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ABSTRACT 

EMBEDDED CLOUD SYSTEM FOR ANN-COD ANALYSIS USING UV 

SPECTROSCOPY  

by Kaushik Patra 

One of the many parameters indicating water quality is chemical oxygen demand 

(COD), which is an indirect measurement of the amount of organic compound material in 

water.  There have been many studies, in both academia and the industry, to analyze the 

COD content of water using spectral analysis.  The proposal of this thesis was to study, 

analyze, and identify methods to determine the presence of COD using UV spectroscopy 

data and an artificial neural network (ANN) in a cloud-connected embedded system.  The 

system was implemented using an ARM11 board and a portable spectrometer.  Light in 

the UV range was used to analyze the water sample.  As an analysis strategy, the spectral 

data were converted into a real number value in the range of 0 to 1.  Twenty equidistance 

samples were taken out of the converted data to be fed into the ANN, and the ANN was 

trained with known samples to identify any presence of COD.  Experiments used 

laboratory-calibrated water samples with known COD and some real-life water samples.  

All the experiments showed that the implemented system could successfully indicate the 

presence or absence of COD in the given water sample.  The system also successfully 

demonstrated the application of a cloud-connected embedded system to an area in 

environmental engineering.  This indicated that the system was a bridge between 

computer and environmental engineering. 
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CHAPTER ONE  

INTRODUCTION TO THE THESIS TOPIC 

1.1 Introduction 

Water is the most important factor in sustaining human civilization.  Water not only 

provided the first breeding ground for life but also played a pivotal role in supporting life 

on earth.  Water has allowed the human species to evolve and secure a unique 

evolutionary position that is unparalleled by any other species.  The ubiquitous influence 

of water on human life, as well as on civilization, is unquestionable.  The uses of water 

are diverse and include direct human consumption, agriculture, industry, and scientific 

studies.  As a universal solvent, water can dissolve many inorganic and organic materials.  

As a result, obtaining water without any contamination is difficult.  However, for many 

of the common uses of water, including human consumption, it is neither appropriate nor 

practical to use pure water.  Water standards, including acceptable concentrations of 

different inorganic and organic materials dissolved in water, have been suggested for 

different usage scenarios.  These suggestions indicate the overall water quality for a 

particular type of usage.  Many standard parameters have been developed to indicate 

water quality.  The two best known parameters are chemical oxygen demand (COD) [1] 

and biological oxygen demand (BOD) [2].   

This thesis aimed to explore methodologies for determining the COD of water and 

develop an economical methodology for COD determination using a cloud-enhanced 

generic embedded system.  The proposed system used an artificial neural network 
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(ANN)-based analysis of spectroscopy data obtained from a low-end spectrometer.  The 

spectroscopy data were collected using a source that produced light of 190 to 885 nm 

(i.e., UV and visual light).  

This section has three subsections.  Section 1.2 includes a brief discussion of what 

water treatment processing is.  It also explains why water treatment is necessary.  A brief 

discussion of water quality and standards has also been included in the background 

discussion.  An introduction to the COD parameters for water quality determination is 

also included in this section.  Section 1.3 describes the contemporary problems and issues 

in water quality measurement and monitoring.  Section 1.4 describes the overall objective 

of the study and experiment presented in this thesis. 

1.2 Background 

Although 70% of the earth’s surface is covered with water, more than 96% of the 

water is contained in the ocean [3].  Ocean water is not useful for most daily human 

activities.  The remaining water is contained underground and in lakes, rivers, swamps, 

and the atmosphere.  Table 1 shows the global distribution of water.  This table also 

accounts for the water content of living organisms (known as “biological water”). 
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Table 1.  One Estimate of Global Water Distribution 

Water source 
Water volume, 

in cubic miles 

Water volume, in 

cubic kilometers 

Percent 

of fresh-

water 

Percent 

of total 

water 

Oceans, seas, and bays 321,000,000 1,338,000,000 -- 96.54 

Ice caps, glaciers, and 

permanent Snow 

5,773,000 24,064,000 68.6 1.74 

Groundwater 5,614,000 23,400,000 -- 1.69 

    Fresh 2,526,000 10,530,000 30.1 0.76 

    Saline 3,088,000 12,870,000 -- 0.93 

Soil moisture 3,959 16,500 0.05 0.001 

Ground ice and permafrost 71,970 300,000 0.86 0.022 

Lakes 42,320 176,400 -- 0.013 

    Fresh 21,830 91,000 0.26 0.007 

    Saline 20,490 85,400 -- 0.007 

Atmosphere 3,095 12,900 0.04 0.001 

Swamp water 2,752 11,470 0.03 0.0008 

Rivers 509 2,120 0.006 0.0002 

Biological water 269 1,120 0.003 0.0001 

 

Source: Igor Shiklomanov, “World Fresh Water Resource,” Water in Crisis: A Guide 

to the World’s Fresh Water Resources, ed. Peter H. Gleick (Oxford University Press, 

New York, 1993). 

 

Freshwater is used much more often than saline water.  Fig. 1 shows some sample 

usage ratio statistics for groundwater versus freshwater and saline water versus 

freshwater.  The statistics clearly show that the usage of freshwater is much more 

prominent than the usage of saline water.  Although the natural water cycle [4] maintains 

the supply of freshwater, water shortages are a growing issue in different parts of the 

world.  This water crisis affects not only the human race but also every living being on 

the planet.  There are many manifestations of the water crisis, including the following:   
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1. About 884 million people worldwide do not have access to safe drinking 

water [5]. 

2. About 2.5 billion people worldwide do not have access to water for sanitation 

and waste disposal [6]. 

3. Overuse of groundwater causes low agricultural yield [7]. 

4. Pollution of water resources affects biodiversity [8].   

 

 

Fig. 1.  Sample Water Usage Statistics 

Source: USGS, How much water is there in, on and above the Earth? 

http://ga.water.usgs.gov/edu/earthhowmuch.html, (Accessed May 20, 2012). 
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There are two plausible solutions to this growing problem of water crises.   

1. Recycle water within a system (e.g., recycle of sanitation water within a large 

building). 

2. Remove contaminants from water before returning the water from a system 

to nature (e.g., treat water waste from industry before releasing it to rivers or 

the ocean). 

Both of these strategies require a process for eliminating contaminants from water.  

In general, this process of removing contaminants from water is known as the water-

treatment process.  A water-treatment procedure may involve physical, chemical, and 

even biological processes with the goal of removing contamination from water so that the 

treated water may be reused for a specific purpose like drinking, sanitation, or medical, 

agricultural, or industrial usage [9].  Each type of water usage has its own standards and 

recommendations for the upper limit of contaminants.  For example, water used for 

medical purposes should have much less contamination than common drinking water, if 

any at all.  Even industrial usage of water varies from industry to industry [10].  An 

example of drinking water standards can be found in the web documentation of the U.S. 

Environmental Protection Agency [11].  This list subdivides contaminants into six 

categories: microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, 

organic chemicals, and radionuclides.   

One of the challenges for any water treatment plant is to analyze the water quality 

and the standard of the treated water before releasing it to nature for reuse or to recycle.  
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COD is one such measurement of quality and indicates the amount of organic compounds 

in water [1].  In acidic conditions, nearly every organic chemical can be fully oxidized to 

carbon dioxide (CO2) and ammonia (NH3) using a strong oxidizing agent [1].   Equation 

1 is a simple formula to compute the amount of oxygen needed for complete oxidization 

of an organic compound [1].   

          (   
 

 
  

 

 
  

  

 
)   

       (
 

 
  

  

 
)         

 Equation 1 

 

COD measurement indicates the amount of oxygen needed to oxidize organic 

compound contamination in water.  Thus, COD can indicate water quality in terms of 

organic compound contamination. 

1.3 Problem Statement 

Contemporary COD analysis methods involve either one of the pure chemical, 

electrochemical, spectrometry/colorimetry-based, or photo-catalytic-based instruments.  

According to a publication from the University of Georgia, 

The most popular current testing method for COD involves using sealed and 

heated (i.e., closed reflux) low-range (3150 ppm) or high-range (201,500 ppm) 

pre-prepared vials that change color from orange to green based on the amount of 

oxidation and that are read using a laboratory colorimeter. [12] 



 

 

7 

 

A person must conduct the COD analysis procedure because each of the methods 

mentioned above is chemical reagent based.  The steps are quite involved and complex 

including hazardous closed reflux processes in an acidic test environment.  The 

contemporary methods of COD measurement usually involve a setup process [13] and 

environmentally unfriendly reagents (e.g., mercury) [16].  Therefore, disposal of wastes 

from the contemporary COD determination experiment create additional overhead.  

Moreover, because these methods are a chemical oxidation-based measurement 

procedure, they cannot account for certain organic chemicals, such as aromatic 

hydrocarbons, volatile organic compounds, pyridine and related compounds, ammonia, 

and straight chain aliphatic [13, 14, 16].  In addition, contemporary COD analysis 

procedures are sensitive to the experimental environment.  None employs automatic 

adaptation of experimental environment variability. 

Except for the photo-catalytic process [15] (which takes 23 minutes), other 

popular processes need 23 hours to be conducted [12, 16].  All the instruments involved 

(i.e., colorimeter or PeCOD
TM

) are stand-alone devices and custom made for a specific 

set of analyses.  The general extensibility of functionality to determine new types of 

chemicals and compounds are limited in such custom-made systems.  In addition to the 

basic cost of a customized machine, all these methods of chemical reagent-based analysis 

have recurring costs associated with their practical applications.  Hence, over time, the 

total cost of water quality analysis becomes significant.   
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1.4 Objectives of the Study 

The main objective of this study was to find a cheaper, faster, mobile, extendible, 

and reliable solution for online COD analysis.  Therefore, a complete study of 

contemporary COD analysis methods was undertaken, and the disadvantages of these 

methods were identified.  To reduce the recurring charges on chemical reagents, a 

method of COD analysis without any chemical processes must be implemented.  To 

reduce base costs of purchasing special-purpose machines for COD analysis, a method 

using a general-purpose system must be considered.  Such a method would also create a 

possibility for extending the analysis system to a different set of parameters other than 

COD.  The system also must be portable for in situ COD analysis.  Because analysis can 

produce a huge amount of data, a system that can handle and analyze large amounts of 

data must be considered.  Compensation for analysis condition variability must also be 

taken into consideration. 

The basic idea of this thesis was to study and experiment with the possibility of 

using a general-purpose mobile computing system integrated with a cloud [17] and using 

a relatively cheap spectroscopy analysis instrument working in the UV-Vis frequency 

range.  An ANN [18] was used to implement an adaptable system in a variable analysis 

environment.  Usage of a general-purpose mobile computing platform gave the 

advantages of portability and reduction of the base cost to engineer such a system 

compared to a special-purpose machine.  The success of this experiment should prove 

that a COD analysis application could be built for contemporary smartphones.  In that 

case, COD analysts only need to carry their smartphones and a lightweight spectroscopy 
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device on-site.  The proposed system, which is built on top of a general-purpose 

computing system, has the advantage of functional extendibility.  New tests can be added 

to the software applications to accommodate more types of tests and analyses.  By 

integrating the system with a cloud [19], analysis can be performed on a remote server.  

