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ABSTRACT 

EVALUATION OF THE CMIP5 DECADAL HINDCASTS IN THE STATE OF 

CALIFORNIA 

by Colin J. McKellar 

This study investigated the ability of the new Coupled Model Inter-comparison 

Project phase 5 (CMIP5) decadal hindcasts to predict the observed decadal variability for 

maximum temperature (Tmax) and minimum temperature (Tmin) in California over two 

historical periods in the 20th century and one future period in the 21st century.  Annual 

and seasonal California temperature trends were computed by averaging 54 United States 

Historical Climate Network version 2 temperature observations from 1960-1990 and 

1980-2010.  Modeled California temperatures were reconstructed with bi-linear 

interpolation from the CMIP5 decadal hindcasts and 20th century experiments.  The 

individual model ensemble averages (MEA) and mean model ensemble averages 

(MMEA) were then compared to the observations during 1960-1990 and 1980-2010.  The 

decadal hindcasts displayed a similar overall skill as the 20th century experiments in 

predicting the observed annual and seasonal temperature trends during both historical 

periods.  However, the predictive skill for individual models showed that the decadal 

hindcasts systematically improved the MEA predictions and that certain models, such as 

the MRI-CGCM3, outperformed the MMEA in each experiment.  Also the higher 

performing models, such as the MRI-CGCM3, provided better future Tmax and Tmin 

trend predictions.  Future predictions show increasing annual and seasonal temperature 

trends that indicate a longer growing season by the year 2035. 



v 
 

ACKNOWLEDGEMENTS 

I would first like to thank the members of my thesis committee: Dr. Eugene Cordero,    

Dr. Allison Bridger, and Dr. Bridget Thrasher.  They continuously pushed me to realize 

my full potential and have been encouraging and positive through each step of graduate 

school.  Furthermore, they have selflessly taken their own time and energy to help me 

advance my skills and knowledge of meteorology and as a scientist. 

I would also like to thank all of the faculty members in the Department of Meteorology 

and Climate Science.  Each has always been there for advice and help and has fostered an 

open positive environment for learning and personal growth.  I would also thank my 

undergraduate professors at the University of Northern Colorado, particularly Dr. Paul 

Nutter and Dr. Cindy Shellito who shared and passed on their passion for meteorology.   

I would like to thank all my friends I have made here at SJSU; Terrence Mullens, Henry 

Bartholomew, Laura Hodgens, and Rachel Eidelman, and friends back in Colorado, Lisa 

Coco and Adam Sturtz, to name a few.  They have always been there to help me and 

listen through the good times and bad.  Lastly, I want to thank my family for the love and 

support through my journey.   

 

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

List of Figures………………………………………………………………..………..... vii 

List of Tables……………………………………………………………..………......... viii 

1.  Introduction and Background ……............................................................................... 1 

2.  Data and Experimental Design ………………………………………......................... 6 

a. Observations……............................................................................................... 6  

b. Model Simulations …………………………………………………................. 7 

c. Experimental Design……………….……………………………….................. 9                         

3.  Mean Model Ensemble Average Temperature Trends Using the Observations  

     and Model Data…........................................................................................................ 13 

a. Annual and Seasonal Analysis: 1960-1990 and 1980-2010…......................... 13  

b. Comparison of Uncertainty in the CMIP5 Experiments……………............... 17 

c. Skill of the CMIP5 Experiments…………………………………................... 18 

4.  Model Ensemble Average Temperature Trends for the CMIP5 Experiments…......... 20 

a. Analysis of the Ensemble Size on the Model Trends…................................... 20 

b. Influence of Initial Conditions on Model Temperature Trends….................... 24 

5.  Future CMIP5 Decadal and 21th Century Predictions……………….….………....... 29 

6.  Discussion…................................................................................................................ 34 

7.  Conclusion…............................................................................................................... 38 

References ………………………………………………………………........................ 42 

Appendix A: Historical Seasonal Graphs ……………………………………………… 46 

Appendix B: Future Seasonal Graphs ………………………………………………….. 48 



vii 
 

LIST OF FIGURES 

1.  Map of the United Stated Historical Climate Network version 2 stations  

     used for this study. Adapted by Cordero et al., 2010..………....................................... 6 

2.  The mean model ensemble average (MMEA) and boxplots for the annual                            

     a) Tmax and b) Tmin historical experiments…..……………………………............. 14 

3.  Annual historical model ensemble means (MEA) for Tmax.……………………….. 21 

4.  Annual historical model ensemble means (MEA) for Tmin…………..…………….. 22 

5.  Future Tmax and Tmin temperature trends for the annual Tmax (top) and  

     Tmin (bottom)……………………………………………………………………….. 30 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

LIST OF TABLES 

1.  The CMIP5 AOGCMs and ESMs examined for this study and the origins of  

      each model (left).  The decadal experiments (center) for each time period and  

      the respective number of simulations for each model.  The 20th century and  

      RCP4.5 (right) experiments for each time period and the number of simulations for   

      each model……………………………………………………………………….......  8 

2.  The overall skill of each experiment…………………………………………............ 18 

3.  The overall MMEA and the individual MEA skill score for the decadal (top) 

     and historical (bottom) experiments……………………………………………….... 26  

4.  The overall MMEA and the individual MEA rankings for the decadal (top) and  

historical (bottom) experiments from a) 1960-1990 and b) 1980-2010..................... 27 

5.  Same as Table 4 except the rankings are for 1980-2010............................................. 28 

6.  The 2005-2035 MEA Tmax trends for the MRI-CGCM3 in the decadal and 

     RCP4.5 experiments………………………...………………………………………. 32 

7.  The 2005-2035 MEA Tmin trends for the MRI-CGCM3 in the decadal and 

     RCP4.5 experiments…………………………...……………………………………. 33 



1 
 

1. Introduction and Background  

California’s agriculture industry is the fifth largest in the world and generates 

more than $40 billion per year in direct revenue from goods and services (California 

Agricultural Statistics Review 2012-2013).  It is also responsible for an additional $100 

billion each year from related economic activities (Cooley et al., 2009).  The vitality of 

the agriculture industry in California is primarily dependent on the availability of 

freshwater resources (i.e., rivers, rain and snowfall, ground-water) for irrigation.  

However, climate change has directly altered the precipitation patterns that influence the 

availability, timing, and distribution of freshwater (Trenberth et al., 2007). Human-

induced temperature changes have indirectly influenced the supply of freshwater by 

affecting the severity of droughts, the length of the growing season, and the types of 

crops that can grow. The supply of freshwater may vary significantly on a regional 

level, not only due to differences in climate, but also due to the agricultural practices, 

types of crops, and fresh water resources for the population. 

