
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2013

Embedded Cloud System for Ann-Cod Analysis Using UV Embedded Cloud System for Ann-Cod Analysis Using UV

Spectroscopy Spectroscopy

Kaushik Patra
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Patra, Kaushik, "Embedded Cloud System for Ann-Cod Analysis Using UV Spectroscopy" (2013). Master's
Theses. 4401.
DOI: https://doi.org/10.31979/etd.mfd3-s5hw
https://scholarworks.sjsu.edu/etd_theses/4401

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4401&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/4401?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4401&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

EMBEDDED CLOUD SYSTEM FOR ANN-COD ANALYSIS USING UV

SPECTROSCOPY

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San Jośe State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Kaushik Patra

December 2013

© 2013

Kaushik Patra

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

EMBEDDED CLOUD SYSTEM FOR ANN-COD ANALYSIS USING UV

SPECTROSCOPY

by

Kaushik Patra

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

SAN JOŚE STATE UNIVERSITY

December 2013

Dr. Hua Harry Li Department of Computer Engineering

Dr. Donald Hung Department of Computer Engineering

Dr. Robert H. Morelos-Zaragoza Department of Electrical Engineering

ABSTRACT

EMBEDDED CLOUD SYSTEM FOR ANN-COD ANALYSIS USING UV

SPECTROSCOPY

by Kaushik Patra

One of the many parameters indicating water quality is chemical oxygen demand

(COD), which is an indirect measurement of the amount of organic compound material in

water. There have been many studies, in both academia and the industry, to analyze the

COD content of water using spectral analysis. The proposal of this thesis was to study,

analyze, and identify methods to determine the presence of COD using UV spectroscopy

data and an artificial neural network (ANN) in a cloud-connected embedded system. The

system was implemented using an ARM11 board and a portable spectrometer. Light in

the UV range was used to analyze the water sample. As an analysis strategy, the spectral

data were converted into a real number value in the range of 0 to 1. Twenty equidistance

samples were taken out of the converted data to be fed into the ANN, and the ANN was

trained with known samples to identify any presence of COD. Experiments used

laboratory-calibrated water samples with known COD and some real-life water samples.

All the experiments showed that the implemented system could successfully indicate the

presence or absence of COD in the given water sample. The system also successfully

demonstrated the application of a cloud-connected embedded system to an area in

environmental engineering. This indicated that the system was a bridge between

computer and environmental engineering.

v

ACKNOWLEDGEMENTS

First, I would like to express my humble and sincere gratitude to my master’s thesis

guide, Dr. Hua Harry Li, for his continuous support and encouragement in this work. I

owe a lot to him for his active involvement and stream of ideas, which enriched this work

in every aspect.

Besides my thesis advisor, I would also like to thank the rest of the thesis committee:

Dr. Donald Hung and Dr. Robert H. Morelos-Zaragoza, who provided their valuable and

insightful comments and constructive feedback on this thesis work.

I would also like to extend my thanks to Arch Shaw, alumni of the Computer

Engineering Department, whose master’s project, Cloud Computing Enabled Portable

Smart Spectrophotometer, was a cornerstone for this thesis.

My sincere thanks also go to my loving wife, Purna Chatterjee Patra, who took care

of all of the family chores to provide me adequate time for thesis work in addition to my

daily full-time office job. She also provided her valuable feedback on the thesis

manuscript and often acted as an extra pair of eyes to weed out technical and

compositional errors in my writing.

Last but certainly not least, my heartfelt thanks go to my beloved daughter,

Debasmita Patra, who despite being only a toddler gives a sense of importance to my

thesis. She has always encouraged me by repeatedly reminding me that there will be

plenty of playtimes with her once my “school assignment” is done.

vi

TABLE OF CONTENTS

CHAPTER ONE. INTRODUCTION TO THE THESIS TOPIC .. 1

1.1 Introduction .. 1

1.2 Background .. 2

1.3 Problem Statement ... 6

1.4 Objectives of the Study .. 8

CHAPTER TWO. LITERATURE SURVEY ON COD MEASUREMENT TECHNIQUE 10

2.1 General COD Measurement Techniques.. 10

2.1.1 Chemical Reflux and Titration-Based Method ... 10

2.1.2 Colorimeter-Based Method ... 11

2.1.3 Photo-Catalytic Method .. 14

2.2 UV-Vis Spectroscopy for COD Detection ... 16

2.2.1 Physics of Spectroscopy ... 16

2.2.2 Spectroscopy in COD Analysis .. 24

2.3 ANN-Based Approach ... 26

2.3.1 General ANN Conception ... 26

2.3.2 Application of ANN in Wastewater Analysis ... 30

CHAPTER THREE. Overall Methodology Used In The Thesis 31

3.1 Objectives ... 31

vii

3.2 Method to Detect COD Patterns .. 31

3.3 Methodology Experiment ... 32

3.4 Methodology Validation .. 34

3.5 Conclusion .. 37

CHAPTER FOUR. IMPLEMENTATION OF THE SYSTEM ... 38

4.1 Overall System Architecture .. 38

4.2 Implementation Components ... 39

4.2.1 Mobile Platform .. 39

4.2.2 Photometer and UV Light Source ... 40

4.2.3 File and Application Server .. 40

4.2.4 Development Environment ... 41

4.3 Software Implementation Details ... 42

4.4 System Implementation .. 45

CHAPTER FIVE. EXPERIMENT, RESULTS, AND CONCLUSION ... 50

5.1 Experiment Setup ... 50

5.1.1 Calibrated Sample Preparation for COD Measurement 50

5.1.2 UV Spectroscopy Data Collection .. 52

5.1.3 ANN Training with Collected Data .. 54

5.1.4 ANN Testing with Test Samples .. 59

viii

5.2 Results .. 63

5.3 Conclusion .. 64

CHAPTER SIX. FUTURE DIRECTIONS ... 67

References ... 69

APPENDIX A. ARM11 BOARD BRING UP WITH A SIMPLE DEVICE DRIVER 76

APPENDIX B. SETTING UP UV SPECTROMETER SDK ON ARM11 91

APPENDIX C. NFS/SSH SERVER SETUP USING ARM11 BOARD AS CLIENT 102

APPENDIX D. INTRODUCTION TO THE FANN SOFTWARE LIBRARY PACKAGE 115

APPENDIX E. EXTENDING FANN LIBRARY FOR COMPACT C-MODEL GENERATION ... 126

APPENDIX F. “ANCOD” A SOFTWARE FOR ANALYZING WATER COD 147

ix

LIST OF FIGURES

Fig. 1. Sample Water Usage Statistics ... 4

Fig. 2. A Simple Colorimeter ... 12

Fig. 3. Software for the Colorimeter Operation .. 13

Fig. 4. The PeCOD Machine and the Work Mechanism. .. 14

Fig. 5. Photo-Catalytic versus Dichromate Method... 15

Fig. 6. Wavelength for an EMR ... 17

Fig. 7. The EMR Spectrum .. 18

Fig. 8. Relative Response of the Human Eye to Visible EMR .. 19

Fig. 9. Photon Capture by Molecule .. 20

Fig. 10. Vapor State Spectrum for Benzene .. 21

Fig. 11. Molecular Orbit Transitions ... 22

Fig. 12. Table of Absorption Maxima for Isolated Chromophores 23

Fig. 13. Main Approach for the Aggregated Parameter Determination 25

Fig. 14. Schematic Diagram for a Typical Neuron Cell .. 27

Fig. 15. Typical Activation Functions Used in ANN .. 28

Fig. 16. Example of an ANN Graph and the Implemented Imaginary Function 29

Fig. 17. Sampling the Signal .. 32

Fig. 18. Error Deviation (above) and Error Distribution (below) for the ANN............... 35

Fig. 19. Schematic of Overall System Architecture .. 38

Fig. 20. Tiny6410 board... 39

Fig. 21. Portable Photometer and UV Light Source .. 40

x

Fig. 22. VirtualBox-based Virtual UBUNTU Linux Server .. 41

Fig. 23. Simplified System Architecture Replacing Cloud.. 43

Fig. 24. anCod Hardware and Software Ecosystem .. 45

Fig. 25. Overall Setup for the COD Analysis System ... 46

Fig. 26. Photonics Lab Setup and Flow Cell ... 47

Fig. 27. Computing Setup for COD Analysis .. 48

Fig. 28. Screen Capture of the Running Instances ... 49

Fig. 29. Absorption Patterns for ANN Training ... 64

Fig. 30. Absorption Patterns for ANN Testing ... 65

Fig. 31. Evolving anCod Analysis System with Feedback from Lab Result 68

Fig. 32. Tiny6410 SDK .. 76

Fig. 33. Tera Term Setup for Serial Port ... 79

Fig. 34. New Connection Menu of Tera Term Application ... 80

Fig. 35. SD-Flasher.exe GUI ... 81

Fig. 36. Installing the OS from the SD Card.. 84

Fig. 37. Linux Boot Up Console on “Tera Term” ... 85

Fig. 38. pwm_test Run using the “Tera Term” Console .. 86

Fig. 39. Menu Configuration Selection.. 88

Fig. 40. Testing Sample Loadable Device Driver .. 89

Fig. 41. RED TIDE USB650 Device ... 91

Fig. 42. HyperTerminal for Test App Run .. 100

Fig. 43. Tinys6410 SDK .. 102

xi

Fig. 44. NFS/SSH-Based System Design .. 103

Fig. 45. Overall System Concept ... 104

Fig. 46. FANN Usage Steps. .. 119

Fig. 47. Basic ANN Architecture ... 127

Fig. 48. Top level ANN C-model Architecture ... 129

Fig. 49. ANN C-model Echo System... 131

Fig. 50. COD Analysis System. ... 150

Fig. 51. anCod Client Flow .. 151

Fig. 52. anCodServer Server Flow ... 152

Fig. 53. anCodTrainer Trainer Flow .. 153

Fig. 54. Implemented Software Architecture ... 161

xii

LIST OF TABLES

Table 1. One Estimate of Global Water Distribution .. 3

Table 2. Methodology Experiment Results and Sample Signal 36

Table 3. COD Solution Preparation Amounts ... 52

Table 4. Experimental Result for Methodology Validation... 63

Table 5. Content of FriendlyARM.ini File .. 83

Table 6. Source Code Listing for the Tiny6410_hello_module.c 87

Table 7. Spectrometer Source Code per Platform ... 92

Table 8. Top-Level Makefile Targets to Build/Test the Spectrometer Device Driver 94

Table 9. List of Macros for Architecture to Build Spectrometer Device Driver 94

Table 10. Install Directory Structure for Spectrometer Device Driver 95

Table 11. New/Changed Files to Build/Test Spectrometer Device Driver 95

Table 12. Dropbear Utility Names and Usage ... 110

Table 13. API List of ANN Training .. 119

Table 14. FANN API List of ANN Operation ... 121

Table 15. FANN API List of ANN Operations ... 123

Table 16. Training Set for XOR Training .. 124

Table 17. FANN 2.2.0 Directory Structure.. 125

Table 18. API for ANN C-model Generation ... 132

Table 19. Files Generated with FANN C-model Generation ... 133

Table 20. C-model Core APIs .. 136

Table 21. C-model IO Utility APIs .. 137

xiii

Table 22. C-model Statistics Utility APIs.. 138

Table 23. Make File Macros for Building an Application Using the ANN C-model 139

Table 24. Source Code Explanation for Application Using the ANN C-model 142

Table 25. FANN C-model Test Cases ... 143

Table 26. FANN C-model Test Results ... 143

Table 27. FANN C-model Mean Error Distribution .. 144

Table 28. The anCod Options .. 154

Table 29. The anCodServer Option ... 154

Table 30. The anCodTrainer Options .. 155

Table 31. List of general parameters for anCod .. 156

Table 32. ANN parameters for composite sine wave recognition 158

Table 33. Parameters to Generate Train/Test Data for Composite Sine Wave 158

Table 34. Makefile Targets to Build an anCod Application .. 161

Table 35. Makefile Macros Used in Building the anCod Application 162

Table 36. List of Makefiles for anCod ... 162

Table 37. Macros for Module Makefile in anCod Software .. 162

Table 38. anCod Validation Test Patterns ... 164

1

CHAPTER ONE

INTRODUCTION TO THE THESIS TOPIC

1.1 Introduction

Water is the most important factor in sustaining human civilization. Water not only

provided the first breeding ground for life but also played a pivotal role in supporting life

on earth. Water has allowed the human species to evolve and secure a unique

evolutionary position that is unparalleled by any other species. The ubiquitous influence

of water on human life, as well as on civilization, is unquestionable. The uses of water

are diverse and include direct human consumption, agriculture, industry, and scientific

studies. As a universal solvent, water can dissolve many inorganic and organic materials.

As a result, obtaining water without any contamination is difficult. However, for many

of the common uses of water, including human consumption, it is neither appropriate nor

practical to use pure water. Water standards, including acceptable concentrations of

different inorganic and organic materials dissolved in water, have been suggested for

different usage scenarios. These suggestions indicate the overall water quality for a

particular type of usage. Many standard parameters have been developed to indicate

water quality. The two best known parameters are chemical oxygen demand (COD) [1]

and biological oxygen demand (BOD) [2].

This thesis aimed to explore methodologies for determining the COD of water and

develop an economical methodology for COD determination using a cloud-enhanced

generic embedded system. The proposed system used an artificial neural network

2

(ANN)-based analysis of spectroscopy data obtained from a low-end spectrometer. The

spectroscopy data were collected using a source that produced light of 190 to 885 nm

(i.e., UV and visual light).

This section has three subsections. Section 1.2 includes a brief discussion of what

water treatment processing is. It also explains why water treatment is necessary. A brief

discussion of water quality and standards has also been included in the background

discussion. An introduction to the COD parameters for water quality determination is

also included in this section. Section 1.3 describes the contemporary problems and issues

in water quality measurement and monitoring. Section 1.4 describes the overall objective

of the study and experiment presented in this thesis.

1.2 Background

Although 70% of the earth’s surface is covered with water, more than 96% of the

water is contained in the ocean [3]. Ocean water is not useful for most daily human

activities. The remaining water is contained underground and in lakes, rivers, swamps,

and the atmosphere. Table 1 shows the global distribution of water. This table also

accounts for the water content of living organisms (known as “biological water”).

3

Table 1. One Estimate of Global Water Distribution

Water source
Water volume,

in cubic miles

Water volume, in

cubic kilometers

Percent

of fresh-

water

Percent

of total

water

Oceans, seas, and bays 321,000,000 1,338,000,000 -- 96.54

Ice caps, glaciers, and

permanent Snow

5,773,000 24,064,000 68.6 1.74

Groundwater 5,614,000 23,400,000 -- 1.69

 Fresh 2,526,000 10,530,000 30.1 0.76

 Saline 3,088,000 12,870,000 -- 0.93

Soil moisture 3,959 16,500 0.05 0.001

Ground ice and permafrost 71,970 300,000 0.86 0.022

Lakes 42,320 176,400 -- 0.013

 Fresh 21,830 91,000 0.26 0.007

 Saline 20,490 85,400 -- 0.007

Atmosphere 3,095 12,900 0.04 0.001

Swamp water 2,752 11,470 0.03 0.0008

Rivers 509 2,120 0.006 0.0002

Biological water 269 1,120 0.003 0.0001

Source: Igor Shiklomanov, “World Fresh Water Resource,” Water in Crisis: A Guide

to the World’s Fresh Water Resources, ed. Peter H. Gleick (Oxford University Press,

New York, 1993).

Freshwater is used much more often than saline water. Fig. 1 shows some sample

usage ratio statistics for groundwater versus freshwater and saline water versus

freshwater. The statistics clearly show that the usage of freshwater is much more

prominent than the usage of saline water. Although the natural water cycle [4] maintains

the supply of freshwater, water shortages are a growing issue in different parts of the

world. This water crisis affects not only the human race but also every living being on

the planet. There are many manifestations of the water crisis, including the following:

4

1. About 884 million people worldwide do not have access to safe drinking

water [5].

2. About 2.5 billion people worldwide do not have access to water for sanitation

and waste disposal [6].

3. Overuse of groundwater causes low agricultural yield [7].

4. Pollution of water resources affects biodiversity [8].

Fig. 1. Sample Water Usage Statistics

Source: USGS, How much water is there in, on and above the Earth?

http://ga.water.usgs.gov/edu/earthhowmuch.html, (Accessed May 20, 2012).

5

There are two plausible solutions to this growing problem of water crises.

1. Recycle water within a system (e.g., recycle of sanitation water within a large

building).

2. Remove contaminants from water before returning the water from a system

to nature (e.g., treat water waste from industry before releasing it to rivers or

the ocean).

Both of these strategies require a process for eliminating contaminants from water.

In general, this process of removing contaminants from water is known as the water-

treatment process. A water-treatment procedure may involve physical, chemical, and

even biological processes with the goal of removing contamination from water so that the

treated water may be reused for a specific purpose like drinking, sanitation, or medical,

agricultural, or industrial usage [9]. Each type of water usage has its own standards and

recommendations for the upper limit of contaminants. For example, water used for

medical purposes should have much less contamination than common drinking water, if

any at all. Even industrial usage of water varies from industry to industry [10]. An

example of drinking water standards can be found in the web documentation of the U.S.

Environmental Protection Agency [11]. This list subdivides contaminants into six

categories: microorganisms, disinfectants, disinfection byproducts, inorganic chemicals,

organic chemicals, and radionuclides.

One of the challenges for any water treatment plant is to analyze the water quality

and the standard of the treated water before releasing it to nature for reuse or to recycle.

6

COD is one such measurement of quality and indicates the amount of organic compounds

in water [1]. In acidic conditions, nearly every organic chemical can be fully oxidized to

carbon dioxide (CO2) and ammonia (NH3) using a strong oxidizing agent [1]. Equation

1 is a simple formula to compute the amount of oxygen needed for complete oxidization

of an organic compound [1].

 (

)

 (

)

 Equation 1

COD measurement indicates the amount of oxygen needed to oxidize organic

compound contamination in water. Thus, COD can indicate water quality in terms of

organic compound contamination.

1.3 Problem Statement

Contemporary COD analysis methods involve either one of the pure chemical,

electrochemical, spectrometry/colorimetry-based, or photo-catalytic-based instruments.

According to a publication from the University of Georgia,

The most popular current testing method for COD involves using sealed and

heated (i.e., closed reflux) low-range (3150 ppm) or high-range (201,500 ppm)

pre-prepared vials that change color from orange to green based on the amount of

oxidation and that are read using a laboratory colorimeter. [12]

7

A person must conduct the COD analysis procedure because each of the methods

mentioned above is chemical reagent based. The steps are quite involved and complex

including hazardous closed reflux processes in an acidic test environment. The

contemporary methods of COD measurement usually involve a setup process [13] and

environmentally unfriendly reagents (e.g., mercury) [16]. Therefore, disposal of wastes

from the contemporary COD determination experiment create additional overhead.

Moreover, because these methods are a chemical oxidation-based measurement

procedure, they cannot account for certain organic chemicals, such as aromatic

hydrocarbons, volatile organic compounds, pyridine and related compounds, ammonia,

and straight chain aliphatic [13, 14, 16]. In addition, contemporary COD analysis

procedures are sensitive to the experimental environment. None employs automatic

adaptation of experimental environment variability.

Except for the photo-catalytic process [15] (which takes 23 minutes), other

popular processes need 23 hours to be conducted [12, 16]. All the instruments involved

(i.e., colorimeter or PeCOD
TM

) are stand-alone devices and custom made for a specific

set of analyses. The general extensibility of functionality to determine new types of

chemicals and compounds are limited in such custom-made systems. In addition to the

basic cost of a customized machine, all these methods of chemical reagent-based analysis

have recurring costs associated with their practical applications. Hence, over time, the

total cost of water quality analysis becomes significant.

8

1.4 Objectives of the Study

The main objective of this study was to find a cheaper, faster, mobile, extendible,

and reliable solution for online COD analysis. Therefore, a complete study of

contemporary COD analysis methods was undertaken, and the disadvantages of these

methods were identified. To reduce the recurring charges on chemical reagents, a

method of COD analysis without any chemical processes must be implemented. To

reduce base costs of purchasing special-purpose machines for COD analysis, a method

using a general-purpose system must be considered. Such a method would also create a

possibility for extending the analysis system to a different set of parameters other than

COD. The system also must be portable for in situ COD analysis. Because analysis can

produce a huge amount of data, a system that can handle and analyze large amounts of

data must be considered. Compensation for analysis condition variability must also be

taken into consideration.

The basic idea of this thesis was to study and experiment with the possibility of

using a general-purpose mobile computing system integrated with a cloud [17] and using

a relatively cheap spectroscopy analysis instrument working in the UV-Vis frequency

range. An ANN [18] was used to implement an adaptable system in a variable analysis

environment. Usage of a general-purpose mobile computing platform gave the

advantages of portability and reduction of the base cost to engineer such a system

compared to a special-purpose machine. The success of this experiment should prove

that a COD analysis application could be built for contemporary smartphones. In that

case, COD analysts only need to carry their smartphones and a lightweight spectroscopy

9

device on-site. The proposed system, which is built on top of a general-purpose

computing system, has the advantage of functional extendibility. New tests can be added

to the software applications to accommodate more types of tests and analyses. By

integrating the system with a cloud [19], analysis can be performed on a remote server.