This would bring two advantages—along with the obvious advantage of the ability to 

execute complex and powerful algorithm for data analysis.  One advantage would be not 

overloading the mobile system.  Therefore, the system can focus on data gathering and 

communication to the cloud the server only.  The other advantage would be a further 

reduction of costs by using a pay-per-use model [19]. 
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CHAPTER TWO  

LITERATURE SURVEY ON COD MEASUREMENT TECHNIQUE 

2.1 General COD Measurement Techniques 

Three major techniques for general COD measurement were identified in the 

literature survey.  All three techniques involve chemical processes.  The first technique is 

purely based on chemical processes involving measurement of the amount of reagent 

used.  The next two processes are a combination of chemical and spectrometry or photo-

catalytic analysis.     

2.1.1 Chemical Reflux and Titration-Based Method 

Zhang’s Fundamental of Environmental Sampling and Analysis [16] has a clear 

description of the process of COD measurement using chemical reflux and the titration-

based method.  Fundamentally, in this process, the water sample is refluxed with 

potassium dichromate (K2Cr2O7) in a strong acid condition.  Often the acidic condition is 

created by mixing concentrated sulfuric acid (H2SO4) into the water sample.  The reflux 

process is conducted for about 2 hours.  During this process, the organic compound 

mixed with sample water is converted into carbon dioxide (CO2).  Any organic nitrogen 

is converted into ammonium ions (NH4
+
), which further can be converted into nitrate 

compounds.  In this reflux process, the amount of potassium dichromate digested depends 

on the amount of organic compound present.  Therefore, by measuring the amount of 

potassium dichromate digested in this process, COD can be measured indirectly.   
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To detect how much potassium dichromate is left after the reflux process, a 

chemical titration process is performed using ammonium iron (II) sulfate 

[(NH4)2Fe(SO4)2.6H2O], which is also known as ferrous ammonium sulfate (FAS) or 

Mohr’s salt [20].  This salt is classified as double salt of ferrous sulfate and ammonium 

sulfate [20].  In this titration process, the chelating agent 1,10-phenanthroline (ferroin, 

C12H8N2) is used as the indicator.  At the start of the titration process, the refluxed water 

sample color is between yellow and orange brown depending on the concentration of 

undigested potassium dichromate (the Cr2O7
2-

 is responsible for this color).  Thereafter, 

the color changes to a blue-green at the start of the titration process, which is the color of 

the Cr3
+
.  The titration process is concluded when the solution sharply changes to reddish 

brown, which is the color of Fe{C12H8N2}.  By measuring the amount of FAS used for 

titrating, the excess amount of potassium dichromate and thus the COD amount in the 

sample water can be determined.  The detailed process and formula can be found in the 

reference book mentioned at the beginning of this subsection. 

2.1.2 Colorimeter-Based Method 

The colorimeter-based method is similar to the chemical reflux-based method 

described in section 2.1.1.  The main difference is that instead of measuring the 

concentration of undigested potassium dichromate using a titration method, the 

colorimeter-based method uses colorimeter [23] to determine the concentration of 

undigested potassium dichromate.  A colorimeter uses principles of colorimetry, which is 

a technique “used to determine the concentration of colored compounds in solution” [21].  

A colorimeter uses references to a known concentration of a substance under examination 
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in a solution to compute the concentration of the substance in that target solution.  A 

detailed description of the colorimeter-based method can be found in the University of 

Georgia publication Understanding Laboratory Waste Water Test: I. ORGANICS (BOD, 

COD, TOC, O&G) [12].  According to this method, many samples of known COD 

(usually calibrated with KHP or potassium hydrogen phthalate solution) are used as a 

reference to a colorimeter.  Because this colorimeter-based technique is dependent on the 

color absorbance of the material, it is important to select the right color filter in the 

colorimeter.  The colorimeter should use light of such a color that the sample can absorb.  

For example, red light can be used to detect the concentration of a blue-colored solution 

[25].  Fig. 2 and Fig. 3 are pictures of a very simple colorimeter from Vernier Software 

and Technology (http://www.vernier.com/company/). 

 

Fig. 2.  A Simple Colorimeter 

[Composed from the original source] 

Source: Vernier Software and Technology, Colorimeter, 

http://www.vernier.com/products/sensors/col-bta/ (Accessed June 15, 2012). 
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This simple colorimeter offers four different ranges of color wavelength (430, 470, 

565, and 635 nm).  The corresponding software captures the absorbance of the light 

through the sample.  The sample is put into the sample holder and covered with a sample 

cover prior to the start of the operation.  Using this colorimeter and software interface, 

calibrated samples can be used to build the absorbance curve with respect to the sample 

concentration.  Once the absorbance curve is determined, an unknown sample can be 

used to measure concentration through the mathematical method of curve fitting, which is 

implemented using the associated software.  

 

Fig. 3. Software for the Colorimeter Operation 

Source: Vernier Software and Technology, Colorimeter, 

http://www.vernier.com/products/sensors/col-bta/ (Accessed June 15, 2012). 
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2.1.3 Photo-Catalytic Method 

The ManSci Inc. (http://www.mansci.com/) developed patented technology based 

on the photo-catalytic method.  This technology uses a sensor with UV-activated 

nanoparticulate titanium dioxide (TiO2) [15].  External electric circuitry measures the 

amount of current produced by this sensor.  Fig. 4 shows how the photo-catalytic sensor 

works. 

 

Fig. 4.  The PeCOD Machine and the Work Mechanism. 

[Composed from the following source] 

Source: ManSci Incorporation, COD Analysis, 

http://www.mansci.com/products/PeCOD/index.html#WhatisPeCOD (Accessed June 15, 

2012). 

 

UV radiation creates a photo hole on the TiO2 sensor.  It also has very high 

oxidizing power that guarantees complete oxidation of organic compounds in the sample.  

The electric circuit measures the number of electrons released, which is proportional to 
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the amount of organic material oxidized in the process.  The graph in Fig. 5, published by 

the same company, shows the effectiveness of the PeCOD instrument.   

 

 

Fig. 5.  Photo-Catalytic versus Dichromate Method 

[Composed from the following source] 

Source: ManSci Inc., COD Analysis, 

http://www.mansci.com/products/PeCOD/index.html#WhatisPeCOD 

 

Fig. 5 shows the theoretical COD on the x-axis and measured COD on the y-axis.  

With this data, the photo-catalytic method is proven to have closer correlation with 

theoretical COD values than the conventional dichromate method. 
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2.2 UV-Vis Spectroscopy for COD Detection 

Although there is a plethora of methodologies proposed for fast COD 

determination, the most popular methodology is based on an indirect spectroscopic 

technique due to its simplicity and fast response time [28].  This section not only 

describes such techniques but also explains the basic concept of spectrometry physics, 

which should help to explain the proposed section topic.  Most of the contents of this 

subsection have been derived from the chapter “The Basics of Spectrophotometry 

Measurement” from by Thomas and Burgess’s UV-Visible Spectrophotometry of Water 

and Wastewater [26].    

2.2.1 Physics of Spectroscopy 

The physics of spectroscopy has been studied for centuries by many eminent 

scientists including Sir Isaac Newton, Albert Einstein, Niels Bohr, and Max Planck.  

Light, or in general electromagnetic radiation (EMR), takes a central role in the process 

of spectroscopy.  EMR interacts with atoms and molecules in a specific way.  A part of 

EMR is absorbed within a material.  This phenomenon produces a characteristic 

absorption profile (or emission profile) for the material under investigation.  The process 

of spectroscopy relies heavily on this interaction.   

The ability to detect emission profiles for EMR is determined by the range of 

visible colors.  The property of EMR that determines color is wavelength.  Usually EMR 

is represented as a sine curve and the wavelength is defined as the peak-to-peak distance 

between two adjacent peaks of the sine curve as shown in Fig. 6.   
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Fig. 6.  Wavelength for an EMR 

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of 

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical 

Chemistry) 

 

The mathematical symbol for wavelength is .  The other physical characteristic of 

the EMR is its frequency (), which is expressed in Equation 2, where c is the speed of 

light. 

  
 

 
 

Equation 2 

 

There is an infinite range of wavelengths for EMR, although only a tiny range is 

detectable by the human eye, which is known as visible light.  Fig. 7 shows the ranges of 

the EMR spectrum, which include the range of visible light. 

Notably, the human eye does not have the same response for all visible EMR 

wavelengths.  The response from a human eye depends on its receptor cells.  Different 

ranges of EMR wavelength simulate the eye’s receptor cells in different amounts [27].  

Fig. 8 shows the human eye response pattern for visible EMR.   
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Fig. 7.  The EMR Spectrum 

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of 

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical 

Chemistry) 

  

A special electronic semiconductor device is used for all practical spectrometry 

applications.  This device is known as a charge-coupled device or CCD [28].  This 

special device is able to detect a wide range of EMR wavelengths.  It is used not only as a 

spectroscopic sensor but also in digital image capturing and other imaging areas.  These 

sensors convert incoming light particles or “photons” into digitally accounted numbers 

for further processing by digital data processors. 

Light, or EMR, presents dual behavior as a wave and a particle.  The particles are 

known as photons.  Equation 3 shows the amount of energy E carried by a photon particle 

of wavelength .  This equation contains two constants: h is Planck’s constant (     

        Js) and c is the speed of light in a vacuum (           m/s).    
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     Equation 3 

 

  

Fig. 8.  Relative Response of the Human Eye to Visible EMR 

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of 

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical 

Chemistry) 

   

When an energy beam falls into a material’s electron cloud, the phenomenon of 

discrete and quantized absorption of energy occurs.  In a very simplified sense, this 

quantized absorption promotes an electron of the material from its ground state to its 

excited state.  Depending on the amount of energy required to bring an electron from its 

ground state to its excited state, the amount of absorbed EMR of a specific wavelength 

can be computed using Equation 3.  Because different materials exhibit a need for 

different amounts of quantized energy for the orbital promotion of an electron, different 

materials exhibit different spectra of absorption.  Additionally, the amount of EMR 

absorbed by a material also depends on the amount of material used in the analysis.  
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Hence, the absorption characteristics of the material can be used to detect the material, as 

well as determine the amount of material.  Fig. 9 shows a simplistic model and a 

calculation of the electron promotion and EMR absorption relationship.   

 

Fig. 9.  Photon Capture by Molecule 

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of 

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical 

Chemistry) 

 

In addition to absorption, the phenomena of transmission, reflection, refraction, 

scattering, luminescence, and chiro-optical phenomena also occur when an EMR falls 

onto a material.  Any good spectroscopic process aims to minimize the effects of these 

additional phenomena.     

Because electron transition occurs at a high energy level, absorption occurs in the 

UV region rather than in the infrared or microwave region.  Even a simple molecule like 

benzene presents a complex spectroscopic pattern as in Fig. 10. 
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Fig. 10.  Vapor State Spectrum for Benzene 

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of 

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical 

Chemistry) 

 

Different parts of a molecule characteristically absorb different parts of the EMR 

spectrum.  These active parts are known as chromophores.  The wavelength a 

chromophore absorbs depends on the constitution of the chromophores.  As a result, 

different chromophores present in a molecule and their quantity create unique spectral 

absorption signature for a specific molecule.   