 Decadal climate prediction evaluates the 10- to 30-year evolution of climate, and 

provides forecasts that aim to improve understanding of the social, economic, and 

environmental implications of decadal climate variability (Meehl et al., 2009; Mehta et 

al., 2011).  The first characteristic of decadal prediction is that variability is largest at the 

regional level, and secondly, the contribution of well-mixed anthropogenic greenhouse 

gases (GHGs) to the overall variability is low (Meehl et al., 2009; Taylor et al., 2012).   

The predictive skill of decadal forecasts are affected by the uncertainties in the natural 

short-term [i.e., El Nino-Southern Oscillation (ENSO)] and long-term (e.g. Pacific 
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Decadal Oscillation, Atlantic Meridional Overturning Circulation) atmosphere-ocean 

variability and the relative strength of the anthropogenic forced response (Mantua et al., 

2002; Meehl et al., 2009; Mehta et al., 2011; Goddard et al., 2012).  When compared to 

the global and continental scales, regional climate can vary significantly over smaller 

geographic areas depending upon the time, location, and type of land cover (Meehl et al., 

2009; Abatzoglou et al., 2010; Cordero et al., 2010). 

Although the effect of natural forcings, such as ENSO, on regional climate 

variability is greater than that at global scales, human-induced changes to the Earth’s 

surface and oceans do alter local and regional climate patterns (LaDochy et al., 2007; 

Lebassi et al., 2011; Jin 2012).  Variability is caused by changes to the types of land 

cover, for example, as a result of urbanization or irrigation, which in turn alter the 

albedo, surface emissivity, and surface energy balance. Changes in the surface energy 

balance affect the fluxes of heat, moisture, and momentum into the atmosphere.  

Additional changes to regional climate are due to atmospheric aerosols (Jin et al., 2010), 

ocean temperature and circulation (Latiff et al., 1996; Srokosz et al., 2012), variations in 

land and sea ice (Cavalieri et al., 2003), and changes to the carbon cycle (Taylor et al., 

2012). External factors that can modify regional to global temperatures on a decadal 

scale include forcings, such as the 11-year solar cycle (Van Loon and Shea 1999; Van 

Loon et al., 2007) and volcanic eruptions (Robock 2000; Zanchettin et al., 2012). Over 

decadal to multi-decadal time periods, regional-scale human contributions can enhance 

or reduce the influence of natural variability (Lebassi et al., 2011; Meehl et al., 2012). 
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Previous research into natural variability can also provide additional predictive 

skill since decadal prediction is both an initial value problem and boundary condition 

problem (Meehl et al., 2009; Goddard et al., 2012).  Prior advancements in seasonal 

prediction are transferrable to prediction on decadal time periods, including 

understanding and predicting short-term natural variability such as seasonal ENSO 

events (Barnston et al., 2012; Goddard et al., 2012). The contribution and interactions 

between the ocean and atmosphere also impact decadal to multi-decadal predictions due 

to the strong influence of decadal variability on regional climate patterns. Examples 

include Pacific Decadal Variability (PDV) and Atlantic Multi-decadal Variability 

(AMV) (Latif et al., 1994; Goddard et al., 2012; Srokosz et al., 2012).  A better 

quantification of the natural variability will improve the predictive skill of 10-30 year 

forecasts (Branstator and Teng 2010; Msadek et al., 2010). 

In earlier climate model inter-comparisons, decadal variability and prediction 

were examined through the use of Coupled Global Climate Model (CGCM) data from 

simulations that were initialized with uniform land and sea surface temperature (SST) 

distributions from the observed climate record. For example, the Coupled Model 

Intercomparison Project phase 3 (CMIP3) simulations of the 20th century are 50 to 150-

yearlong projections initialized with pre-industrial fields.  Future decadal predictions 

relied on various GHG emission scenario pathways and were typically initialized using 

data from 20th century climate model simulations (Meehl et al., 2007).  Although there is 

some predictive skill that can be derived from previous decadal forecasts, variations at 
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regional scales due to natural variability are more difficult to ascertain (Meehl et al., 

2009). 

The nonlinear nature of the climate system ensures that no CGCM simulation can 

perfectly recreate observations because of internal variability that may not depend on the 

initial conditions (Hawkins and Sutton 2009; Brown et al., 2012; Goddard et al., 2012).  

Thus for any forecast, it is impossible to account for all time-evolving interactions 

between the natural and anthropogenic climate forcings. An approach to the larger 

uncertainty is to use a large ensemble of forecasts within a multi-model framework 

(Taylor et al., 2012).  The CMIP3 dataset used initial states that were chosen at random 

times from the preindustrial control runs.  Thus there was no correspondence in the 

ocean-induced internal variability between the observations and models.  With the latest 

Coupled Model Inter-comparison Project phase 5 (CMIP5), new short-term decadal 

forecasts that start with initial land and ocean conditions are modeled within a multi-

model experiment framework (Taylor et al., 2012). 

Previous studies have shown that the initial conditions can increase or 

decrease the predictive skill over larger geographical areas in the 10-year decadal 

predictions (Kim et al., 2012).  Additional skill is obtained in the 30-year predictions 

at larger scales due to the anthropogenic forcing caused by GHGs (Meehl et al., 

2009, Taylor et al., 2012).  The focus of the present study is to determine if the initial 

conditions prescribed by observations will improve the regional climate forecasts. 

The CMIP5 decadal hindcasts and 20th century experiments are evaluated according 

to their ability to predict the observed maximum (Tmax) and minimum (Tmin) 
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temperature trends in California over the complex regional climate zones across the 

state (Abatzoglou et al., 2010; Cordero et. al 2010).  The performance of the decadal 

hindcasts and models is also used to determine future near-term predictions.  
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2. Data and Experimental Design 

a. Observations 

The Tmax and Tmin observations from the US Historical Climate Network 

version 2 (USHCNv2) were obtained from the National Climatic Data Center (NCDC).  

The observations used in this study are the monthly averaged temperatures from 54 

USHCNv2 stations in California (Figure 1) spanning the periods 1960-1990 and 1980-

2010.  

 

Figure 1. Map of the United Stated Historical Climate Network version 2 stations used 
for this study. Adapted from Cordero et al., 2010. 

The USHCNv2 is a high quality dataset that accounts for station biases by using a 

pairwise comparison between the individual station observations and the surrounding 

regional observations (Meene and Williams 2009).  This includes documented and 

undocumented adjustments for station location and missing values.   However, unlike 
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the first version of the United States Historical Climate Network, the data have not been 

adjusted to account for the effects of urbanization (Meene et al., 2009). 

b. Model Simulations 

The multi-model ensemble simulations used in this study were obtained from the 

CMIP5 archive and are listed in Table 1.  The results of this study use CMIP5 data that 

were available as of March 2012.   
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Table 1: The CMIP5 AOGCMs and ESMs examined for this study and the origins of 
each model (left).  The decadal experiments (center) for each time period and the 
respective number of simulations for each model.  The 20th century and RCP4.5 (right) 
experiments for each time period and the number of simulations for each model.  a) 
Models simulate Tmax only.  b) Annual ensemble size is one.  c) Annual Tmax only. 