This would bring two advantages—along with the obvious advantage of the ability to

execute complex and powerful algorithm for data analysis. One advantage would be not

overloading the mobile system. Therefore, the system can focus on data gathering and

communication to the cloud the server only. The other advantage would be a further

reduction of costs by using a pay-per-use model [19].

10

CHAPTER TWO

LITERATURE SURVEY ON COD MEASUREMENT TECHNIQUE

2.1 General COD Measurement Techniques

Three major techniques for general COD measurement were identified in the

literature survey. All three techniques involve chemical processes. The first technique is

purely based on chemical processes involving measurement of the amount of reagent

used. The next two processes are a combination of chemical and spectrometry or photo-

catalytic analysis.

2.1.1 Chemical Reflux and Titration-Based Method

Zhang’s Fundamental of Environmental Sampling and Analysis [16] has a clear

description of the process of COD measurement using chemical reflux and the titration-

based method. Fundamentally, in this process, the water sample is refluxed with

potassium dichromate (K2Cr2O7) in a strong acid condition. Often the acidic condition is

created by mixing concentrated sulfuric acid (H2SO4) into the water sample. The reflux

process is conducted for about 2 hours. During this process, the organic compound

mixed with sample water is converted into carbon dioxide (CO2). Any organic nitrogen

is converted into ammonium ions (NH4
+
), which further can be converted into nitrate

compounds. In this reflux process, the amount of potassium dichromate digested depends

on the amount of organic compound present. Therefore, by measuring the amount of

potassium dichromate digested in this process, COD can be measured indirectly.

11

To detect how much potassium dichromate is left after the reflux process, a

chemical titration process is performed using ammonium iron (II) sulfate

[(NH4)2Fe(SO4)2.6H2O], which is also known as ferrous ammonium sulfate (FAS) or

Mohr’s salt [20]. This salt is classified as double salt of ferrous sulfate and ammonium

sulfate [20]. In this titration process, the chelating agent 1,10-phenanthroline (ferroin,

C12H8N2) is used as the indicator. At the start of the titration process, the refluxed water

sample color is between yellow and orange brown depending on the concentration of

undigested potassium dichromate (the Cr2O7
2-

 is responsible for this color). Thereafter,

the color changes to a blue-green at the start of the titration process, which is the color of

the Cr3
+
. The titration process is concluded when the solution sharply changes to reddish

brown, which is the color of Fe{C12H8N2}. By measuring the amount of FAS used for

titrating, the excess amount of potassium dichromate and thus the COD amount in the

sample water can be determined. The detailed process and formula can be found in the

reference book mentioned at the beginning of this subsection.

2.1.2 Colorimeter-Based Method

The colorimeter-based method is similar to the chemical reflux-based method

described in section 2.1.1. The main difference is that instead of measuring the

concentration of undigested potassium dichromate using a titration method, the

colorimeter-based method uses colorimeter [23] to determine the concentration of

undigested potassium dichromate. A colorimeter uses principles of colorimetry, which is

a technique “used to determine the concentration of colored compounds in solution” [21].

A colorimeter uses references to a known concentration of a substance under examination

12

in a solution to compute the concentration of the substance in that target solution. A

detailed description of the colorimeter-based method can be found in the University of

Georgia publication Understanding Laboratory Waste Water Test: I. ORGANICS (BOD,

COD, TOC, O&G) [12]. According to this method, many samples of known COD

(usually calibrated with KHP or potassium hydrogen phthalate solution) are used as a

reference to a colorimeter. Because this colorimeter-based technique is dependent on the

color absorbance of the material, it is important to select the right color filter in the

colorimeter. The colorimeter should use light of such a color that the sample can absorb.

For example, red light can be used to detect the concentration of a blue-colored solution

[25]. Fig. 2 and Fig. 3 are pictures of a very simple colorimeter from Vernier Software

and Technology (http://www.vernier.com/company/).

Fig. 2. A Simple Colorimeter

[Composed from the original source]

Source: Vernier Software and Technology, Colorimeter,

http://www.vernier.com/products/sensors/col-bta/ (Accessed June 15, 2012).

13

This simple colorimeter offers four different ranges of color wavelength (430, 470,

565, and 635 nm). The corresponding software captures the absorbance of the light

through the sample. The sample is put into the sample holder and covered with a sample

cover prior to the start of the operation. Using this colorimeter and software interface,

calibrated samples can be used to build the absorbance curve with respect to the sample

concentration. Once the absorbance curve is determined, an unknown sample can be

used to measure concentration through the mathematical method of curve fitting, which is

implemented using the associated software.

Fig. 3. Software for the Colorimeter Operation

Source: Vernier Software and Technology, Colorimeter,

http://www.vernier.com/products/sensors/col-bta/ (Accessed June 15, 2012).

14

2.1.3 Photo-Catalytic Method

The ManSci Inc. (http://www.mansci.com/) developed patented technology based

on the photo-catalytic method. This technology uses a sensor with UV-activated

nanoparticulate titanium dioxide (TiO2) [15]. External electric circuitry measures the

amount of current produced by this sensor. Fig. 4 shows how the photo-catalytic sensor

works.

Fig. 4. The PeCOD Machine and the Work Mechanism.

[Composed from the following source]

Source: ManSci Incorporation, COD Analysis,

http://www.mansci.com/products/PeCOD/index.html#WhatisPeCOD (Accessed June 15,

2012).

UV radiation creates a photo hole on the TiO2 sensor. It also has very high

oxidizing power that guarantees complete oxidation of organic compounds in the sample.

The electric circuit measures the number of electrons released, which is proportional to

15

the amount of organic material oxidized in the process. The graph in Fig. 5, published by

the same company, shows the effectiveness of the PeCOD instrument.

Fig. 5. Photo-Catalytic versus Dichromate Method

[Composed from the following source]

Source: ManSci Inc., COD Analysis,

http://www.mansci.com/products/PeCOD/index.html#WhatisPeCOD

Fig. 5 shows the theoretical COD on the x-axis and measured COD on the y-axis.

With this data, the photo-catalytic method is proven to have closer correlation with

theoretical COD values than the conventional dichromate method.

16

2.2 UV-Vis Spectroscopy for COD Detection

Although there is a plethora of methodologies proposed for fast COD

determination, the most popular methodology is based on an indirect spectroscopic

technique due to its simplicity and fast response time [28]. This section not only

describes such techniques but also explains the basic concept of spectrometry physics,

which should help to explain the proposed section topic. Most of the contents of this

subsection have been derived from the chapter “The Basics of Spectrophotometry

Measurement” from by Thomas and Burgess’s UV-Visible Spectrophotometry of Water

and Wastewater [26].

2.2.1 Physics of Spectroscopy

The physics of spectroscopy has been studied for centuries by many eminent

scientists including Sir Isaac Newton, Albert Einstein, Niels Bohr, and Max Planck.

Light, or in general electromagnetic radiation (EMR), takes a central role in the process

of spectroscopy. EMR interacts with atoms and molecules in a specific way. A part of

EMR is absorbed within a material. This phenomenon produces a characteristic

absorption profile (or emission profile) for the material under investigation. The process

of spectroscopy relies heavily on this interaction.

The ability to detect emission profiles for EMR is determined by the range of

visible colors. The property of EMR that determines color is wavelength. Usually EMR

is represented as a sine curve and the wavelength is defined as the peak-to-peak distance

between two adjacent peaks of the sine curve as shown in Fig. 6.

17

Fig. 6. Wavelength for an EMR

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical

Chemistry)

The mathematical symbol for wavelength is . The other physical characteristic of

the EMR is its frequency (), which is expressed in Equation 2, where c is the speed of

light.

Equation 2

There is an infinite range of wavelengths for EMR, although only a tiny range is

detectable by the human eye, which is known as visible light. Fig. 7 shows the ranges of

the EMR spectrum, which include the range of visible light.

Notably, the human eye does not have the same response for all visible EMR

wavelengths. The response from a human eye depends on its receptor cells. Different

ranges of EMR wavelength simulate the eye’s receptor cells in different amounts [27].

Fig. 8 shows the human eye response pattern for visible EMR.

18

Fig. 7. The EMR Spectrum

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical

Chemistry)

A special electronic semiconductor device is used for all practical spectrometry

applications. This device is known as a charge-coupled device or CCD [28]. This

special device is able to detect a wide range of EMR wavelengths. It is used not only as a

spectroscopic sensor but also in digital image capturing and other imaging areas. These

sensors convert incoming light particles or “photons” into digitally accounted numbers

for further processing by digital data processors.

Light, or EMR, presents dual behavior as a wave and a particle. The particles are

known as photons. Equation 3 shows the amount of energy E carried by a photon particle

of wavelength . This equation contains two constants: h is Planck’s constant (

 Js) and c is the speed of light in a vacuum (m/s).

19

 Equation 3

Fig. 8. Relative Response of the Human Eye to Visible EMR

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical

Chemistry)

When an energy beam falls into a material’s electron cloud, the phenomenon of

discrete and quantized absorption of energy occurs. In a very simplified sense, this

quantized absorption promotes an electron of the material from its ground state to its

excited state. Depending on the amount of energy required to bring an electron from its

ground state to its excited state, the amount of absorbed EMR of a specific wavelength

can be computed using Equation 3. Because different materials exhibit a need for

different amounts of quantized energy for the orbital promotion of an electron, different

materials exhibit different spectra of absorption. Additionally, the amount of EMR

absorbed by a material also depends on the amount of material used in the analysis.

20

Hence, the absorption characteristics of the material can be used to detect the material, as

well as determine the amount of material. Fig. 9 shows a simplistic model and a

calculation of the electron promotion and EMR absorption relationship.

Fig. 9. Photon Capture by Molecule

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical

Chemistry)

In addition to absorption, the phenomena of transmission, reflection, refraction,

scattering, luminescence, and chiro-optical phenomena also occur when an EMR falls

onto a material. Any good spectroscopic process aims to minimize the effects of these

additional phenomena.

Because electron transition occurs at a high energy level, absorption occurs in the

UV region rather than in the infrared or microwave region. Even a simple molecule like

benzene presents a complex spectroscopic pattern as in Fig. 10.

21

Fig. 10. Vapor State Spectrum for Benzene

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical

Chemistry)

Different parts of a molecule characteristically absorb different parts of the EMR

spectrum. These active parts are known as chromophores. The wavelength a

chromophore absorbs depends on the constitution of the chromophores. As a result,

different chromophores present in a molecule and their quantity create unique spectral

absorption signature for a specific molecule.

The absorption of a specific wavelength depends on the type of transition of the

electron. There are three types of molecular orbits in the ground state: sigma (), pi ()

22

and nonbonding (n). There are two types of molecular orbits in the excited state: sigma

star (

) antibonding and pi star (


) antibonding. There are four types of transitions

from the ground-state molecular orbit to the excited-state molecular orbit as in Fig. 10.

Fig. 11. Molecular Orbit Transitions

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical

Chemistry)

Different chromophores cause different orbital transitions for electrons. As a result,

they absorb EMR of different wavelengths. Fig. 12 shows different absorption spectra

per building block of organic compounds.

23

Fig. 12. Table of Absorption Maxima for Isolated Chromophores

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical

Chemistry)

After radiation goes through a solution of a target material into a nonpolar solvent

like water, there are two fundamental laws and one composite law to describe the relation

between the intensity of emerging EMR and the intensity of attenuated EMR. Let I0 be

the intensity of the parallel beam EMR of wavelength  falling onto a solution of

thickness b. Let M be the amount of concentration of the EMR absorber in the solvent.

If I is the attenuated intensity of the EMR parallel beam, then Lambert’s law gives the

following Equation 4. The term k in this equation is a wavelength-specific constant.

Equation 4

In this same scenario, Beer’s law gives the following Equation 5.

24

Equation 5

Combining Lambert and Beer’s law, the following Equation 6 can be obtained as

the composite analytical formulation, which is also known as Beer-Lambert law.

 Equation 6

This composite constant
 / 2.303 is known as molar absorptivity, and the left side

of Equation 6 is known as the absorbance, often symbolized as A.

2.2.2 Spectroscopy in COD Analysis

There are many different types of organic material in wastewaters. Each absorbs

part of the EMR in the UV-Vis range according to its characteristics. Hence, the

resultant spectroscopic data are compound effects of all the participating materials.

Because there can be a high number of different organic materials present in wastewater,

it is very difficult to analyze a specific organic compound, except if one such specific

compound presents in very high concentrations as in industry wastewater. “This is the

reason why the measurement of aggregate organic parameters (oxygen demand, for

example) and constituents (phenol index, for example) is most often used for waste water

quality control” according to Thomas and Theraulaz [30].

There are two main approaches to determining aggregated parameters for

wastewater from the UV-Vis spectroscopic data. Fig. 13 presents the top-level idea for

both approaches. The first approach is to determine one or two wavelengths that present

a useful correlation to the parameter value to be determined. The second approach is to

use multiwavelength exploitation techniques. Historical information shows that the

25

multiwavelength exploitation is more useful than the other approach in aggregated

parameter determination [30].

Fig. 13. Main Approach for the Aggregated Parameter Determination

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical

Chemistry)

Many scholarly articles [31-45] dealt with UV-Vis spectroscopy data analysis.

Most multiple wavelength analyses use multicomponent analysis techniques, like

multiple linear regression [41], partial least squares regression [42], or ANNs [37, 43-45].

All of these approaches have been researched to minimize the determination time of the

aggregated parameter, such as COD, needed to analyze the UV-Vis spectral absorption

characteristics of a given water sample. The target for devising such a procedure is also

to maintain a level of accuracy close to that of chemical reagent-based procedures.

26

2.3 ANN-Based Approach

The ANN study and its engineering application have continued for decades.

McCullouch and Pitts [46] proposed the first mathematical model for a neural network in

1943. Later, Rosenblatt [47] developed a perception model to implement a pattern

recognition algorithm based on a two-layer learning computer network. However, neural

network research was halted in 1969 for almost 6 years when Minsky and Papert [48]

pointed out two key issues related to neural network computation machines. The first

issue was the inability of a single perception network model to process XOR logic. The

second issue was the lack of a powerful computer to process a large neural network. In

1975 Kunihiko Fukushima [49] designed cognition, which is a precursor to the trainable

multilayered neural network. Later, rediscovery of a back propagation algorithm for

neural network training [50] popularized neural network research and applications in

engineering problem solving. There have been many examples of applying ANN in

determining COD and organic components dissolved within wastewater [37, 43-45]. In

this section, a general ANN concept and two different methods of applying ANN to

wastewater analysis have been discussed.

2.3.1 General ANN Conception

ANN was developed to coarsely mimic the mechanisms of the human brain. The

human brain consists of billions of specialized cells called neurons. Fig. 14 shows a

schematic structure of a neuron.

27

Fig. 14. Schematic Diagram for a Typical Neuron Cell

Source: Carlson, Niel. A. (1992). Foundations of Physiological Psychology. Needham

Heights, Massachusetts: Simon & Schuster. pp. 36

A neuron has a cell body called a soma, short signal receiver branches named

dendrites, and a long transmitter branch called an axon. Each cell receives electrical

signals from neighboring transmitter neurons through the dendrites, and then it processes

the electrical and chemical signals before sending them out through its axon via the

terminal buttons and across the synaptic cleft to the neighboring receiver neurons.

Through a very complex network of billions of neurons, human brain processes

surrounding information received through five sensory organs: eyes, nose, ears, tongue,

and skin. All the creative thinking and logic processing in a human brain is done via this

intricate network of neurons.

Similar to the natural neuron, a mathematically composed artificial neuron and

neural networks have been modeled and successfully used in many areas [18]. A neuron

28

in the context of an ANN is a node M in a directed graph structure with a single weighted

output arc and one or more multiple weighted input arcs as shown in Equation 7.

 (∑()

)
Equation 7

In Equation 7 the term Ni is the output value of the ith input nodes for M, and wi is

the weight of the arc of the connection (Ni  M). The function f can be any type of

activation function, including a step, linear, or sigmoid function, depending on the

application. In some cases, even stochastic functions are used to model complex

behaviors in an ANN. Fig. 15 shows the typical activation function types.

An ANN, in the most ordinary sense, is a network of artificial neurons. It is a

directed graph with weighted arcs, a set of input nodes, and a set of output nodes. An

ANN with N input nodes (sometime called features) implements an approximation

function with N independent variables. This approximation function theoretically fits well

into all possible outcomes for any combination of N independent features.

Fig. 15. Typical Activation Functions Used in ANN

29

Fig. 16 shows an example of an ANN graph structure and an imaginary function

that an ANN is implementing. This example of an ANN has one input node (N1) and one

output node (N8), which implement a function of f(x) with a single independent

feature/variable x (which is the value of N1). This ANN has two hidden layers with four

(N25) and two nodes (N67), respectively. Each has connected input/output arcs with

different connection weights.

Fig. 16. Example of an ANN Graph and the Implemented Imaginary Function

In this example, the ANN graph does not contains any loops. However, the ANN

structure allows loops if needed for the target application. The ANN structure without

loops, as in the example, is known as a “feed-forward ANN.” An example plot of a one-

dimensional function implemented by this ANN is shown in Fig. 16. Possible values that

the independent variable can assume and the corresponding function values are plotted as

o and x. The points, marked with an x, are the known samples of the population. These

known samples are used as a training set for the ANN. Training an ANN involves

30

adjusting the arc weights in such a way that the error of the output values from the ANN is

minimized with respect to the training set. The most common training method is the back

propagation algorithm [50].

2.3.2 Application of ANN in Wastewater Analysis

Many studies show that any organic material dissolved in a water sample strongly

absorbs ERM in the UV range. Different waste materials absorb a different set of

wavelengths. Absorption also depends on the amount of material present. Thus,

absorption analysis should have a direct relation to the COD parameter, which

characterizes the wastewater contamination level. However, because many different

chemicals can be part of the wastewater, analysis should not be performed on only a single

or only a couple of wavelengths. The entire UV-Vis wavelength range should be analyzed

with lower precision. Hence, the number of independent analysis parameters is great.

This poses a challenge to conventional mathematical regression, as well as ANN training.

An ANN with a large number of input nodes (one per wavelength considered) usually

raises problems in training convergence. Therefore, the main challenge in ANN-based

COD analysis is to reduce the number of independent parameters or features while

maintaining an acceptable level of accuracy. Fogelman et al. described such a feature

extraction method in the article “Neural Computing & Application” [37]. In a different

application, Benjathapanun et al. showed a feature reduction technique using the second

differential (or the absorption shape) of spectral absorption data [38].

31

CHAPTER THREE

OVERALL METHODOLOGY USED IN THE THESIS

3.1 Objectives

There were multiple objectives of this specific thesis work in relation to COD

analysis on an embedded and cloud-enabled device.

1. The first objective was to establish a new methodology to identify a specific

photometry pattern for water that has COD.

2. The second objective was to build a cloud-enabled embedded platform that

could be used to collect photometry data from a water sample and use the

developed methodology to determine if the sampled water has COD.

3.2 Method to Detect COD Patterns

Photometry data present specific patterns for water samples with COD or without

COD. The basic idea for this study was to develop an algorithm to identify patterns of

the photometry data for a water sample, which are deterministically indicative of COD

content. Because the collected data can have random noises or variations from the data

analysis environment, it is important to establish a good methodology to determine a

photometry pattern with such variations and noises indicative of COD content in water.

Because there can be many unknown and nondeterministic pattern-variation factors, an

ANN is the preferred tool to handle such variations in collected photometry data.

A simple methodology was implemented in this thesis work. The basic idea was to

divide the obtained photometry absorption data into N finite, equidistance, normalized

32

samples. These N samples were normalized with respect to the highest data present in the

set (i.e., by taking the highest data present as 1.0). An ANN was trained using these N

samples. The implemented ANN had N inputs and 1 output. For this work, a single-

perception ANN was used with 20 inputs and 50 intermediate nodes in the hidden layer

and single output. The output state of this ANN (1 or 0) would represent the presence or

absence of COD in water. Therefore, the photometry spectrum range was divided into 20

equidistant points (as shown in Fig. 17) for the sampling.

Fig. 17. Sampling the Signal

3.3 Methodology Experiment

To prove that an ANN could be deployed to identify specific photometry patterns,

data were generated from a mathematical model of a complex signal and applied for

pattern detection (see Equation 8) instead of applying the ANN-based pattern recognition

on real photometry data.

33

 () () ()
Equation 8

Where F(t) is the summation of sine harmonics with a symmetric amplitude as in

Equation 9 and n(t) is the uniformly distributed white noise with a probability distribution

function as given in Equation 10.

 () ∑(() (()))

Equation 9

 ()

Equation 10

The in Equation 9 is the random phase shift between 0 and /2. The in

Equation 9 is the amplitude for the nth and the (2P – n – 1)th harmonics of the composite

signal.

The experiment was done with a P value of 1, 2, 4, 8, 16, 32, 64,128, 256, and 512,

along with a base signal of (). The base frequency for the experiment

was taken as 1 KHz. The amplitude of the symmetric harmonics was taken randomly

between 0 and 1 with two extreme component amplitudes as unity. For the base signal

and the signal corresponding to each P, 100 different amplitude patterns were used in the

experiment. For each of the amplitude patterns, a training set was generated with 100

samples injecting a random noise and phase shift. The random noise amplitude was fixed

at 20% of the base amplitude of the signal. This set was the confirmative training that

34

should result in an ANN output of 1. Per the amplitude pattern, the training set also

contained 100 random signal patterns, which were treated as non-confirmative training

and should have resulted in an ANN output of 0. Because 20 equidistant sample points

were taken from the white noise-injected random signal, these points also represented a

nonrandom signal pattern with a different amplitude, frequency, and phase for which the

ANN output should have been 0.