The absorption of a specific wavelength depends on the type of transition of the 

electron.  There are three types of molecular orbits in the ground state: sigma (), pi () 
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and nonbonding (n).  There are two types of molecular orbits in the excited state: sigma 

star (

) antibonding and pi star (


) antibonding.  There are four types of transitions 

from the ground-state molecular orbit to the excited-state molecular orbit as in Fig. 10. 

 

Fig. 11.  Molecular Orbit Transitions 

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of 

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical 

Chemistry) 

 

Different chromophores cause different orbital transitions for electrons.  As a result, 

they absorb EMR of different wavelengths.  Fig. 12 shows different absorption spectra 

per building block of organic compounds. 
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Fig. 12.  Table of Absorption Maxima for Isolated Chromophores 

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of 

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical 

Chemistry) 

  

After radiation goes through a solution of a target material into a nonpolar solvent 

like water, there are two fundamental laws and one composite law to describe the relation 

between the intensity of emerging EMR and the intensity of attenuated EMR.  Let I0 be 

the intensity of the parallel beam EMR of wavelength  falling onto a solution of 

thickness b.  Let M be the amount of concentration of the EMR absorber in the solvent.  

If I is the attenuated intensity of the EMR parallel beam, then Lambert’s law gives the 

following Equation 4.  The term k in this equation is a wavelength-specific constant. 

          
Equation 4 

In this same scenario, Beer’s law gives the following Equation 5. 
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Equation 5 

Combining Lambert and Beer’s law, the following Equation 6 can be obtained as 

the composite analytical formulation, which is also known as Beer-Lambert law. 

     

  
 

  
  

   

     
 Equation 6 

This composite constant   
  / 2.303 is known as molar absorptivity, and the left side 

of Equation 6 is known as the absorbance, often symbolized as A.   

2.2.2 Spectroscopy in COD Analysis 

There are many different types of organic material in wastewaters.  Each absorbs 

part of the EMR in the UV-Vis range according to its characteristics.  Hence, the 

resultant spectroscopic data are compound effects of all the participating materials.  

Because there can be a high number of different organic materials present in wastewater, 

it is very difficult to analyze a specific organic compound, except if one such specific 

compound presents in very high concentrations as in industry wastewater.  “This is the 

reason why the measurement of aggregate organic parameters (oxygen demand, for 

example) and constituents (phenol index, for example) is most often used for waste water 

quality control” according to Thomas and Theraulaz [30]. 

There are two main approaches to determining aggregated parameters for 

wastewater from the UV-Vis spectroscopic data.  Fig. 13 presents the top-level idea for 

both approaches.  The first approach is to determine one or two wavelengths that present 

a useful correlation to the parameter value to be determined.  The second approach is to 

use multiwavelength exploitation techniques.  Historical information shows that the 
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multiwavelength exploitation is more useful than the other approach in aggregated 

parameter determination [30].   

 

Fig. 13.  Main Approach for the Aggregated Parameter Determination 

Source: Olivier Thomas and Christopher Burgess, UV-visible Spectrophotometry of 

Water and Wastewater, Volume 27 (Techniques and Instrumentation in Analytical 

Chemistry) 

 

Many scholarly articles [31-45] dealt with UV-Vis spectroscopy data analysis.  

Most multiple wavelength analyses use multicomponent analysis techniques, like 

multiple linear regression [41], partial least squares regression [42], or ANNs [37, 43-45].  

All of these approaches have been researched to minimize the determination time of the 

aggregated parameter, such as COD, needed to analyze the UV-Vis spectral absorption 

characteristics of a given water sample.  The target for devising such a procedure is also 

to maintain a level of accuracy close to that of chemical reagent-based procedures. 



 

 

26 

 

2.3 ANN-Based Approach 

The ANN study and its engineering application have continued for decades.  

McCullouch and Pitts [46] proposed the first mathematical model for a neural network in 

1943.  Later, Rosenblatt [47] developed a perception model to implement a pattern 

recognition algorithm based on a two-layer learning computer network.  However, neural 

network research was halted in 1969 for almost 6 years when Minsky and Papert [48] 

pointed out two key issues related to neural network computation machines.  The first 

issue was the inability of a single perception network model to process XOR logic.  The 

second issue was the lack of a powerful computer to process a large neural network.  In 

1975 Kunihiko Fukushima [49] designed cognition, which is a precursor to the trainable 

multilayered neural network.  Later, rediscovery of a back propagation algorithm for 

neural network training [50] popularized neural network research and applications in 

engineering problem solving.  There have been many examples of applying ANN in 

determining COD and organic components dissolved within wastewater [37, 43-45].  In 

this section, a general ANN concept and two different methods of applying ANN to 

wastewater analysis have been discussed. 

2.3.1 General ANN Conception 

ANN was developed to coarsely mimic the mechanisms of the human brain.  The 

human brain consists of billions of specialized cells called neurons.  Fig. 14 shows a 

schematic structure of a neuron.   
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Fig. 14.  Schematic Diagram for a Typical Neuron Cell 

Source: Carlson, Niel. A. (1992).  Foundations of Physiological Psychology.  Needham 

Heights, Massachusetts: Simon & Schuster.  pp. 36 

 

A neuron has a cell body called a soma, short signal receiver branches named 

dendrites, and a long transmitter branch called an axon.  Each cell receives electrical 

signals from neighboring transmitter neurons through the dendrites, and then it processes 

the electrical and chemical signals before sending them out through its axon via the 

terminal buttons and across the synaptic cleft to the neighboring receiver neurons.  

Through a very complex network of billions of neurons, human brain processes 

surrounding information received through five sensory organs: eyes, nose, ears, tongue, 

and skin.  All the creative thinking and logic processing in a human brain is done via this 

intricate network of neurons. 

Similar to the natural neuron, a mathematically composed artificial neuron and 

neural networks have been modeled and successfully used in many areas [18].  A neuron 
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in the context of an ANN is a node M in a directed graph structure with a single weighted 

output arc and one or more multiple weighted input arcs as shown in Equation 7. 

   (∑(       )

 

   

) 
Equation 7 

 

In Equation 7 the term Ni is the output value of the ith input nodes for M, and wi is 

the weight of the arc of the connection (Ni  M).  The function f can be any type of 

activation function, including a step, linear, or sigmoid function, depending on the 

application.  In some cases, even stochastic functions are used to model complex 

behaviors in an ANN.  Fig. 15 shows the typical activation function types. 

An ANN, in the most ordinary sense, is a network of artificial neurons.  It is a 

directed graph with weighted arcs, a set of input nodes, and a set of output nodes.  An 

ANN with N input nodes (sometime called features) implements an approximation 

function with N independent variables.  This approximation function theoretically fits well 

into all possible outcomes for any combination of N independent features. 

 

Fig. 15.  Typical Activation Functions Used in ANN 
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Fig. 16 shows an example of an ANN graph structure and an imaginary function 

that an ANN is implementing.  This example of an ANN has one input node (N1) and one 

output node (N8), which implement a function of f(x) with a single independent 

feature/variable x (which is the value of N1).  This ANN has two hidden layers with four 

(N25) and two nodes (N67), respectively.  Each has connected input/output arcs with 

different connection weights.   

 

Fig. 16.  Example of an ANN Graph and the Implemented Imaginary Function 

 

In this example, the ANN graph does not contains any loops.  However, the ANN 

structure allows loops if needed for the target application.  The ANN structure without 

loops, as in the example, is known as a “feed-forward ANN.”  An example plot of a one-

dimensional function implemented by this ANN is shown in Fig. 16.  Possible values that 

the independent variable can assume and the corresponding function values are plotted as 

o and x.  The points, marked with an x, are the known samples of the population.  These 

known samples are used as a training set for the ANN.  Training an ANN involves 
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adjusting the arc weights in such a way that the error of the output values from the ANN is 

minimized with respect to the training set.  The most common training method is the back 

propagation algorithm [50].    

2.3.2 Application of ANN in Wastewater Analysis  

Many studies show that any organic material dissolved in a water sample strongly 

absorbs ERM in the UV range.  Different waste materials absorb a different set of 

wavelengths.  Absorption also depends on the amount of material present.  Thus, 

absorption analysis should have a direct relation to the COD parameter, which 

characterizes the wastewater contamination level.  However, because many different 

chemicals can be part of the wastewater, analysis should not be performed on only a single 

or only a couple of wavelengths.  The entire UV-Vis wavelength range should be analyzed 

with lower precision.  Hence, the number of independent analysis parameters is great.  

This poses a challenge to conventional mathematical regression, as well as ANN training.  

An ANN with a large number of input nodes (one per wavelength considered) usually 

raises problems in training convergence.  Therefore, the main challenge in ANN-based 

COD analysis is to reduce the number of independent parameters or features while 

maintaining an acceptable level of accuracy.  Fogelman et al. described such a feature 

extraction method in the article “Neural Computing & Application” [37].  In a different 

application, Benjathapanun et al. showed a feature reduction technique using the second 

differential (or the absorption shape) of spectral absorption data [38]. 
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CHAPTER THREE  

OVERALL METHODOLOGY USED IN THE THESIS 

3.1 Objectives 

There were multiple objectives of this specific thesis work in relation to COD 

analysis on an embedded and cloud-enabled device.   

1. The first objective was to establish a new methodology to identify a specific 

photometry pattern for water that has COD.   

2. The second objective was to build a cloud-enabled embedded platform that 

could be used to collect photometry data from a water sample and use the 

developed methodology to determine if the sampled water has COD. 

3.2 Method to Detect COD Patterns 

Photometry data present specific patterns for water samples with COD or without 

COD.  The basic idea for this study was to develop an algorithm to identify patterns of 

the photometry data for a water sample, which are deterministically indicative of COD 

content.  Because the collected data can have random noises or variations from the data 

analysis environment, it is important to establish a good methodology to determine a 

photometry pattern with such variations and noises indicative of COD content in water.  

Because there can be many unknown and nondeterministic pattern-variation factors, an 

ANN is the preferred tool to handle such variations in collected photometry data.   

A simple methodology was implemented in this thesis work.  The basic idea was to 

divide the obtained photometry absorption data into N finite, equidistance, normalized 
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samples.  These N samples were normalized with respect to the highest data present in the 

set (i.e., by taking the highest data present as 1.0).  An ANN was trained using these N 

samples.  The implemented ANN had N inputs and 1 output.  For this work, a single-

perception ANN was used with 20 inputs and 50 intermediate nodes in the hidden layer 

and single output.  The output state of this ANN (1 or 0) would represent the presence or 

absence of COD in water.  Therefore, the photometry spectrum range was divided into 20 

equidistant points (as shown in Fig. 17) for the sampling. 

 

Fig. 17.  Sampling the Signal 

 

3.3 Methodology Experiment 

To prove that an ANN could be deployed to identify specific photometry patterns, 

data were generated from a mathematical model of a complex signal and applied for 

pattern detection (see Equation 8) instead of applying the ANN-based pattern recognition 

on real photometry data. 
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  ( )   ( )   ( ) 
Equation 8 

 

Where F(t) is the summation of sine harmonics with a symmetric amplitude as in 

Equation 9 and n(t) is the uniformly distributed white noise with a probability distribution 

function as given in Equation 10. 

 ( )  ∑(      (         )       (  (      )  )     )

 

   

 
Equation 9 

    ( )   
 

   
 

Equation 10 

 

The   in Equation 9 is the random phase shift between 0 and /2.  The     in 

Equation 9 is the amplitude for the nth and the (2P – n – 1)th harmonics of the composite 

signal.   