 
 
 
 
 

Model                             Originating Group(s) 

Number of 
Decadal Ensemble 

Members for           
30-year Hindcasts 

 
1960      1980       2005 

Number of 20th 
Century Historical and 

RCP4.5  Ensemble 
Members 

 
1960        1980       2005 

BCC-CSM1 Beijing Climate Center, 
China Meteorological 

Administration 

 
 

   
   
   10 

 
 
 

10 
 
 
 
 

10 
 
 
 
 
 
 

   
   3 

 
 
 
 

   3 
 

3 

 
2 
 
 

   10 
 
 
 

10 
 
 
 
 

10 
 
 
 
 
 
 
 

3 
 
 
 
 

   3 
 

3 

 
2 
 
 

   10 
 
 
 

10 
 
 
 
 

10 
 
 
 
 
 
 
 

3 
 
 
 
 

    3 
 

 3 

 
 
 
 
 

10 
 
 

10 
 
 
 
 

10 
 
 

1 
 
 

1 
 

1 
3 
 
 

    
   3 

 
3b 

 
 

3b 

 
 
 
 
 

10b 

 
 

10 
 

    
   10 

 
10 
1 
 

1 
 
 

1c 

 
 

1 
1 
1 
 

    3 
 

1 
 

     
    1 

 
 
 
 
 

10 
 
 

10 
 
 

10 
 

10 
 
 
1 
 
 
1 
 
3 
1 
 
 

    
    3 

 
1 
 
 
1 

CANCM4 
CANESM2a 

Canadian Centre for 
Climate Modelling and 

Analysis 
CNRMCM5 Centre National de 

Recherches 
Meteorologiques 

CSIRO-MK3-
6-0a 

CSIRO Atmospheric 
Research 

HADCM3 
HADGEM2-

CC 

Met Office Hadley Centre 

INMCM4 Institute for Numerical 
Mathematics 

ISPL-CM5-
MR 

Institute Pierre-Simon 
Laplace 

MIROC4h 
MIROC5 

MIROC-ESM 
MIROC-ESM-

CHEM 

Japan Agency for Marine-
Earth Science and 

Technology, Atmosphere 
and Ocean Research 

Institute 
MPI-ESM Max Planck Institute for 

Meteorology 
MRI-CGCM3 Meterological Research 

Institute 
NORESM1-M Norwegian Climate Center 

 

The CMIP5 dataset is derived from simulations by several coupled global atmosphere-

ocean general circulation models (AOGCMs) and earth-system models (ESMs) (Taylor et 
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al., 2012).  These models are used to examine and predict the long-term climate forcing 

due to atmospheric GHGs. Examples include the 20th century simulations that attempt to 

re-create the observed variability and the 21st century experiments that test the model 

response to a relative concentration pathway (RCP) of well-mixed anthropogenic GHGs.  

The emission pathway RCP4.5 used in this study represents a scenario in which global 

atmospheric GHG concentrations first stabilize mid-century, producing a 4.5 W m-2 

increase in radiative forcing, and then decrease in the second half of the 21st century.  

The second use of the AOGCMs and ESMs in the CMIP5 is to address the near-term 

decadal (10-year) to multi- decadal (30-year) variability and prediction using the decadal 

hindcasts.  The 30-year decadal experiments used for our study helped test the impact of 

observed initial land and ocean temperatures as well as the impact of observed GHGs on 

decadal variability and prediction. 

c. Experimental Design 

 In order to reproduce the regional annual and seasonal temperature observations 

for California, the 54 USCHNv2 station data were spatially averaged following a similar 

technique to that used by Cordero et al. (2010).  The CMIP5 model temperatures for 

California were reconstructed by bi-linear interpolating from the GCM’s grid resolution 

to the geographic position of each USHCN station.  Next, the 54 interpolated GCM 

station points were spatially averaged in a manner similar to the observations. Annual 

Tmax and Tmin of the observations and model data were calculated by taking the 

temporal average of the 12 monthly temperatures, while the seasonal datasets were 

constructed by taking the 3-month average using the standard definitions for winter, 
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December-January-February (DJF), spring, March-April-May (MAM), summer, June-

July-August (JJA), and fall, September-October-November (SON).  To assure data 

completeness in the observations, no three-month season was used if a single month was 

missing and no year was used if a single month or more was missing (Cordero et al., 

2010). 

For the CMIP5 model ensemble simulations, the individual model ensemble 

averages (MEA) were calculated by taking the average of all the simulated Tmax and 

Tmin trends.  The number of simulations for each model ensemble is shown in Table 

1.  The experimental mean model ensemble average (MMEA) was calculated by 

taking the average of each model’s individual MEA.  The observations, MMEA, and 

individual MEA trends were then tested for statistical significance using the standard 

error of the trend estimate (Santer et al., 2000).  The 30-year temperature trends for the 

observations and all CMIP5 simulations were computed using a linear least-square 

regression between the historical periods of 1960-1990, 1980-2010, and a future 

period of 2005-2035.  Since several of the 20th century simulations ended in 2005, the 

first five years of the RCP4.5 experiment were used for the last five years of the 

historical period from 1980-2010 if the climate run corresponded to the same ensemble 

member and simulation. 

 Box and whisker plots were constructed for each individual model with an 

ensemble size of five or greater by using each simulated model trend.  The box and 

whisker plots for the CMIP5 experiments were calculated by using the MEA trends.  The 

box plots first allow for a comparison between the model or experimental trends and 
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observations. Secondly, the boxplot and whisker allow for the uncertainties to be 

compared between the different models and experiments when the initial distributions 

are unknown (Chang 2009).  The main components of a boxplot are the minimum, 

median, maximum, 25th and 75th quartile, and outlier values. The “box” portion is 

constructed from the median and the 25th and 75th quartiles, or lower and upper 

portions of the box. This “box” is also known as the inter-quartile range (IQR) and 

quantifies the uncertainty and internal variability within an individual model(s) or 

between the different CMIP5 experiments.  The IQR also represents the central tendency 

of the temperature trends since it indicates where 50% of the data are distributed relative 

to the mean.  The “whiskers” are calculated by connecting the 25th quartile to the 

minimum value and 75th quartile to the maximum value.  Each whisker represents 25% 

of the data and the length of each helps determine if the overall trends are positively 

distributed (i.e., a larger whisker between the 75th quartile and the maximum), or 

negatively distributed (i.e., a larger whisker between the 25th quartile and the 

minimum).  The last portions of a box and whisker plot are the outliers, which are 

defined as 1.5× (IQR) > 75th quartile or 1.5× (IQR) < 25th quartile. If an outlier is 

suspected, a new minimum value is then calculated by subtracting 1.5× (IQR) from the 

25th quartile, while a new maximum is calculated by adding 1.5× (IQR) to the 75th 

quartile.  Any data values outside the new minimum and maximum values are classified 

as outliers. Lastly, comparing the width of the boxes for both experiments allows for an 
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initial comparison into the uncertainties without the need for extensive statistical 

analysis. 

