems which function in a hit / miss / false alarm manner, such as 
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conflict detection, there is another branch of NextGen technology to which this format 

does not apply. Wickens et al, 2009 identified false alarms, or “crying wolf,” as one of 

the most detrimental errors an automated system can make when working with a human 

operator.  However, a portion of the NextGen function’s advisories do not lend 

themselves to a correct / incorrect classification.  These systems are predictive by design 

and as such are dependent on the quality of the data with which they make their 

advisories.  These predictions are estimates of the future states of aircraft, such as “how 

soon will an aircraft arrive at a certain point?” or “when the aircraft arrives at waypoint 

X, what will the speed and altitude be, based on current flight plans and conditions?”  But 

the algorithms producing these predictions are only as accurate as the data fed into the 

system.  Of specific concern to the calculation of speed and arrival times are aircraft 

performance assumptions and weather data.  Weather variables, such as wind, can 

significantly affect the speed of an aircraft.  Not only is weather difficult to forecast 

accurately, the weather environment is not static.  Instead, it is a dynamic environment 

that may change suddenly and with little warning.  Thus it is highly unlikely these 

systems will ever be 100% accurate.  In this situation, a false alarm or miss could be read 

as anything not 100% correct.  However, the dynamic nature of the system provides 

information to the operator that is degrading in accuracy over a continuum.  This suggests 

predictions that are only mostly accurate may contribute to the operator’s decision 

making process.  Because of the expected air traffic increase in the next 20 years, any 

system that decreases the cognitive workload and expands the capacity of the human 

controller should not be discarded unnecessarily.  
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Trust in automation research has identified several traits considered to be 

necessary for an operator to work in an environment where the accuracy of the system is 

not completely stable.  An ideal operator would approach the automated system with an 

understanding of both the current capabilities and the limitations of the system.  This 

operator would have proper calibration (Lee & Moray, 1994).  However, because these 

systems can fluctuate in accuracy due to changes in data such as weather, operators must 

not only properly calibrate their use and expectations from the automation at the start of 

their relationship with the system, but also recalibrate at the beginning of every shift.  

This recalibration is termed temporal specificity and is necessary for an operator to 

continue to use a dynamic predictive system both safely and to the full extent of its 

capabilities (Lee & See, 2004).  The goal for operators working with predictive NextGen 

systems is that through proper calibration and temporal specificity they both relinquish 

and regain the use of their tools based on environmental conditions such as errors in 

weather data.  

Theoretical Foundations of Calibration, Temporal Specificity and Trust 

Both calibration and temporal specificity are measured using the behavior of the 

human operator, typically operator reliance strategies when interacting with the 

automated system.  These experiments are conducted using a human-in-the-loop design, 

building complex simulations of real traffic management environments with real air 

traffic controllers.  However, while this is an appropriate method to test the overall 

performance of a system which includes automation, environmental conditions, and 

human operators, it can be difficult to identify the causal relationships between air traffic 
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controller’s trust in automation, their reliance strategies, and their ability to recalibrate in 

a temporally specific way.  

Trust has been a factor in understanding a human’s relationship to automation 

since Parsuraman and Riley’s (1997) foundational paper.  They identified three potential 

pitfalls in human-automation relationships which are all types of calibration failures: 

misuse, disuse, and abuse.  Misuse is the operator relying on the automation beyond the 

capabilities of the system, whereas if operators are displaying disuse they are underusing 

a system and potentially compromising the safety of their task.  Additionally, the abuse of 

automation concerns the development and implementation of automation without 

consideration of the human and integration of the human-automation relationship into the 

system as a whole.  While trust has been found to affect these calibration issues, it is 

difficult to separate trust from other contributing elements in the behavioral expression of 

reliance strategy.  

Two models developed in the last 20 years help explicate the relationships 

between the variables encountered in a human-in-the-loop experiment. Both Lee and See 

(2004) and Ajzen and Fishbein (2010) identified the reliance action or behavior 

(respectively) as the objective expression of the relationship between the human and the 

automation.  Lee and See’s work greatly advanced the field by presenting a model which 

synthesized research from multiple disciplines from a human factors perspective, drawing 

from social psychology concerning interpersonal trust, trust in organizations and systems, 

as well as physiological and neurological research.  Their model, as seen in Figure 1, 

proposed reliance action as a conclusion based on a progressive distinction between trust, 
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intent, and reliance.  Lee and See’s model focused on not using trust as an umbrella term, 

but instead recognizing that trust is actually an attitude that is related to, but not directly 

predictive of actual reliant behavior.  Lee and See’s model suggested that trust is first 

developed based on what the operator knows about the system before experiencing it 

first-hand.  As shown in Figure 1, the beliefs an operator uses to construct this first initial 

trust rely heavily on second-hand knowledge such as gossip and system reputation and 

not from first-hand experience of the system.  When an operator is exposed to a system 

and obtains first-hand knowledge on which to formulate trust, while these other 

information sources may still matter, of greatest importance is the operator’s personal 

experience.  This then moves into a discussion of history-based trust, which has different 

contributing features and implications (Merritt & Ilgen, 2008).  However, the focus of 

this thesis is initial trust and training implications, and second-hand beliefs are assumed 

to underlie trust formation. 
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Figure 1: Lee and See’s model of trust in automation evolution based on their 2004 

review of literature. Copyright the Human Factors and Ergonomics Society 2004; 

reprinted with permission. 

According to Lee and See’s model, trust evolution, intention formation and 

reliance action are progressive and interrelated constructs that are nevertheless distinct.  