To generate the signal with R resolution, the time step was determined using

Equation 11, where f is the frequency. Among these R points of the signal, covering the

period T of the signal, S equidistance samples were taken to feed into an ANN input.

Equation 11

3.4 Methodology Validation

In this experiment, R was set to 1,000 and S was set to 20. The experiment was

performed using anCod software with automated scripts to generate different signal

patterns. Per the amplitude pattern, 200 test sets were also generated with 100

confirmative and 100 non-confirmative tests. Therefore, per harmonic combination (1, 2,

4, 8 … 2048), there were 20,000 data patterns to train or test the implemented ANN. The

error percentage comparing the test patterns’ expected result was measured as the success

of the methodology proposed. This experiment showed the following observations.

1. The minimum error was 0%.

2. The mean error was 2.21%.

35

3. The standard deviation was 5.24%.

4. The maximum error was 6.5%.

Fig. 18 shows the distribution of percentage of error over the entire experiment

sample and deviation distribution.

Fig. 18. Error Deviation (above) and Error Distribution (below) for the ANN

36

Table 2 shows the quality results of the implemented ANN and includes the number

of harmonics in the composite signals and the max, min, and mean percentages of error

with standard deviation. The picture of sample signal generated per harmonics is also

included in Table 2.

Table 2. Methodology Experiment Results and Sample Signal

 #

Harmonics Sample signal

Maximum

% of error

Mean %

of error

Minimum

% of error

Standard

deviation

of the % of

error

1

5.5 1.35 0.0 0.94

2

4.0 0.46 0.0 0.71

4

2.0 0.17 0.0 0.35

8

2.0 0.20 0.0 0.44

16

6.5 0.41 0.0 0.84

32

4.0 0.56 0.0 0.89

37

 #

Harmonics Sample signal

Maximum

% of error

Mean %

of error

Minimum

% of error

Standard

deviation

of the % of

error

64

6.0 0.88 0.0 1.08

128

3.0 0.59 0.0 0.73

256

2.5 0.48 0.0 0.61

512

2.0 0.31 0.0 0.49

1024

2.5 0.28 0.0 0.44

3.5 Conclusion

The experiment results showed that the proposed ANN architecture and pattern

recognition methodology were acceptable in terms of quality of results. The central

tendency of the error was very low and within a manageable range as suggested by the

mean error and standard deviation. The chart showing the distribution of error

percentages (Fig. 18) also supported the same observations and conclusions.

38

CHAPTER FOUR

IMPLEMENTATION OF THE SYSTEM

4.1 Overall System Architecture

The target system was a cloud-based [61] mobile system armed with a portable

photometer with adequate photometry analysis accuracy. Fig. 19 shows the complete

system architecture in a schematic.

Fig. 19. Schematic of Overall System Architecture

The system contains a UV light source, water sample holder, and photometer all

linked to each other through an optical fiber. The photometer is connected to the mobile

device through a USB channel. The mobile device is cloud enabled to store the

photometry data on the cloud and perform data analysis on the cloud server. The cloud

server can also access the cloud storage to read the photometry data and store the results

of the analysis. The underlying vision of this thesis was to study the possibility of

39

constructing a cheap mobile system using a common mobile phone coupled with a

portable photometer for an instantaneous COD detection of water.

4.2 Implementation Components

4.2.1 Mobile Platform

Tiny6410 [51] was selected to implement the mobile platform. This system used an

S3C6410 processor, ARM11 implementation from Samsung [52], and SMDK6410

software development kit for software implementation. Fig. 20 shows the hardware

board used in this work.

Fig. 20. Tiny6410 board

This specific system used a 4GB external SD card for system booting and storage of

the mobile system. With this feature, the software footprint was of less concern than

using onboard flash storage.

40

4.2.2 Photometer and UV Light Source

As a portable photometer, Red Tide USB650 [53] from OceanOptics was used in

this work. Red Tide USB650 is a low-cost photometer for academic and college

laboratory purposes. The photometer’s USB connectivity provides easy connection to the

Tiny6410 mobile system.

Fig. 21. Portable Photometer and UV Light Source

The DT-MINI-2 Deuterium Tungsten Halogen Light Source [72] from OceanOptics

was used as the UV-Vis light source. This unit can produce light with a wavelength

between 189 nm and 885 nm. Fig. 21 shows the photometer and the UV light source

used in this work.

4.2.3 File and Application Server

In general, a cloud infrastructure allows virtualized machines to share common

hardware. To keep the setting simple, using VirtualBox [54] two virtual servers were

configured to run the UBUNTU Linux Server [55]. One of the virtual servers was

configured to act as the network file server (NFS) and the other was configured as an

41

application server receiving remote execution requests using secured shell (SSH)

protocol. These servers were connected through a home router implementing a local area

network (LAN).

Fig. 22. VirtualBox-based Virtual UBUNTU Linux Server

4.2.4 Development Environment

The development environment in this work was a mixture of Windows (as the host

platform) and a virtual machine running UBUNTU Linux on a Windows host. On the

Windows side, Tera Term [56] was used as the console for Tiny6410. This enabled the

use of a host computer to control and operate the Tiny6410 without using Tiny6410’s

native small LCD display with a touch-screen keyboard. In addition, SpectraSuit [57]

software from OceanOptics Inc. was used to validate the collected photometry data

against the data collected from the Tiny6410 platform. This ensured that the data

collection quality was within an acceptable range on the Tiny6410 platform.

42

A virtual machine running UBUNTU Linux was used to develop the software to

control the system operation and implement the ANN-based algorithm for COD detection

from the photometry data of a water sample. Netbeans [58] was used as an integrated

development environment (IDE) in this work. The software was written in C and shell

script to keep the memory footprint of the entire software manageable and within the

limits of the memory available on a mobile platform. The GNU C native compiler for

x86 was used along with a cross compiler for ARM11 (which came with the SDK). The

implemented software was executable both on an x86 and an ARM11-based system

through shell scripting and cross compilation.

4.3 Software Implementation Details

To keep the setup simple, an NFS-based file system was used instead of a cloud-

based file system, and a secured remote shell (SSH)-based remote execution was used

instead of a cloud-based remote execution. These basic changes were sufficient to prove

the concept of the software, as cloud-based services are nothing but accounted remote

storage and servers. With these basic changes, the top-level architecture looks similar to

that shown in Fig. 23.

At first, the ARM11 system board was installed with a compiled Linux kernel and a

simple GUI-based user environment. (The details of this implementation can be found in

APPENDIX A.) The photometer came with an application and driver for the Windows

platform. In addition, a device driver module was developed and installed on the Linux

side to gather photometry data on the ARM11 platform. Previous internal work [59]

43

performed at the San Jośe State University Computer Engineering Department was used

for this purpose. (Details can be found in APPENDIX B.)

Fig. 23. Simplified System Architecture Replacing Cloud

The virtual servers for NFS and SSH-based remote application executions were

configured using the UBUNTU Linux server installed on VirtualBox and running on the

host Windows system. Both of the servers were connected to each other using a LAN

implemented using a domestic router. (Details of this implementation can be found in

APPENDIX C.)

To implement the ANN, a fast artificial neural network (FANN) library [60] was

used. (An introduction to this library can be found in APPENDIX D.) The existing

library can store trained ANN models in a text file that may be loaded into the execution

memory using the FANN library API. However, the memory footprint for this library is

quite large; thus, it is not suitable for use on a mobile platform. To use the FANN library

44

effectively to train ANN for this thesis work, the library was extended to generate a

compact, precompiled C model for the trained ANN. In that way, the ANN model can be

loaded into the memory and used in the target application without loading the entire

FANN library. (The details of this FANN extension for a precompiled C model

generation can be found in APPENDIX E). Finally, the anCod software system was

implemented to control the system operation. (The details of this software can be found

in APPENDIX F). Fig. 24 depicts the complete ecosystem implemented in this work.

In the implemented system, the ARM11 board hosted the anCod client process,

which controlled the operation of the UV light source and the photometer’s data-

capturing operation. This client also processed the photometry data and stored the

processed data on an NFS partition. The captured data were either training data with a

known COD for ANN training purposes or test data with an unknown COD. These two

types of data were created depending on the options used in an anCod client invocation

for a test or training data set generation. This client process also requested remote

execution to the SSH server to run the anCod trainer or server, depending on the option

provided at run time.

The anCod trainer process was executed remotely on the SSH server. It read the

training data stored in the NFS partition and created a compiled ANN model after

training was completed. The anCod server process was also executed on the remote SSH

server. It analyzed the test photometry data stored on the NFS partition by the client

process using the trained ANN stored by the trainer process. The same NFS partition

45

stored the analysis results, and the client process used this stored result to display the

results through the ARM11 system.

Fig. 24. anCod Hardware and Software Ecosystem

4.4 System Implementation

Fig. 25 shows the actual setup for the overall system. There were two distinct parts

of the system. One was the computing system, which analyzed the photometry data. The

other part was the chemistry and photonics laboratory setup. This experiment used very

basic chemistry laboratory sets. The setup consisted of a 1L laboratory flask (to store the

calibrated sample for COD measurement), a 100 ml graduated cylinder, test tubes (to

hold various concentrations of COD samples), test tube holders, funnels, and tubes. The

46

photonics part of the laboratory setup consisted of a UV-Vis light source, fiber channel

connectors, and the flow cell.

Fig. 25. Overall Setup for the COD Analysis System

The photonic lab setup used gravity and the water’s property of being at the same

level to conduct the experiment. Fig. 26 shows the setup for the photonics lab part in this

experiment along with the flow cell picture. The entire sample flow system was built on

a chemistry lab stand. The water sample was injected into the flow cell through the

receiver funnel, which was connected to the flow cell’s sample inlet though a tube. The

flow cell was kept in such a position that water could always flow through the capillary

channel inside the flow cell under the influence of gravity. During the sample analysis,

the draining funnel was kept high using a test tube holder, which was also connected to

the flow cell’s sample outlet through another tube.

47

Fig. 26. Photonics Lab Setup and Flow Cell

[Source: The flow cell photo was taken from the OceanOptics website

http://www.oceanoptics.com/Products/fiazsmaflowcells.asp]

The flow cell was wrapped with black tape to reduce interference from surrounding

light sources. The fiber channel cable from the UV light source was connected to one

end of the flow cell and another fiber cable to the photometer was connected to the other

end of the flow cell. When the sample analysis was done, the draining funnel could be

lowered and then the sample could be drained by gravity. Because the flow cell channel

was a capillary, an external hand air pump was used to make sure the capillary channel

drained properly.

48

Fig. 27. Computing Setup for COD Analysis

Fig. 27 shows the computing setup for COD analysis. The entire thesis work used a

laptop (Dell Latitude with 4x2.7 GHz x64 CPU, 4GB RAM, and a 120 GB hard disk) as a

computer platform. The mobile platform Tiny6410, connected with the photometer (Red

Tide USB650) through a USB, was connected to the laptop on a LAN through a home-

based router.

The laptop hosted two virtual servers running under VirtualBox and the

HyperTerminal for the Tiny6410. Fig. 28 shows the three running windows for the

system connected through the LAN. One of the virtual servers served as an NFS that

49

hosted a disk partition and was accessible to the Tiny6410 and any other machine on the

LAN.

Fig. 28. Screen Capture of the Running Instances

The other virtual server acted as a remote execution platform for the Tiny6410.

This server used SSH protocol for remote execution. The Tiny6410 system could access

this machine to run any analysis remotely and obtain the analysis results.

50

CHAPTER FIVE

EXPERIMENT, RESULTS, AND CONCLUSION

5.1 Experiment Setup

The system operation and validity were established through several steps by

performing COD detection in known samples. A set of calibrated water samples with a

known COD amount was prepared. The calibrated sample preparation method is

described in subsection 5.1.1. The spectroscopy data were collected for these calibrated

samples and used in ANN training. Random noise was injected into the collected data to

produce realistic data in a natural environment. The trained ANN produced an

affirmative result of 1 for spectroscopy data collected from a water sample with COD and

produced a result of 0 otherwise. The trained ANN was then tested with the collected

data and the sample of water from different sources. The success of these tests should

prove the validity of the overall system. The following subsections discuss each of the

experiment steps in detail.

5.1.1 Calibrated Sample Preparation for COD Measurement

“The Industry Standard COD testing is based upon the theoretical amount of oxygen

required to oxidize organic compounds to CO2 and H2O” [62]. This means that to

establish the efficiency of any COD measurement instrument or methodology, a standard

solution of known COD is prepared and tested using the subject of interest (e.g., an

instrument or methodology). Potassium hydrogen phthalate (KHP) is the most

commonly used compound to prepare samples of known COD [62].

51

The theoretical oxygen demand can be shown as the chemical balance in Equation

12.

 Equation 12

Equation 12 demonstrates how each molecule of KHP is completely digested with

7.5 molecules of oxygen. In terms of weight, 1.175 mg of oxygen is required to digest 1

mg of KHP. Hence, to prepare a solution with x mg COD per liter of water, x / 1.1.75 mg

of KHP must be dissolved per 1 liter of water. For example, to prepare a 1000 mg COD

per liter of water, approximately 1702 mg of KHP per 1 liter of water is needed (see

Equation 13).

Equation 13

A calibrated sample of 1 L water solution with 1000 mg/L COD was prepared for

the experiment. The preparation method followed Hach’s booklet [62]. A precise

amount of 851.5 mg of KHP was first dried overnight at 120
0
C. This dried KHP was

then mixed with 1000 ml organic-free deionized water using Class A glassware.

52

5.1.2 UV Spectroscopy Data Collection

The spectroscopy data were collected using the anCod software in training mode.

Data were collected using a spectrometer connected to the embedded system. For the

experiment, samples with different CODs were used. A set of samples with COD were

used for ANN training (0, 250, 500, and 1000 mg/L). To prepare the training samples,

the base solution of 1000 mg/L COD was diluted with the required amount of organic-

free deionized water to prepare a 100 ml solution with targeted COD. Table 3 shows the

amount of calibrated solution mixed with diluted water. A diluted solution was prepared

by inverting the mixture 10 times.

For testing purposes, the following three samples of water were collected and then

spectroscopy data were collected.

1. Filtered drinking water

2. Toilet flush system water

3. A mixture of a very small amount of the calibrated solution into 10 ml of

drinking water.

Table 3. COD Solution Preparation Amounts

COD (mg) / L

Amount of

calibrated

solution

(ml)

Amount of

diluted

water (ml)

0 0 100

250 25 75

500 50 50

1000 100 0

53

Spectroscopy data for each sample were taken five times for ANN training and

testing in order to take into account the natural variation of data collected under variable

conditions. Hence, 35 photometry data sets were collected. All the spectrometry data

were normalized with respect to their highest values. Therefore, the data values fed into

ANN training and testing within a range of 01.

A small script was written to call anCod with appropriate run-time arguments for

data collection. The script used was named ancod_data_collection.csh.

#!/bin/tcsh

setenv ANCOD_USER_CONFIG_FILE ./script/ancod_data_collection_config.sh

anCod -save_as pm_${1}_${2}.dat

The external configuration file used was named ancod_data_collection_config.csh,

which had the following content.

export anCod_data_dir="./data"

This file overrode the default directory of data storage. The script called anCod with

the argument “save_as,” which prompted the photometer to collect data and store them

into the data/pm_<arg1>_<arg2>.dat file. For each COD sample, the script was invoked

as the following commands in the collected data file named pm_<cod>_<index>.dat.

$> ./script/ancod_data_collection.csh 0 1 # COD=0, Index=1

$> ./script/ancod_data_collection.csh 1000 5 # COD=1000, Index=5

54

5.1.3 ANN Training with Collected Data

Because the basic target of this work was to develop a system to detect COD in

water and not to measure the amount of COD, the spectroscopy pattern from a sample

with 0 COD (or the pure organic-free deionized water) was used for ANN training to

produce a negative indication of 0. The outcome of 0 from the ANN evaluation

represented an absence of COD. Hence, any spectrometry data that produced 0 from the

ANN could be declared organic free water. The spectroscopy data from a water sample

with COD were fed for ANN training to produce a result of 1. Hence, any spectrometry

data producing 1 from ANN could be declared water with an organic pollutant.

For training purposes, spectrometry data were collected for water samples with 0,

250, 500, or 1000 mg/L COD. Each water sample had five collected photometry

patterns, which meant that there were 20 photometry patterns. Each of these 20 patterns

was used as the base pattern to generate nine more patterns with 10% random noise. This

generated 200 patterns to be used in ANN training.

A script was written to train ANN with the collected photometry data. This script

first generated ANN training patterns and then called the anCod trainer to create and train

ANN. The following was the source code for the script executed to train ANN:

Script: ann_train.csh

#!/bin/tcsh

setenv ANCOD_USER_CONFIG_FILE ./script/ann_train_config_no_random.sh

55

set log="log.train"

/bin/rm -f ${log}

/usr/bin/touch ${log}

/bin/rm -f ./data/anCod_ann_train.dat

Set the parameters

set cod=0

set index=1

set pm_data_dir="../data_collection/data"

Generate the training patterns that would give 0.0 as result

while ($index < 6)

 anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 0.0 -local

|& tee -a ${log}

 @ index = $index + 1

end

Generate the training patterns that would give 1.0 as result

foreach cod (250 500 1000)

 set index=1

 while ($index < 6)

 anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 1.0 -

local |& tee -a ${log}

 @ index = $index + 1

 end

end

56

Generate training pattern with 10% random noise injected

setenv ANCOD_USER_CONFIG_FILE ./script/ann_train_config_random_noise.sh

Generate the training patterns that would give 1.0 as result

set cod=0

set i=1

set index=1

while ($i < 10)

 echo "INFO: Iteration $i of random noise injection for result 1.0

..."

 while ($index < 6)

 anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 0.0 -

local |& tee -a ${log}

 @ index = $index + 1

 end

 @ i = $i + 1

end

Generate the training patterns that would give 0.0 as result

set i=1

set index=1

while ($i < 10)

 echo "INFO: Iteration $i of random noise injection for result 0.0

..."

 foreach cod (250 500 1000)

 set index=1

57

 while ($index < 6)

 anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 1.0

-local |& tee -a ${log}

 @ index = $index + 1

 end

 end

 @ i = $i + 1

end

Train and generate the ANN

anCodTrainer -train pm |& tee -a ${log}

The configuration files were used with the following source code. There were three

configuration files to define the configuration and generate ANN training data without

any random noise injection. Another ANN training data set had 10% random noise

injected.

Configuration: ann_training_config_no_random.sh

. ./script/ann_train_config.sh

data usage parameters

export anCod_add_noise=0.0 # 0% additional noise added to data

Configuration: ann_training_config_random_noise.sh

. ./script/ann_train_config.sh

data usage parameters

export anCod_add_noise=0.1 # 10% additional noise added to data

58

Configuration: ann_train_config.sh

export anCod_data_dir="./data"

ANN architecture

export anCod_ann_input=20

export anCod_ann_output=1

export anCod_ann_hidden_node=50

ANN library information

export anCod_model_name=ann_ancod

export anCod_model_version=1.0.0

export anCod_build_tool=/usr/bin/make

export anCod_model_loc=./ann

ANN training in this experiment required 21 iterations to converge and complete the

training using the back propagation algorithm. The following is the output snippet from

ANN training.

. . .

INFO [anCodTrainer_multilayer_feedforward_ann.c@71)] : Training the ANN

...

Max epochs 10000. Desired error: 0.0010000000.

Epochs 1. Current error: 0.0602034740. Bit fail 12.

Epochs 10. Current error: 0.0037730325. Bit fail 1.

Epochs 20. Current error: 0.0010124878. Bit fail 0.

Epochs 21. Current error: 0.0009350366. Bit fail 0.

59

INFO [anCodTrainer_multilayer_feedforward_ann.c@76)] : Training the ANN

... DONE

. . .

5.1.4 ANN Testing with Test Samples

For testing purposes, spectrometry data for water samples with 0, 250, 500, or 1,000

mg/L COD are used. Along with them, water samples from drinking water, random

mixtures, and toilet flush system water were also used. Each water sample had five

collected photometry patterns, which means there were 35 photometry patterns. Each of

these 35 patterns was used as the base pattern to generate nine more patterns with 10%

random noise. This created 350 patterns to be used in ANN testing.

The following script generated testing patterns and called the program to give the

test outcome.