The experiment was done with a P value of 1, 2, 4, 8, 16, 32, 64,128, 256, and 512, 

along with a base signal of      (        ).  The base frequency for the experiment 

was taken as 1 KHz.  The amplitude of the symmetric harmonics was taken randomly 

between 0 and 1 with two extreme component amplitudes as unity.  For the base signal 

and the signal corresponding to each P, 100 different amplitude patterns were used in the 

experiment.  For each of the amplitude patterns, a training set was generated with 100 

samples injecting a random noise and phase shift.  The random noise amplitude was fixed 

at 20% of the base amplitude of the signal.  This set was the confirmative training that 
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should result in an ANN output of 1.  Per the amplitude pattern, the training set also 

contained 100 random signal patterns, which were treated as non-confirmative training 

and should have resulted in an ANN output of 0.  Because 20 equidistant sample points 

were taken from the white noise-injected random signal, these points also represented a 

nonrandom signal pattern with a different amplitude, frequency, and phase for which the 

ANN output should have been 0. 

To generate the signal with R resolution, the time step was determined using 

Equation 11, where f is the frequency.  Among these R points of the signal, covering the 

period T of the signal, S equidistance samples were taken to feed into an ANN input.   

    
 

    
 

Equation 11 

3.4 Methodology Validation 

In this experiment, R was set to 1,000 and S was set to 20.  The experiment was 

performed using anCod software with automated scripts to generate different signal 

patterns.  Per the amplitude pattern, 200 test sets were also generated with 100 

confirmative and 100 non-confirmative tests.  Therefore, per harmonic combination (1, 2, 

4, 8 … 2048), there were 20,000 data patterns to train or test the implemented ANN.  The 

error percentage comparing the test patterns’ expected result was measured as the success 

of the methodology proposed.  This experiment showed the following observations. 

1. The minimum error was 0%. 

2. The mean error was 2.21%. 
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3. The standard deviation was 5.24%. 

4. The maximum error was 6.5%. 

Fig. 18 shows the distribution of percentage of error over the entire experiment 

sample and deviation distribution. 

 

Fig. 18.  Error Deviation (above) and Error Distribution (below) for the ANN  
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Table 2 shows the quality results of the implemented ANN and includes the number 

of harmonics in the composite signals and the max, min, and mean percentages of error 

with standard deviation.  The picture of sample signal generated per harmonics is also 

included in Table 2.   

Table 2.  Methodology Experiment Results and Sample Signal 

 # 

Harmonics Sample signal 

Maximum 

% of error 

Mean % 

of error 

Minimum 

% of error 

Standard 

deviation 

of the % of 

error 

1 
 

5.5 1.35 0.0 0.94 

2 
 

4.0 0.46 0.0 0.71 

4 
 

2.0 0.17 0.0 0.35 

8 
 

2.0 0.20 0.0 0.44 

16 
 

6.5 0.41 0.0 0.84 

32 
 

4.0 0.56 0.0 0.89 
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 # 

Harmonics Sample signal 

Maximum 

% of error 

Mean % 

of error 

Minimum 

% of error 

Standard 

deviation 

of the % of 

error 

64 
 

6.0 0.88 0.0 1.08 

128 
 

3.0 0.59 0.0 0.73 

256 
 

2.5 0.48 0.0 0.61 

512 
 

2.0 0.31 0.0 0.49 

1024 
 

2.5 0.28 0.0 0.44 

 

3.5 Conclusion 

The experiment results showed that the proposed ANN architecture and pattern 

recognition methodology were acceptable in terms of quality of results.  The central 

tendency of the error was very low and within a manageable range as suggested by the 

mean error and standard deviation.  The chart showing the distribution of error 

percentages (Fig. 18) also supported the same observations and conclusions. 
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CHAPTER FOUR  

IMPLEMENTATION OF THE SYSTEM 

4.1 Overall System Architecture 

The target system was a cloud-based [61] mobile system armed with a portable 

photometer with adequate photometry analysis accuracy.  Fig. 19 shows the complete 

system architecture in a schematic. 

 

Fig. 19.  Schematic of Overall System Architecture 

 

The system contains a UV light source, water sample holder, and photometer all 

linked to each other through an optical fiber.  The photometer is connected to the mobile 

device through a USB channel.  The mobile device is cloud enabled to store the 

photometry data on the cloud and perform data analysis on the cloud server.  The cloud 

server can also access the cloud storage to read the photometry data and store the results 

of the analysis.  The underlying vision of this thesis was to study the possibility of 
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constructing a cheap mobile system using a common mobile phone coupled with a 

portable photometer for an instantaneous COD detection of water. 

4.2 Implementation Components 

4.2.1 Mobile Platform 

Tiny6410 [51] was selected to implement the mobile platform.  This system used an 

S3C6410 processor, ARM11 implementation from Samsung [52], and SMDK6410 

software development kit for software implementation.  Fig. 20 shows the hardware 

board used in this work.   

 

Fig. 20.  Tiny6410 board 

 

This specific system used a 4GB external SD card for system booting and storage of 

the mobile system.  With this feature, the software footprint was of less concern than 

using onboard flash storage. 
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4.2.2 Photometer and UV Light Source 

As a portable photometer, Red Tide USB650 [53] from OceanOptics was used in 

this work.  Red Tide USB650 is a low-cost photometer for academic and college 

laboratory purposes.  The photometer’s USB connectivity provides easy connection to the 

Tiny6410 mobile system.   

 

Fig. 21.  Portable Photometer and UV Light Source 

 

The DT-MINI-2 Deuterium Tungsten Halogen Light Source [72] from OceanOptics 

was used as the UV-Vis light source.  This unit can produce light with a wavelength 

between 189 nm and 885 nm.  Fig. 21 shows the photometer and the UV light source 

used in this work. 

4.2.3 File and Application Server 

In general, a cloud infrastructure allows virtualized machines to share common 

hardware.  To keep the setting simple, using VirtualBox [54] two virtual servers were 

configured to run the UBUNTU Linux Server [55].  One of the virtual servers was 

configured to act as the network file server (NFS) and the other was configured as an 
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application server receiving remote execution requests using secured shell (SSH) 

protocol.  These servers were connected through a home router implementing a local area 

network (LAN). 

 

Fig. 22.  VirtualBox-based Virtual UBUNTU Linux Server 

4.2.4 Development Environment 

The development environment in this work was a mixture of Windows (as the host 

platform) and a virtual machine running UBUNTU Linux on a Windows host.  On the 

Windows side, Tera Term [56] was used as the console for Tiny6410.  This enabled the 

use of a host computer to control and operate the Tiny6410 without using Tiny6410’s 

native small LCD display with a touch-screen keyboard.  In addition, SpectraSuit [57] 

software from OceanOptics Inc. was used to validate the collected photometry data 

against the data collected from the Tiny6410 platform.  This ensured that the data 

collection quality was within an acceptable range on the Tiny6410 platform. 
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A virtual machine running UBUNTU Linux was used to develop the software to 

control the system operation and implement the ANN-based algorithm for COD detection 

from the photometry data of a water sample.  Netbeans [58] was used as an integrated 

development environment (IDE) in this work.  The software was written in C and shell 

script to keep the memory footprint of the entire software manageable and within the 

limits of the memory available on a mobile platform.  The GNU C native compiler for 

x86 was used along with a cross compiler for ARM11 (which came with the SDK).  The 

implemented software was executable both on an x86 and an ARM11-based system 

through shell scripting and cross compilation. 

4.3 Software Implementation Details 

To keep the setup simple, an NFS-based file system was used instead of a cloud-

based file system, and a secured remote shell (SSH)-based remote execution was used 

instead of a cloud-based remote execution.  These basic changes were sufficient to prove 

the concept of the software, as cloud-based services are nothing but accounted remote 

storage and servers.  With these basic changes, the top-level architecture looks similar to 

that shown in Fig. 23. 

At first, the ARM11 system board was installed with a compiled Linux kernel and a 

simple GUI-based user environment.  (The details of this implementation can be found in 

APPENDIX A.)  The photometer came with an application and driver for the Windows 

platform.  In addition, a device driver module was developed and installed on the Linux 

side to gather photometry data on the ARM11 platform.  Previous internal work [59] 
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performed at the San Jośe State University Computer Engineering Department was used 

for this purpose.  (Details can be found in APPENDIX B.) 

 

Fig. 23.  Simplified System Architecture Replacing Cloud 

 

The virtual servers for NFS and SSH-based remote application executions were 

configured using the UBUNTU Linux server installed on VirtualBox and running on the 

host Windows system.  Both of the servers were connected to each other using a LAN 

implemented using a domestic router.  (Details of this implementation can be found in 

APPENDIX C.) 

To implement the ANN, a fast artificial neural network (FANN) library [60] was 

used.  (An introduction to this library can be found in APPENDIX D.)  The existing 

library can store trained ANN models in a text file that may be loaded into the execution 

memory using the FANN library API.  However, the memory footprint for this library is 

quite large; thus, it is not suitable for use on a mobile platform.  To use the FANN library 
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effectively to train ANN for this thesis work, the library was extended to generate a 

compact, precompiled C model for the trained ANN.  In that way, the ANN model can be 

loaded into the memory and used in the target application without loading the entire 

FANN library.  (The details of this FANN extension for a precompiled C model 

generation can be found in APPENDIX E).  Finally, the anCod software system was 

implemented to control the system operation.  (The details of this software can be found 

in APPENDIX F).  Fig. 24 depicts the complete ecosystem implemented in this work. 

In the implemented system, the ARM11 board hosted the anCod client process, 

which controlled the operation of the UV light source and the photometer’s data-

capturing operation.  This client also processed the photometry data and stored the 

processed data on an NFS partition.  The captured data were either training data with a 

known COD for ANN training purposes or test data with an unknown COD.  These two 

types of data were created depending on the options used in an anCod client invocation 

for a test or training data set generation.  This client process also requested remote 

execution to the SSH server to run the anCod trainer or server, depending on the option 

provided at run time. 

The anCod trainer process was executed remotely on the SSH server.  It read the 

training data stored in the NFS partition and created a compiled ANN model after 

training was completed.  The anCod server process was also executed on the remote SSH 

server.  It analyzed the test photometry data stored on the NFS partition by the client 

process using the trained ANN stored by the trainer process.  The same NFS partition 
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stored the analysis results, and the client process used this stored result to display the 

results through the ARM11 system. 

 

Fig. 24.  anCod Hardware and Software Ecosystem 

 

4.4 System Implementation 

Fig. 25 shows the actual setup for the overall system.  There were two distinct parts 

of the system.  One was the computing system, which analyzed the photometry data.  The 

other part was the chemistry and photonics laboratory setup.  This experiment used very 

basic chemistry laboratory sets.  The setup consisted of a 1L laboratory flask (to store the 

calibrated sample for COD measurement), a 100 ml graduated cylinder, test tubes (to 

hold various concentrations of COD samples), test tube holders, funnels, and tubes.  The 
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photonics part of the laboratory setup consisted of a UV-Vis light source, fiber channel 

connectors, and the flow cell. 