This model promoted the possibility of intervening variables (i.e. workload, system error, 

or time constraints), moderating a reliance action despite the true nature of the 

individual’s trust.  In this case, reliance is a specific term defined most commonly as 

usage of a target automated system.  The conclusion that reliance can be modified 

through intervening variables such as workload or environmental considerations such as 

system errors is founded in work done by Kirlik (1993).  He developed a modeling 

technique to assess and account for unexpected strategic behavior in a human-automation 
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study.  The unexpected results involved human use of autopilot automation in ways that 

the designers of the system did not intend.  It was the case of significant individual 

differences in strategy that had Kirlik examining the study through the context of the 

interaction between aid design and task context.  The conclusions drawn from his paper 

are specifically relevant to an air traffic management environment, in that individual 

operators use a strategy specifically tailored to their preferences even though all received 

the same fundamental training.  Kirlik presented his conclusion on the importance of task 

context as a moderating effect on individual operator strategy for automation use to 

achieve optimal performance.  Reliability and accuracy alone are not sufficient for 

automation to benefit strategy.  It is the operator’s strategic management through the 

context of the environment that realizes the benefits of the automation (Kirlik, 1993).  

This means that an operator’s choice not to use the automation because of an 

inappropriate environmental context is just as important as him/her using it in the 

environments where he/she finds it beneficial.  While this may seem like a foregone 

conclusion, it is fundamental to the logic underlying Lee and See’s instance that 

environmental context can moderate reliance despite intent to use the automation.  

Unfortunately, while Lee and See’s (2004) model is extremely valuable and 

popular in the field, it glossed over a few important distinctions made by its precursor, 

the Theory of Planned Behavior by Ajzen and Fishbein (1991).  Of concern is the fact 

that Lee and See generalized the relationship between trust, intent, and reliance 

(behavior) and summarized Ajzen and Fishbein’s work in this manner: “behaviors result 

from intentions and that intentions are a function of attitudes.  Attitudes are in turn based 
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on beliefs.” (Lee & See, 2004, p. 53).  In Figure 1, not only do reputation, gossip, and 

interface features contribute to trust evolution, but organizational structure, cultural 

differences and predisposition to trust are also considered to be directly contributing to 

trust evolution.  However, according to Ajzen and Fishbein, the organizational structure / 

cultural differences Lee and See cite as directly contributing to trust actually form a 

separate variable which directly influences intent separate from its effect on trust.  

This distinction is considered relevant to air traffic management environments 

because it is necessary to affect initial trust and understand potential pitfalls during the 

training and implementation of NextGen systems.   Figure 2 below is a re-drawn version 

of Ajzen’s Theory of Planned Behavior model.  This model separates trust from two 

other variables thought to contribute to intent.  In this model, what Lee and See identified 

as organizational structure / cultural differences is classified as the subjective norm.  The 

subjective norm is understood as the operator’s perception of other relevant person’s 

beliefs about the unfavorable or favorableness of performing the target behavior (Ajzen, 

1991).  This identifies social pressure on an individual to form intent irrespective of 

personal attitude.  Having the subjective norm function as a separate variable from trust 

attitude is considered relevant in this thesis due to the confined and team nature of an air 

traffic management facility.  The social state of the air traffic management facility may 

have just as much influence on intent as attitude, independent of the actual trust attitude 

of the operator.  This issue is considered important here because (as previously 

mentioned) Lee and See stated regarding Ajzen and Fishbein’s model, that “behaviors 

result from intentions and that intentions are a function of attitudes.” (2004, p. 53).  This 
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is an interpretation of the Theory of Planned Behavior model which glosses over the 

weighting system which suggests either the subjective norm or the perceived behavioral 

control (a factor identified by Ajzen and Fishbein but not addressed in this analysis) 

could overpower the influence of attitude on intentions (1980, p. 58).  Therefore, this 

paper maintains Ajzen and Fishbein’s distinction among attitude, subjective norm and 

perceived behavioral control due to both the potential for bias in the social structure of 

the air traffic management facility and potential for personal control expectancies air 

traffic controllers might hold.  Here trust attitude is not considered to be a direct 

precursor of Intent due to the additional variables not controlled in this experiment.  
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Figure 2: The Theory of Planned Behavior model, modified from Ajzen 1991. 

Although for this analysis the distinction between attitude, subjective norm and 

personal behavioral control is considered important to maintain, it is significant that in 

the literature there is some dissension over the extent of the effect of what Ajzen and 

Fishbein term “external variables” or variables which moderate attitude, subjective norm 

or perceived behavioral control.  Current human factors papers on human-automation 

trust discuss the influence of affective states such as “liking” that may contribute to the 

more analytical approach of the Theory of Planned Behavior model (Merritt S. , 2011).  

Ajzen and Fishbein maintain that these external variables exert their effects on behavior 

through the attitude, subjective norm and perceived behavioral control, and as such are 

explained in their model (Fishbein & Ajzen, 2010, p. 400).  However, Lee and See gave 
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affective factors more weight in their analysis.  This issue is referenced as a caveat to 

constrain interpretation of the results presented here.  This thesis solely focuses on trust 

attitude and its suggested construct distinction from reliance action, not only though 

intent, but through the mediating factors of subjective norm and perceived behavioral 

control.  Affective factors may or may not influence intent directly or as moderated by 

attitude, but are not measured explicitly in this experiment and no conclusions are made 

about affective factors.  When examined in conjunction, both Lee and See’s and Ajzen 

and Fishbein’s work suggests trust is a construct related to reliance, but distinct from it 

due to the number of intervening factors.  Examining this distinction is the focus of this 

analysis because of the contradictions in the field over the exact relationship of trust and 

reliance.   