Script ann_test.csh

#!/bin/tcsh

setenv ANCOD_USER_CONFIG_FILE ./script/ann_test_config_no_random.sh

set log="log.test"

/bin/rm -f ${log}

/usr/bin/touch ${log}

/bin/rm -f ./data/anCod_ann_test.dat

/bin/cp ./data/anCod_ann_train.dat ./data/anCod_ann_test.dat

60

Set the parameters

set cod=0

set index=1

set pm_data_dir="../data_collection/data"

Generate the training patterns that would give 1.0 as result

foreach cod (250 500 1000 sw tlw)

 set index=1

 while ($index < 6)

 anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 1.0 -

local |& tee -a ${log}

 @ index = $index + 1

 end

end

Generate the training patterns that would give 0.0 as result

foreach cod (fw kw)

 set index=1

 while ($index < 6)

 anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 0.0 -

local |& tee -a ${log}

 @ index = $index + 1

 end

end

Generate training pattern with 10% random noise injected

setenv ANCOD_USER_CONFIG_FILE ./script/ann_train_config_random_noise.sh

Generate the training patterns that would give 0.0 as result

61

set i=1

while ($i < 10)

 echo "INFO: Iteration $i of random noise injection for result 1.0

..."

 foreach cod (250 500 1000 sw tlw)

 set index=1

 while ($index < 6)

 anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 1.0

-local |& tee -a ${log}

 @ index = $index + 1

 end

 end

 @ i = $i + 1

end

set i=1

while ($i < 10)

 echo "INFO: Iteration $i of random noise injection for result 1.0

..."

 foreach cod (fw kw)

 set index=1

 while ($index < 6)

 anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 0.0

-local |& tee -a ${log}

 @ index = $index + 1

 end

 end

 @ i = $i + 1

62

end

Test the generated ANN

anCodServer -test pm |& tee -a ${log}

Each test set with 350 patterns was generated 100 times with 10% random noise

injection and tested. This provided meaningful error distribution information. A script

was written to automate this testing process.

Script ann_test_100.csh

#!/bin/tcsh

set index=1

while ($index < 101)

 rm -f ./data/anCod_ann_test.dat

 rm -f ./data/anCod_ann_train.dat

 ./script/ann_test.csh

 mv log.test log/log_test.${index}

 @ index = $index + 1

end

The configuration files were used as the following source code. There were two

configuration files defined. One generated ANN test data without any random noise

injection. The other generated ANN test data with 10% random noise injected. These

two configurations reused the training configuration but changed the training file name.

63

Configuration: ann_test_config_no_random.sh

. ./script/ann_train_config_no_random.sh

export anCod_train_file="anCod_ann_test.dat"

Configuration: ann_test_config_random_noise.sh

. ./script/ann_train_config_random_noise.sh

export anCod_train_file="anCod_ann_test.dat"

5.2 Results

The observed parameter for all 100 tests with random noise injection was the

percentage of error where ANN failed to correctly detect if the water sample had COD or

not. All these percentage errors were collected and statistically analyzed to determine the

mean and standard deviation of the percentage of error. Table 4 shows the experimental

results.

Table 4. Experimental Result for Methodology Validation

Maximum percentage of error 0.0

Mean of the percentage of error 0.0

Minimum of the percentage of error 0.0

Standard deviation of the percentage of error 0.0

64

5.3 Conclusion

Three major observations and conclusions can be made from this work:

1. COD detection is possible without using any chemicals based on pure

photometry data analysis using an ANN. Fig. 29 and Fig. 30 show the

photometry data patterns for samples used for training and samples used for

testing. Given the sample data, the system was able to correctly predict if the

sample had COD or not.

Fig. 29. Absorption Patterns for ANN Training

65

Fig. 30. Absorption Patterns for ANN Testing

2. An affordable COD detection system can be built using generic mobile

embedded systems extended with an attachable spectrometer through USB or

another standard connection. In this work, a spectrometer connection through a

USB was used. However, this concept can be extended in order to build a

Bluetooth- or Wi-Fi-enabled spectrometer to be attached to a mobile system.

Henceforth, it is possible to use and write an application for a

USB/Bluetooth/Wi-Fi-enabled cell phone for COD detection using a simple

lightweight photometer.

3. A COD detection system can be built on top of a cloud-based infrastructure to

further decrease the system cost by sharing software and hardware resources

66

using the cloud technique, though in this work a real cloud system was not used.

However, a LAN-based infrastructure was used for remote storage and analysis

of data. This same concept could be extended to a cloud-based system, which is

more widely shared and accounted for through strict-usage bookkeeping.

67

CHAPTER SIX

 FUTURE DIRECTIONS

Four future works based on this work are suggested:

1. Develop an ANN-based algorithm to analyze and compute actual COD numbers

for the water sample. For this purpose, samples must be prepared to cover the

entire pattern space from 0 mg/L COD to 1000 mg/L COD. Each sample can then

be analyzed to identify specific absorption patterns and assigned a COD value.

2. Implement a stable experiment platform for COD measurement using photometry.

A simple motor-based sample injection system and flushing system controlled by

the embedded system can be designed for this purpose.

3. Integrate a real cloud infrastructure for the system. In the current system, LAN-

based NFS for data storage and remote execution using SSH were used. These

could be extended to use real cloud infrastructure or a private cloud to prove the

concept. Either UBUNTU cloud infrastructure [63] or OpenStack [64] could be

used to build a private cloud infrastructure. Specific steps to set up OpenStack

can be found on the Internet [65, 66]. The client application for the cloud should

be ported into the ARM11 platform for this purpose.

4. Develop a self-learning, continuously adoptable system that will dynamically

train ANN with a new set of training data as available after chemical-based COD

measurement. Because anCod software uses an ANN model dynamically from

the installation location of the software, it is possible to replace the current ANN

68

with a better-trained ANN at any point of time. Hence, the system can compute

the initial COD values in situ. In addition, when verified COD values are

generated through a chemical process, the ANN can be retrained with extended

training data. Fig. 31 explains the basic concept. In this system, the mobile

anCod analysis system is used for fast analysis for the COD determination of a

water sample. The same sample is also analyzed in the lab using a conventional

process and the result is fed back into the anCod training system to update ANN.

This way, the ANN will be retrained to handle the varieties of water samples

found in real life.

Fig. 31. Evolving anCod Analysis System with Feedback from Lab Result

69

REFERENCES

1. Wikipedia Contributors. (2012). Chemical oxygen demand [Online]. Available:

http://en.wikipedia.org/wiki/Chemical_Oxygen_Demand (Accessed May 18, 2012).

2. Wikipedia Contributors. (2012). Biological oxygen demand [Online]. Available:

http://en.wikipedia.org/wiki/Biochemical_oxygen_demand (Accessed May 18, 2012).

3. U.S. Geological Survey. (2012). How much water is there in, on and above the

Earth? [Online]. Available: http://ga.water.usgs.gov/edu/earthhowmuch.html

(Accessed May 20, 2012).

4. U.S. Geological Survey. (2012). The water cycle [Online]. Available:

http://ga.water.usgs.gov/edu/watercycle.html (Accessed May 20, 2012).

5. WHO/UNICEF, “Progress in drinking-water and sanitation: Special focus on

sanitation,” WHO/UNICEF Joint Monitoring Programme for Water Supply and

Sanitation, July 17, 2008, pp. 25.

6. UNICEF. (2008). JMP 2008 [Online]. Available:

http://www.unicef.org/media/media_44093.html (Accessed May 21, 2012).

7. Kally Worm. Water is life—Groundwater drawdown [Online]. Available:

http://academic.evergreen.edu/g/grossmaz/WORMKA/ (Accessed May 21, 2012).

8. Wikipedia Contributors. (2012). Water crisis [Online]. Available:

http://en.wikipedia.org/wiki/Water_crisis#cite_ref-12 (Accessed May 21, 2012).

9. Wikipedia Contributors. (2012). Water treatment [Online]. Available:

http://en.wikipedia.org/wiki/Water_treatment_plant (Accessed May 22, 2012).

10. Explore More Project Contributors. (2012). Industrial uses [Online]. Available:

http://www.iptv.org/exploremore/water/uses/use_industry.cfm (Accessed May 23,

2012).

11. United States Environment Protection Agency. (2012). Drinking water contaminants

[Online]. Available: http://water.epa.gov/drink/contaminants/index.cfm#1 (Accessed

May 22, 2012).

12. B. Kiepper. (2010, Oct. 14). Understanding laboratory waste water test: I.

ORGANICS (BOD, COD, TOC, O&G) [Online]. Available:

http://www.caes.uga.edu/publications/pubDetail.cfm?pk_id=7895 (Accessed May 23,

2012).

70

13. H. Long. (2012). Chemical oxygen demand (COD) testing procedures [Online].

Available: http://water.me.vccs.edu/courses/ENV149/cod_print.htm (Accessed May

23, 2012).

14. Missouri Department of Natural Resources. (2012). Water quality parameters

[Online]. Available: http://www.dnr.mo.gov/env/esp/waterquality-parameters.htm

(Accessed May 23, 2012).

15. ManSci Inc. (2012). COD analysis PeCOD
TM

 from MANTECH [Online]. Available:

http://www.mansci.com/products/PeCOD/index.html#WhatisPeCOD (Accessed May

23, 2012).

16. C. Zhang, Fundamentals of Environmental Sampling and Analysis. Hoboken, NJ:

Wiley, 2007, pp. 357.

17. Wikipedia Contributors. (2012). Introduction to cloud computing [Online]. Available:

http://en.wikipedia.org/wiki/Introduction_to_cloud_computing (Accessed May 23,

2012).

18. Wikipedia Contributors. (2012). Artificial neural network [Online]. Available:

http://en.wikipedia.org/wiki/Artificial_neural_network (Accessed May 23, 2012).

19. A. Algom. (2012). Cloud computing pay-per-use for on-demand scalability [Online].

Available: http://www.ogf.org/OGF25/materials/1500/AvnerAlgomIGT-OGF25.pdf

(Accessed May 23, 2012).

20. Wikipedia Contributors. (2012). Ammonium iron (II) sulfate [Online]. Available:

http://en.wikipedia.org/wiki/Ferrous_ammonium_sulphate (Accessed Jun. 6, 2012).

21. C.E. Housecroft, E.C. Constable, Chemistry: An Introduction to Organic, Inorganic,

and Physical Chemistry, 3
rd

 Ed. Upper Saddle River, NJ: Prentice Hall, 2005, pp.

349–353.

22. L. Rosenfeld, Four Centuries of Clinical Chemistry. Boca Raton, FL: CRC Press,

1999, pp. 255–258.

23. Wikipedia Contributors. (2012). Colorimeter (chemistry) [Online]. Available:

http://en.wikipedia.org/wiki/Colorimeter_(chemistry)#cite_ref-2 (Accessed Jun. 6,

2012).

24. HunterLab. (2008). Colorimeters versus spectrophotometers [Online]. Available:

http://www.hunterlab.com/appnotes/an03_95r.pdf (Accessed June 13, 2012).

71

25. Wikipedia Contributors. (2012). Colorimetry (chemical method) [Online]. Available:

http://en.wikipedia.org/wiki/Colorimetry_(chemical_method)#cite_ref-1 (Accessed

Jun. 13, 2012).

26. C. Burgess, “The Basics of Spectrophotometric Measurement,” in UV-Visible

Spectrophotometry of Water and Wastewater (Techniques and Instrumentation in

Analytical Chemistry), vol. 27, O. Thomas and C. Burgess, Eds. Amsterdam,

Netherland: Elsevier, 2007, pp. 1-19.

27. Wikipedia Contributors. (2013). Color Vision [Online]. Available:

http://en.wikipedia.org/wiki/Color_vision (Accessed Feb. 11, 2013).

28. Wikipedia Contributors. (2012). Charge-coupled device [Online]. Available:

http://en.wikipedia.org/wiki/Charge-coupled_device (Accessed Jul. 2, 2012).

29. S. Fogelman, H. Zhao, and M. Blumenstein, “A rapid analytical method for

predicting the oxygen demand of wastewater,” Anal Bioanal Chem, vol. 386, no. 6,

pp. 1773–1779, Nov. 2006.

30. O. Thomas and F. Theraulaz, “Aggregate Organic Constituents,” in UV-Visible

Spectrophotometry of Water and Wastewater (Techniques and Instrumentation in

Analytical Chemistry), vol. 27, O. Thomas and C. Burgess, Eds. Amsterdam,

Netherland: Elsevier, 2007, pp. 89-114.

31. A. Charef, A. Ghauch, P. Baussand and M. Martin-Bouyer, “Water quality

monitoring using a smart sensing system,” Measurement, vol. 28, no. 8, pp. 219-224,

Oct. 2000.

32. G. Langergraber, N. Fleischmann, F. Hofstaedter, and A. Weingartner, “Monitoring

of a paper mill wastewater treatment plant using UV/VIS spectroscopy,” Water

Science and Technology, vol. 49, no. 1, pp. 9-14, 2004.

33. M.N. Pons, S.L. Bonte, O. Potier, “Spectral analysis and fingerprinting for biomedia

characterization,” Journal of Biotechnology, vol. 113, no. 1-3, pp. 211-230, Sep.

2004.

34. N. Fleischmann, G. Langergraber, et al. On-line and in-situ measurement of turbidity

and COD in wastewater using UV/VIS spectrometry [Online]. Available:

http://www.s-can.at/medialibrary/publications/p_2001_06.pdf (Accessed Mar. 26,

2012).

72

35. L. Cherta, J. Beltran, and T. Portoles, “Multiclass determination of 66 organic

micropollutants in environment water samples by fast gas chromatography-mass

spectrometry¸” Anal Bioanal Chem, vol. 402, no. 7, pp. 2301–2314, Sep. 2012.

36. S. Fogelman, H. Zhao, and M. Blumenstein, “A rapid analytical method for

predicting oxygen demand of wastewater,” Anal Bioanal Chem, vol 386, no. 6, pp.

1773-1779, Oct. 2006.

37. S. Fogelman, H. Zhao, and M. Blumenstein, “Estimation of chemical oxygen demand

by ultraviolate spectroscopic profiling and artificial neural networks,” Neural Comput

& Applic, vol 15, no. 3-4, pp. 197-203, Jun. 2006.

38. N. Benjathapanun, W.J.O. Boyle, and K.T.V. Grattan, "Binary encoded 2nd-

differential spectrometry using UV-Vis spectral data and neural networks in the

estimation of species type and concentration," Science, Measurement, and

Technology, Proc. IEEE, vol.144, no.2, pp.73,80, Mar. 1997

doi: 10.1049/ip-smt:19970713

39. F.M. Ham, G.M. Cohen, and C. Byoungho, "Neural network-based real-time

detection of glucose using a non-chemical optical sensor approach," Engineering in

Medicine and Biology Society, 1990, Proc. IEEE , vol., no., pp.480,482, 1-4 Nov.

1990. doi: 10.1109/IEMBS.1990.691176

40. M.A. Yongwen et al., “Hybrid artificial neural network genetic algorithm technique

for modeling chemical oxygen demand removal in anoxic/oxic process¸” J Environ

Sci Health A Tox Hazard Subst Environ Eng., vol. 46, no. 6, pp. 574-580, 2011.

41. H. Filho et al., “A strategy for selecting calibration samples for multivariate

modeling,” Chemometr Intell Lab, vol. 72, no. 1, pp. 83–91, Jun. 2004.

42. J. Dahlen et al., “Determination of nitrate and other water quality parameters in

ground water from UV/Vis spectra employing partial least squares regression,”

Chemosphere, vol. 40, no. 1, pp. 71–77, Jan. 2000.

43. H. Khorassani et al., “A simple UV spectrophotometric procedure for the survey of

industrial sewage system,” Wat Sci Tech, vol. 39, no. 10-11, pp. 77–82, 1999.

44. W. Bourgeois, J. Burgess, and R. Stuetz, “On-line monitoring of wastewater quality:

a review,” J Chem Technol Biot, vol. 76, no. 4, pp. 337–348, Mar. 2001.

45. A. Charef et al., “Water quality monitoring using a smart sensing system,”

Measurement, vol. 28, no. 3, pp. 219–224, Oct. 2000.

73

46. W. McCullock and W. Pitts, "A logical calculus of ideas immanent in nervous

activity," Bulletin of Math. Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

47. F. Rosenblatt, “The perceptron: A probalistic model for information storage and

organization in the brain," Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

48. M. Minsky and S. Papert (1969), Perceptron: An Introduction to Computational

Geometry. Cambridge, MA: MIT Press, 1969.

49. K. Fukushima, "Cognitron: A self-organizing multilayered neural

network," Biological Cybernetics, vol. 20, no. 3–4, pp. 121–136, 1975.

50. Wikipedia Contributors. (2013). Neural network [Online]. Available:

http://en.wikipedia.org/wiki/Neural_network#cite_ref-Kun1_12-0 (Accessed Feb. 11,

2013).

51. FriendlyARM. (2013). Tiny6410 | S3C6410 ARM11 Stamp Module [Online].

Available: http://www.friendlyarm.net/products/Tiny6410 (Accessed Feb. 11, 2013).

52. ARM. (2013). S3C6410 ARM11 Mobile Processor by Samsung Electronics Co., Ltd

[Online]. Available:

http://www.arm.com/community/partners/display_product/rw/ProductId/2644/

(Accessed Feb. 11, 2013).

53. Ocean Optics. (2013). USB650 Red Tide Spectrometer [Online]. Available:

http://www.oceanoptics.com/Products/usb650.asp (Accessed Feb. 11, 2013).

54. ORACLE. (2013). VirtualBox [Online]. Available: https://www.VirtualBox.org/

(Accessed Feb. 11, 2013).

55. Canonical Ltd. (2013). Download UBUNTU Server [Online], Available:

http://www.ubuntu.com/download/server (Accessed Feb. 11, 2013).

56. “Tera Term” Project Contributors. (2013). Tera Term Home Page [Online].

Available: http://ttssh2.sourceforge.jp/ (Accessed Feb. 11, 2013).

57. OceanOptics. (2013). Spectral Software Made Easy [Online]. Available:

http://www.oceanoptics.com/Products/spectrasuite.asp (Accessed Feb. 11, 2013).

58. Netbeans Project Contributors. (2013). Netbeans IDE [Online]. Available:

http://netbeans.org/ (Accessed Feb. 11, 2013).

74

59. A. Shaw, “Cloud computing enabled portable smart spectrophotometer,” M.S. thesis,

CMPE, SJSU, San Jose, CA, 2011.

60. S. Nissen et al. Fast artificial neural network library [Online]. Available:

http://leenissen.dk/fann/wp/ (Accessed Feb. 12, 2012).

61. Webopedia Contributors. (2013). Cloud-based [Online]. Available:

http://www.webopedia.com/TERM/C/cloud_based.html (Accessed Feb, 24, 2013).

62. W. Boyles, “The Science of Chemical Oxygen Demand,” Hach Co., Loveland, CO,

Technical Information Series, Booklet No. 9, 1997.

63. Canonical Ltd. (2013). UBUNTU Cloud infrastructure [Online]. Available:

https://help.ubuntu.com/community/UbuntuCloudInfrastructure (Accessed Feb. 24,

2013).

64. OpenStack Project Contributors. (2013). Open source software for building

private and public clouds [Online]. Available: http://www.openstack.org/ (Accessed

Feb. 24, 2013).

65. K. Jackson. (Feb. 17, 2011). Running OpenStack under VirtualBox – A Complete

Guide (Part 1) [Online]. Available:

http://uksysadmin.wordpress.com/2011/02/17/running-openstack-under-VirtualBox-

a-complete-guide/ (Accessed Feb. 24, 2013).

66. K. Jackson. (Feb. 24, 2011). Running OpenStack under VirtualBox – A Complete

Guide (Part 2) [Online]. Available:

http://uksysadmin.wordpress.com/2011/02/24/running-openstack-under-VirtualBox-

a-complete-guide-part-2/ (Accessed Feb. 24, 2013).

67. Canonical Ltd. (2013). Open SSH Server [Online]. Available:

https://help.ubuntu.com/10.04/serverguide/openssh-server.html (Accessed Sep. 9,

2012).

68. Canonical Ltd. (2013). SettingUpNFSHowTo [Online]. Available:

https://help.ubuntu.com/community/SettingUpNFSHowTo (Accessed Sep. 9, 2012).

69. M. Johnston. (2012). Dropbear SSH [Online]. Available:

http://matt.ucc.asn.au/dropbear/dropbear.html (Accessed Sep. 9, 2012).

70. E. Andersen. (1999). Busybox [Online]. Available: http://www.busybox.net/

(Accessed Sep. 9, 2012).

75

71. J. York. (Apr. 8, 2009). Using Public Keys With Dropbear SSH Client [Online].

Available: http://yorkspace.wordpress.com/2009/04/08/using-public-keys-with-

dropbear-ssh-client/ (Accessed Sep. 9, 2012).

72. Spectra Services. (2012). DT-MINI-2 Deuterium Tungsten Halogen Light Source

[Online]. Available:

http://spectraservices.com/Merchant2/merchant.mvc?Screen=PROD&Product_Code=

DTMINI2 (Accessed on Mar. 23, 2012).

76

APPENDIX A

ARM11 Board Bring Up with A Simple Device Driver

I. INTRODUCTION

The Tiny6410 is a development board from FriendlyARM [51] using a SMDK6410

platform from Samsung. The processor on this board is an ARM11 implementation from

the Samsung Incorporation (http://www.samsung.com/us).

Fig. 32. Tiny6410 SDK

This paper discusses the development environment setup for this board to perform

experiments with Linux and device drivers. This paper is divided into three major

sections to discuss the development environment setup, bringing up the Tiny6410 board,

and writing a simple device driver. The first section describes the tools and environment

setup. The second section describes how to compile and start Linux on Tiny6410. The

third section describes an implementation of a simple dynamically loadable device driver.