 The skill of the experimental MMEAs and individual MEAs for the 1960-1990 

and 1980-2010 historical periods was calculated by taking the absolute error between the 

modeled and observed trends.  A total of ten simulated trends, comprised of the annual 

and seasonal Tmax and Tmin, were ranked between one and five.  Each ranking 

corresponds to a step increase in the model error of 0.05°C dec-1. For example, a ranking 

of one means there is an absolute error of 0-0.05°C dec-1 between the model and 

observations. The final skill is determined by taking the average of the ten rankings, and a 

lower skill indicates that the experimental MMEA or MEA has a lower error when 

comparing the simulated trends to the observations. 
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3. Mean Model Ensemble Average Temperature Trends Using the Observations and 

Model Data 

a. Annual and Seasonal Analysis: 1960-1990 and 1980-2010 

Figure 2 shows the annual California Tmax (top) and Tmin (bottom) from the 

USHCNv2 and the experimental CMIP5 20th century historical and decadal mean model 

ensemble average (MMEA) for the time periods 1960-1990 (left) and 1980-2010 (right).  

The seasonal graphs are shown in Appendix A. 

 

 

 

 

 

 

 

 

 

 

 



14 
 

 

Annual Tmax 

a  

Annual Tmin 

           b  

Figure 2. The mean model ensemble average (MMEA) and boxplots for annual (a) 
Tmax and (b) Tmin.  The black and brown dots represent the 1960-1990 and 1980-
2010 trend observations; circled dots display trends that are statistically significant at 
the 95% confidence interval.  The red (1960-1990) and green (1980-2010) boxplots 
and dots represent the decadal trends and MMEA, while the blue (1960-1990) and 
purple (1980-2010) boxplots and dots represent the 20th century trends and MMEA.  
X represents outlying trends. 

 



15 
 

The 1960-1990 USHCNv2 observations indicate statistically significant 

warming (95% confidence level) for Tmax +0.24°C dec-1 and Tmin +0.21°C dec-1. 

The 1960-1990 decadal and 20th century MMEA (indicated by colored dots) for 

Tmax are close to the observations, with warming trends of +0.18°C dec-1 and 

+0.16°C dec-1, while for Tmin, the decadal and historical experiments are above the 

observations with positive trends of +0.40°C dec-1 and +0.32°C dec-1. The annual 

Tmax and Tmin trends between the decadal and 20th century experiments during 

1960-1990 are not statistically different at the 95% confidence interval. 

The annual observed trends for California Tmax and Tmin during 1980-2010 

show statistically significant warming in Tmax +0.23°C dec-1, while Tmin displays a 

slight positive trend of +0.10°C dec-1. The 1980-2010 decadal hindcast MMEA for 

Tmax also indicates warming of +0.28°C dec-1 and is closer to the observations 

compared to the historical trend of +0.43°C dec-1. For Tmin, both the decadal trend 

+0.32°C dec-1 and the historical trend +0.42°C dec-1 are well above the observations.  

Lastly, annual trends show more variation between the decadal and historical 

experiments during this time frame compared to 1960-1990.  However, the differences 

in the MMEA during 1980-2010 between the decadal and 20th century temperature 

trends are not statistically different. 

 Seasonal temperature trends (Appendix A) from 1960-1990 indicate that the 

USHCNv2 observations exhibit similar significant warming in MAM Tmax     
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+0.66°C dec-1 and Tmin +0.63°C dec-1. The remaining seasonal trends are lower by 

at least 0.20°C dec-1 and did not show significant state-wide warming or cooling, with 

similar trends between Tmax and Tmin. Previous studies have shown significant 

warming during MAM that is larger than that in other seasons (Cayan et al., 2008; 

Cordero et al., 2010).  However, neither the decadal nor the 20th century experiments 

simulate this large warming during MAM, instead displaying lower trends by roughly 

0.50°C dec-1. Lastly, the difference in the MMEA Tmax and Tmin trends between 

both experiments and for all seasons during 1960-1990 is not statistically significant. 

 Seasonal trends from the USHCNv2 during 1980-2010 (Appendix A) display the 

largest significant warming during JJA in both Tmax +0.36°C dec-1 and Tmin    

+0.26°C dec-1. The decadal hindcasts most closely predict the observed warming for 

Tmax +0.37°C dec-1and Tmin +0.29°C dec-1. The 20th century experiments also show 

warming similar to the decadal hindcasts for Tmax +0.35°C dec-1 and slightly lower 

trends in Tmin +0.20°C dec-1. All the remaining seasonal USHCNv2 temperature 

trends do not show any significant warming or cooling in Tmax and Tmin.  In general, 

the magnitude of the MMEA for the 1980-2010 experiments closely matches the 

observed seasonal trends. However, none of the seasonal temperature trends during 

1980-2010 are statistically different between the decadal and 20th century experiments. 
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b. Comparison of Uncertainty in the CMIP5 Experiments 

The boxplots help quantify the annual (Figure 2) and seasonal (Appendix A) 

uncertainty between the decadal and 20th century experiments.  For example, annual 

Tmax from 1960-1990 shows a similar IQR, or internal variance, for the decadal and 

20th century experiments, while for Tmin, the IQR is larger in the decadal experiment by 

0.30°C dec-1. The annual IQR for Tmax and Tmin from 1980-2010 between the 

decadal and 20th century experiments was similar in magnitude.  On the contrary, the 

seasonal variability in both the decadal and 20th century experiments was noticeably 

lower during 1960-1990 for both temperatures when compared to 1980-2010.  However, 

the seasonal variability in the decadal experiment during 1980-2010 is larger for Tmax 

compared to Tmin. 

Another measure of uncertainty is shown in the boxplots by the length of the 

whiskers. The relative length of each whisker, represented by the length of the line from 

the quartile to the extreme value, helps determine if the temperature variations display a 

normal distribution. For example, the annual Tmax trends for the 1960-1990 historical 

experiment and both 1980-2010 experiments are positively distributed while the 1960-

1990 decadal experiment shows a negative distribution.   Lastly, the extreme maximum 

and minimum temperature trends and the difference in extremes identify large outliers 

that address the model and experimental climate sensitivities.  For example, from 1980-

2010, the seasonal historical forecasts for Tmax and Tmin show a large negative outlying 

trend of -1.5°C dec-1. 
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c. Skill of the CMIP5 Experiments 

The absolute error in the annual and seasonal MMEA between all of the decadal 

and 20th century experiments and the observations is used to determine the overall 

experimental skill, which is shown in Table 2.  