Several previous human-in-the-loop studies examined air traffic management 

environments which contained errors.  Masalonis and Parasuraman (2003) examined 

reliability and trust during an air traffic management conflict detection task.  Discussed 

was the need for an examination of automation information usage, as opposed to a simple 

acceptance or rejection seen in signal detection theory based models.  They specifically 

examined the difference in individuals who were trained to expect some error in the 

system and the potential sources of that error and in individuals who were not trained.  

However, their first hypothesis contrasts with the model Lee and See published a year 

later.  Malasonis and Parasuraman hypothesized that trust would fluctuate when 

automation reliability fluctuated for the trained participants.  This does not reflect the 

distinction between reliance and trust suggested by Lee and See’s model.  Lee and See’s 
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model expected that the opposite of Masalonis and Parasuraman’s hypothesis was true, 

that trust would remain stable in fluctuating reliability conditions if participants were 

trained on why and where unreliability might occur.  While Masalonis and Parasuraman’s 

hypothesis was supported (i.e., they found that trained participants had high trust in high 

reliability situations and low trust in low reliability situations), there may be a difference 

in measurement and operationalized definitions driving the conflict between these results 

and Lee and See’s model.  In Masalonis and Parasuraman’s experiment, individuals were 

rating their trust in system accuracy during a specific scenario.  The important factor here 

is that the individuals were rating a system they knew to have a fluctuating accuracy at a 

specific point in time.  By adjusting their trust in the accuracy of the automation between 

conditions with differing error levels, these participants were actually evidencing 

calibration and temporal specificity.  What Lee and See classified as trust is an 

underlying attitude based on a participant’s beliefs in the overall quality of the system 

regardless of a temporary state change, not trust in accuracy as driven by a dynamic 

external factor such as current error state.  It is this fine line between measuring user’s 

assessment of current accuracy and underlying trust in the system that is important when 

examining the relationship between trust and reliance. 

As laid out in Lee and See’s Model, initial trust in the system along with 

subjective norm and perceived behavioral control is a precursor to an operator’s first 

calibration to an automated system.  Incorrect calibration can lead to a number of safety 

issues, especially in situations such as aviation collision warning systems (Lee & Moray, 

1994).  Once calibrated, the temporal specificity of the operator to recalibrate in real time 
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based on environmental changes should adjust their reliance strategy.  While Lee and See 

used the term ‘reliance action’, the experiment examined here addresses changes in 

reliance over a defined block of time containing multiple actions and therefore uses the 

term ‘reliance strategy.’  If the distinction laid out by both Lee and See and Ajzen and 

Fishbein is true, the underlying trust in the automation should remain more stable across 

varying error environments than an operator’s reliance strategy.  Ideally, an operator 

should evidence two traits: (a) the ability to both relinquish and regain the use of some or 

all tools based on changes in error environment, and (b) a fairly stable trust in the overall 

automated system.  An operator who is not temporally specific is likely to relinquish a 

tool and not regain it or, based on initial calibration, never use a tool.  

Simulating a Dynamic Error Environment to Examine Trust and Reliance 

The Trajectory Prediction Uncertainty Simulation (TPU) was run at the NASA 

Ames Research Center’s Airspace Operations Laboratory in January 2013.  Unlike 

Rovira and Parasuraman’s (2010) study concerning imperfect automation in an air traffic 

management conflict detection program, the automation in TPU was not based on a miss 

/ false alarm model.  Instead these prototype features of the NextGen system were 

designed to simulate a continuum of errors.  This simulation varied levels of wind 

forecast error and predicted aircraft performance (system) error.  Data was collected on 

the performance capabilities of the operators to achieve metering times within +/- 25 

seconds and maintain a safe environment.  The air traffic controllers in this simulation 

had access to a number of predictive tools which used the weather and aircraft 

performance data.  One of the preferred tools was the delay tag time, or the time 
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displaying how early or late the aircraft was in arriving to the meter fix.  This time 

directly affected meeting the simulation goals regarding metering times.  When the 

automation was working with perfect or close to perfect data, these times would match up 

to the controller’s own perception of where an aircraft was in their sector and how fast it 

was going.  However, when the system was fed incorrect weather and performance data, 

the times stopped creating a logical representation of the behavior of the aircraft in the 

sector.  This level of system transparency (Gao & Lee, 2006), while not actually 

displaying the calculations the automation was undertaking, allowed the controllers to 

make a rough assessment of the automation accuracy based on their own expertise and 

knowledge of the airspace.  Action sequences taken by the controllers based on this delay 

tag time were the focus of this analysis, specifically sequences in which an operator 

requested an advisory on a speed and then subsequently issued a speed to the aircraft.  