77

II. DEVELOPMENT ENVIRONMENT SETUP

A. Base environment

The host computer was running Windows 7 Enterprise Edition. It had the ORACLE

VirtualBox application running to emulate UBUNTU as a guest operating system.

kpatra-VirtualBox:~> uname -a

Linux kpatra-VirtualBox 3.0.0-17-generic #30-Ubuntu SMP Thu Mar 8

17:34:21 UTC 2012 i686 i686 i386 GNU/Linux

The guest OS used in this experiment had a mount point of the Windows file system to

share binaries to be installed and executed on the ARM11 board. The shell environment

in Guest-OS was “tcsh.”

B. Cross compiler installation for ARM11

The SD card delivered as part of the package contained all the required tools for cross

compilation and the source code for Linux. The cross compiler tool set was shipped as

arm-linux-gcc-4.5.1-v6-vfp-20101103.tar.gz. Once installed using gunzip and tar

command, it created an “opt” directory under the run directory of the command. In this

experiment setup, the tool chain was installed at $PROJ_ROOT/mini6410/Linux directory

(which could be any independent location, depending on user setup).

$> cd $PROJ_ROOT/mini6410/Linux

$> cp $TINY6410_PKG_DIR/ arm-linux-gcc-4.5.1-v6-vfp-20101103.tar.gz .

$> gunzip arm-linux-gcc-4.5.1-v6-vfp-20101103.tar.gz

$> tar –xvf arm-linux-gcc-4.5.1-v6-vfp-20101103.tar

78

Once installed, the tool chain could be found at ./opt/FriendlyARM/toolschain

/4.5.1/bin/ directory. To make this tool chain available by default, the following line was

added into the ~/.tcshrc file.

setenv PATH

${PROJ_ROOT}/mini6410/Linux/opt/FriendlyARM/toolschain/4.5.1/bin:${PATH}

To test the installation, the following command should run on a new terminal.

$> arm-Linux-cc -v

Using built-in specs.

COLLECT_GCC=arm-Linux-cc

. . .

Thread model: posix

gcc version 4.5.1 (ctng-1.8.1-FA)

C. Linux source code installation

The Linux source code was shipped as the linux-2.6.38-20110718.tar.gz file. This

source can be installed in the same way as the cross compiler installation. This installs all

of the source code into ./linux-2.6.38 directory.

$> cd $PROJ_ROOT/Tiny6410/Linux

$> cp $MINI6410_PKG_DIR/ linux-2.6.38-20110718.tar.gz .

$> gunzip linux-2.6.38-20110718.tar.gz

$> tar –xvf linux-2.6.38-20110718.tar

79

D. HyperTerminal installation

The Windows 7 host did not have a HyperTerminal for serial communication

monitoring. There is an open source hyper terminal “Tera Term” [56], which is very good

for serial communication monitoring and can be used as a console for Tiny6410 SDK. In

addition, the “Tera Term” application is a true multipurpose terminal application

supporting both serial and TCP/IP-based communication (like telnet or SSH).

Fig. 33. “Tera Term” Setup for Serial Port

Fig. 33 shows the application menu for the setup needed to use “Tera Term” as a

console for Tiny6410. This menu can be opened using the “menu-Setup-Serial

Connection…” menu switch. In this experiment, the port “COM3” was used because it

was auto assigned to the USB-to-serial port converter attached to the host computer

system. The baud rate was set to 115200 for a data width of 8 bit with no parity and 1 stop

bit. Flow control was set to 0 and the transmit delay was set to 0 for both char and line.

80

Fig. 34. New Connection Menu of Tera Term Application

To start a communication, the menu “File-New Connection” was used. Fig. 34 shows

the serial port and port number that were selected to start a new communication.

E. SD card preparation with BIOS

To boot the Tiny6410 from the SD card, the SD card must be prepared beforehand.

The tool package for Tiny6410 contained the boot loader superboot-6410.bin in the tools

directory. This boot loader was used to boot the system. To prepare the SD card, the

program SD-Flasher.exe in the Tools folder was supplied in the software package. This

program had to be executed using administrator privileges (“Run as administrator” can be

found with a right click on this executable file). This brought up a GUI as shown in Fig.

35.

81

Fig. 35. SD-Flasher.exe GUI

Superboot-6410.bin was selected as the image file to fuse. Once the SD card was

mounted on the host, the scan option showed the mounted SD card. Once the Fuse button

was clicked, the program fused the BIOS into the SD card. The status report was shown

in the Reports section of the GUI. In case the SD card is not shown as available (“No” is

displayed in the Available column of the SD drives), it can be made available using the

ReLayout button).

III. BRINGING UP THE TINY6410 BOARD

A. Compiling Linux for Tiny6410

There were two steps to build a Linux image named zImage. The first step was to copy

the Tiny6410 n43 configuration and then build the zImage using Make. The following

82

commands were used to build the Linux image. Copying the configuration is a one-time

job; once done, it need not be repeated for every build of the zImage.

$> cd $PROJ_ROOT/mini6410/Linux/linux-2.6.38/

$> cp config_mini6410_n43 .config

$> make zImage

B. Preparing the SD card for Linux installation

A specific directory structure and a couple of files in addition to the compiled zImage

were needed to install the compiled Linux on Tiny6410 SDK. A directory named

“images” was created at the top-level directory $SD_ROOT of the SD card and two

files—“FriendlyARM.ini” and “superboot-6410.bin” —were copied from Tiny6410/tools/

in this “images” directory.

$> mkdir $SD_ROOT/images

$> cd $SD_ROOT/images

$> cp $PROJ_ROOT/mini6410/tools/FriendlyARM.ini .

$> cp $PROJ_ROOT/mini6410/tools/superboot-6410.bin .

The disk image of a root file system was downloaded from the download section of the

FriendlyARM website [1]. The name of the root file system was

rootfs_qtopia_qt4_20110305.img. This root file system image file was copied to the

$SD_ROOT/Linux dir.

$> mkdir $SD_ROOT/images/Linux

$> cp rootfs_qtopia_qt4_20110305.img \

 $SD_ROOT/images/Linux

83

Next the compiled zImage was copied to the $SD_ROOT/images/Linux directory. In

the following command example, the LNX_COMP_DIR was set to

$PROJ_ROOT/Tiny6410/Linux/linux-2.6.38 dir.

$> cp $LNX_COMP_DIR/ arch/arm/boot/zImage $SD_ROOT/images/Linux

The content of the FriendlyARM.ini file included the following:

Action=install

OS= Linux

Linux-BootLoader = superboot-6410.bin

Linux-Kernel = Linux/zImage

Linux-CommandLine = root=/dev/mtdblock2 rootfstype=yaffs2 init=/linuxrc

console=ttySAC0,115200

Linux-RootFs-InstallImage = Linux/rootfs_qtopia_qt4_20110305.img

Linux-RootFs-RunImage = Linux/ rootfs_qtopia_qt4_20110305.img

Table 5 explains each of the file parameters.

Table 5. Content of FriendlyARM.ini File

Parameter names Details

Action This can be either “install” or “run.” In install mode, the
boot loader installs the OS in Tiny6410’s flash memory.
In “run” mode, the compiled OS is directly run from the
SD card.

OS The type of OS can be anything as long as the derived
parameter names are present in the file. The derived
parameters are

 <OS>-BootLoader

 <OS>-Kernel

 <OS>-CommandLine

 <OS>-RootFs-InstallImage

 <OS>-RootFs-RunImage

84

<OS>-BootLoader The boot loader executable

<OS>-Kernel The kernel image file

<OS>-CommandLine The command line for system boot up

<OS>-RootFs-InstallImage The file system image files for installation

<OS>-RootFs-RunImage The file system image files for direct run

C. Installing Linux from SD Card

Once the SD card was prepared, it was inserted into the SD card slot of the Tiny6410.

To start the installation process, the switch S2 was put into SDBOOT position and the

power switch S1 was turned on.

Fig. 36. Installing the OS from the SD Card

The boot menu appeared on the LCD. Using K1 (up), K2 (down), and K8 (OK) the

Linux system was selected. Once the system was selected, the boot loader began to write

the kernel image and root file system in the Tiny6410 flash memory.

85

Fig. 37. Linux Boot Up Console on Tera Term

Once the boot loader was done with flash writing, the system was restarted by putting

the S2 in flash booting position and toggling the power switch S1. The system booted and

the boot message could be captured at the “Tera Term” console as seen in Fig. 37.

D. Testing the installation

There are seven example programs given in the $PROJ_ROOT/mini6410/Linux

/examples directory. However, the pwm test is a good test to verify the installation.

Inside the pwm directory, there are two files—Makefile and pwm_test.c. The first step is

to clean and rebuild this test program as follows:

$> cd $PROJ_ROOT/mini6410/Linux/examples/pwm

$> make clean

$> make

86

This created an ARM11 executable named pwm_test, which was copied into the

$SD_ROOT/Apps dir. After booting the Linux on the Tiny6410 SDK, the SD card was

inserted into the SD card slot and the program was invoked from the /sdcard/Apps

directory.

The following commands were executed on SDK using the “Tera Term” console.

$> cd /sdcard/Apps

$> ./pwm_test

The console output is shown in Fig. 38.

Fig. 38. pwm_test Run using the “Tera Term” Console

This program uses a buzzer and applies different frequencies of sound. Users may

increase or decrease the frequency of the sound using the “+” or “–” keys. To terminate

this program, the “Esc” key must be used.

87

IV. WRITING SIMPLE DEVICE DRIVER

A. Writing the sample device driver

The simplest device driver was given in the Linux source code as

Tiny6410_hello_module.c. This simple loadable device driver prints a message on the

console. The source listing is shown in Table 6.

Table 6. Source Code Listing for the Tiny6410_hello_module.c

Line # Source code

1 #include <Linux/kernel.h>

2 #include <Linux/module.h>

3 static int __init

 Tiny6410_hello_module_init(void){

4 printk(" Kaushik CMPE244 Hello, Tiny6410 module is installed

!\n");

5 return 0;}

6 static void __exit

 Tiny6410_hello_module_cleanup(void){

7 printk(" Kaushik CMPE 244 Good-bye, Tiny6410 module was

removed!\n");}

8 module_init(Tiny6410_hello_module_init);

9 module_exit(Tiny6410_hello_module_cleanup);

10 MODULE_LICENSE("GPL");

Lines 1–2 include the required header files Linux/kernel.h and Linux/module.h. Lines

3–5 define the initialization function for this module (Line 4 prints the message on the

console). Lines 6–7 define the exit process for the module. Lines 8–9 register the

module’s initialization and exit functions into the OS. Line 10 defines the license type.

88

B. Adding module in the config menu

To add this module into the menuconfig, the following section needs to be added in the

Kconfig file at linux-2.6.38/drivers/char directory.

config TINY6410_HELLO_MODULE

tristate "CMPE 244 Tiny6410 module sample"

depends on CPU_S3C6410

help

 CMPE244 Tiny6410 module sample.

Fig. 39. Menu Configuration Selection

89

C. Compiling “hello world device driver.”

The “hello world device driver” was selected as a loadable module using “make

menuconfig” at the linux-2.6.38 directory. Through a series of selection operations as

following Fig. 39, the “hello world device driver” was selected as a loadable module.

Once the configuration was saved, the modules were built using “make modules” at the

linux-2.6.38 directory. After the build process was done, the Tiny6410_hello_module.ko

was generated at the drivers/char directory. This Tiny6410_hello_module.ko was then

copied into $SD_ROOT/Apps dir. Then the driver was tested using the Tiny6410 SDK

with the following commands:

$> cd /sdcard/Apps

$> insmod Tiny6410_hello_module.ko

$> rmmod Tiny6410_hello_module.ko

Fig. 40 shows the output on the “Tera Term” console on this example run.

Fig. 40. Testing Sample Loadable Device Driver

90

V. CONCLUSION

With all the experiments done with the Tiny6410 SDK, it was concluded that the

development environment was right, the board was functioning correctly, and a

dynamically loadable device driver could be implemented.

91

APPENDIX B

Setting Up UV Spectrometer SDK on ARM11

I. INTRODUCTION

The OceanOptics Corporation (http://www.oceanoptics.com) is the world’s first

company to bring miniature spectrometer. This company manufactures different types of

spectrometers, of which the spectrometer with the USB interface is the most useful in a

university laboratory environment. The advantage of this type of USB-interfaced

spectrometer is having a very easy interface for data collection. In this experiment, Ocean

Optics Red Tide USB650 Spectrometer [53] was used.

Fig. 41. RED TIDE USB650 Device

However, OceanOptics provides only a Windows-based interface application to collect

data. This document explains the compilation and installation of SDK on an i386 and an

ARM11-based platform running Linux operating system. In the following sections,

download and installation instructions, as well as the software directory structure, are

92

described. All the instructions documented in this paper are based on the following

operating system: Ubuntu SMP Thu Mar 8 17:34:21 UTC 2012 i686 i686 i386

GNU/Linux. A tcsh shell was used for command-line input.

II. DOWNLOAD AND INSTALLATION

A. Downloading the package

OceanOptics usually does not provide the SDK source for any platform other than

Windows. The Computer Engineering Department of San Jose State University obtained

special permission from OceanOptics to get the SDK source code and compile it on a

platform other than Windows. In the SDK source, there are two directories containing

platform-specific source code as shown in Table 7.

Table 7. Spectrometer Source Code per Platform

Directory Platform

OEM/SeaBreezeOSX Apple Macintosh OSX operating system.

OEM/SeaBreezeWinSource Microsoft Windows operating system.

Because Apple Macintosh OSX is a variation of the UNIX operating system, the

corresponding source code was selected for compilation on a Linux platform for both i386

and ARM11 architecture. The i386 architecture was included in this experiment to

eliminate operating system porting-related issues for the SDK. Additionally, it was

assumed that the environment variable $SEA_BREEZE_DEV_ROOT contained the

source code root for the SDK. For the current experiment, the value of this environment

variable was as follows:

93

$> echo $SEA_BREEZE_DEV_ROOT

/import/thesis/Study/Thesis/COD-

ANN/SpectraSuite/SeaBreezeTiny6410/Linux_122011/OceanOptics/OceanOpticsF

TP/OEM/SeaBreezeOSX/seabreeze/

In addition, the libusb source code was downloaded from http://www.libusb.org

because the ARM11-compatible libusb was not available in precompiled form. The

downloaded package was installed in a directory named $SEA_BREEZE_DEV_ROOT,

because this compiled libusb was compiled along with rest of the SDK. This experiment

made libusb an integral part of OceanOptics SDK for USB spectrometer. In this

experiment, the package for the source code of libusb was unpacked into the libusb

directory.

$> ls $SEA_BREEZE_DEV_ROOT/libusb

libusb-1.0.8.tar.bz2

$> cd $SEA_BREEZE_DEV_ROOT/libusb

$> bunzip2 libusb-1.0.8.tar.bz2

$> ls

libusb-1.0.8.tar

$> tar –zvf libusb-1.0.8.tar

$> ls

libusb-1.0.8 libusb-1.0.8.tar

B. Installation

The top-level makefile was modified for the seabreeze SDK to implement a new set of

targets. Additionally a new script was created to compile libusb on an ARM11 platform.

There was no corresponding script to build libusb on an i386 platform because i386

94

UBUNTU already comes with a libusb package integrated. All the changes and additions

are discussed in Section III.

Table 8. Top-Level Makefile Targets to Build/Test the Spectrometer Device Driver

Target Action

default To build seabreeze lib on Linux i386 in lib/i386_Linux directory.

test To build the test program under the test/i386_Linux directory.

clean To clean the temporary files.

clean_test To clean the temporary files for testing.

install_test

To install the application along with the library in the test/install/i386_Linux
directory. The sub directory “app” contains the executable and “lib” contains
the required libraries.

run_test To run the test application.

help To display the list of targets and macros.

Table 8 shows the available make targets to build libraries and test applications. Table

9 shows the available macro to execute the targets for the specific architecture.

Table 9. List of Macros for Architecture to Build Spectrometer Device Driver

Macro Values Notes

TARGET i386 This is the default value for the macro and compiles the application
and libraries for i386 architecture.

arm11 With this macro value, the application and libraries are compiled for
ARM11 architecture.

To switch target architecture from i386 to ARM11 or vice versa, the “clean” target had

to be run first. The following is the example command sequence used to build a test app

for ARM11.

$> cd $SEA_BREEZE_DEV_ROOT

$> make clean TARGET=arm11

95

$> make clean_test TARGET=arm11

$> make TARGET=arm11

$> make install_test TARGET=arm11

The above set of commands was used to create the following directories under

$SEA_BREEZE_DEV_ROOT/test dirs.

Table 10. Install Directory Structure for Spectrometer Device Driver

Directory Notes

install/arm11_Linux/app The test application executable is installed in this directory.

install/arm11_Linux/lib All the required libraries are installed in this directory.

These installation directories (as shown in Table 10) can be copied into an ARM11-

based platform and then the test application can be executed. For the i386 target

architecture, the installation directory contained the platform directory i386_Linux.

III. CHANGES IN ORIGINAL PACKAGE

Three new files were created in the original extracted package content inside the

$SEA_BREEZE_DEV_ROOT directory. Table 11 shows the files that were new or

replaced with new revision.

Table 11. New/Changed Files to Build/Test Spectrometer Device Driver

File Notes

Makefile This is a replacement for the existing Makefile.

test/Makefile This is a replacement for the existing Makefile.

libusb/libusb-1.0.8/local-install-arm11 This is a new script for compiling libusb for
ARM11 architecture.

96

The following subsections describe each of the above files and their content.

A. The top-level makefile

The top-level makefile contained the top-level target and macro definitions.

export UNAME:=$(shell uname)

export TARGET=i386

export PLATFORM=$(TARGET)_$(UNAME)

export SEABREEZE=$(SEABREEZE_DIR)/include

export LIB_USB_DIR=$(SEABREEZE_DIR)/libusb/libusb-1.0.8

export LIB_USB_PATH=$(SEABREEZE_DIR)/libusb/libusb-1.0.8/install/lib/

export LIB_USB_INC_PATH=$(SEABREEZE_DIR)/libusb/libusb-

1.0.8/install/include/libusb-1.0

export SEABREEZE_LIB=$(SEABREEZE_DIR)/lib/$(PLATFORM)

export TCSH = /usr/bin/tcsh

export SEABREEZE_TEST=$(SEABREEZE_DIR)/test

The above macros defined different directories, paths, and shells.

export CC_PREFIX=

ifeq ($(TARGET),arm11)

export CC_PREFIX=arm-Linux-

endif

export CC=$(CC_PREFIX)gcc

export CPP=$(CC_PREFIX)g++

The above makefile statements defined the target compiler. Depending on the

TARGET macro value, either gcc/g++ or arm-Linux-gcc/arm-Linux-g++ was used.

export CFLAGS=-c -Wall -Wunused -Wmissing-include-dirs -ggdb3 -

I${SEABREEZE} -fpic -fno-stack-protector

ifeq ($(TARGET),arm11)

CFLAGS += -I$(LIB_USB_INC_PATH)

endif

97

LFLAGS=-shared -Wl,--export-dynamic –nostdlib

ifeq ($(TARGET),arm11)

LIBS=-L$(LIB_USB_PATH) -Wl,-rpath=$(LIB_USB_PATH) –lusb

else

LIBS=-L/usr/lib -lusb

endif

export SUFFIX=so

The above makefile statements defined the compilation flag CFLAG, linker flag

LFLAGS, and linker argument LIBS. For the i386 architecture, linker linked to the

default libusb in the Linux system. For ARM11, linker linked to the compiled libusb.

all: libseabreeze.${SUFFIX}

ifeq ($(TARGET),arm11)

libseabreeze.${SUFFIX}: libusb-arm11

else

libseabreeze.${SUFFIX}:

endif

 mkdir -p $(SEABREEZE_LIB)

 +make -C src && (echo; echo Build was successful.; echo)

 $(CPP) $(LFLAGS) -o $(SEABREEZE_LIB)/libseabreeze.$(SUFFIX)

$(SEABREEZE_LIB)/*.o $(LIBS)

.PHONY:libusb-arm11

libusb-arm11:

 $(TCSH) -c "cd $(LIB_USB_DIR) && pwd && ./local-install-arm11"

The above makefile statements constructed the default target to build the seabreeze

library. If the target architecture was ARM11, the libusb was also compiled.

B. The test makefile

The test/makefile contained a test target and macro definitions for the test program. In

this experiment, the default test program was seabreeze_test.