 

Table 2: The overall skill of each experiment. 

Overall Decadal Skill 3.1 

Overall Historical Skill 3.3 

1960-1990 Decadal Skill 3.2 

1960-1990 Historical Skill 3.3 

1980-2010 Decadal Skill 2.9 

1980-2010 Historical Skill 3.3 

   
 
The overall decadal skill was better at 3.1 when compared to the 20th century skill of 3.3. 

When looking at individual time periods, the results show that the skill is similar between 

the experiments during 1960-1990, while from 1980-2010 the decadal experiment again 

shows a higher skill.  Also, the decadal experiments show a higher skill for 1980-2010, 

while the 20th century experiments display a similar skill during both historical time 

periods.  But, when comparing the skill rankings to the experimental MMEA in the 

Figure 2, certain seasons display more error when compared to other seasons during both 



19 
 

time periods and for both experiments.  One example includes the MMEA temperature 

trends for MAM in which the predictions were well below the observations. 
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4. Model Ensemble Average Temperature Trends for the CMIP5 Experiments 

The structure of the CMIP5 allows for multiple AOGCMs and ESMs to be 

examined in their response to a climate-forcing scenario.  The core CMIP5 experiments 

provide information that helps identify reasons why different climate models give 

different solutions given similar initial conditions (Taylor et al., 2012), and they also 

allow for inter-model comparisons for each forecast.  Beyond the required core 

experiments, individual modeling agencies (Table1) have the option to investigate 

several critical model attributes in further detail with the so- called tier 1 and tier 2 

simulations.  Due to the complex nature of the climate system and the uncertainties 

introduced into the model simulations and experiments, large ensembles must be 

constructed to examine and quantify initial state and model errors (Mehta et al., 2011; 

Goddard et al., 2012).  Furthermore, more hindcasts allow model skill to be assessed, 

different periods of variability to be sampled, and sources of improved prediction to be 

determined (Goddard et al., 2012). 

a. Analysis of Ensemble Size on Model Trends 

 The annual AOGCM and ESM predictions during 1960-1990 (left) and 1980-

2010 (right) for the decadal experiments are shown at the top of Figure 3 (Tmax) and 

Figure 4 (Tmin).   
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Decadal Ensemble Models 

 

1960-1990 20th Century Ensemble Models 

 

1980-2010 20th Century Ensemble Models 

 

Figure 3. Annual model ensemble means (MEA) for Tmax.  The decadal (top), and 20th 
century (bottom) experiments between the periods 1960-1990 (left), 1980-2010 (right). 
Boxplots represent each models individual trend distribution and the dots are the MEA. 
As a reference, brown dots indicate the MMEA and red dots display the observations. 
Circled dots show trends that are significant at the 95% confidence interval. 
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Decadal Ensemble Models 

 

1960-1990 20th Century Ensemble Models 

 

1980-2010 20th Century Ensemble Models 

 

Figure 4. Annual model ensemble means (MEA) for Tmin.  The decadal (top), and 20th 
century (bottom) experiments between the periods 1960-1990 (left), 1980-2010 (right). 
Boxplots represent each models individual trend distribution and the dots are the MEA. 
As a reference, brown dots indicate the MMEA and red dots display the observations. 
Circled dots show trends that are significant at the 95% confidence interval. 
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The box plot IQR represents each climate model’s internal variability and 

temperature trend distribution, while the dots show the MEA.  The decadal models with 

an ensemble size of ten include CanCM4, CNRM-CM5, and HadCM3.  The models with 

a smaller ensemble size of three include MIROC4h, MPI-ESM-LR, and MRI-CGCM3, 

while the BCC-CSM1 has an ensemble size of two.  In the 1960-1990 decadal hindcast, 

all three of the large ensemble size models demonstrated an increase in internal 

variability (larger box) in Tmin compared to Tmax, while two out of three of the smaller 

ensemble size models display a decrease in the range of trends for Tmin, and MPI-ESM 

has no difference between temperatures.  The differences in internal variability between 

Tmax and Tmin during 1980-2010 indicate that two out of three of the larger ensemble 

size models display an increase in variability, and all models show a large increase in the 

range of trends for Tmin compared to Tmax.  For the smaller ensemble size models, two 

show a decreased range of trends, and one model, MRI-CGCM3, displays no change. 

When comparing the larger ensemble models, the internal variability (size of box) 

is noticeably lower for Tmax compared to Tmin during 1960-1990 and 1980-2010.  

However the total range in the trends, or the difference between the maximum and 

minimum value, is twice as large for Tmin compared to Tmax.  When comparing the 

smaller ensemble size models, note that the box represents the total range and the median 

since it requires at least five trends to construct a box and whisker plot.  The smaller 

ensemble size models typically have a smaller range in trends for both temperatures.  

When comparing the range in model trends between the different sized ensembles, the 

smaller ensemble size models have a significantly lower range in trends.  In certain 
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instances, the range of trends for the smaller ensemble sizes is lower when compared to 

the internal variability or the larger ensemble sizes. 

When comparing temperature trends during 1960-1990, the models with the 

largest ensemble size of ten (CANESM2, CNRMCM5, and HadCM3) display a larger 

increase in the internal variability and total range of Tmin trends compared to Tmax.  

The smaller ensemble size of three models (MIROC-ESM, MRI-CGCM3, and MPI-

ESM) do not display any change in the range of trends between Tmax and Tmin.  Several 

of the temperature trends in the 1980-2010 20th century historical experiment have only 

one model simulation, but the variability in the 20thcentury model temperatures for either 

time period within individual models cannot be accurately determined with only one 

climate simulation.  An example of the error that can occur with only one simulation is 

displayed by the MIROC-ESM-CHEM during the seasonal 1980-2010 Tmax and Tmin 

trends, with large negative outlying trends of up to 1.5°C dec-1. 

b. Influence of Initial Conditions on Model Temperature Trends 

When comparing the skill between the decadal and historical experiments, there 

is not a large improvement in the MMEA compared to the observations.  However, 

individual AOGCMs and ESMs do show improvement in their predictive skill when 

utilizing initial conditions. For example, when comparing the skill of the four models 