The speed issued by the controller may be identical to the automation’s advisory or may 

be a modification of the advisory.  Of most interest was the extent of modification and 

whether the indicator of the state of the automation, the delay tag time, could be used to 

measure the relationship between the automation accuracy and the reliance strategy of the 

controllers.  In order to meet the requirements of identifying ideal operator traits, the first 

goal of this thesis was to assess whether this was (a) a viable means for identifying the 

relationship between automation state and reliance strategy and (b) whether these 

controllers evidence temporally specific reliance strategies.  Temporal specificity in this 

instance was measured over changes between fifty five minute blocks, and not minute by 

minute. 
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In addition to measuring reliance strategies, the operator’s trust in automation was 

also assessed at multiple points during the simulation.  This measure was obtained using 

the Human-Automation Trust Scale developed by Jian, Bisantz, and Brury (2000).  This 

scale was chosen because Jian, et al. empirically generated a list of trust statements for 

human-automation research based on a three-phase experiment (Jian, Bisantz, & Drury, 

2000).  This scale was then used in research on automated combat identification systems 

(Wang, Jamiseon, & Hollands, 2009) and in understanding trust in medical technology 

(Montague, Kleiner, & Winchester 3rd, 2009).  Use of this scale in the TPU study 

included seven of the original twelve keywords which were identified as relevant to 

human-automation relationships by Jian, et al., plus a single addition of an eighth 

keyword that was felt more appropriate for the simulation environment.  The original 

seven items were considered the most relevant to the system capabilities and goals in this 

simulation.  Intent was not addressed directly because participants in this simulation were 

instructed to use the automation to the best of their ability until there came a point when 

they were unable to do so.  Because of this, all participants had intent to use the 

automation driven by the subjective norm of this design.  As mentioned previously, 

Ajzen and Fishbein stated (1980, p. 58) that each primary factor (attitude, subjective 

norm, and perceived behavioral control) contributes to the formation of intent in a 

weighted manner.  The sum of those weights equals intention.  In the case of this 

simulation, the subjective norm of the need to use the automation is assumed to outweigh 

attitude and perceived behavioral control, driving intention.  However, this does not 

necessarily mean that in real air traffic management facilities the subjective norm will 



16 

 

 

 

carry the same weight as in this experiment.  The goal in using the Human-Automation 

Trust Scale was to assess whether (a) it evidenced construct validity in this environment, 

and (b) whether the scores suggested a fairly stable underlying trust or a fluctuating trust 

in the system.  

 In summary, this paper will discuss the following lines of questioning: (a) Can a 

temporally specific operator be identified though an objective relationship between the 

delay tag time presented by the automation and the subsequent actions taken by the 

controllers in regard to speeds?  (b) Does Jian, Bisantz and Dury’s  (2000) Human-

Automation Trust Scale display construct validity in this air traffic management 

environment to measure underlying trust?  And (c) does the contrast of these two 

measures suggest trust attitude and reliance strategy are related but distinct constructs? 
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Method  

Design 

Test Environment. Shown in Figure 3, to conduct this human-in-the-loop 

simulation, two en route sectors (one-high altitude and one low-altitude) were created 

based on historical traffic of the Atlanta airspace feeding into the northwest meter-fix of 

Atlanta’s Terminal Radar Approach Control.  The aircraft simulated in this environment 

were equipped with Flight Management Systems and Automatic Dependent Surveillance-

Broadcast -out capabilities.  All instructions from the controllers to the pilots were issued 

via voice communications. 

 

Figure 3: Simulated Atlanta Airspace with two test sectors and scheduling meter fix. 

In parallel, two different teams were simultaneously tested on this airspace, with 

each team consisting of two test sector controllers and four confederate controllers.  

Confederate controllers staffed the surrounding airspace (high and low ‘ghost’ sectors).  

These confederates enabled the simulation to staff the adjacent airspace, while limiting 

the number of participants necessary.  The two independent teams (or ‘worlds’) were 
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presented with the exact same traffic scenarios.  The simulation employed two different 

traffic scenarios, A and B, which had similar but different flow problems to provide a 

broader range of testing and assist in avoiding learning effects.   

Operational Concept. The traffic scenarios simulated current-day metering 

operations during an arrival push.  The high sector controllers were expected to condition 

traffic in such a way that the traffic feed to the low sector controller supported their goal 

of delivering traffic to the meter-fix ERLIN within +/- 20 seconds of the scheduled 

arrival time displayed on their meter list and in their aircraft data blocks (see Figure 4).  

The complexity of the problem was compounded by simultaneous over-flights and 

departures in the test sectors which must still be managed for safety.   

Management Tools. Controllers had access to prototype metering tools 

envisioned as part of a NextGen ‘mid-term’ time frame, which assumes the presence of 

more accurate surveillance data and advanced decision support tools.  Available to the 

controllers were tools such as a meter list, conflict list, and a trial plan tool.  Trial 

planning was available for speed, trajectory, or a combination of both.  This analysis used 

data provided by the trial plan speed (TS) function.  This function allowed the controller 

to request a speed advisory from the automation.  The subsequent advisory (shown in 

cyan on the controller’s scope) included both a speed and an updated delay tag time.  As 

seen in Figure 4, this delay tag time reflects the automation’s best prediction of how early 

or late the aircraft will be to the meter fix ERLIN if the advised speed is issued.  
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Figure 4: Schedule based tools used in the Trajectory Prediction Uncertainty 

experiment prototyped in a mid-term NextGen environment. 

Error Conditions. In order to simulate error degradation in the automated 

system, two sources of error were targeted, wind forecast and aircraft performance.  Wind 

Forecast Error assumes a difference between the actual wind environment and the 

forecast values the automation uses to predict estimated arrival times used in the meter 

list and all trial planning tools.  As seen in Table 1, four levels of wind forecast error 

were created (Nominal [N], Realistic [R], Moderate, [M], and Large [L]).  An extension 

of this experiment not addressed in this thesis did include additional levels, but the 

primary design is the sole focus of this thesis.  More information about TPU can be found 

in Mercer, et al.  (in press). 
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Aircraft performance error was based on a discrepancy in the automation’s 

calculations of the ideal distance by which an aircraft should begin its descent to ERLIN 

and the actual top of descent flown by each aircraft.  The difference between the 

assumption and actual was applied to all aircraft in the scenario according to a scaling 

factor.  Three levels of performance error were applied, according to standard deviation, 

where the Realistic (R) condition had < 5% at 1 SD,  < 10% at 2 SD, and < 15% for the 

remainder (5% two tailed).  The Large (L) condition had < 12.5% at 1SD, < 25% at 2 SD 

and < 31.25% for the remainder (5% two tailed).  The Nominal (N) condition did not 

contain any aircraft performance errors.  Figure 5 is a graphic display of these 

distributions.  
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Figure 5: Error distributions for Aircraft Performance, as applied to all traffic per 

run. 