 

Fig. 25.  Overall Setup for the COD Analysis System 

 

The photonic lab setup used gravity and the water’s property of being at the same 

level to conduct the experiment.  Fig. 26 shows the setup for the photonics lab part in this 

experiment along with the flow cell picture.  The entire sample flow system was built on 

a chemistry lab stand.  The water sample was injected into the flow cell through the 

receiver funnel, which was connected to the flow cell’s sample inlet though a tube.  The 

flow cell was kept in such a position that water could always flow through the capillary 

channel inside the flow cell under the influence of gravity.  During the sample analysis, 

the draining funnel was kept high using a test tube holder, which was also connected to 

the flow cell’s sample outlet through another tube.   
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Fig. 26.  Photonics Lab Setup and Flow Cell 

[Source: The flow cell photo was taken from the OceanOptics website 

http://www.oceanoptics.com/Products/fiazsmaflowcells.asp] 

 

The flow cell was wrapped with black tape to reduce interference from surrounding 

light sources.  The fiber channel cable from the UV light source was connected to one 

end of the flow cell and another fiber cable to the photometer was connected to the other 

end of the flow cell.  When the sample analysis was done, the draining funnel could be 

lowered and then the sample could be drained by gravity.  Because the flow cell channel 

was a capillary, an external hand air pump was used to make sure the capillary channel 

drained properly. 
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Fig. 27.  Computing Setup for COD Analysis 

 

Fig. 27 shows the computing setup for COD analysis.  The entire thesis work used a 

laptop (Dell Latitude with 4x2.7 GHz x64 CPU, 4GB RAM, and a 120 GB hard disk) as a 

computer platform.  The mobile platform Tiny6410, connected with the photometer (Red 

Tide USB650) through a USB, was connected to the laptop on a LAN through a home-

based router. 

The laptop hosted two virtual servers running under VirtualBox and the 

HyperTerminal for the Tiny6410.  Fig. 28 shows the three running windows for the 

system connected through the LAN.  One of the virtual servers served as an NFS that 
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hosted a disk partition and was accessible to the Tiny6410 and any other machine on the 

LAN.   

 

Fig. 28.  Screen Capture of the Running Instances 

 

The other virtual server acted as a remote execution platform for the Tiny6410.  

This server used SSH protocol for remote execution.  The Tiny6410 system could access 

this machine to run any analysis remotely and obtain the analysis results.  
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CHAPTER FIVE  

EXPERIMENT, RESULTS, AND CONCLUSION 

5.1 Experiment Setup 

The system operation and validity were established through several steps by 

performing COD detection in known samples.  A set of calibrated water samples with a 

known COD amount was prepared.  The calibrated sample preparation method is 

described in subsection 5.1.1.  The spectroscopy data were collected for these calibrated 

samples and used in ANN training.  Random noise was injected into the collected data to 

produce realistic data in a natural environment.  The trained ANN produced an 

affirmative result of 1 for spectroscopy data collected from a water sample with COD and 

produced a result of 0 otherwise.  The trained ANN was then tested with the collected 

data and the sample of water from different sources.  The success of these tests should 

prove the validity of the overall system.  The following subsections discuss each of the 

experiment steps in detail. 

5.1.1 Calibrated Sample Preparation for COD Measurement 

“The Industry Standard COD testing is based upon the theoretical amount of oxygen 

required to oxidize organic compounds to CO2 and H2O” [62].  This means that to 

establish the efficiency of any COD measurement instrument or methodology, a standard 

solution of known COD is prepared and tested using the subject of interest (e.g., an 

instrument or methodology).  Potassium hydrogen phthalate (KHP) is the most 

commonly used compound to prepare samples of known COD [62]. 
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The theoretical oxygen demand can be shown as the chemical balance in Equation 

12. 

                               Equation 12 

 

Equation 12 demonstrates how each molecule of KHP is completely digested with 

7.5 molecules of oxygen.  In terms of weight, 1.175 mg of oxygen is required to digest 1 

mg of KHP.  Hence, to prepare a solution with x mg COD per liter of water, x / 1.1.75 mg 

of KHP must be dissolved per 1 liter of water.  For example, to prepare a 1000 mg COD 

per liter of water, approximately 1702 mg of KHP per 1 liter of water is needed (see 

Equation 13). 

 

                     

                      
                        

Equation 13 

 

A calibrated sample of 1 L water solution with 1000 mg/L COD was prepared for 

the experiment.  The preparation method followed Hach’s booklet [62].  A precise 

amount of 851.5 mg of KHP was first dried overnight at 120
0
C.  This dried KHP was 

then mixed with 1000 ml organic-free deionized water using Class A glassware.   



 

 

52 

 

5.1.2 UV Spectroscopy Data Collection 

The spectroscopy data were collected using the anCod software in training mode.  

Data were collected using a spectrometer connected to the embedded system.  For the 

experiment, samples with different CODs were used.  A set of samples with COD were 

used for ANN training (0, 250, 500, and 1000 mg/L).  To prepare the training samples, 

the base solution of 1000 mg/L COD was diluted with the required amount of organic-

free deionized water to prepare a 100 ml solution with targeted COD.  Table 3 shows the 

amount of calibrated solution mixed with diluted water.  A diluted solution was prepared 

by inverting the mixture 10 times. 

For testing purposes, the following three samples of water were collected and then 

spectroscopy data were collected. 

1. Filtered drinking water 

2. Toilet flush system water 

3. A mixture of a very small amount of the calibrated solution into 10 ml of 

drinking water. 

Table 3.  COD Solution Preparation Amounts 

COD (mg) / L 

Amount of 

calibrated  

solution 

(ml) 

Amount of 

diluted 

water (ml) 

0 0 100 

250 25 75 

500 50 50 

1000 100 0 
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Spectroscopy data for each sample were taken five times for ANN training and 

testing in order to take into account the natural variation of data collected under variable 

conditions.  Hence, 35 photometry data sets were collected.  All the spectrometry data 

were normalized with respect to their highest values.  Therefore, the data values fed into 

ANN training and testing within a range of 01. 

A small script was written to call anCod with appropriate run-time arguments for 

data collection.  The script used was named ancod_data_collection.csh. 

#!/bin/tcsh 

setenv ANCOD_USER_CONFIG_FILE ./script/ancod_data_collection_config.sh 

anCod -save_as pm_${1}_${2}.dat 

 

The external configuration file used was named ancod_data_collection_config.csh, 

which had the following content.   

export anCod_data_dir="./data" 

 

This file overrode the default directory of data storage.  The script called anCod with 

the argument “save_as,” which prompted the photometer to collect data and store them 

into the data/pm_<arg1>_<arg2>.dat file.  For each COD sample, the script was invoked 

as the following commands in the collected data file named pm_<cod>_<index>.dat. 

$> ./script/ancod_data_collection.csh 0 1 # COD=0, Index=1 

$> ./script/ancod_data_collection.csh 1000 5 # COD=1000, Index=5 
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5.1.3 ANN Training with Collected Data 

Because the basic target of this work was to develop a system to detect COD in 

water and not to measure the amount of COD, the spectroscopy pattern from a sample 

with 0 COD (or the pure organic-free deionized water) was used for ANN training to 

produce a negative indication of 0.  The outcome of 0 from the ANN evaluation 

represented an absence of COD.  Hence, any spectrometry data that produced 0 from the 

ANN could be declared organic free water.  The spectroscopy data from a water sample 

with COD were fed for ANN training to produce a result of 1.  Hence, any spectrometry 

data producing 1 from ANN could be declared water with an organic pollutant. 

For training purposes, spectrometry data were collected for water samples with 0, 

250, 500, or 1000 mg/L COD.  Each water sample had five collected photometry 

patterns, which meant that there were 20 photometry patterns.  Each of these 20 patterns 

was used as the base pattern to generate nine more patterns with 10% random noise.  This 

generated 200 patterns to be used in ANN training. 

A script was written to train ANN with the collected photometry data.  This script 

first generated ANN training patterns and then called the anCod trainer to create and train 

ANN.  The following was the source code for the script executed to train ANN: 

# Script: ann_train.csh 

#!/bin/tcsh 

setenv ANCOD_USER_CONFIG_FILE ./script/ann_train_config_no_random.sh 
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set log="log.train" 

 

/bin/rm -f ${log}  

/usr/bin/touch ${log}  

/bin/rm -f ./data/anCod_ann_train.dat 

 

# Set the parameters 

set cod=0 

set index=1 

set pm_data_dir="../data_collection/data" 

 

 

# Generate the training patterns that would give 0.0 as result 

while ($index < 6) 

    anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 0.0 -local 

|& tee -a ${log} 

    @ index = $index + 1 

end 

 

# Generate the training patterns that would give 1.0 as result 

foreach cod (250 500 1000) 

    set index=1 

    while ($index < 6) 

        anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 1.0 -

local |& tee -a ${log} 

        @ index = $index + 1 

    end 

end 
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# Generate training pattern with 10% random noise injected 

setenv ANCOD_USER_CONFIG_FILE ./script/ann_train_config_random_noise.sh 

 

 

# Generate the training patterns that would give 1.0 as result 

set cod=0 

set i=1 

set index=1 

 

while ($i < 10) 

    echo "INFO: Iteration $i of random noise injection for result 1.0 

..." 

    while ($index < 6) 

        anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 0.0 -

local |& tee -a ${log} 

        @ index = $index + 1 

    end 

    @ i = $i + 1 

end 

 

# Generate the training patterns that would give 0.0 as result 

set i=1 

set index=1 

 

while ($i < 10) 

    echo "INFO: Iteration $i of random noise injection for result 0.0 

..." 

    foreach cod (250 500 1000) 

        set index=1 
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        while ($index < 6) 

            anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 1.0 

-local |& tee -a ${log} 

            @ index = $index + 1 

        end 

    end 

    @ i = $i + 1 

end 

 

# Train and generate the ANN 

anCodTrainer -train pm |& tee -a ${log} 

 

The configuration files were used with the following source code.  There were three 

configuration files to define the configuration and generate ANN training data without 

any random noise injection.  Another ANN training data set had 10% random noise 

injected. 

# Configuration: ann_training_config_no_random.sh 

.  ./script/ann_train_config.sh 

# data usage parameters 

export anCod_add_noise=0.0 # 0% additional noise added to data 

 

# Configuration: ann_training_config_random_noise.sh 

.  ./script/ann_train_config.sh 

# data usage parameters 

export anCod_add_noise=0.1 # 10% additional noise added to data 
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# Configuration: ann_train_config.sh 

export anCod_data_dir="./data" 

 

# ANN architecture 

export anCod_ann_input=20 

export anCod_ann_output=1 

export anCod_ann_hidden_node=50 

 

# ANN library information 

export anCod_model_name=ann_ancod 

export anCod_model_version=1.0.0 

export anCod_build_tool=/usr/bin/make 

export anCod_model_loc=./ann 

 

ANN training in this experiment required 21 iterations to converge and complete the 

training using the back propagation algorithm.  The following is the output snippet from 

ANN training.   

.  .  . 

INFO [anCodTrainer_multilayer_feedforward_ann.c@71)] : Training the ANN 

... 

 

Max epochs    10000.  Desired error: 0.0010000000. 

Epochs            1.  Current error: 0.0602034740.  Bit fail 12. 

Epochs           10.  Current error: 0.0037730325.  Bit fail 1. 

Epochs           20.  Current error: 0.0010124878.  Bit fail 0. 