98

OBJS = $(PLATFORM)/seabreeze_test.o \

 $(PLATFORM)/spectral_correction.o

LINKER_REC_PATH = -Wl,-rpath=$(SEABREEZE_LIB) \

 -Wl,-rpath=\$$ORIGIN/../lib/

APP_PATH = $(shell pwd)/install/$(PLATFORM)/app

LIB_PATH = $(shell pwd)/install/$(PLATFORM)/lib

The previous makefile statements defined the application and related library installation

paths, a list of objects for the target application, and the definition for the linker record

path. The linker record path recorded a relative path from the installation of the

application as $ORIGIN/../lib, which told the loader to search for the shared library in the

path ../lib. This path was relative to the installation directory for the target application.

all: $(PLATFORM)/seabreeze_test

$(PLATFORM)/seabreeze_test : $(OBJS)

 ${CC} $^ -o $@ -L$(SEABREEZE_LIB) $(LINKER_REC_PATH) -lseabreeze -

lusb -lstdc++

$(OBJS): $(PLATFORM)/%.o : %.c $(PLATFORM)

 ${CC} ${CFLAGS} -o $@ $<

$(PLATFORM):

 mkdir -p $(PLATFORM)

The previous makefile statements defined the default rule for building the test

application. This created a platform directory and built all the objects and executable

under that platform directory.

install: make_dir cp_seabreeze cp_usb cp_app

 @echo "Installation done."

make_dir:

 /bin/mkdir -p $(APP_PATH)

99

 /bin/mkdir -p $(LIB_PATH)

cp_seabreeze:

 /bin/cp $(SEABREEZE_LIB)/*.so $(LIB_PATH)

ifeq ($(TARGET),arm11)

cp_usb:

/bin/tcsh -f -c "cd $(LIB_USB_PATH) && tar -cvf $(LIB_PATH)/libusb.tar

*"

/bin/tcsh -f -c "cd $(LIB_PATH) && tar -xvf libusb.tar && /bin/rm

libusb.tar"

else

cp_usb:

 @echo "Nothing to do for libusb installation for $(TARGET)"

endif

cp_app: $(PLATFORM)/seabreeze_test

 /bin/cp $(PLATFORM)/seabreeze_test $(APP_PATH)

The previous makefile statements defined the installation target actions. It created

installation directory structures and copied the required binaries into the structure. For the

ARM11 architecture, libusb libraries were also copied along with the seabreeze library.

C. Compilation script for libusb

A new shell script was added into the $SEA_BREEZE_DEV_ROOT/libusb/libusb-

1.0.8 directory to compile and install libusb into the ARM11 architecture.

#!/usr/bin/tcsh -f

/bin/rm -rf install

/bin/mkdir -p install

./configure --host=arm-Linux --prefix=`pwd`/install

make clean

make

make install

100

The above script removed and created a new directory named “install.” The next step

was to configure the build for ARM11 using “--host=arm-Linux-” and local installation

with the --prefix=`pwd`/ install option. After the configuration was done, it cleaned, built,

and installed libusb. This script made targets that were defined in the Makefile shipped

with the original source.

Fig. 42. HyperTerminal for Test App Run

101

IV. TESTING SPECTROSCOPY APPLICATION

In this testing, the ARM11-compiled test application was invoked in the Tiny6410

system without the actual spectrometer attached. This was to ensure that compilation and

installation were all right for the ARM11 architecture. Fig. 42 is a screen shot of such a

testing.

V. CONCLUSION

With all the experiments done with the spectrometer, it could be concluded that the

spectrometer integration with Tiny6410-embedded platform was ready to be used.

102

APPENDIX C

NFS/SSH Server Setup Using ARM11 Board as Client

I. INTRODUCTION

The Tiny6410, as shown in Fig. 43, is a development board from FriendlyARM 51

using the SMDK6410 platform from Samsung (http://www.samsung.com/us). The

processor on this board is an ARM11 implementation from Samsung Inc.

Fig. 43. Tinys6410 SDK

This paper discusses how to set up a network system using Tiny6410 as the client and

one server for NFS and the other server for the application server. The first section

describes the overall system to be implemented. The second section describes how to set

103

up the server side of the system. The third section discusses the client side changes for

Tiny6410 to set up the board as NFS and the application server client.

II. OVERALL SYSTEM DESIGN

A. The Physical System

The overall proposed system contained one file server hosting NFS service, one

application server, one router, and the Tiny6410 board. Fig. 44 depicts the physical

connection between the components.

Fig. 44. NFS/SSH-Based System Design

A file server, an application server, and an arm board were physically connected to the

router. This way, all the components could communicate with each other.

104

B. The system concept

At the conception level, three components—the file server, application server, and

Tiny6410—can communicate with each other for storage sharing and the remote

application execution. Fig. 45 depicts this concept.

Fig. 45. Overall System Concept

The NFS server hosted the NFS using its location disk. This storage could be accessed

by the application server and the Tiny6410 board to read and write files. The application

server was configured to handle remote requests to run specific applications using an SSH

tunnel. This way the application server was protected from any unauthorized access from

within the network. The Tiny6410 board was configured with clients for mounting the

NFS and executing remote applications using the SSH tunnel. This allowed the Tiny6410

board to be attached to a network and to access all the services offered by the servers in

the network.

105

III. SERVER SIDE CONFIGURATION

Both the servers described here ran the UBUNTU Linux operating system as the

following version.

$> uname -a

Linux boson-srvr-01 3.0.0-17-generic #30-Ubuntu SMP Thu Mar 8 17:34:21

UTC 2012 i686 i686 i386 GNU/Linux

This experiment used an NFS server named boson-srvr-01 and an application server

named boson-srvr-02. The LAN was set up with a dynamic allocation of address (DHCP)

for the servers.

A. Configuring the application server

The application server was configured to accept any remote execution request of the

application though an SSH tunnel. The configuration steps were taken from the

UBUNTU document regarding the OpenSSH server [67].

The first step was to install the OpenSSH server and the client for completeness of the

installation.

$> sudo apt-get install openssh-client

$> sudo apt-get install openssh-server

Once the server package was installed, there was need to modify/add the following into

the /etc/ssh/sshd_config file:

106

$> sudo vi /etc/ssh/sshd_config

$> sudo cat /etc/ssh/sshd_config | grep Pubkey

PubkeyAuthentication yes

$> sudo cat /etc/ssh_sshd_config | grep RSAAuth

RSAAuthentication yes

The SSH server was required to be restarted after modifying the configuration file.

However, this step was not required for every rebooting of the system because the

configuration was loaded upfront during the system boot time.

$> sudo /etc/init.d/ssh restart

B. Configuring the NFS Server

The NFS server was configured to share a specific directory on the server local disk

over a LAN. This specific directory then could be accessed from NFS clients within the

same LAN. The steps to set up the NFS server were taken from UBUNTU documents

titled SettingUpNFSHowTo [68].

The first step was to obtain and install the NFS server components:

$> sudo apt-get install rpcbind nfs-kernel-server

The next step was to make a sharing directory and make it accessible to anyone.

However, instead of making this shared directory accessible to everyone, steps were taken

to make the sharing more secure, but this was not within the scope of this experiment. For

the purposes of this experiment, access permission for everyone was acceptable.

107

$> sudo mkdir –p /export/cod_ann_fs

$> sudo chmod –R 777 /export

Once the shared directory was created, the next step was to add an NFS sharing

definition to the /etc/exports file. The content looks like the following:

$> sudo cat /etc/exports

. . .

/export

 192.168.1.0/255.255.255.0(rw,sync,no_subtree_check)

/export/cod_ann_fs

 192.168.1.0/255.255.255.0(rw,sync,no_subtree_check)

. . .

The above two entries enabled the NFS server to share the directory “/export” and

“/export/cod_ann_fs” with any machine having an address starting with 192.168.1. For

example, with this configuration, a machine having 192.168.1.149 can access (both read

and write) the NFS shared directory. Once the configuration was in place, sharing was

enabled with the following command.

$> sudo exportfs -ra

To test this sharing for the first time, the following services were restarted. However,

this was not necessary once the server machine was rebooted.

$> sudo /etc/init.d/portmap restart

$> sudo /etc/init.d/nfs-kernel-server restart

108

IV. CLIENT SIDE CONFIGURATION

A. Mounting NFS Partition

The first step was to create a client directory that could be mounted as the report NFS

directory. Usually the same name as the NFS directory is given. The directory permission

was open for all to read, write, and execute. However, more strict access to the mounted

directory may be set up.

$> sudo mkdir –p /export/cod_ann_fs

$> sudo chmod –R 777 /export

Once the mount partition was identified, there were two ways to perform the NFS

mounting. One way was to use explicit options in the command line. The other way was

to use /etc/fstab file to put the mount point definitions and mount the NFS with a simpler

command line.

The following was the command line with an explicit NFS mount point definition.

$> mount -orw,nolock,intr \

 -t nfs \

 boson-srvr-01:/export/cod_ann_fs \

 /export/cod_ann_fs

$> cd /export/cod_ann_fs/

$> ls

authorized_key dropbear-pkg notes z

109

The alternate way to mount NFS was to use a definition entry in the /etc/fstab file. The

following was the entry into the file for the same mount point definition, as in the earlier

example.

$> cat /etc/fstab

Mount the export dir

boson-srvr-01:/export/cod_ann_fs /export/cod_ann_fs nfs

rw,nolock,intr 0 0

The following was the command to mount the NFS with a simpler command.

$> mount boson-srvr-01:/export/cod_ann_fs

$> cd /export/cod_ann_fs/

$> ls

authorized_key dropbear-pkg notes z

After mounting the NFS, all the standard file system operations could be done on this

directory. The following is an example of such operations on the NFS-mounted directory.

$> cd /export/cod_ann_fs/

$> pwd

/export/cod_ann_fs

$> du -k .

Filesystem 1K-blocks Used Available Use% Mounted on

boson-srvr-01:/export/cod_ann_fs

 7034240 1847712 4833664 28%

/export/cod_ann_fs

$> cat z

110

HELLO WORLD!!!

boson-lnx-01

Friendly ARM

B. Installing, configuring, and using the SSH client

The Tiny6410 development board ran a variation of the Linux system as follows:

$> uname -a

Linux FriendlyARM 2.6.38-FriendlyARM #16 PREEMPT Sun May 27 12:41:24

PDT 2012 armv6l GNU/Linux

This Linux installation contained Busybox [70], which is an umbrella application

containing most of the commonly used Linux commands. However, it does not contain

advanced utilities like an SSH server/client, PERL scripting language, and so on. The

Busybox page [70] contains a pointer to an alternate application Dropbear [69], which is

equivalent to the SSH server/client yet small enough for ARM11 development board

usage.

The standard Dropbear tool contained five utilities as shown in Table 12.

Table 12. Dropbear Utility Names and Usage

Utility name Purpose

dropbear The SSH server program to allow Tiny6410 to accept remote
execution requests through SSH.

dbclient The SSH client program to allow Tiny6410 to send remote
execution requests to a remote host through SSH.

111

Utility name Purpose

dropbearkey To generate a private-public key pair for auto authentication.

dropbearconvert To convert the dropbear public key to a standard SSH public key.

scp A secure copy application program for Tiny6410.

Before the actual installation, an installation directory was created in the NFS partition

so the application could be cross compiled on a host machine and shared with the

Tiny6410 board through the NFS partition. The following NFS directory was created on

the host machine where the dropbear applications were cross compiled.

$> mkdir -p /export/cod_ann_fs/arm-Linux/bin

The following steps were used to extract the dropbear application source from the

downloaded tar file dropbear-2012.55.tar.gz and configure the package for a cross

compilation. It was assumed that all the cross compilation tools were available in the

default path with a prefix of “arm-Linux-” (e.g., arm-linux-gcc).

$> tar -zxvf dropbear-2012.55.tar.gz

$> cd dropbear-2012.55

$> ./configure --host=arm-Linux

 The next step was to clean and rebuild the dropbear application with cross

compilation. In this example, all the dropbear utilities were statically linked to eliminate

any library dependency at run time on the Tiny6410 execution environment.

112

$> make clean

$> make PROGRAMS="dropbear dbclient dropbearkey dropbearconvert scp"

STATIC=1

Once the utilities were built, they required stripping to obtain a smaller execution

footprint. This was needed to run dropbear utilities in a memory-restrictive environment

such as Tiny6410. The following steps were used to strip and install the utilities into the

installation location.

$> make strip

$> foreach exefile (dropbear dbclient dropbearkey dropbearconvert

scp)

foreach? cp $exefile /export/cod_ann_fs/arm-Linux/bin

foreach? end

At this point, all the installed utilities could be verified as stripped and statically linked

as follows:

$> file /export/cod_ann_fs/arm-Linux/bin/*

/export/cod_ann_fs/arm-Linux/bin/dbclient: ELF 32-bit LSB

executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux

2.6.27, stripped

/export/cod_ann_fs/arm-Linux/bin/dropbear: ELF 32-bit LSB

executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux

2.6.27, stripped

/export/cod_ann_fs/arm-Linux/bin/dropbearconvert: ELF 32-bit LSB

executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux

2.6.27, stripped

/export/cod_ann_fs/arm-Linux/bin/dropbearkey: ELF 32-bit LSB

executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux

2.6.27, stripped

/export/cod_ann_fs/arm-Linux/bin/scp: ELF 32-bit LSB

executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux

113

2.6.27, not stripped

Once installed, dropbear could be used on the Tiny6410 execution environment. The

following steps were used to configure Tiny6410 for auto authentication of any SSH-

based remote execution. Using these steps, a private-public key pair was generated on the

Tiny6410, and the public key was copied to the remote server so that any remote

execution from Tiny6410 would be honored without asking for a password. These steps

were taken based on an article published on the Internet [71]. In this example, the NFS

directory was used to move the public key to the remote server. However, there are more

secure ways to accomplish the same task. The client side command was as follows:

[FriendlyARM]# dropbearkey -t rsa -f ~/.ssh/id_rsa

[FriendlyARM]# dropbearkey -y -f ~/.ssh/id_rsa | grep "^ssh-rsa" >>

/export/cod_ann_fs/authorized_key

 The server-side command was as follows:

boson-srvr-02> cat /export/cod_ann_fs/authorized_key >>

~/.ssh/authorized_keys

Once done, a remote execution request was generated from Tiny6410 as follows:

[FriendlyARM]# dbclient -i ~/.ssh/id_rsa -l kpatra boson-srvr-02 cat

/export/cod_ann_fs/z

HELLO WORLD !!!

boson-lnx-01

Friendly ARM

114

The command dbclinet was equivalent to the SSH command. The option “-i

~/.ssh/id_rsa” was used to pass the private key file, unlike the SSH application, which

found the private key from the ~/.ssh directory. The option “-l kpatra” requested the

server to execute the following command as the user kpatra. The server was required to

have the corresponding user account.

V. CONCLUSION

With the completion of this experiment, two objectives were accomplished. The first

was the setup of a Tiny6410-accessible NFS directory. The second was the setup of an

SSH-based remote execution from Tiny6410. These two features opened up many

possibilities including running complex programs on Tiny6410 through remote execution

and storing /sharing large amounts of data without consuming any storage resource

onboard.

115

APPENDIX D

Introduction to the FANN Software Library Package

I. INTRODUCTION

The study of artificial neural networks (ANNs) and their engineering applications has

been going on for decades. McCullouch and Pitts [46] proposed the first mathematical

model for a neural network in 1943. Later, Rosenblatt [47] developed a perception model

to implement a pattern-recognition algorithm based on a two-layer learning computer

network. However, neural network research was halted from 1969 for almost 6 years

when Minsky and Papert [48] pointed to two key issues in neural network computation

machines. The first issue was the inability of a single perception network model to

process XOR logic. The second issue was the lack of a powerful-enough computer to

process a large neural network. In 1975, Kunihiko Fukushima [49] designed cognition,

which was a precursor to a trainable multilayered neural network. Later, rediscovery of a

back propagation algorithm for neural network training popularized neural network

research and application in engineering problem solving [18].

Many software applications have been developed to implement neural networks. The

Fast Artificial Neural Network (FANN) is an open-source software library [60] that

implements generalized feed forward ANNs. This library application can implement

neural networks of any desired size by selecting an application-specific number of inputs,

outputs, hidden layers, and hidden neurons per layer. Several other parameters can be

adjusted per the application’s needs.

116

In the following sections, download and installation instruction, API usage, and

software directory structure are described. All the instructions documented in this paper

are based on the Ubuntu SMP Thu Mar 8 17:34:21 UTC 2012 i686 i686 i386 GNU/Linux

operating system. The command examples are based on tcsh as the shell for command-

line input.

II. DOWNLOAD AND INSTALLATION

A. Downloading the package

The latest package can be downloaded from the following link:

http://sourceforge.net/projects/fann/files/fann/2.2.0/FANN-2.2.0-Source.zip/download

This downloads the file FANN-2.2.0-Source.zip. The UNIX command “unzip” is used

to unzip this file.

$> unzip FANN-2.2.0-Source.zip

A new directory FANN-2.2.0-Source is created after unzipping the file.

B. Installation

As a pre-requisite, the system must have cmake, make, gcc, and g++.

$> which cmake make g++ gcc

/usr/bin/cmake

/usr/bin/make

/usr/bin/g++

/usr/bin/gcc

117

Installation can be done at the system’s /usr/local/lib dir, which needs super user

privileges (by running the installation command via sudo command in UBUNTU Linux).

This is the default mode of installation. There is also another scope to install it in a user-

defined library directory. The following shows the installation steps using the default

location.

$> cd FANN-2.2.0-Source

$> sudo make install

This install step creates the artifacts in the system in the following two directories.

 /usr/local/lib The entire shared library files go here.

 /usr/local/include: The entire header files go here.

There are four files (which are soft links) inside the /usr/local/lib directory, which are
important to know.

1. libfann.so Same as libfloatfann.so

2. libfloatfann.so FANN library with floating point.

3. libdoublefann.so FANN library with double precision floating point.

4. libfixedfann.so FANN library with fixed point.

To test the installation, the following steps must be performed successfully:

$> setenv LD_LIBRARY_PATH /usr/local/lib

118

$> cd ./examples

$> make runtest

To install FANN in an alternate location, the following cmake command must be used

instead of the standard cmake command mentioned earlier.

cmake -D CMAKE_INSTALL_PREFIX:PATH=/home/abc/lib.

III. FANN API USAGE

The FANN library provides two modes of operation:

1. Training mode: In this mode, the application creates, trains, and stores the neural

network.

2. Operation mode: In this mode, the application loads a pretrained neural network

used to compute output.

In general, for a target application there should be two different programs implemented.

The first one is the training program. The purpose of the training program is to create and

train the ANN with an existing input and desired output. Once trained, meaning the

connection weights are adjusted to produce the desired result for a set of inputs, the ANN

is stored in a file to be used in the real application program.

The second type is the target application program. This program typically loads an

already stored trained neural network and uses it to compute the result of given inputs for

the application. Fig. 46 shows the overall steps for the two modes. The application

program has to have the fann.h header file to include the prototype definition of any

119

FANN API needed. In addition, it needs to link to the shared library of FANN to access

the APIs at run time.

Fig. 46. FANN Usage Steps.

A. Training mode APIs

Table 13 shows the four available APIs needed to perform the steps in training mode.

Table 13. API List of ANN Training

API Description

fann_create Creates and returns the pointer to struct fann. The parameters to be
passed into this API are connection rate (1.0 for fully connected
network), learning rate, number of layers, and number of neurons per
layer starting with the input layer and ending with the output layer.

fann_train_on_file Trains a given network with a given training data file. The
parameters to be passed are the network, train file, max number of
epochs, number of epochs to produce a status, desired mean square

120

API Description

error. The training steps at max epoch or mean square error are lower
than the desired value, which ever happens first.

fann_save Saves the network in a text file. The parameters passed are the
network and file name to the text file where the network is to be
stored.

fann_destroy Cleans the memory allocation during the previous steps. This should
happen just before quitting the application.

The following are examples and explanations of sample usage of each of the above

APIs.

1. struct fann *ann = fan_create(1.0, 0.7, 3, 2, 2, 1);

The previous function call will create an ANN with full connection (first argument),

learning rate 0.7 (second argument), 3 layers (third argument), 2 neurons in input layers

(fourth argument), 2 hidden neurons in one hidden layer (fifth argument), and one neuron

at output layer (sixth argument).

2. fann_train_on_file(ann, “xor.data”, 500000, 1000, 0.0001);

The previous function call will train ANN with the data from the xor.data file with

maximum epoch (during one epoch, each of the training pairs are trained for one iteration)

of 50,000 (third argument), reporting training status between epochs as 1,000 (fourth

argument) and with a desired mean square error as 0.0001 (fifth argument). With this

specific example, the training will stop when either the number of epochs is greater than

50,000 or the desired mean square error is below 0.0001, whichever happens first.

3. fann_save(ann, “xor_float.net”);

121

The previous function saves the trained ANN as xor_flaot.net inside a text file.

4. fann_destroy(ann);

The previous function destroys all the memory allocated by the ANN structure. This is

usually the last call before returning from the main routine of the application.

B. Operation mode APIs

The Table 14 lists the three APIs needed to perform the steps in training mode.

Table 14. FANN API List of ANN Operation

API Description

fann_create_from_file Creates and returns pointer to struct fann, reading the network
definition from file. The parameter to be passed into this API is
the ANN definition file name.

fann_run Computes and returns the output for a given input.

fann_destroy Cleans the memory allocation during the previous steps. This
should happen just before quitting the application.

An example of the two new APIs is discussed in this subsection. Usage example for

fann_destroy was shown in the previous subsection.

1. struct fann *ann = fann_create_from_file(“xor.net”);

The previous function call creates a FANN structure by reading the network definition

from the xor.net files. The format of the definition is not important in this context. The

122

recommendation is to create such a definition only by using the fann_save API during the

training mode operation of the application.

2. fann_type input[2];

3. input[0] = 1;

4. input[1] = -1;

5. fann_type *calc_out = fann_run(ann, input);

The previous piece of code computes the result and returns it as an array into calc_out

(which is at least an array containing one element). The arguments are ANN and the input

values for the computation.

C. Advance Usage of API

The FANN library supports adjustment of the following ANN parameters.