(CNRM-CM5, HadCM3, MPI-ESM-LR, and MRI-CGCM3) used in both the decadal 

and the historical experiments, there is a systematic improvement in the overall skill of 

each model when using initial conditions.  The average overall skill of the four decadal 

models in the decadal experiment is 3.3, while the historical skill is 3.9. 
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Determining the skill of an individual model can provide further insight into how 

different model attributes contribute to different solutions.  As previously documented by 

Mehta et al., (2011), decadal climate prediction is influenced by systematic model biases 

that are generated by well-known modeling problems (other than resolution).  Examples 

include errors in the individual ocean and atmospheric models as well as interactions 

between these models and other climate components, such as sea and land ice and earth 

surface processes.  The overall individual skill for each model is shown in Table 3, while 

the model skill for 1960-1990 is shown in Table 4, and the skill from 1980-2010 is shown 

in Table 5.  The results show that one model, the ESM named MRI- CGCM3, 

outperformed all other models and the MMEA.  In addition, the performance of the ESM 

in both experiments is generally better compared to the AOGCMs.  Lastly, a large 

contribution to the overall error is the low level of basic understanding about the natural 

climate patterns in the decadal time frame. 
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Table 3. The overall MMEA and the individual MEA skill score for the decadal (top) and 
historical (bottom) experiments.  The bold values indicate situations in which an 
individual model`s ensemble mean is better than the MMEA ranking. 

Overall Decadal Skill 

MMEA 3.1 
 

CanCM4 3.4 

CNRM-CM5 3.2 

HadCM3 3.7 

MIROC4h 3.6 

MPI-ESM-LR 3.5 

MRI-CGCM3 2.7 

 

Overall Historical Skill 

MMEA 3.3 

CNRM-CM5 3.7 

HadCM3 4.4 

IPSL-CM5A-MR 4.3 

MIROC-ESM 2.8 

MIROC5 3.6 

MPI-ESM-LR 4.2 

MRI-CGCM3 3.1 

NorESM1 2.8 
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Table 4. The overall MMEA and the individual MEA rankings for the decadal (top) and 
historical (bottom) experiments from a) 1960-1990 and b) 1980-2010. The bold values 
indicate situations in which an individual model`s ensemble mean is better than the 
MMEA rankings. 

Experiment Model Skill 

Decadal 1960-1990 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

20th century 1960-1990 
 

MMEA 3.3 

CanESM2 3.2 

CNRM-CM5 3.3 

HadCM3 4.3 

INMCM4 3.2 

IPSL-CM5A-MR 3.5 

MIROC-ESM 2.7

MIROC5 2.6

MPI-ESM-LR 3.7 

MRI-CGCM3 3.2 

NorESM1-M 2.7

MMEA 3.2 

CanCM4 3.7 

CNRM-CM5 3.1 

HadCM3 3.5 

MIROC4h 3.6 

MPI-ESM-LR 3.5 

MRI-CGCM3 3.0 
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Table 5. Same as Table 4 except the rankings are for 1980-2010. 
Decadal 1980-2010 

 

MMEA 2.9 

BCC-CSM1 3.6 

CanCM4 3.1 

CNRM-CM5 3.3 

HadCM3 3.8 

MIROC4h 3.6 

MPI-ESM-LR 3.4 

MRI-CGCM3 2.3

 
20th century 1980-2010 

 

MMEA 3.3 

CanESM2  

CNRM-CM5 4 

CSIRO-Mk3-6-0  

HadCM3 4.4 

HadGEM2-CC 2.2 

IPSL-CM5A-MR 5.0 

MIROC-ESM 2.8 

MIROC-ESM-CHEM 4.5 

MIROC5 4.5 

MPI-ESM-LR 4.7 

MRI-CGCM3 2.9 

NorESM1-M 2.9
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5. Future CMIP5 Decadal and 21st Century Predictions 

 As noted by Mehta et al. (2011), predictable climate signals during a decadal time 

period at the regional level are complicated by local anthropogenic influences, such as 

urbanization, irrigation, and aerosols.  These local forcings impact decadal climate, 

depending on the region and time.  In addition, the future forecasts need to address the 

magnitude of the natural regional climate variability as well as the interactions and 

feedbacks within a changing climate system.  The decadal hindcasts can improve 

predictions by eliminating the error associated with initial conditions. The annual decadal 

(left) and 21st century RCP4.5 (right) results for Tmax (top) and Tmin (bottom) are 

shown in Figure 5.   
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Annual MMEA 

 

Figure 5. Future Tmax and Tmin temperature trends for the annual Tmax (top) and Tmin 
(bottom).  The green boxplot and dot represent the average median trend and MMEA for 
the decadal 2005 experiment.  The purple boxplot and dot shows the average median 
trend and MMEA for the RCP4.5 experiment. The X shows outlying trends. 
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The contribution from anthropogenic GHGs is more influential on decadal 

prediction by the end of the 30-year forecasts.  As a result, a direct comparison of the 

natural variability between the decadal and RCP4.5 experiments from 2005-2035 is 

possible.   For example, the natural variability for the future annual decadal hindcast was 

greater by 0.1°C dec-1 for both Tmax and Tmin.  Another characteristic was that the 

annual 2005-2035 decadal hindcasts displayed a wider range of natural variability for 

Tmax and Tmin of 0.5°C dec-1 compared to 0.15°C dec-1 in the RCP4.5 experiment.    

One future MMEA trend that is noticeably different is the annual decadal Tmin, which is 

twice as large as Tmax and the other seasonal Tmin trends.  However, this trend pattern 

in future Tmin also occurred during the decadal 1960-1990 hindcast. 

The future seasonal results for Tmax and Tmin are shown in Appendix B.  The 

difference in the natural variability in Tmax between both future experiments is greatest 

in MAM and SON by 0.10°C dec-1, while all other seasons displayed little to no 

difference.  For Tmin, the greatest difference in the natural variability between 

experiments occurred in MAM.  Also, the overall range of Tmax trends was greater in 

the RCP4.5 experiments by nearly 0.3°C dec-1 during JJA and SON, and during DJF 

and SON for Tmin.  Lastly, the total range of the temperature trends was greater in all 

seasonal RCP4.5 experiments by nearly 0.30°C dec-1.  

When looking at future forecasts for California from 2005-2035, the MMEA 

between the decadal and RCP4.5 experiments is less reliable for future predictions.  One 

reason is that when looking at the performance of the decadal hindcasts in the historical 
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experiments, their skill is similar to the 20th century forecasts. In fact, future results 

display roughly similar MMEAs between the decadal and 21st century RCP4.5 

experiments.   However individual models, such as the MRI-CGCM3, can possibly 

provide better future predictions since it accounted for more processes and out-

performed the experimental MMEA in the historical forecasts.  The future trends for the 

MRI-CGCM3 are displayed in Table 6 (Tmax) and Table 7 (Tmin).   