Epochs           21.  Current error: 0.0009350366.  Bit fail 0. 
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INFO [anCodTrainer_multilayer_feedforward_ann.c@76)] : Training the ANN 

...  DONE 

.  .  . 

5.1.4 ANN Testing with Test Samples 

For testing purposes, spectrometry data for water samples with 0, 250, 500, or 1,000 

mg/L COD are used.  Along with them, water samples from drinking water, random 

mixtures, and toilet flush system water were also used.  Each water sample had five 

collected photometry patterns, which means there were 35 photometry patterns.  Each of 

these 35 patterns was used as the base pattern to generate nine more patterns with 10% 

random noise.  This created 350 patterns to be used in ANN testing. 

The following script generated testing patterns and called the program to give the 

test outcome. 

# Script ann_test.csh 

 

#!/bin/tcsh 

setenv ANCOD_USER_CONFIG_FILE ./script/ann_test_config_no_random.sh 

 

set log="log.test" 

/bin/rm -f ${log}  

/usr/bin/touch ${log}  

/bin/rm -f ./data/anCod_ann_test.dat 

/bin/cp ./data/anCod_ann_train.dat ./data/anCod_ann_test.dat 
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# Set the parameters 

set cod=0 

set index=1 

set pm_data_dir="../data_collection/data" 

 

# Generate the training patterns that would give 1.0 as result 

foreach cod (250 500 1000 sw tlw) 

    set index=1 

    while ($index < 6) 

        anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 1.0 -

local |& tee -a ${log} 

        @ index = $index + 1 

    end 

end 

 

# Generate the training patterns that would give 0.0 as result 

foreach cod (fw kw) 

    set index=1 

    while ($index < 6) 

        anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 0.0 -

local |& tee -a ${log} 

        @ index = $index + 1 

    end 

end 

 

# Generate training pattern with 10% random noise injected 

setenv ANCOD_USER_CONFIG_FILE ./script/ann_train_config_random_noise.sh 

 

# Generate the training patterns that would give 0.0 as result 
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set i=1 

 

while ($i < 10) 

    echo "INFO: Iteration $i of random noise injection for result 1.0 

..." 

    foreach cod (250 500 1000 sw tlw) 

        set index=1 

        while ($index < 6) 

            anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 1.0 

-local |& tee -a ${log} 

            @ index = $index + 1 

        end 

    end 

    @ i = $i + 1 

end 

 

set i=1 

 

while ($i < 10) 

    echo "INFO: Iteration $i of random noise injection for result 1.0 

..." 

    foreach cod (fw kw) 

        set index=1 

        while ($index < 6) 

            anCod -sim ${pm_data_dir}/pm_${cod}_${index}.dat -train 0.0 

-local |& tee -a ${log} 

            @ index = $index + 1 

        end 

    end 

    @ i = $i + 1 
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end 

 

# Test the generated ANN 

anCodServer -test pm |& tee -a ${log} 

 

Each test set with 350 patterns was generated 100 times with 10% random noise 

injection and tested.  This provided meaningful error distribution information.  A script 

was written to automate this testing process. 

# Script ann_test_100.csh 

#!/bin/tcsh 

set index=1 

 

while ($index < 101) 

   rm -f ./data/anCod_ann_test.dat 

   rm -f ./data/anCod_ann_train.dat 

   ./script/ann_test.csh 

   mv log.test log/log_test.${index} 

   @ index = $index + 1 

end 

 

The configuration files were used as the following source code.  There were two 

configuration files defined.  One generated ANN test data without any random noise 

injection.  The other generated ANN test data with 10% random noise injected.  These 

two configurations reused the training configuration but changed the training file name. 



 

 

63 

 

# Configuration: ann_test_config_no_random.sh 

.  ./script/ann_train_config_no_random.sh 

export anCod_train_file="anCod_ann_test.dat" 

 

# Configuration: ann_test_config_random_noise.sh 

.  ./script/ann_train_config_random_noise.sh 

export anCod_train_file="anCod_ann_test.dat"    

5.2 Results 

The observed parameter for all 100 tests with random noise injection was the 

percentage of error where ANN failed to correctly detect if the water sample had COD or 

not.  All these percentage errors were collected and statistically analyzed to determine the 

mean and standard deviation of the percentage of error.  Table 4 shows the experimental 

results. 

Table 4.  Experimental Result for Methodology Validation 

Maximum percentage of  error 0.0 

Mean of the percentage of error 0.0 

Minimum of the percentage of error 0.0 

Standard deviation of the percentage of error 0.0 
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5.3 Conclusion 

Three major observations and conclusions can be made from this work: 

1. COD detection is possible without using any chemicals based on pure 

photometry data analysis using an ANN.  Fig. 29 and Fig. 30 show the 

photometry data patterns for samples used for training and samples used for 

testing.  Given the sample data, the system was able to correctly predict if the 

sample had COD or not. 

 

Fig. 29. Absorption Patterns for ANN Training 
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Fig. 30. Absorption Patterns for ANN Testing 

 

2. An affordable COD detection system can be built using generic mobile 

embedded systems extended with an attachable spectrometer through USB or 

another standard connection.  In this work, a spectrometer connection through a 

USB was used.  However, this concept can be extended in order to build a 

Bluetooth- or Wi-Fi-enabled spectrometer to be attached to a mobile system.  

Henceforth, it is possible to use and write an application for a 

USB/Bluetooth/Wi-Fi-enabled cell phone for COD detection using a simple 

lightweight photometer. 

3. A COD detection system can be built on top of a cloud-based infrastructure to 

further decrease the system cost by sharing software and hardware resources 
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using the cloud technique, though in this work a real cloud system was not used.  

However, a LAN-based infrastructure was used for remote storage and analysis 

of data.  This same concept could be extended to a cloud-based system, which is 

more widely shared and accounted for through strict-usage bookkeeping.  
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CHAPTER SIX  

                                        FUTURE DIRECTIONS 

Four future works based on this work are suggested: 

1. Develop an ANN-based algorithm to analyze and compute actual COD numbers 

for the water sample.  For this purpose, samples must be prepared to cover the 

entire pattern space from 0 mg/L COD to 1000 mg/L COD.  Each sample can then 

be analyzed to identify specific absorption patterns and assigned a COD value. 

2. Implement a stable experiment platform for COD measurement using photometry.  

A simple motor-based sample injection system and flushing system controlled by 

the embedded system can be designed for this purpose. 

3. Integrate a real cloud infrastructure for the system.  In the current system, LAN-

based NFS for data storage and remote execution using SSH were used.  These 

could be extended to use real cloud infrastructure or a private cloud to prove the 

concept.  Either UBUNTU cloud infrastructure [63] or OpenStack [64] could be 

used to build a private cloud infrastructure.  Specific steps to set up OpenStack 

can be found on the Internet [65, 66].  The client application for the cloud should 

be ported into the ARM11 platform for this purpose. 

4. Develop a self-learning, continuously adoptable system that will dynamically 

train ANN with a new set of training data as available after chemical-based COD 

measurement.  Because anCod software uses an ANN model dynamically from 

the installation location of the software, it is possible to replace the current ANN 
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with a better-trained ANN at any point of time.  Hence, the system can compute 

the initial COD values in situ.  In addition, when verified COD values are 

generated through a chemical process, the ANN can be retrained with extended 

training data.  Fig. 31 explains the basic concept.  In this system, the mobile 

anCod analysis system is used for fast analysis for the COD determination of a 

water sample.  The same sample is also analyzed in the lab using a conventional 

process and the result is fed back into the anCod training system to update ANN.  

This way, the ANN will be retrained to handle the varieties of water samples 

found in real life. 

 

Fig. 31.  Evolving anCod Analysis System with Feedback from Lab Result 

 

 



 

 

69 

 

REFERENCES 

1. Wikipedia Contributors. (2012). Chemical oxygen demand [Online]. Available: 

http://en.wikipedia.org/wiki/Chemical_Oxygen_Demand (Accessed May 18, 2012). 

 

2. Wikipedia Contributors. (2012). Biological oxygen demand [Online]. Available: 

http://en.wikipedia.org/wiki/Biochemical_oxygen_demand (Accessed May 18, 2012). 

 

3. U.S. Geological Survey. (2012). How much water is there in, on and above the 

Earth? [Online]. Available: http://ga.water.usgs.gov/edu/earthhowmuch.html 

(Accessed May 20, 2012). 

 

4. U.S. Geological Survey. (2012). The water cycle [Online]. Available: 

http://ga.water.usgs.gov/edu/watercycle.html (Accessed May 20, 2012). 

 

5. WHO/UNICEF, “Progress in drinking-water and sanitation: Special focus on 

sanitation,” WHO/UNICEF Joint Monitoring Programme for Water Supply and 

Sanitation, July 17, 2008, pp. 25. 

 

6. UNICEF. (2008). JMP 2008 [Online]. Available: 

http://www.unicef.org/media/media_44093.html (Accessed May 21, 2012). 

 

7. Kally Worm. Water is life—Groundwater drawdown [Online]. Available: 

http://academic.evergreen.edu/g/grossmaz/WORMKA/ (Accessed May 21, 2012). 

 

8. Wikipedia Contributors. (2012). Water crisis [Online]. Available: 

http://en.wikipedia.org/wiki/Water_crisis#cite_ref-12 (Accessed May 21, 2012). 

 

9. Wikipedia Contributors. (2012). Water treatment [Online]. Available: 

http://en.wikipedia.org/wiki/Water_treatment_plant (Accessed May 22, 2012). 

 

10. Explore More Project Contributors. (2012). Industrial uses [Online]. Available: 

http://www.iptv.org/exploremore/water/uses/use_industry.cfm (Accessed May 23, 

2012). 

 

11.  United States Environment Protection Agency. (2012). Drinking water contaminants 

[Online]. Available: http://water.epa.gov/drink/contaminants/index.cfm#1 (Accessed 

May 22, 2012). 

 

12. B. Kiepper. (2010, Oct. 14). Understanding laboratory waste water test: I. 

ORGANICS (BOD, COD, TOC, O&G) [Online]. Available: 

http://www.caes.uga.edu/publications/pubDetail.cfm?pk_id=7895 (Accessed May 23, 

2012).  

 



 

 

70 

 

13. H. Long. (2012). Chemical oxygen demand (COD) testing procedures [Online]. 

Available: http://water.me.vccs.edu/courses/ENV149/cod_print.htm (Accessed May 

23, 2012). 

 

14. Missouri Department of Natural Resources. (2012). Water quality parameters 

[Online]. Available: http://www.dnr.mo.gov/env/esp/waterquality-parameters.htm 

(Accessed May 23, 2012). 

 

15. ManSci Inc. (2012). COD analysis PeCOD
TM

 from MANTECH [Online]. Available: 

http://www.mansci.com/products/PeCOD/index.html#WhatisPeCOD (Accessed May 

23, 2012). 

 

16. C. Zhang, Fundamentals of Environmental Sampling and Analysis. Hoboken, NJ: 

Wiley, 2007, pp. 357. 

 

17. Wikipedia Contributors. (2012). Introduction to cloud computing [Online]. Available: 

http://en.wikipedia.org/wiki/Introduction_to_cloud_computing (Accessed May 23, 

2012). 

 

18. Wikipedia Contributors. (2012). Artificial neural network [Online]. Available: 

http://en.wikipedia.org/wiki/Artificial_neural_network (Accessed May 23, 2012). 