1. Activation method for both hidden and output neuron layers.

2. Steepness parameter used in the sigmoid family activation function.

3. Learning rate of the neural network.

4. Initial weight of the connection. By default, it is set randomly between –1.0

and 1.0.

During the network-training phase, it is sometimes necessary to adjust these advanced

parameters to fine-tune the outcome of the network. Table 15 shows the APIs to adjust

such advance parameters.

123

Table 15. FANN API List of ANN Operations

API Description

fann_set_learning_rate Sets the learning rate of an ANN. The arguments
are the network and the learning rate.

fann_set_learning_rate(ann,0.55)

fann_randomize_weight Sets the user-defined random weight boundary for
the connections. The arguments are the network,
lower boundary, and upper boundary.

fann_randomize_weight(ann,-0.6,0.8)

fann_set_activation_function_hidden Sets the activation function for the hidden layers.
The arguments are the network and the function
type.

fann_set_activation_function_hidden
(ann,FANN_SIGMOID_STEPWISE)

fann_set_activation_function_output Sets the activation function for the output layers.
The arguments are the network and the function
type.

fann_set_activation_function_output(ann,
FANN_SIGMOID_SYMMETRIC)

fann_set_activation_hidden_steepness Sets the activation steepness for the sigmoid family
activation functions for the hidden layer.

fann_set_activation_hidden_steepness(ann,0.5)

fann_set_activation_output_steepness Sets the activation steepness for the sigmoid family
activation functions for the output layer.

fann_set_activation_output_steepness(ann,0.8)

The following are the different activation functions supported by the FANN 2.2.0

library package.

FANN_LINEAR

FANN_THRESHOLD

FANN_THRESHOLD_SYMMETRIC

FANN_GAUSSIAN_STEPWISE,

FANN_ELLIOT

FANN_ELLIOT_SYMMETRIC

124

FANN_SIGMOID

FANN_SIGMOID_STEPWISE

FANN_SIGMOID_SYMMETRIC

FANN_SIGMOID_SYMMETRIC_STEPWISE

FANN_GAUSSIAN

FANN_GAUSSIAN_SYMMETRIC

FANN_LINEAR_PIECE

FANN_LINEAR_PIECE_SYMMETRIC

FANN_SIN_SYMMETRIC

FANN_COS_SYMMETRIC

FANN_SIN

FANN_COS

D. FANN Train File Format

Because the training files are to be created by the application users, it is important to

describe the training file format in the context of FANN API usage. The FANN training

file has a very simple format but is not very flexible (there is no support for the comment

or blank lines). The first line has three numbers that are space- or tab-separated (a data set

composed of the input pattern and output pattern), the number of inputs, and the number

of outputs. From the next line onward, each of the two lines composes one data set. In a

data set, the first line has the space- or tab-separated input values and the second line has

the space- or tab-separated output values. Table 16 shows an example of the training set

for XOR training.

Table 16. Training Set for XOR Training

Content Explanation Section

4 2 1 4 data set with 2 inputs
and 1 output

Definition line

1 –1 Input 1 and –1 Data Set 1

–1 Output –1

–1 1 Input –1 and 1 Data Set 2

1 Output 1

1 –1 Input 1 and –1 Data Set 3

1 Output 1

125

Content Explanation Section

1 1 Input 1 and 1 Data Set 4

–1 Output –1

IV. FANN PACKAGE DIRECTORY STRUCTURE

It is very important to know the directory structure of the unzipped package in order to

change or experiment with the source code and examples. Table 17 shows the

subdirectory and its content upon extracting the zip file.

Table 17. FANN 2.2.0 Directory Structure

Dir name / file name Purpose

bin Directory storing precompiled libraries and executable.

CMakeLists.txt Configuration file for cmake.

COPYING.txt Copyright statement file.

examples Directory-storing example application programs using FANN
library.

src Directory storing source code and header files (inside the
subdirectory named include) for FANN library.

cmake Directory-storing files required for cmake.

VS2010 Directory-storing Visual Studio 2010 project definitions.

datasets Directory-storing training and testing file for the examples.

README.txt The README file.

V. CONCLUSION

With all the experiments done with the FANN library, it can be concluded that the FANN

library can be successfully used to create and use an ANN.

126

APPENDIX E

Extending FANN Library for Compact C-model Generation

I. INTRODUCTION

The fast artificial neural network (FANN) library [60] provides the functionality to

create, train, store, and reload a neural network for application-implementing solutions

using a neural network technique. It stores the network definition in a text file. Using the

provided API, the trained network can be reloaded for the purposes of application usage.

However, reusing the neural network through the native API is costly in the sense that the

application needs to

1. Load all the APIs in FANN unnecessarily; most of them are not needed.

2. Create a lot of pointer-based structures to represent a neural network, which is

not necessary while using the neural network for computation purposes.

Often in the case of embedded applications, it is good to keep the memory footprint to

a minimum and within a predictable, executable size. This document describes an

extension to the FANN 2.2.0 library to generate a compact C-model, which can be

integrated into the application at the source-code level. This compact C-model does not

need any of the APIs from the original library and it represents the neural network purely

with static arrays. Hence, the application memory footprint is completely predictable. It

is the size of the target-compiled application (the assumption is that a target application

only uses static arrays).

127

II. BASIC ARCHITECTURE FOR THE ANN C-MODEL

A. General ANN architecture

Fig. 47 depicts a neural network model with two inputs, one output, and one hidden

layer containing two neurons. An ANN contains at least one input layer and one output

layer. It may contain one or more hidden layers. Each layer contains multiple neurons

and one bias neuron (marked as b in the diagram). Each neuron presents a numerical

value for the next layer.

Fig. 47. Basic ANN Architecture

For a fully connected network, each neuron in a noninput layer is connected to all the

neurons in the previous layer with different weights. The input to a neuron from its

predecessor neuron is the product of the value from its predecessor neuron and the

connection weight w. The neurons in the input layer and bias neurons usually do not

contain any activation function or linear function. The bias neuron’s value is usually set to

a singular value of 1.

128

B. The equivalent C-model architecture

The fundamental motivation to design a C-model for ANN is to represent the target

ANN structure with static arrays. Using that approach, ANN size can be very compact

and predictable, which is a suitable model for embedded application usage. From the

general ANN architecture, it can be concluded that there are three distinct components to

be represented in a corresponding ANN C-model: the neuron, perception layers, and

neuron connections.

Because the goal is to represent an already trained ANN, all the parameters (the

activation function, the connection weight, and so on) are known in advance. Hence, it is

possible to represent the entire ANN using a group of static arrays. All three distinct

components, as described earlier, can be represented with three static arrays. Fig. 48

depicts the basic architectural concept for the ANN C-model, where the dotted connection

shows the conceptual relations between different arrays.

In this architecture, all the neurons are placed in one array and are sorted according to

their layer position (i.e., neurons in the first layer go first, neurons in the second layer go

next, and so on). In addition, the bias neuron for a layer has the highest index in the

neuron array compared to other neurons in the same layer. A neuron is a collection of

values and activation functions in the C-model. In the example of Fig. 48, there are nine

neurons (including the bias neurons). In Fig. 48, all the nine neurons are placed in an

array of size nine.

129

Fig. 48. Top level ANN C-model Architecture

All the layer definitions are placed in another array. The layer definition contains the

start neuron index and the end neuron index. The end neuron index always points to a

bias neuron in this proposed ANN C-model architecture. In the example, three layers are

represented in the array of layers, as shown in Fig. 48.

All the connections are placed in another array where a connection definition contains

the index of the source neuron and the connection weight. All the connections are

arranged inside the connection array in such a way that the connection sequence

corresponds to the neuron sequence as the destination neuron in the connection. The

destination neuron sequence starts from the second layer, skipping all the bias neurons.

The number of connections from a neuron can be determined from the layer information

of the immediately preceding layer. In Fig. 48, there are nine connections, which are

represented in the connection array in Fig. 48. According to this architecture, Neuron N4

130

is connected to N1, N2, and N3 neurons with connection weight w1, w2, and w3

respectively. Inherently, this architecture assumes the full connection rate. However, it is

also possible to implement partial connections using a connection weight of 0. Inherently

this architecture assumes the full connection rate. However, it is also possible to

implement partial connections using a connection weight of 0.

III. THE COMPLETE C-MODEL ECHO SYSTEM

The C-model, described in Section II, is accompanied using a different set of APIs,

which together compose the complete ANN C-model echo system. The API system is

classified into three module categories: core APIs, IO APIs, and statistics APIs. Each of

these categories can be complied and linked as needed by the target application. The core

API is independent and can be linked with an application without any other APIs. On the

other hand, both the IO API and statistic API need the application to have the core API

linked as well. However, the IO and statistic API are independent of each other.

The core API contains the ANN C-model, as described in Section II, and the API to

compute the result using ANN C-model. The target application can pass the input to

compute the API and get the output back from the module. The output is computed using

the ANN C-model. Additionally, this module has other query APIs to get the number of

inputs, outputs, layers, and other information about the ANN.

The utility API module contains an API to read the ANN training data file [2] and

provide input and expected output to the target application. This API module can be used

to test ANN with an existing data set to validate the result.

131

The statistic API module contains an API to collect all the outputs and maintain an

error database. The application can return error statistics (mean relative error and standard

deviation of means relative error) and relative error distribution data. The relative error is

defined in terms of the percentage of expected output. The relative error (“err”) is defined

by Equation 14, where O is the output and E is the expected output.

()

 Equation 14

If the expected output is 0, both the current output and expected output are added with a

unity value so that Equation 1 does not run into an invalid condition.

Fig. 49. ANN C-model Echo System

Fig. 49 depicts the complete C-model echo system. The circles represent different

modules of the system. The arrows represent the I/O of the module. The ANN C-model,

132

as described in section II, is associated with the ANN compute API module. In section V,

the details of the data structure and APIs are discussed.

IV. FANN-2.2.0 EXTENSION

To translate the FANN 2.2.0 internal model into C-model, the following new API has

been created, as shown in Table 18.

Table 18. API for ANN C-model Generation

API Description

fann_save_C Saves the FANN internal ANN model to a C-model, which can
be compiled with any general C compiler, such as gcc. The
argument for this API is struct fann *.

e.g. fann_save_C(ann)

A new source file (fann_io_embedded.c) and a new header file (fann_io_embedded.h)

are created under the FANN-2.2.0 source distribution. In this experiment, instead of a

make-based system, Netbeans was used to define the FANN extension project and was

compiled using Netbeans GUI. However, because the FANN-2.2.0 source distribution is

very simple, it is possible also to extend the existing make/cmake system to include this

newly introduced piece of code.

There is another piece of new code: fann_utils.c (and corresponding fann_utils.h) was

added to FANN-2.2.0 to implement some common statistic APIs used in both the FANN

library and ANN C-model APIs. Details of the APIs are discussed in section V. The only

relevant information is that to compile this file as a part of the FANN library, the compiler

macro FANN_LIB must be defined (in gcc it is passed using DFANN_LIB).

133

$> gcc –c fann_utils.c -DFANN_LIB –o fann_utils.o

The fann_save_C API creates the following list files in the current run dir as shown in

Table 19.

Table 19. Files Generated with FANN C-model Generation

File Description

fann_app_global.h The C-model definition for ANN.

fann_app.h The header files of the core API module to be included in the
source code of the target application.

fann_app_int.h This is the internal header file for the core API module.

fann_utils.h This is the header file of the IO and statistic API module to
be included in the target application if needed.

fann_app.c The implementation for the core API module.

fann_example_app.c An example application program that can be used as the
starting point of an application program using the ANN C-
model.

fann_utils.c The implementation for the IO and statistic API module.

Makefile A simple GNU makefile to build the target application.

Except for fann_app_global.h, all files are copied from a predefined directory. For this

purpose, a new directory “config” is added to the FANN-2.2.0 package directory and

compiler macro FANN_COFIG_DIR is used to define this directory location inside the

source code. In the Netbeans project definition, the FANN_CONFIG_DIR compiler

macro is added so that compilation command has the following switch:

-DFANN_CONFIG_DIR=”\”/home/kpatra/ThesisProjects/COD-ANN/FANN/FANN-2.2.0-

Source/config\””

134

V. ANN C-MODEL APIS

A. C data structure definition

In the file fann_app_int.h, the data structure for the neuron, layer, and connection has

been defined. A neuron data structure is defined as follows:

typedef struct {

 int num_of_input;

 Fann_Actfn_Type actfn;

 float activation_steepness;

 float value;

} Fann_Neurone;

A neuron data structure contains information about the number of inputs

(num_of_input), activation function (actfn), activation steepness for the sigmoid group of

activation functions (activation_steepness), and the current value of the neuron (value).

A layer data structure is defined as follows:

typedef struct {

 int start_neuron_index;

 int end_neuron_index;

 int conn_weight_start_index;

} Fann_Layer;

A layer data structure contains a star and end neuron index for the layer in the neuron

array index (start_neuron_index and end_neuron_index). There is also a start index for

the connection in the connection array (conn_weight_start_index). Although this

connection array can be determined at execution time, it has been included in the data

135

structure to save some computation time while keeping the memory footprint under

control. It is not usual to have a very large number of layers in any ANN architecture;

thus this extra storage in the layer data structure should not consume a significant amount

of memory.

The connection data structure is defined as following. It contains the source neuron

index for the connection and the connection weight. As discussed in section II, ANN data

structure indirectly indicates the destination neuron for the connection.

typedef struct {

int from_neuron_index;

float weight;

} Fann_Conn_Info;

In the file fann_app_global.h file, the actual C-model for ANN is defined. The

following is an example of such a model for XOR implementation using ANN.

Fann_Neurone fann_neurones[] = {

 {0, FANN_LINEAR, 0.00000e+00, 0},

 {0, FANN_LINEAR, 0.000000e+00, 0},

 {0, FANN_LINEAR, 0.00000e+00, 1},

 {3, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 0},

 {3, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 0},

 {3, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 0},

 {0, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 1},

 {4, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 0},

 {0, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 1}

};

Fann_Layer fann_layers[] = {

 { 0, 1, -1 },

 { 3, 5, 0 },

136

 { 7, 7, 9 }

};

Fann_Conn_Info fann_connections [] = {

 {0, 1.53974294662475585938e+00},

 {1, -2.43024516105651855469e+00},

 {2, -1.62801718711853027344e+00},

 {0, 9.18790340423583984375e-01},

 {1, 1.18300104141235351562e+00},

 {2, 2.06007146835327148438e+00},

 {0, -1.89169239997863769531e+00},

 {1, 1.38891375064849853516e+00},

 {2, -1.66912353038787841797e+00},

 {3, 3.17120909690856933594e+00},

 {4, 2.57782721519470214844e+00},

 {5, 3.42049527168273925781e+00},

 {6, 8.41499686241149902344e-01}

 };

B. ANN C-Model APIs

The following are the core APIs that an application should need to use the C-model as

shown in Table 20.

Table 20. C-model Core APIs

File Description

fann_get_number_of_layers Returns the number of layers.

fann_get_number_of_input Returns the number of inputs.

fann_get_number_of_output Returns the number of outputs.

fann_get_number_of_neurons Returns the total number of neurons.

fann_get_number_of_conns Returns the total number of connections.

fann_execute Computes the output for a given input using the ANN.
It takes arguments as an array of ouputs and an array of
inputs. The output array is populated with computed
results after the execution is done. It returns the
execution status as Boolean (an enum with values true

137

File Description

and false).

e.g., Boolean stat = fann_execute(out,in); // out =>
array of float, in => array of float

The following are the IO utility APIs included in the application using fann_utils.h, as

shown in Table 21.

Table 21. C-model IO Utility APIs

File Description

fann_utils_open_train_file To open a FANN training file for reading; the
argument is the training file name. The function
returns Boolean status upon completion.

e.g., stat = fann_utils_open_train_file (“xor.dat”)

fann_utils_get_next_data To get the next data set (input and expected output)
from the opened training file; the arguments are the
pointer to the input array and the pointer to the output
array. This function allocates the required array inside
the function itself so that the application does not need
to allocate the array beforehand. This function returns
a Boolean status upon completion. If the training file
reaches the end, this function will return false and
close the file descriptor for the training file.

e.g., while (fann_utils_get_next_data (in_pattern,
out_pattern)) {

 // do something with the data

 // where in_pattern is float **

 // where out_pattern is float **

}

fann_utils_init_util THIS FUNCTION IS FOR THE FANN LIBRARY
ONLY AND IS ONLY FOR USING THE
STATISTICAL UTILITY FUNCTION.

This function initializes the internal structures of the
utility module for providing the statistical APIs. The
arguments are the number of data sets and the number
of outputs. It returns a Boolean status upon

138

File Description

completion.

e.g., stat = fann_utils_init_util(455, 3);

The following are the statistic utility APIs, as shown in Table 22.

Table 22. C-model Statistics Utility APIs

API Description

fann_utils_insert_compare_data To open insert comparison data in statistical
database of the utility; the argument is the
constant array to expected output and actual
output. The function returns a Boolean status
upon completion.

e.g., stat =

fann_utils_insert_compare_data(

exp,out);

fann_utils_get_mean_relative_error Returns mean relative error so far; no argument
is needed.

e.g. mre =
fann_utils_get_mean_relative_error();

fann_utils_get_std_dev_of_relative_err
or

Returns standard deviation for relative error; no
argument is needed.

e.g. mestd=
fann_utils_get_std_dev_of_relative_error();

fann_utils_dump_err_stat Creates an error statistics file named after the
given argument.

e.g., fann_utils_dump_err_stat(“err.stat”);

The error statistics file contains tab-separated information about the mean relative

error, standard deviation of relative error, and distribution information on the deviation

139

between –100% to +100%. This file can easily be imported into any spreadsheet

application for further analysis.

VI. USAGE OF GENERATED C-MODEL

A. Building the application program

The generated C-model for ANN also contains a sample application program named

fann_example_app.c, which can be used as the starting point for the target application

program. This example program can be built with the created Makefile. The Makefile has

a target “help” as follows:

$> make help

make APP_NAME=<app name> [TRAIN_DATA=<train data file>]

[USE_FANN_UTILS=<YES|NO>] [STAT_FILE=<stat file>] [CC_EXT <compiler

prefix>]

Table 23 explains each make macro and its usage.

Table 23. Make File Macros for Building an Application Using the ANN C-model

MACRO Description

APP_NAME To supply the application name <app_name>; it is assumed that
the corresponding source file <app_name>.c exists. This macro
has to be used in the Make command line.

TRAIN_DATA To supply the FANN training data file; this is optional. The
default train data file name is SAMPLE.DAT.

USE_FANN_UTILS An optional macro that takes a YES or NO value. To include
the FANN utility APIs (both IO and statistics), this macro must
be passed with a YES value. The default value is NO.

STAT_FILE This is an optional macro to define the generated statistic file
name. Only if this macro is defined, the statistics utility code is
compiled. The default value is CMODEL.STAT.

CC_EXT This is an optional macro to define the prefix of the cc

140

MACRO Description

command. This is useful for compiling the application with
cross compilers.

The following is an example for compiling an application program generated through

FANN extension testing.

$> make APP_NAME=fann_example_app \

 TRAIN_DATA=”\”xor.dat\”” \

 USE_FANN_UTILS=YES \

 STAT_FILE=”\”xor.cmodel.stat\””\

 CC_EXT=arm-Linux-

The above example compiles the application with a main source at

fann_example_app.c with the arm-Linux-cc compiler, using xor.dat as a training file and

xor.cmodel.stat as a statistics file. The application will also include the IO utility and

statistics utility module in the compilation.

B. Understanding the example application program

The following is the source code listing for the created example application program.

1 #include <stdio.h>

2 #include <stdlib.h>

4 #include "fann_app.h"

5 #include "fann_utils.h"

7 #ifndef FANN_TRAIN_DATA

8 #define FANN_TRAIN_DATA "SAMPLE.DAT"

9 #endif

141

11 #ifndef FANN_STAT_FILE

12 #define FANN_STAT_FILE "CMODEL.STAT"

13 #endif

14

 16 int main(int argc, char** argv) {

17 float *input = NULL;

18 float *expected_output = NULL;

19

 float *output =

malloc(sizeof(float)*fann_get_number_of_output());

22

 printf("INFO : Number of layers

%d\n",fann_get_number_of_layers());

23

 printf("INFO : Number of input

%d\n",fann_get_number_of_input());

24

 printf("INFO : Number of output

%d\n",fann_get_number_of_output());

25

 printf("INFO : Number of neurons

%d\n",fann_get_number_of_neurones());

26

 printf("INFO : Number of connections

%d\n",fann_get_number_of_conns());

27 printf("\n");

29 if (!fann_utils_open_train_file(FANN_TRAIN_DATA)) {

30 return EXIT_FAILURE;

31 }

32 while(fann_utils_get_next_data(&input,&expected_output)) {

33 fann_execute(output, input);

34 #ifndef NO_FANN_UTIL_STAT

35 fann_utils_insert_compare_data(expected_output,output);

36 #endif

37 }

38 #ifndef NO_FANN_UTIL_STAT

39
 printf("INFO: Dumping error statistics at

142

%s\n",FANN_STAT_FILE);

40 fann_utils_dump_err_stat(FANN_STAT_FILE);

41 #endif

43 free(output);

44 return EXIT_SUCCESS;

45 }

Table 24 explains each source code line of the example application program.