An exhaustive set of wind and aircraft performance error level combinations was 

not tested.  Only those combinations thought to be important by the research team were 

selected for this simulation.  Table 2 contains the error conditions that were ultimately 

used.  The first letter always refers to aircraft performance and the second always to wind 

forecast error.  Each error condition was tested twice, once for each traffic scenario (A 

and B).  These iterations were not randomized, and A always preceded B.  
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Subjective Data. Subjective data were also collected at the end of each error 

condition in the form of a Human-Automation Trust Scale (Jian, Bisantz, & Drury, 

2000).  This scale was adapted for the TPU simulation, retaining modified versions of 

seven of the original twelve items, with the addition of one statement added by the 

experimenters.  The modified and original versions of this scale can be seen in Table 3.  
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The Human –Automation Trust Scale (Jian, et al. 2000) was presented using the 

online survey tool Lime Survey Software as the randomized array seen in Figure 6.  Also 

seen in Figure 6, the anchor points used were Not at All – Moderately –Very.  Additional 

subjective data not referenced in this thesis were also collected in conjunction with the 

human-automation scale.  

 

Figure 6: Jian et al.'s Human-Automation trust scale as it was presented live. Items 

were randomized within the array for every presentation.  

Variables. The independent variable (IV) for this simulation was Error Condition, 

consisting of the six levels described in error conditions (NN, RR, RM, RL, LR and LL, 

page 29).  Three dependent variables (DV) were collected for this analysis.  The objective 

dependent variables concerned the TS function described in management tools (pg. 28).  

The first objective DV was the difference in the advised speed and the speed ultimately 

issued by the controller on the basis of that advisory.  This is referred to as the Difference 

in Issued vs. Advised (DIA) in knots.  This speed was operationalized by collecting all 

instances where a controller used the TS advisory request then issued a speed to the same 
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aircraft within two minutes of the advisory as long as no additional trial planning action 

was taken on the same aircraft within that time.  This variable was considered to be 

representative of an operator’s Reliance Strategy because the operator has the option to 

either accept the advisory as-is or modify it to some degree.  Some level of modification 

was generally expected as operators tend to round speeds to whole numbers whereas the 

advisories are not rounded.  The second objective DV was the delay tag time (DTT) 

displayed next to the aircraft’s data block (see Figure 4) at the time of the TS advisory 

request.  The subjective DV data were the Likert scores for the Human-Automation trust 

scale (Jian, et al, 2000).  

Materials 

The TPU simulation was conducted using MACS (Multi-Aircraft Control 

Simulator) developed at NASA Ames Airspace Operations Laboratory (AOL) for the 

purpose of testing ATM environments (Prevot, 2002).  All apparatus used for this 

experiment was Aerospace Operations Laboratory equipment, and in order to mimic a 

real-world environment, replicated FAA-fielded workstation hardware as closely as 

possible.  Each ATC workstation contained: Dell Precision PC, model T7400, 64-bit 

Vista Ultimate (SP1), Intel® Xeon® CPU – X5482 @ 3.20GHz (2), 8GB RAM; Cortron, 

Inc. keyboard, model 109-50008C; Measurement Systems, Inc. trackball, PN XCL250-1; 

Dell mouse, model MOA8BO; Barco ISIS (MDP-471) display; Toshiba Portege M700 

Tablet PC; Plantronics USB headset; Delcom Products foot pedal, model 803653.  All 

workstations were identically configured.  Further information on human-in-the-loop 

simulations of ATC operations at the Airspace Operations Laboratory is available in 
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separate publications  (Prevot, et al., 2010).  Three separate rooms (Figure 7) were 

prepared for participant ATC positions and the confederate pilots. 

 

Figure 7: Simulation lab layout, separating Worlds 1 and 2. 

Participants 

The positions staffed to conduct this experiment can be grouped into four 

categories: ATCs for the test sectors, radar associate positions for each of the test sectors, 

ghost ATC sectors, and pseudo-pilots.  Between both worlds, four ATCs handled the test 

airspace positions, and four ATCs handled the ghost airspace surrounding the test sectors.  

All ATC positions were staffed by retired air traffic controllers (eleven males and one 

female, all 40+ years old with normal or corrected-to-normal vision).  Participation 

eligibility required retirement from a career in air traffic control in the USA.  Twelve 

students from the aviation program at San José State University participated as pseudo-

pilots.  No data were collected on the pseudo-pilots, but they were all male and ranged in 

age from 18-30 years old.  Each pilot was assigned to handle the planes in the sector of 

one ATC participant. 
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Procedures 

Recruitment. The participants were recruited by the San José State University 

Research Foundation (SJSURF) through a previously constructed database of ATC 

participants.  They were recruited based on experience obtained throughout their ATC 

career.   

Training and Testing. The simulation consisted of two training days and five 

days of data collection, with a weekend in-between training and data collection.  All 

simulations were conducted by members of the Human Systems Integration Division’s 

AOL team. Informed consent was obtained by all participants on the first day of training. 