 

19. A. Algom. (2012). Cloud computing pay-per-use for on-demand scalability [Online]. 

Available: http://www.ogf.org/OGF25/materials/1500/AvnerAlgomIGT-OGF25.pdf  

(Accessed May 23, 2012). 

 

20.  Wikipedia Contributors. (2012). Ammonium iron (II) sulfate [Online]. Available: 

http://en.wikipedia.org/wiki/Ferrous_ammonium_sulphate (Accessed Jun. 6, 2012). 

 

21.  C.E. Housecroft, E.C. Constable, Chemistry: An Introduction to Organic, Inorganic, 

and Physical Chemistry, 3
rd

 Ed. Upper Saddle River, NJ: Prentice Hall, 2005, pp. 

349–353. 

 

22. L. Rosenfeld, Four Centuries of Clinical Chemistry. Boca Raton, FL: CRC Press, 

1999, pp. 255–258. 

 

23. Wikipedia Contributors. (2012). Colorimeter (chemistry) [Online]. Available: 

http://en.wikipedia.org/wiki/Colorimeter_(chemistry)#cite_ref-2 (Accessed Jun. 6, 

2012). 

 

24. HunterLab. (2008). Colorimeters versus spectrophotometers [Online]. Available: 

http://www.hunterlab.com/appnotes/an03_95r.pdf (Accessed June 13, 2012). 

 



 

 

71 

 

 

25. Wikipedia Contributors. (2012). Colorimetry (chemical method) [Online]. Available: 

http://en.wikipedia.org/wiki/Colorimetry_(chemical_method)#cite_ref-1 (Accessed 

Jun. 13, 2012). 

 

26. C. Burgess, “The Basics of Spectrophotometric Measurement,” in UV-Visible 

Spectrophotometry of Water and Wastewater (Techniques and Instrumentation in 

Analytical Chemistry), vol. 27, O. Thomas and C. Burgess, Eds. Amsterdam, 

Netherland: Elsevier, 2007, pp. 1-19. 

 

27. Wikipedia Contributors. (2013). Color Vision [Online]. Available: 

http://en.wikipedia.org/wiki/Color_vision (Accessed Feb. 11, 2013). 

 

28.  Wikipedia Contributors. (2012). Charge-coupled device [Online]. Available: 

http://en.wikipedia.org/wiki/Charge-coupled_device (Accessed Jul. 2, 2012). 

 

29. S. Fogelman, H. Zhao, and M. Blumenstein, “A rapid analytical method for 

predicting the oxygen demand of wastewater,” Anal Bioanal Chem, vol. 386, no. 6, 

pp. 1773–1779, Nov. 2006. 

 

30. O. Thomas and F. Theraulaz, “Aggregate Organic Constituents,” in UV-Visible 

Spectrophotometry of Water and Wastewater (Techniques and Instrumentation in 

Analytical Chemistry), vol. 27, O. Thomas and C. Burgess, Eds. Amsterdam, 

Netherland: Elsevier, 2007, pp. 89-114. 

 

31. A. Charef, A. Ghauch, P. Baussand and M. Martin-Bouyer, “Water quality 

monitoring using a smart sensing system,” Measurement, vol. 28, no. 8, pp. 219-224, 

Oct. 2000. 

 

32. G. Langergraber, N. Fleischmann, F. Hofstaedter, and A. Weingartner, “Monitoring 

of a paper mill wastewater treatment plant using UV/VIS spectroscopy,” Water 

Science and Technology, vol. 49, no. 1, pp. 9-14, 2004. 

 

33. M.N. Pons, S.L. Bonte, O. Potier, “Spectral analysis and fingerprinting for biomedia 

characterization,” Journal of Biotechnology, vol. 113, no. 1-3, pp. 211-230, Sep. 

2004. 

 

34. N. Fleischmann, G. Langergraber, et al. On-line and in-situ measurement of turbidity 

and COD in wastewater using UV/VIS spectrometry [Online]. Available: 

http://www.s-can.at/medialibrary/publications/p_2001_06.pdf (Accessed Mar. 26, 

2012). 

 



 

 

72 

 

35. L. Cherta, J. Beltran, and T. Portoles, “Multiclass determination of 66 organic 

micropollutants in environment water samples by fast gas chromatography-mass 

spectrometry¸” Anal Bioanal Chem, vol. 402, no. 7, pp. 2301–2314, Sep. 2012.  

 

36. S. Fogelman, H. Zhao, and M. Blumenstein, “A rapid analytical method for 

predicting oxygen demand of wastewater,” Anal Bioanal Chem, vol 386, no. 6, pp. 

1773-1779, Oct. 2006.  

 

37. S. Fogelman, H. Zhao, and M. Blumenstein, “Estimation of chemical oxygen demand 

by ultraviolate spectroscopic profiling and artificial neural networks,” Neural Comput 

& Applic, vol 15, no. 3-4, pp. 197-203, Jun. 2006. 

 

38. N. Benjathapanun, W.J.O. Boyle, and K.T.V. Grattan, "Binary encoded 2nd-

differential spectrometry using UV-Vis spectral data and neural networks in the 

estimation of species type and concentration," Science, Measurement, and 

Technology, Proc. IEEE, vol.144, no.2, pp.73,80, Mar. 1997 

doi: 10.1049/ip-smt:19970713  

 

39. F.M. Ham, G.M. Cohen, and C. Byoungho, "Neural network-based real-time 

detection of glucose using a non-chemical optical sensor approach," Engineering in 

Medicine and Biology Society, 1990, Proc. IEEE , vol., no., pp.480,482, 1-4 Nov. 

1990. doi: 10.1109/IEMBS.1990.691176  

 

40. M.A. Yongwen et al., “Hybrid artificial neural network genetic algorithm technique 

for modeling chemical oxygen demand removal in anoxic/oxic process¸” J Environ 

Sci Health A Tox Hazard Subst Environ Eng., vol. 46, no. 6, pp. 574-580, 2011. 

 

41. H. Filho et al., “A strategy for selecting calibration samples for multivariate 

modeling,” Chemometr Intell Lab, vol. 72, no. 1, pp. 83–91, Jun. 2004. 

 

42. J. Dahlen et al., “Determination of nitrate and other water quality parameters in 

ground water from UV/Vis spectra employing partial least squares regression,” 

Chemosphere, vol. 40, no. 1, pp. 71–77, Jan. 2000. 

 

43. H. Khorassani et al., “A simple UV spectrophotometric procedure for the survey of 

industrial sewage system,” Wat Sci Tech, vol. 39, no. 10-11, pp. 77–82, 1999. 

 

44. W. Bourgeois, J. Burgess, and R. Stuetz, “On-line monitoring of wastewater quality: 

a review,” J Chem Technol Biot, vol. 76, no. 4, pp. 337–348, Mar. 2001. 

 

45. A. Charef et al., “Water quality monitoring using a smart sensing system,” 

Measurement, vol. 28, no. 3, pp. 219–224, Oct. 2000. 

 



 

 

73 

 

46. W. McCullock and W. Pitts, "A logical calculus of ideas immanent in nervous 

activity," Bulletin of Math. Biophysics, vol. 5, no. 4, pp. 115–133, 1943. 

 

47. F. Rosenblatt, “The perceptron: A probalistic model for information storage and 

organization in the brain," Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.  

 

48. M. Minsky and S. Papert (1969), Perceptron: An Introduction to Computational 

Geometry. Cambridge, MA: MIT Press, 1969. 

 

49. K. Fukushima, "Cognitron: A self-organizing multilayered neural 

network," Biological Cybernetics, vol. 20, no. 3–4, pp. 121–136, 1975. 

 

50. Wikipedia Contributors. (2013). Neural network [Online]. Available: 

http://en.wikipedia.org/wiki/Neural_network#cite_ref-Kun1_12-0 (Accessed Feb. 11, 

2013). 

 

51. FriendlyARM. (2013). Tiny6410 | S3C6410 ARM11 Stamp Module [Online]. 

Available: http://www.friendlyarm.net/products/Tiny6410 (Accessed Feb. 11, 2013). 

 

52. ARM. (2013). S3C6410 ARM11 Mobile Processor by Samsung Electronics Co., Ltd 

[Online]. Available: 

http://www.arm.com/community/partners/display_product/rw/ProductId/2644/ 

(Accessed Feb. 11, 2013). 

 

53. Ocean Optics. (2013). USB650 Red Tide Spectrometer [Online]. Available: 

http://www.oceanoptics.com/Products/usb650.asp (Accessed Feb. 11, 2013). 

 

54. ORACLE. (2013). VirtualBox [Online]. Available: https://www.VirtualBox.org/ 

(Accessed Feb. 11, 2013). 

 

55. Canonical Ltd. (2013). Download UBUNTU Server [Online], Available: 

http://www.ubuntu.com/download/server (Accessed Feb. 11, 2013). 

 

56. “Tera Term” Project Contributors. (2013). Tera Term Home Page [Online]. 

Available: http://ttssh2.sourceforge.jp/ (Accessed Feb. 11, 2013). 

 

57. OceanOptics. (2013). Spectral Software Made Easy [Online]. Available: 

http://www.oceanoptics.com/Products/spectrasuite.asp (Accessed Feb. 11, 2013). 

 

58. Netbeans Project Contributors. (2013). Netbeans IDE [Online]. Available: 

http://netbeans.org/ (Accessed Feb. 11, 2013). 

 



 

 

74 

 

59. A. Shaw, “Cloud computing enabled portable smart spectrophotometer,” M.S. thesis, 

CMPE, SJSU, San Jose, CA, 2011. 

 

60. S. Nissen et al. Fast artificial neural network library [Online]. Available: 

http://leenissen.dk/fann/wp/ (Accessed Feb. 12, 2012). 

 

61. Webopedia Contributors. (2013). Cloud-based [Online]. Available: 

http://www.webopedia.com/TERM/C/cloud_based.html (Accessed Feb, 24, 2013). 

 

62. W. Boyles, “The Science of Chemical Oxygen Demand,” Hach Co., Loveland, CO, 

Technical Information Series, Booklet No. 9, 1997. 

 

63. Canonical Ltd. (2013). UBUNTU Cloud infrastructure [Online]. Available: 

https://help.ubuntu.com/community/UbuntuCloudInfrastructure (Accessed Feb. 24, 

2013). 

 

64. OpenStack Project Contributors. (2013). Open source software for building 

private and public clouds [Online]. Available: http://www.openstack.org/ (Accessed 

Feb. 24, 2013). 

 

65. K. Jackson. (Feb. 17, 2011). Running OpenStack under VirtualBox – A Complete 

Guide (Part 1) [Online]. Available: 

http://uksysadmin.wordpress.com/2011/02/17/running-openstack-under-VirtualBox-

a-complete-guide/ (Accessed Feb. 24, 2013). 

 

66. K. Jackson. (Feb. 24, 2011). Running OpenStack under VirtualBox – A Complete 

Guide (Part 2) [Online]. Available: 

http://uksysadmin.wordpress.com/2011/02/24/running-openstack-under-VirtualBox-

a-complete-guide-part-2/ (Accessed Feb. 24, 2013). 

 

67. Canonical Ltd. (2013). Open SSH Server [Online]. Available: 

https://help.ubuntu.com/10.04/serverguide/openssh-server.html (Accessed Sep. 9, 

2012). 