Table 24. Source Code Explanation for Application Using the ANN C-model

Lines Description

4-5 Includes core and IO APIs.

8,12 Sets default train data and stat file name.

19 Allocates floating type array with a size equal to the number of outputs of the
ANN.

21-27 Prints ANN information.

29 Opens training data file to be read.

32-37 A while loop that continues until all the data are read. It stores the input
pattern and expected output pattern.

33 Executes the ANN to compute output into the output array.

35 Inserts the comparison data into a statistical database.

40 Creates the error statistic file.

VII. VALIDITY OF GENERATED C-MODEL

A. General validation strategy

The general strategy to validate the C-model result is to compare it to the output from

the sample application using the FANN 2.2.0 library.

143

It is easier to inspect the output from smaller test cases by reviewing the results. This is

not the case for larger test cases. For larger test cases, statistical validation has been

adapted to verify and validate the C-model. The mean relative error and standard

deviation from the mean relative error are compared between applications using the C-

model and the same application using the FANN-2.2.0 library. There should be no

difference or very little difference (within 1% of error tolerance) between these statistical

metrics. In addition, the error distribution between two runs should be identical or have

very small differences.

B. List of test cases

The following are the test cases used to validate the C-model as shown in Table 25.

Table 25. FANN C-model Test Cases

Name # of inputs # of outputs # of layers # of hidden

neurons

of test data

XOR 2 1 3 3 4

1pClass 2 1 2 0 6

Robot 48 3 3 96 594

Mushroom 125 2 3 32 4062

C. Output Comparison

The following is the statistical comparison between test cases as shown in Table 26.

Table 26. FANN C-model Test Results

Name Mean relative error Standard deviation of relative error

FANN C-MODEL DIFF FANN C-MODEL DIFF

144

Name Mean relative error Standard deviation of relative error

FANN C-MODEL DIFF FANN C-MODEL DIFF

XOR –1.45 –1.45 0 0.31 0.31 0

1pClass 0 0 0 0.6 0.6 0

Robot 3.45 3.45 0 15.2 15.2 0

Mushroom 0.06 0.06 0 2.46 2.46 0

For all the statistical metrics, the results of FANN 2.2.0 and the C-model are identical.

Table 27 shows the mean error distribution between FANN and the C-model for the

robot and mushroom test cases.

Table 27. FANN C-model Mean Error Distribution

0

100

200

300

400

500

600

-1
0

0

-8
8

-7
6

-6
4

-5
2

-4
0

-2
8

-1
6 -4 8

2
0

3
2

4
4

5
6

6
8

8
0

9
2

Mean Error Distribution - Robot (FANN)

0

100

200

300

400

500

600

-1
0

0

-8
9

-7
8

-6
7

-5
6

-4
5

-3
4

-2
3

-1
2 -1 1
0

2
1

3
2

4
3

5
4

6
5

7
6

8
7

9
8

Mean Error Distribution - Robot (CModel)

145

The following is the output from the XOR C-model application.

INPUT: (-1.000000,-1.000000) OUTPUT: (-0.987475) EXPECTED: (-

1.000000) DIFF: (0.012525)

INPUT: (-1.000000,1.000000) OUTPUT: (0.983460) EXPECTED: (1.000000)

 DIFF: (-0.016540)

INPUT: (1.000000,-1.000000) OUTPUT: (0.981609) EXPECTED: (1.000000)

 DIFF: (-0.018391)

INPUT: (1.000000,1.000000) OUTPUT: (-0.989289) EXPECTED: (-

1.000000) DIFF: (0.010711)

The following is the output from the 1pClass C-model application.

INPUT: (1.000000,2.000000) OUTPUT: (0.998061) EXPECTED: (1.000000)

 DIFF: (-0.001939)

INPUT: (1.000000,3.000000) OUTPUT: (0.999996) EXPECTED: (1.000000)

 DIFF: (-0.000004)

INPUT: (2.000000,3.000000) OUTPUT: (0.998061) EXPECTED: (1.000000)

 DIFF: (-0.001939)

INPUT: (2.000000,1.000000) OUTPUT: (0.001993) EXPECTED: (0.000000)

 DIFF: (0.001993)

INPUT: (3.000000,1.000000) OUTPUT: (0.000004) EXPECTED: (0.000000)

 DIFF: (0.000004)

INPUT: (3.000000,2.000000) OUTPUT: (0.001993) EXPECTED: (0.000000)

 DIFF: (0.001993)

0

2000

4000

6000

8000

10000
-1

0
0

-8
8

-7
6

-6
4

-5
2

-4
0

-2
8

-1
6 -4 8

2
0

3
2

4
4

5
6

6
8

8
0

9
2

Mean Error Distribution - Mushroom
(FANN)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

-1
0

0

-8
8

-7
6

-6
4

-5
2

-4
0

-2
8

-1
6 -4 8

2
0

3
2

4
4

5
6

6
8

8
0

9
2

Mean Error Distribution - Mushroom
(CModel)

146

VIII. CONCLUSION

The experimental results show that the C-model ANN evaluation is functionally

equivalent to the FANN 2.2.0 ANN evaluation.

147

APPENDIX F

“anCod” A Software for Analyzing Water COD

I. INTRODUCTION

Chemical oxygen demand (COD) is one of the unique parameters for determining

water quality. There have been many types of chemical, electrochemical, photochemical,

and pure photometry-based procedures to determine the COD content of water. Among

these different procedures, photometry-based analysis is the easiest and quickest process,

simply because it does not involve any chemical process. This photometry-based analysis

exploits the unique spectral signature for water contaminants.

In this project, a software suit has been developed, which can be executed on a cloud-enabled embedded

platform using ANN-based COD measurement to collect spectrometry data from a portable spectrometer.

The following sections describe the requirement (section II), architecture (section III), user

interface (section IV), implementation (section V), and experiment result on training

(section VI).

II. REQUIREMENT FOR THE SOFTWARE

The proposed software has three distinct components. One component is responsible

for collecting photometry data, sending it over the cloud to a server for data analysis, and

collecting the result from the server side. The other component is the server component,

which collects the data from the client, runs analysis, and sends the result back. The third

component is the ANN model generator using training data. Either the training data are

mathematically generated or field collected real with a known water sample COD.

148

A. Client Component Requirements

The following is the itemized requirement for the client component.

1. The client can be executed on an ARM11-based mobile platform.

2. The client should be able to collect data from the photometry device.

3. The client should be able to store the data on a remote server using the cloud.

4. The client should be able to request the server to start analyzing the collected

data.

5. The client should be able to collect the COD results from the server and display

the results locally.

6. The client should be able to create ANN training and test data using a

mathematical model for the photometry data.

7. The client should be able use collected photometry data for analyzing.

B. Server Component Requirements

The following is the itemized requirement for the client component.

1. The server may be executed on a non-ARM11 platform with more

computational power.

2. The server must be communicated over the cloud.

3. The server should provide both storage and COD analysis capabilities.

4. The server should implement ANN-based COD analysis.

149

5. The server should provide the capability of testing ANN for COD analysis.

C. ANN Model Generator Component Requirements

The following is the itemized requirement for the client component:

1. The model generator may be executed on a non-ARM11 platform.

2. The ANN model generator should generate a pluggable C-model for the COD

analysis server.

III. ARCHITECTURE OF THE SOFTWARE

The overall system is depicted in Fig. 50. The system consists of the following

components:

1. The photometer is used to generate the absorption spectrum of the water

sample.

2. Cloud storage is used to store the collected absorption spectrum.

3. The cloud server is the application server to analyze the collected absorption

spectrum.

4. An ARM11-based portable system is a portable device to collect the spectrum

data from the photometer, store the data over cloud storage, and display the

analysis results from the cloud server.

150

Fig. 50. COD Analysis System.

The software, anCod, is a collection of three distinct utilities as proposed by the

requirement described in section II.

1. anCod is the client program, which is primarily executed on the portable

ARM11 system.

2. anCodServer is the application server program, which is primarily executed on

the cloud server platform.

3. anCodTrainer is the ANN trainer to recognize the COD absorption pattern.

This program is also mainly executed on the cloud server platform.

The anCod client software works as the following flow steps depicted in Fig. 51. First

it collects photometry data and stores them on the cloud. Second it initiates the analysis

on the cloud server, once the data are collected and the deposit is completed. The client

151

would then wait for the server notification of analysis completion and display the analysis

results on the local display.

Fig. 51. anCod Client Flow

After receiving the processing request from a client, the server, anCodServer, first

preprocesses the collected photometry data compatible with the ANN. This processed

information is then analyzed by ANN to produce the COD result for the given water

sample. Fig. 52 depicts the overall server-side flow.

152

Fig. 52. anCodServer Server Flow

The trainer, anCodTrainer, works on training data and creates an ANN model to be

consumed by the anCodServer. The following is the workflow for the anCodTrainer. Fig.

53 depicts the trainer flow.

153

Fig. 53. anCodTrainer Trainer Flow

IV. USER INTERFACE

The anCod software suite has two types of user interfaces to control software behavior.

One is the command line interface and the other is the parameter setting in the

configuration file. In the following subsections, both the interfaces are discussed.

A. Command-line interface

The anCod client software has the following command line usage.

$> anCod -help

USAGE : anCod [-sim <sim data file>]

 [-gen_rnd_sim]

 [-train <output value>]

 [-save_as <file name>]

 [-local]

 [-train_sin]

 [-help]

154

Table 28 explains the options. Without any option, anCod captures photometry data

from the photometer and requests the server to analyze the data to determine the water

COD.

Table 28. The anCod Options

Option Purpose

-sim <sim data file> To use photometry data collected off-line or generated with
simulation.

-gen_rnd_sim To generate the ANN training file with random data.

-train <value> To supply ANN output values for the ANN training file. This
option also turns on the training file generation (which keeps
appending new training patterns onto the existing training file).

-save_as <file name> To save the photometry raw data.

-train_sin To generate ANN training data and test data.

-local To run analysis locally instead of on the server.

-help To print on-screen help/usage.

The anCod server software, or anCodServer, has the following command line usage:

$> anCodServer -help

USAGE : anCodServer [-test <id>] [-help]

Table 29 explains the options for anCodServer. Without any option, anCodServer

analyzes the captured photometry data stored by the anCod client and stores the analysis

result on a shared remote disk for the anCod client to pick up.

Table 29. The anCodServer Option

Option Purpose

-test <id> To run the ANN test for the given ANN type. For the time being, sin

and pm are supported. The ID “sin” means to test if ANN recognizes

that a signal consists of multiple sine waves. The pm mode test is to

155

Option Purpose

test ANN against the training patterns.

-help To print on-screen help/usage.

The anCod trainer software, or anCodTrainer, has the following command line usage:

$> anCodTrainer -help

USAGE : anCodTrainer -train <id> [-help]

Table 30 explains the options for ancodTrainer.

Table 30. The anCodTrainer Options

Option Purpose

-train <id> To generate a trained ANN model for a given type of signal recognition.
Currently sin and pm IDs are supported. The ID “sin” means to
generate an ANN model that recognizes that a signal consists of
multiple sine waves. The pm means to generate an ANN model for
recognizing real photometry data.

-help To print on-screen help/usage.

B. Configuration parameters

The anCod software suite uses makefile configuration parameters for the software run.

All these parameters are defined as shell (SH) environment variables and have some

default values. Users can point to their own configurations using the pointer in the

environment variable as shown in the following example:

 $> setenv ANCOD_USER_CONFIG_FILE ./test_06-config.sh

156

This configuration file is an SH shell script file. Hence, any SH-supported command

can be used in this configuration file. The usual command is to set the parameter as the

environment variable inside the Bourne shell as follows:

export anCod_result_file="anCod_cod.rpt"

There are three major categories of parameters:

1. General parameters.

2. Composite sine waves recognizing ANN-related parameters.

3. Composite sine wave-generation parameters.

Table 31 shows the list of available general parameters.

Table 31. List of general parameters for anCod

Parameter Default Notes

anCod_data_dir /export/cod_ann_fs/data Defines the data directory

where the collected

photometry data are stored.

anCod_freq_template anCod_freq.template Defines the list of

frequencies (the x-axis

values) used for the collected

photometry data.

anCod_data_file anCod_pm.dat Name of the data file where

the photometry data are

collected.

anCod_train_file anCod_ann_train.dat Name of the ANN training

file generated.

anCod_rsa_private_key id_rsa.i386

id_rsa.arm11

Name of the private key file

used by the remote shell.

157

Parameter Default Notes

anCod_remote_shell_cmd ssh for i386

dbclient for ARM11

The remote shell name.

anCod_remote_server boson-srvr-02 Remote server name.

anCod_remote_user kpatra Remote user name.

anCod_ model_name ann_sin ANN model name.

anCod_model_version 1.0.0 ANN model revision.

anCod_build_tool /usr/bin/make Build tool for ANN model

generation.

anCod_model_loc <installation_dir>/ann_

model/<platform>

Directory location where the

generated ANN model is

stored.

anCod_ann_input

20 Number of input nodes for

the ANN.

anCod_ann_output

1 Number of output nodes for

the ANN.

anCod_ann_hidden_node 50 Number of nodes in the

hidden layer.

anCod_pm_integration_time

2000000 Photometer integration time

in microseconds.

anCod_pm_scan_average

10 Amount of data scanned to

average out the result from

the photometer.

anCod_pm_spec_length 2048 Resolution of photometer

operation.

anCod_ref_blank_data pm-blank.data Reference photometer data in

blank condition. This is used

to measure absorption.

158

Table 32 shows the composite sine recognizing ANN-related parameters. This ANN

uses a single hidden layer. The model is generated as lib<model name>_<model

version>.so.

Table 32. ANN parameters for composite sine wave recognition

Parameter Default Notes

anCod_train_sin_ann_input 20 Number of input nodes for the ANN.

anCod_train_sin_ann_output 1 Number of output nodes for the

ANN.

anCod_train_sin_ann_hidden_node 50 Number of nodes in the hidden layer.

Table 33 lists the composite sine wave and corresponding parameters to generate

training or test data.

Table 33. Parameters to Generate Train/Test Data for Composite Sine Wave

Parameter Default Notes

anCod_train_sin_base_amplitude 1.0 Base amplitude for the composite

sine signal.

anCod_train_sin_base_frequency 1000.0 Base frequency in Hz for the

composite sine signal.

anCod_train_sin_relative_noise 0.2 Relative random

noise amplitude

relative to the base

amplitude.

anCod_train_sin_sample_point 20 Number of sampling points for

ANN training and test data

preparation.

anCod_train_sin_no_of_pts 1000 Number of discrete points for the

generated composite sine signal.

159

Parameter Default Notes

anCod_train_sin_harmonics_amps 1.0 Comma-separated relative

amplitude values for the harmonics

in the composite sine signals.

Example:

1.0,0.8,0.4,0.2,0.1,0.05,0.25,0.25,0.

05,0.1,0.2,0.4,0.8,1.0

anCod_train_sin_phase_shift true Adds random phase shift per

composite sine signal generation.

The shift happens randomly

between 0-PI if set to true.

anCod_train_sin_include_random_s

ignal

true Generates random noise as training

pattern that results in

nonrecognition of the composite

sine signal.

anCod_train_sin_train_file anCod_train

_sin.train

Generated ANN training file name.

anCod_train_sin_data_file anCod_train

_sin.dat

Data file base name for each

composite sine signal used in ANN

training. The actual file name is

extended with

<rnd|sin>_train_<unique id>

anCod_test_sin_data_file anCod_test_

sin.dat

The data file base name for each

composite sine signal. The actual

file name is extended with

<rnd|sin>_test_<unique id>

anCod_train_sin_test_file anCod_train

_sin.test

Generated ANN test file name.

anCod_train_sin_no_of_noise_data 100 Amount of training/test data to be

generated with random noise.

anCod_train_sin_no_of_amp_data 1 Level of amplitude variation. The

base amplitude is multiplied by the

current iteration value.

160

Parameter Default Notes

anCod_train_sin_no_of_freq_data 1 Level of frequency variation. The

base frequency is multiplied with

the current iteration value.

anCod_generate_data_file false If set to true, all the signal patterns

used in ANN training/test file

generation are stored in the data

directory.

V. IMPLEMENTATION DETAILS

For the initial implementation, a traditional NFS-based file system is used in place of

cloud-based storage. Likewise, a secured remote shell (SSH)-based application execution

is used instead of a cloud-based application execution. These basic changes should be

sufficient to prove the concept of this software because the services using the cloud are

accounted remote storage and servers. With these basic changes, the top-level architecture

looks like Fig. 54.

The top-level commands—anCod, anCodServer, and anCodTrainer—are shell scripts

that load all the required configuration parameters, determine the execution platform, and

invoke the corresponding binary executable for the execution platform. This software can

be built for both i386 and ARM11 architecture. Thus, the software can be executed on

both platforms.

161

Fig. 54. Implemented Software Architecture

Table 34 shows the available targets that developers may invoke in a make-based build

call.

Table 34. Makefile Targets to Build an anCod Application

Target Purpose

all To build and install for both i386 and ARM11.

build To build the software.

install To install the software.

smoke To smoke test the software. Each command will be invoked with the “-

help” option.

clean To clean the temporary build file for the given platform.

clean_all To clean the temporary build files for the entire platform.

Each build behavior can be controlled through the macros shown in Table 35. The

software installed in the directory is determined as follows:

$(ANCOD_ROOT)/anCod/$(VERSION).

162

Table 35. Makefile Macros Used in Building the anCod Application

Macro Description

ANCOD_ROOT Root of software installation

VERSION Software revision

ARCH Target platform for the software (i386 or arm11)

The source directory root contains the following build files as shown in Table 36.

Table 36. List of Makefiles for anCod

File name Notes

Makefile Top-level makefile.

MakeFiles/Common.mk Common macro definitions for all the

modules.

MakeFiles/Rules.mk All the build rules are defined here at this

makefile.

src/<module>/Makefile Source files and build related definitions for

the module.

The makefile for each module should contain the following macros, as shown in order

in Table 37, to define build-related definitions and source files.

Table 37. Macros for Module Makefile in anCod Software

Macro Description

TOP_DIR Directory location for the MakeFiles dir.

MODULE_NAME Name of the module. All the following macros are
related to this value.

$(MODULE_NAME)-SRC List of source code to be compiled.

$(MODULE_NAME)-INCLUDE Include path definition for compilation.

$(MODULE_NAME)-LIBS Linking flag definitions.

$(MODULE_NAME)-EXE Generated executable name.

163

The MakeFiles/Common.mk and the MakeFiles/Rules.mk should be included in the

module makefile at a proper place as in the following example.

TOP_DIR = $(shell cd ../../; pwd)

MODULE_NAME = trainer

include common make files

include $(TOP_DIR)/MakeFiles/Common.mk

trainer-SRC = anCodTrainer_main.c \

 anCodTrainer_sin.c \

 anCodTrainer_1_layer_ann.c \

 anCodTrainer_multilayer_feedforward_ann.c \

 anCodTrainer_build_model.c

trainer-INCLUDE = $(FANN_INCLUDE)

trainer-LIBS = $(FANN_LIB) $(COMMON_LIB_FLAG)

trainer-EXE = anCodTrainer

include $(TOP_DIR)/MakeFiles/Rules.mk

VI. EXPERIMENT RESULTS

For composite sine signal recognition, an experiment with the following attributes was

performed:

1. The composite sine signal was generated with a relative amplitude of

component frequencies as

{1.0,0.8,0.4,0.2,0.1,0.05,0.25,0.25,0.05,0.1,0.2,0.4,0.8,1.0}.

2. One hundred training patterns with a composite sine signal and 100 training

patterns with random white noise were created.

164

3. One hundred test patterns with a composite sine signal and 100 test patterns

with random white noise were created.

4. The ANN used 20 inputs, one output, and 50 hidden nodes in a single

perception layer.

Table 38 shows some examples of valid and invalid patterns, which were used to train

and test the ANN.

Table 38. anCod Validation Test Patterns

Train/test pattern Train/test pattern

165

Train/test pattern Train/test pattern

The test results are as follows:

$>./runme.test

INFO : Using user configuration file ./test_06-config.sh ...

**

 annCodServer (1.0.0)

**

INSTALL DIR : /import/thesis/Study/Thesis/COD-ANN/ancod-

install/anCod

DATA DIR : ./data

FREQ TEMPLATE : anCod_freq.template

DATA FILE : anCod_pm.dat

RESULT FILE : anCod_cod.rpt

EXECUTED ON : boson-lnx-01 (i386)

EXECUTED ON : Fri Jan 25 18:11:12 PST 2013

CMD ARG : -test sin

**

INFO [anCodServer_sin.c@35)]: Using test file

./data/anCod_train_sin.test

INFO [anCodServer_sin.c@39)]: ANN model ann_test_sin version 1.0.1 is

used from dir /import/thesis/Study/Thesis/COD-

ANN/anCod/test/test_anCod_06

INFO [anCodServer_sin.c@76)]: 0 out of 200 tests failed (0.000000%)

166

The tests results show that all the valid patterns were recognized correctly and all the

invalid patterns were discarded correctly.

VII. CONCLUSION

The test results show that the software anCod is ready to be used in the proposed

thesis.

	Embedded Cloud System for Ann-Cod Analysis Using UV Spectroscopy
	Recommended Citation

	Embedded Cloud-Enhanced system for ANN based COD analysis using UV Spectroscopy