Two days of training from 8:30am-4:40pm, with an hour lunch break, were conducted.  

Day 1 began with a full briefing on the experimental design, MACS tools and functions, 

and the purpose of this study.   Five 55-minute training runs were completed during Day 

1 and again during Day 2.  These included all developed scenarios, as well as baseline 

runs where the participants did not have access to any NextGen tools, such as the conflict 

list and trial planner.  Breaks were administered after every run.  Days three through 

seven comprised the data collection phase.  All days ran from 8:30 am – 4:30 pm 

Monday- Friday, allowing for between four and five 55-minute runs each day.  Short 

surveys, including the Human-Automation Trust scale were administered after each run, 

followed by a 15-minute break.  Also, an hour was taken each day for lunch at noon.  The 

experiment concluded with a debriefing session.  Table 4 below shows the run schedule 

for data collection.  This thesis is only concerned with runs 1-12, the primary 
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experimental design.   Runs 13-23 were extension runs for exploratory designs used for 

other analyses by the AOL.  

 

Results 

Controllers in this simulation chose which tools they used during each run.  

Because of this freedom, the controller working World 1 Low did not use the TS advisory 

past the second run.  As the TS was the primary data source for this analysis, the data 

from World 1 low was removed from all analyses.  A two tailed alpha of .05 was used for 

all tests.  
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Design 1: Performance Analysis for Reliance Strategy    

Design one assesses the relationship between the delay tag time (DTT) displayed 

by the automation and the controller’s actions and the difference in the advised speed and 

the issued speed (DIA).  The goal was to attempt to identify any temporal specificity that 

may have occurred as the accuracy of the automation’s assumptions fluctuated through 

the error conditions.  To accomplish this, this analysis examined the predictive 

relationship between automation state (DTT and controller reliance strategy (DIA) across 

Error Condition.  Error Condition used the same six levels outlined in the methods 

section (NN, RR, RL, LR, RM, LL), with an additional Combined level.  This level was 

included to examine whether overall DTT predicts DIA.  

 

Because of the violations of normality in the data (as assessed by a Shapiro-Wilk 

test p<.05), nonparametric Spearman’s Rho was used to complete this correlation.  

Before running this test, three outliers were removed from this data.  Outliers were 



29 

 

 

 

identified as instances when the operator issued speed was greater than 15% different 

from the advised speed, and are considered aberrations in the data.  Two additional 

instances were removed for lack of a recorded Delay Tag Time.  As seen in Table 5, 

Combined, RL and RM significantly correlated DIA and DTT.  The scatter plots in 

Figure 8 graph the results, with the dotted line providing a visual reference for the zero 

mark.  The results of Design 1 suggest that in two conditions (RL, RM), the error 

required a shift in operator reliance strategy to more closely track the information 

provided by the automation, while the other conditions were compatible with reliance 

strategies that did not require close (predictive) analysis of the automation’s output.  The 

shift from predictive (RL) to not predictive (LR) back to predictive (RM) evidence 

temporal specificity. 
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Figure 8: Scatterplots of all Spearman’s Rho Correlations. Only Combined, RL and 

RM were significant (p<.05) in the relationship between DTT and DIA, (X, Y) 

respectively. 
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Design 2: Measuring for Underlying Trust Subjectively 

Design 2 focuses on the Human –Automation Trust Scale (Jian, et al., 2000) and 

its construct validity in an air traffic management environment.  Design 2.1 specifically 

groups positive and negative statements to assess whether they evidence significant 

separation by trust statement type and if they respond to changes in error condition.  If 

there is an overall positive trust in the automation, positive statements were expected to 

group toward the seven in the Likert scale and negative statements towards the one.  

Design 2.2 examines the internal consistency of the scale using Cronbach’s alpha.  As 

discussed in the introduction and methods, the Human-Automation Trust Scale was 

adapted to fit this environment using only 7 of the original 12 keywords.  An eighth was 

added, Comfortable, by the researchers.  Because all statements were randomly presented 

within a stable array (see Figure 6, page 33), recoding of reverse scaled data was 

necessary for Design 2.2.   

Design 2.1.  For analysis 2.1, Positive and Negative Statements were separated 

and compared across Error Condition using a 2X6 repeated measures ANOVA.  The 

independent variables were: (a) Trust Statement Type (Positive (n=5) and Negative (n=3) 

and (b) Error Condition (NN, RR, RL, LR, RM, and LL) and the dependent variable was 

mean Likert score.  Although the data violated Sharpio-Wilk’s test for normality (p<.05), 

the ANOVA was considered robust enough to continue.  Mauchly’s Test of Sphericity 

was also violated (p<.05), and a Greenhouse-Geisser correction was applied.  There was a 

statistically significant interaction between Trust Statement Type and Error Condition on 

mean Likert Score, F(5, 40) = 11.902, p =.002, partial η
2
 = .598. Descriptive statistics can 
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be found in Table 6.  There was no significant main effect for Error Condition, F(5, 40) = 

.409, p =.839, partial η
2
 = .049.  However, a significant main effect was observed for 

Trust Statement Type, F(1, 8) = .729, p <.001, partial η
2
 = .989.  Pairwise comparisons 

for Trust Statement Type were significant, m=3.907, SE =.145, p<.001, 95% CI [3.574, 

4.241]. 