 
Table 6.  The 2005-2035 MEA Tmax trends for the MRI-CGCM3 in the decadal and 
RCP4.5 experiments.  The decadal and RCP4.5 MMEA are for reference.  All trends are 

in °C dec-1. 
 Decadal 

MRI-CGCM3 
Decadal 
MMEA 

RCP4.5 
MRI-CGCM3 

RCP4.5 
MMEA 

Annual 
Tmax 

0.39 0.31 0.20 0.3 

DJF Tmax 0.12 0.34 0.11 0.19 

MAM Tmax 0.36 0.27 0.19 0.26 

JJA Tmax 0.36 0.26 0.2 0.40 

SON Tmax 0.56 0.27 0.36 0.38 
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Table 7.  The 2005-2035 MEA Tmin trends for the MRI-CGCM3 in the decadal and 
RCP4.5 experiments.  The decadal and RCP4.5 MMEA are for reference.  All trends are 

in °C dec-1. 
 Decadal 

MRI-CGCM3 
Decadal 
MMEA 

RCP4.5 
MRI-CGCM3 

RCP4.5 
MMEA 

Annual 
Tmin 

0.63 0.60 0.10 0.33 

DJF Tmin 0.20 0.35 0.03 0.12 

MAM Tmin 0.37 0.27 0.22 0.23 

JJA Tmin 0.39 0.28 0.31 0.41 

SON Tmin 0.53 0.33 0.34 0.36 

 
 

The best performing climate model, the MRI-CGCM3, displayed greater Tmax 

and Tmin trends for all of the decadal hindcasts when compared to the RCP4.5 forecasts.  

Also, other than DJF, the decadal MEA for the MRI-CGCM3 showed greater Tmax and 

Tmin trends when compared to the decadal MMEA.  The implications of these results 

are that California will have a longer growing season by 2035.  The first reason is the 

large increase in annual Tmin and two, the large warming temperature trends in SON. 

 

 

 

 

 

 

 



34 
 

6. Discussion 

This section compares the current results to that in the literature and offers 

hypotheses to explain the results.  This first includes explaining why the decadal 

hindcast experiments are only slightly improved compared to the historical experiments. 

Secondly, there is an examination into the role of ocean circulations in the decadal 

hindcasts. Third, there is a discussion of the uncertainties involved in decadal prediction, 

and finally, there are hypotheses explaining the future results.   

The results show that there is a modest increase in the overall predictive skill 

with the decadal hindcast experiments.  However, individual models display a 

systematic improvement in skill with the decadal hindcasts compared to the 20th century 

historical experiments. Although using initial conditions did translate into better 

predictions, the uncertainty that remains is that sampling the decadal time-frame is less 

than ideal since the natural variability leads to circumstances where the initial dates 

occur in different anomalous periods in the climate record (Argues et al., 2012), as was 

demonstrated by the MAM decadal hindcast Tmax and Tmin trends.  However, unlike 

prior studies (i.e., Meehl et al., 2009; Goddard et al., 2012), initial conditions increase 

the predictive skill of decadal hindcasts at a regional scale.  Lastly, as suggested by 

Goddard et al. (2012), initial conditions in the decadal hindcasts show an increase in 

forecast skill, as is demonstrated by the increase in the 1980-2010 decadal experiments. 

The decadal results show that using the initial SSTs does provide extra forecast 

skill by accounting for the initial ocean heat content (Taylor et al., 2012).  However, it is 

important to note that the CMIP5 decadal hindcasts spin up the sub-surface ocean 
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currents. This introduces large uncertainty at the decadal scale because a deeper portion 

of the ocean circulation is important for prediction.  Thus, in-situ ocean observations 

will provide more information into critical sub-surface ocean properties, such as 

temperature and salinity (Latiff and Barnett 1994; Meehl et al., 2009; Mehta et al., 

2011).  This would help account for an important feedback system between the 

atmosphere and ocean in which, over decadal periods, larger-scale pressure and wind 

patterns in the atmosphere affect ocean currents by altering the wind stress on the ocean 

surface.  In turn, this can influence the transport of warm or cold water and act to alter 

SST gradients.  The changes in SST gradients, in turn, influence atmospheric 

circulations due to the thermal wind balance (Latiff and Barnett 1994; Meehl et al., 

2009). 

It is well understood that climate model differences arise from differences in the 

dynamical cores, the amount of sub-grid parameterizations of the atmosphere and 

ocean, and the interactions with other components of the climate system (Mehta et al., 

2012).  This issue is important for prediction since models will produce different 

solutions to the same initial conditions. For example, calculating the surface energy 

balance with an AOGCM will produce a different solution than an ESM.  This is 

because an ESM uses a predictive model for more components of the climate system 

that are more realistic compared to an AOGCM that typically use parameterizations.  

This will reduce errors caused by the radiative forcing calculation due to such variables 

as aerosols, land surface changes, sea and land ice, etc.  The results also show that most 

ESMs display a higher skill and outperform other models.  One such model was the 
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MRI-CGCM3, which is a fully coupled ESM with more modeled components.  This is 

compared to a model with less skill, such as the HadCM3, which is not an ESM and has 

more parameterizations.   

The decadal hindcasts are still in the experimental stage, which makes it 

difficult to attribute the changes in temperature trends due only to individual model 

characteristics.  Other equally important factors, such as ensemble size and assimilation 

techniques, still need to be tested for their uncertainties in the experiments (Taylor et 

al., 2012; Goddard et al., 2012).  The tier 1 experiments in the CMIP5 look at ensemble 

size as a possible factor for increased decadal prediction.  The larger ensemble size of 

ten has, on average, a larger overall range in trends compared to an ensemble size of 

three. However, the larger ensemble sizes allows for more characteristics of the 

distribution to be sampled with a box and whisker plot.  This shows that an ensemble 

size of three or lower may be too small to accurately sample the unforced variability 

due to the greater uncertainties at both a regional and decadal scale.  This also shows 

that unforced variability is the largest factor contributing to decadal variability and 

varies significantly with time, location, and initial conditions. 

Based on the performance of the decadal hindcasts during the two historical 

periods, the future decadal hindcast MMEA temperature trends will only be slightly 

better than the RCP4.5 experiment.  However, individual models, such as the MRI-

CGCM3 and ESMs, might provide a more accurate assessment of future trends.  The first 

reason is that there is a high uncertainty in determining future trends with only one 

hindcast, as shown by the results from the two historical hindcasts that display a large 
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variation in modeled trends.  The second reason is that the individual models may 

provide a better forecast since each model has different model components and 

parameterizations.  Lastly, the ESMs may give better predictions because every 

component of the climate system influences decadal prediction. 
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7. Conclusion 

This study evaluated the predictive skill of the CMIP5 near-term forecasts by 

comparing the mean model ensemble average (MMEA) from the decadal hindcasts and 

20th century experiments with the observed Tmax and Tmin trends for California 

between 1960-1990 and 1980-2010.  The study also compared the individual MEA and 

predictive skill for each AOGCM or ESM in order to evaluate various modeling 

aspects, such as ensemble size and assimilation methods.  The first goal was to examine 

the new decadal hindcasts in order to evaluate the limitations and uncertainties of 

predicting natural decadal variability.  The second goal was to produce a modeled 

decadal hindcast at a regional scale in order to provide valuable and versatile climate 

information for local resource managers and governments. 