 

Two post hoc repeated measures ANOVAs were performed on Positive and 

Negative statement types, respectively.  Negative statements were found to have 

statistically significant within subject effects, F(5, 40) = 5.805, p =.022, partial η
2
 = .421, 

but no significant pairwise comparisons when a Bonferroni correction was applied.  

Means and standard deviations can be found in Table 6.  Positive statements also had 
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statistically significant within subject effects, F(5, 70) = 18.036, p <.001, partial η
2
 = 

.563.  Pairwise comparisons revealed RL to be significantly different from every other 

condition except RR: NN (p=.001), RR (p=.053), LR (p<.001), RM (p<.001) and LL 

(p<.001).  Means and standard errors for these comparisons can be found in Table 7.  No 

other pairwise comparisons were statistically significant, singling out the RL condition.  

 

The results of these analyses suggest that the controller’s faith in the automation 

remained strong throughout the fluctuating error conditions, as evidenced by the 
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maintenance of a significant distance between positive and negative trust statement types.  

This maintenance of distance, as seen in Figure 9, suggests that the scale is measuring an 

underlying trust construct and not a temporally specific reaction to automation state.  

Additionally, the statistically significant change in the RL condition for positive 

statements only indicates a reaction to what is likely the same factor which caused a shift 

from a non-predictive to predictive state during RL in the DIA vs. DTT data (design 1).  

This coordination with the reliance strategy data supports the conclusion that these 

measures are examining constructs related to the same automated system, and not, for 

example, trust in automation in general.  The lack of a statistically significant main effect 

of error condition on trust scores is a reflection not of an issue with the scale, but the 

expertise of the controllers.  Each controller completed their career with a 100% safety 

rating.  While this experiment was designed to challenge them with detrimental error 

conditions, they maintained performance integrity throughout.  The ceiling effect caused 

by their expertise accounts for the lack of the main effect of error condition and suggests 

the scale is remaining true to the actual experience of the controllers used in this study.  
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Figure 9: Trust Statement Type (Positive, Negative) means over Error Condition. 

Design 2.2. Cronbach’s alpha was used to test the internal consistency of the 

adapted Human-Automation Trust Scale (Jian, Bisantz, & Drury, 2000).  Eight items 

based on keywords were tested: Safe, Confident, Reliable, Trustworthy, Suspicious, Wary 

and Harmful.  Suspicious, Wary and Harmful were transformed before the analysis due to 

reverse scaling.  The scale had a high level of internal consistency, with Cronbach’s alpha 

equaling .923.  As seen in Table 8, only the removal of the experimenter added keyword 

Comfortable would have improved the internal consistency of the scale.  This supports 

the conclusion that the Human-Automation Trust Scale (Jian, Bisantz, & Drury, 2000) 

does measure the underlying trust construct. 
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Discussion 

 The goal in conjointly examining both objective data pertaining to reliance 

strategy and subjective data on a controller’s trust in automation was to provide 

measurement methods capable of identifying ideal controller traits for the NextGen 

environment.  As discussed in the introduction, three exploratory questions were laid out 

at the beginning of this research to assist in that goal: (a) Can a temporally specific 

operator  be identified though an objective relationship between the delay tag time 

presented by the automation and the subsequent actions taken by the controllers in regard 

to speeds?  (b) Does Jian et al.’s Human-Automation Trust Scale (2000) display construct 

validity in this air traffic management environment to measure underlying trust?  And (c) 

does the contrast of these two measures suggest trust attitude and reliance strategy are 
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related but distinct constructs?  These questions drove the conclusions discussed in this 

section.  

 Temporal specificity is rooted in calibration, but represents a controller’s ability 

to recalibrate their reliance strategies for the automation in real time.  Of the three 

controllers who a participated in using the TS advisory function, temporal specificity was 

found when comparing the delay tag time (the visible indicator of automation state, see 

page 24), and the difference in their issued speeds to the automation’s advisories.  It is to 

be expected that each controller would come into the simulation or a real air traffic 

environment with a personal reliance strategy based on their expertise, experience and 

preferences.  However, the fact that they became more aware of the output of the 

automation as their environment fluctuated in accuracy during the RL and RM conditions 

shows a recalibration moving away from their personal strategies to include a higher 

awareness of automation state.  It is the shift from not only non-predictive to predictive, 

but back again to non-predictive and once more to a predictive state, returning finally to a 

non-predictive reliance strategy which shows they are re-evaluating the state of the 

automation in each simulated error condition.  Proper calibration is required to complete 

this temporally specific reaction, as a controller must be aware of the underlying 

capabilities of the system, especially in a nominal environment, and be able to compare 

current state against this mental model of the overall efficacy of their system.  This 

calibrated base allows them to expand and contract their use of the system based on 

external environmental factors which may be affecting it.  It is important to note that if an 

issue occurs which effects the actual underlying construction of the automation 
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permanently, controllers will eventually recalibrate to a less efficacious system and 

change their expectations.  However, that situation was not the focus of this simulation, 

where error was introduced from sources outside of the automation, such as the weather 

forecast. 

 That the World 2 low controller chose not to use the TS advisory has some 

implications worth noting.  This tool is known among researchers in the NextGen 

environment to be a desirable attribute of the automated system.  While this controller 

may have not preferred the tool, when questioned after the simulation was completed, 

they stated that it was “jumping all over the place and wasn’t working correctly.”  When 

queried if they found this to be true even in the nominal conditions where no errors were 

introduced, they replied an affirmative.  While this controller may be properly calibrated 

and temporally specific in their use of other aspects of the automation, they began the 

simulation with an improperly calibrated view of this tool.  This is an example of disuse, 

when the automation is not used by the human operator, and can lead to significant safety 

issues in the case of tools supporting critical tasks.  If this simulation had been an actual 

training session, disuse of this kind would need to be addressed.  

 This Human-Automation Trust scale (Jian, Bisantz, & Drury, 2000) was chosen 

specifically because of its empirical background and use in other types of automation 

research.  However, to the best of the author’s knowledge, before January 2013 it had not 

been previously applied to decision making aids in air traffic management.  The ability of 

this scale to maintain stable scoring across fluctuating error conditions while 

discriminating between positive and negative statements, as well as the strong 
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Cronbach’s alpha score promotes confidence in its applicability to air traffic management 

research.  As mentioned in the results for design 2.1, a ceiling effect for performance was 

created due to the expertise of the participant controllers.  They maintained their 

performance despite the effects of the fluctuating error conditions.  As such, the Human-

Automation Trust scale not recording a significant main effect for error condition was not 

surprising, and does not suggest an issue with the scale itself.  Use of this scale with 

controllers at various stages of training should produce more variation.  The strong inter-

item reliability score attained by the Cronbach’s Alpha shores up the conclusion that, 

while this scale was developed for a more general Human-Automation usage, it can be 

tailored to apply directly to a specific environment such as air traffic management.  The 

result that the one keyword added by the experimenters which was not contained in the 

original scale was the only item which, if removed, would have improved the scale’s 

score strongly supports the original research in creating this scale.  

However, while the Human-Automation Trust scale (Jian, Bisantz, & Drury, 

2000) does seem to measure the underlying trust attitude of a controller, this conclusion 

is put forth with some reservations and caveats.  Due to the adaptation necessary to 

amend the scale to this simulation environment, this scale was not properly 

counterbalanced.  If used in the future, counterbalancing is recommended. Also 

recommended is a factor analysis beyond Cronbach’s alpha.  As the Theory of Planned 

Behavior explicates (Ajzen, 1991), there are multiple factors influencing intention, and it 

is not impossible either the subjective norm or perceived behavioral control intruded on 
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the controller’s answering of this scale. Finally, care is recommended when adapting this 

scale to a new environment.   

 Still, the performance of the Human-Automation scale in conjunction with the 

objective data examining reliance strategy is sufficient to support the conclusion that 

reliance strategy and underlying trust are related but distinct constructs.  It should not be 

assumed that trust is a direct precursor to intent and intent to reliance.  As shown in 

Design 1’s objective data, controllers responded significantly to a shift in automation 

state both in RL, then again in RM. However, the fluctuations in the trust scores only 

occurred in RL, not RM.  This suggests that whatever caused enough of a disturbance to 

impact both reliance strategy and trust was accounted for by the controllers and, once 

processed, was incorporated into a temporally specific reliance strategy that protected it 

from impacting trust a second time.  But it remains important to measure both constructs, 

as trust is one component in creating the initial and continuing calibration on which 

temporal specificity is based.   

 In summary, to reference to the exploratory questions posed in the introduction 

and guiding this discussion: (a) An action sequence which requires the controller to 

interact with automation state such as delay times and speed advisories can objectively 

identify both calibration and temporal specificity over time.  (b) To the extent that it is 

generalizable from this experiment, the Human-Automation Trust scale does seem to be 

measuring an underlying trust in the controllers which maintains construct validity.  

Finally (c), that both measures responded to the same error conditions but to different 
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degrees suggest that they do indeed measure distinct constructs that are nevertheless 

related. 

Limitations and Suggestions for Further Research 

 Due to simulation constraints, this experiment was unable to additionally measure 

the subjective norms and perceived behavioral control of these participants.  These 

factors are considered relevant due to the fact that either (Ajzen, The theory of planned 

behavior, 1991) could control an operator’s intent to use an automated system if strong 

enough.  In this simulation, it was a simulation requirement that all controllers use the 

automation to until they were unable to do so.  Additionally, all of these controllers were 

extremely capable and confident in their abilities.  As such, the subjective norm was 

expected to have overridden any general disinclination not to interact with the 

automation.  This may not be true in a real air traffic management facility.  Especially 

with the introduction of a new system, the social or political perceptions within a group in 

addition to controllers potentially losing confidence in being able to use the new tools 

makes these critical measures.  Any further research is suggested to include measures for 

these factors and to verify them for an air traffic management environment.  

 Of concern are the potential impacts of failing to measure trust, subjective norm 

and perceived behavioral control when these predictive, dynamic systems are introduced.  

According to Lee and See’s (2004) model discussed in the introduction, as well as the 

body of Ajzen and Fisbein’s work, initial attitudes such as trust towards automation are 

formulated by knowledge often based on secondhand knowledge, gossip, the system’s 

reputation and visual cues such as interface features.  If not regulated, a situation such as 
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a single dissatisfied operator could heavily bias the attitude of a new operator towards a 

negative view of a new system.  Then, if operators are found to have a biased underlying 

trust attitude, they can be provided with both experience and accurate knowledge to assist 

in formulating a new trust attitude (Merritt & Ilgen, 2008).  Further research into the 

changing of attitudes is suggested before training procedures are finalized. 

 One final caveat must be made on the ability to generalize from this sample.  

Because of the retraining necessary for a controller to use NextGen tools, use of active 

controllers as participants is discouraged.  And while these controllers were subject 

matter experts, a younger active controller may differ slightly.  As such, in addition to the 

factor analysis suggested for the Human-Automation Trust scale, the examination of all 

of these measures in a more current environment with a larger sample is suggested.  
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