The observed annual and seasonal Tmax and Tmin trends for California were 

reconstructed using monthly data from 54 USHCNv2 stations in a method similar to 

that of Cordero et al. (2010). The CMIP5 model temperatures for California were 

reconstructed using bi-linear interpolation between the GCM`s grid resolution and the 

geographic position of each USHCN station.  The individual MEAs were calculated by 

averaging all model ensemble simulations, and the experimental MMEA was calculated 

by taking the average of each individual MEA.  The overall skill of each experiment and 

model was calculated by taking the absolute error between either the MEA or the 

MMEA and the observations for both the annual and seasonal Tmax and Tmin trends.  

The results showed that the MMEA for the decadal experiments displayed a slightly 

higher skill in predicting both the observed annual and seasonal temperature trends.  
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The box and whisker plots represent the median, quartiles, and outliers which were 

calculated from each experiment’s MEA.  The annual Tmax trends (Figure 2a) 

demonstrated a lower uncertainty compared to Tmin (Figure 2b.), and MAM showed 

the highest error while JJA had the lowest error between the MMEA and observations.  

Lastly, the overall variance in trends was larger in the 1960-1990 annual and seasonal 

decadal experiments as well as the 1980-2010 20th century annual and seasonal 

experiments.  However, the internal variability was generally similar between the 

decadal and 20th century forecasts and both historical experiments during 1960-1990 

and 1980-2010 were not statistically different at the 95% confidence interval. 

Each AOGCM and ESM was analyzed to examine the tier 1 experiments of the 

CMIP5. First, the overall skill and variance was similar between the AOGCMs and ESM 

in both experiments.  Secondly, a larger factor in decadal prediction is the model’s initial 

ensemble size. An example of the error generated by a small ensemble size occurred with 

the 1980-2010 20th century experiments in which a model with one simulation (MIROC-

ESM-CHEM) contributed to a very large experimental error.  Lastly, the natural 

variability at the regional scale and decadal time frame is too large to sample with three 

or fewer simulations, while larger ensembles provide a more accurate prediction of the 

uncertainties and experimental model biases at a regional scale. 

By using initial conditions, the decadal hindcasts have shown an improvement 

over prior datasets used to examine decadal variability and prediction.  Prior studies have 

suggested that initial conditions would add to predictability by accounting for early 

model errors and observed ocean heat content (Meehl et al., 2009; Mehta et al., 2011).  
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More importantly, the CMIP5 decadal hindcast framework helped eliminate some of the 

inter-model experiment errors and biases (Taylor et al., 2012; Goddard et al., 2012).  In 

California, previous studies have suggested that Tmax is controlled by local scale 

anthropogenic forcings while Tmin is controlled generally by natural large scale forcings 

(LaDochy et al., 2007; Cordero et al., 2010). 

Although the hindcast experiments did not drastically improve the predictive skill 

in the decadal time-frame, the best performing model can still provide additional insight 

into future temperature trends for California.  For this study, the MRI-CGCM3 out-

performed all other models and the experimental MMEA during the historical time-

frame and therefore can possibly provide better future predictions.  The MRI-CGCM3 

displayed drastically different trends between the future decadal and RCP4.5 

experiments, especially for the future annual Tmin trends.  The MRI-CGCM3 trends 

showed a large increase in the annual Tmin and both temperature trends in SON which 

suggests a longer growing season by 2035.  Lastly, this conclusion demonstrates that 

using the initial conditions can lead to drastically different solutions, even when using a 

higher performing climate model.   

Remaining studies into decadal prediction would include analyzing the Argo 

float model data since this includes in-situ observations of sub-surface temperature, 

currents, and salinity. It has long been determined that sub-surface ocean conditions 

play a very important role in decadal prediction due to the persistence of predictable 

ocean SST anomalies (Latiff and Barnett 1994; Mehta et al., 2011) and include ocean-

atmospheric patterns such as the ENSO, PDO, and AMOC.  Although the natural climate 
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variability is greater, shorter-term anthropogenic forcings from land use changes and 

aerosols will also play a role on decadal temperature trends.  This is because these 

forcings are highly spatially heterogeneous and changing in time and will act to change 

the surface energy balance and alter the natural variability.   
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APPENDIX A: Historical Seasonal Graphs 
 

                                           Seasonal Tmax 

 

 

The seasonal historical Tmax trends for DJF (top-left), MAM (top-right), JJA (bottom-
left), and SON (bottom-right).  The black and brown dots represent the 1960-1990 and 
1980-2010 trend observations; circled dots display trends that are statistically significant 
at the 95% confidence interval.  The red (1960-1990) and green (1980-2010) boxplots 
and dots represent the decadal trends and MMEA, while the blue (1960-1990) and purple 
(1980-2010) boxplots and dots represent the 20th century trends and MMEA. X represents 
outlying trends 
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                                              Seasonal Tmin 

 

The seasonal historical Tmin trends for DJF (top-left), MAM (top-right), JJA (bottom-
left), and SON (bottom-right).  The black and brown dots represent the 1960-1990 and 
1980-2010 trend observations; circled dots display trends that are statistically significant 
at the 95% confidence interval.  The red (1960-1990) and green (1980-2010) boxplots 
and dots represent the decadal trends and MMEA, while the blue (1960-1990) and purple 
(1980-2010) boxplots and dots represent the 20th century trends and MMEA. X represents 
outlying trends. 
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APPENDIX B: Future Seasonal Graphs 
 

 

 
 

The seasonal future Tmax trends for DJF (top-left), MAM (top-right), JJA (bottom-left), 
and SON (bottom-right).  The green boxplot and dot represent the average median trend 
and MMEA for the decadal 2005 experiment.  The purple boxplot and dot shows the 
average median trend and MMEA for the RCP4.5 experiment. The X shows outlying 
trends 
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The seasonal future Tmin trends for DJF (top-left), MAM (top-right), JJA (bottom-left), 
and SON (bottom-right).  The green boxplot and dot represent the average median trend 
and MMEA for the decadal 2005 experiment.  The purple boxplot and dot shows the 
average median trend and MMEA for the RCP4.5 experiment. The X shows outlying 
trends 
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