 

68. Canonical Ltd. (2013). SettingUpNFSHowTo [Online]. Available: 

https://help.ubuntu.com/community/SettingUpNFSHowTo (Accessed Sep. 9, 2012). 

 

69. M. Johnston. (2012). Dropbear SSH [Online]. Available: 

http://matt.ucc.asn.au/dropbear/dropbear.html (Accessed Sep. 9, 2012). 

 

70. E. Andersen. (1999). Busybox [Online]. Available: http://www.busybox.net/ 

(Accessed Sep. 9, 2012). 

 



 

 

75 

 

71. J. York. (Apr. 8, 2009). Using Public Keys With Dropbear SSH Client [Online]. 

Available: http://yorkspace.wordpress.com/2009/04/08/using-public-keys-with-

dropbear-ssh-client/ (Accessed Sep. 9, 2012). 

 

72. Spectra Services. (2012). DT-MINI-2 Deuterium Tungsten Halogen Light Source 

[Online]. Available: 

http://spectraservices.com/Merchant2/merchant.mvc?Screen=PROD&Product_Code=

DTMINI2 (Accessed on Mar. 23, 2012). 

 

 

  



 

 

76 

 

APPENDIX A 

ARM11 Board Bring Up with A Simple Device Driver 

I. INTRODUCTION 

The Tiny6410 is a development board from FriendlyARM [51] using a SMDK6410 

platform from Samsung.  The processor on this board is an ARM11 implementation from 

the Samsung Incorporation (http://www.samsung.com/us). 

 

 

Fig. 32.  Tiny6410 SDK 

 

This paper discusses the development environment setup for this board to perform 

experiments with Linux and device drivers.  This paper is divided into three major 

sections to discuss the development environment setup, bringing up the Tiny6410 board, 

and writing a simple device driver.  The first section describes the tools and environment 

setup.  The second section describes how to compile and start Linux on Tiny6410.  The 

third section describes an implementation of a simple dynamically loadable device driver. 
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II. DEVELOPMENT ENVIRONMENT SETUP 

A. Base environment 

The host computer was running Windows 7 Enterprise Edition.  It had the ORACLE 

VirtualBox application running to emulate UBUNTU as a guest operating system.   

kpatra-VirtualBox:~> uname -a 

Linux kpatra-VirtualBox 3.0.0-17-generic #30-Ubuntu SMP Thu Mar 8 

17:34:21 UTC 2012 i686 i686 i386 GNU/Linux 

 

The guest OS used in this experiment had a mount point of the Windows file system to 

share binaries to be installed and executed on the ARM11 board.  The shell environment 

in Guest-OS was “tcsh.” 

  

B. Cross compiler installation for ARM11 

The SD card delivered as part of the package contained all the required tools for cross 

compilation and the source code for Linux.  The cross compiler tool set was shipped as 

arm-linux-gcc-4.5.1-v6-vfp-20101103.tar.gz.  Once installed using gunzip and tar 

command, it created an “opt” directory under the run directory of the command.  In this 

experiment setup, the tool chain was installed at $PROJ_ROOT/mini6410/Linux directory 

(which could be any independent location, depending on user setup). 

$> cd $PROJ_ROOT/mini6410/Linux 

$> cp $TINY6410_PKG_DIR/ arm-linux-gcc-4.5.1-v6-vfp-20101103.tar.gz . 

$> gunzip arm-linux-gcc-4.5.1-v6-vfp-20101103.tar.gz 

$> tar –xvf arm-linux-gcc-4.5.1-v6-vfp-20101103.tar 
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Once installed, the tool chain could be found at ./opt/FriendlyARM/toolschain 

/4.5.1/bin/ directory.  To make this tool chain available by default, the following line was 

added into the ~/.tcshrc file. 

setenv PATH 

${PROJ_ROOT}/mini6410/Linux/opt/FriendlyARM/toolschain/4.5.1/bin:${PATH} 

 

To test the installation, the following command should run on a new terminal. 

$> arm-Linux-cc -v 

Using built-in specs. 

COLLECT_GCC=arm-Linux-cc 

.  .  . 

Thread model: posix 

gcc version 4.5.1 (ctng-1.8.1-FA) 

 

C. Linux source code installation 

The Linux source code was shipped as the linux-2.6.38-20110718.tar.gz file.  This 

source can be installed in the same way as the cross compiler installation.  This installs all 

of the source code into ./linux-2.6.38 directory. 

$> cd $PROJ_ROOT/Tiny6410/Linux 

$> cp $MINI6410_PKG_DIR/ linux-2.6.38-20110718.tar.gz . 

$> gunzip linux-2.6.38-20110718.tar.gz 

$> tar –xvf linux-2.6.38-20110718.tar 
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D. HyperTerminal installation 

The Windows 7 host did not have a HyperTerminal for serial communication 

monitoring.  There is an open source hyper terminal “Tera Term” [56], which is very good 

for serial communication monitoring and can be used as a console for Tiny6410 SDK.  In 

addition, the “Tera Term” application is a true multipurpose terminal application 

supporting both serial and TCP/IP-based communication (like telnet or SSH). 

 

Fig. 33.  “Tera Term” Setup for Serial Port 

 

Fig. 33 shows the application menu for the setup needed to use “Tera Term” as a 

console for Tiny6410.  This menu can be opened using the “menu-Setup-Serial 

Connection…” menu switch.  In this experiment, the port “COM3” was used because it 

was auto assigned to the USB-to-serial port converter attached to the host computer 

system.  The baud rate was set to 115200 for a data width of 8 bit with no parity and 1 stop 

bit.  Flow control was set to 0 and the transmit delay was set to 0 for both char and line. 
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Fig. 34.  New Connection Menu of Tera Term Application 

 

To start a communication, the menu “File-New Connection” was used.  Fig. 34 shows 

the serial port and port number that were selected to start a new communication. 

E. SD card preparation with BIOS 

To boot the Tiny6410 from the SD card, the SD card must be prepared beforehand.  

The tool package for Tiny6410 contained the boot loader superboot-6410.bin in the tools 

directory.  This boot loader was used to boot the system.  To prepare the SD card, the 

program SD-Flasher.exe in the Tools folder was supplied in the software package.  This 

program had to be executed using administrator privileges (“Run as administrator” can be 

found with a right click on this executable file).  This brought up a GUI as shown in Fig. 

35.   
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Fig. 35.  SD-Flasher.exe GUI 

 

Superboot-6410.bin was selected as the image file to fuse.  Once the SD card was 

mounted on the host, the scan option showed the mounted SD card.  Once the Fuse button 

was clicked, the program fused the BIOS into the SD card.  The status report was shown 

in the Reports section of the GUI.  In case the SD card is not shown as available (“No” is 

displayed in the Available column of the SD drives), it can be made available using the 

ReLayout button). 

III. BRINGING UP THE TINY6410 BOARD 

A. Compiling Linux for Tiny6410 

There were two steps to build a Linux image named zImage.  The first step was to copy 

the Tiny6410 n43 configuration and then build the zImage using Make.  The following 



 

 

82 

 

commands were used to build the Linux image.  Copying the configuration is a one-time 

job; once done, it need not be repeated for every build of the zImage. 

$> cd $PROJ_ROOT/mini6410/Linux/linux-2.6.38/ 

$> cp config_mini6410_n43 .config 

$> make zImage 

 

B. Preparing the SD card for Linux installation 

A specific directory structure and a couple of files in addition to the compiled zImage 

were needed to install the compiled Linux on Tiny6410 SDK.  A directory named 

“images” was created at the top-level directory $SD_ROOT of the SD card and two 

files—“FriendlyARM.ini” and “superboot-6410.bin” —were copied from Tiny6410/tools/ 

in this “images” directory.   

$> mkdir $SD_ROOT/images 

$> cd $SD_ROOT/images 

$> cp $PROJ_ROOT/mini6410/tools/FriendlyARM.ini  . 

$> cp $PROJ_ROOT/mini6410/tools/superboot-6410.bin  . 

 

The disk image of a root file system was downloaded from the download section of the 

FriendlyARM website [1].  The name of the root file system was 

rootfs_qtopia_qt4_20110305.img.  This root file system image file was copied to the 

$SD_ROOT/Linux dir. 

 

$> mkdir $SD_ROOT/images/Linux 

$> cp rootfs_qtopia_qt4_20110305.img  \ 

   $SD_ROOT/images/Linux 
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Next the compiled zImage was copied to the $SD_ROOT/images/Linux directory.  In 

the following command example, the LNX_COMP_DIR was set to 

$PROJ_ROOT/Tiny6410/Linux/linux-2.6.38 dir. 

$> cp $LNX_COMP_DIR/ arch/arm/boot/zImage $SD_ROOT/images/Linux 

 

The content of the FriendlyARM.ini file included the following: 

Action=install 

OS= Linux 

Linux-BootLoader = superboot-6410.bin 

Linux-Kernel = Linux/zImage 

Linux-CommandLine = root=/dev/mtdblock2 rootfstype=yaffs2 init=/linuxrc 

console=ttySAC0,115200 

Linux-RootFs-InstallImage = Linux/rootfs_qtopia_qt4_20110305.img 

Linux-RootFs-RunImage = Linux/ rootfs_qtopia_qt4_20110305.img 

 

Table 5 explains each of the file parameters. 

Table 5.  Content of FriendlyARM.ini File 

Parameter names Details 

Action This can be either “install” or “run.”  In install mode, the 
boot loader installs the OS in Tiny6410’s flash memory.  
In “run” mode, the compiled OS is directly run from the 
SD card. 

OS The type of OS can be anything as long as the derived 
parameter names are present in the file.  The derived 
parameters are  

 <OS>-BootLoader 

 <OS>-Kernel 

 <OS>-CommandLine 

 <OS>-RootFs-InstallImage 

 <OS>-RootFs-RunImage 
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<OS>-BootLoader The boot loader executable 

<OS>-Kernel The kernel image file 

<OS>-CommandLine The command line for system boot up 

<OS>-RootFs-InstallImage The file system image files for installation 

<OS>-RootFs-RunImage The file system image files for direct run 

 

C. Installing Linux from SD Card 

Once the SD card was prepared, it was inserted into the SD card slot of the Tiny6410.  

To start the installation process, the switch S2 was put into SDBOOT position and the 

power switch S1 was turned on.   

 

Fig. 36.  Installing the OS from the SD Card 

 

The boot menu appeared on the LCD.  Using K1 (up), K2 (down), and K8 (OK) the 

Linux system was selected.  Once the system was selected, the boot loader began to write 

the kernel image and root file system in the Tiny6410 flash memory.   
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Fig. 37.  Linux Boot Up Console on Tera Term 

 

Once the boot loader was done with flash writing, the system was restarted by putting 

the S2 in flash booting position and toggling the power switch S1.  The system booted and 

the boot message could be captured at the “Tera Term” console as seen in Fig. 37. 

 

D. Testing the installation 

There are seven example programs given in the $PROJ_ROOT/mini6410/Linux 

/examples directory.  However, the pwm test is a good test to verify the installation.  

Inside the pwm directory, there are two files—Makefile and pwm_test.c.  The first step is 

to clean and rebuild this test program as follows: 

$> cd $PROJ_ROOT/mini6410/Linux/examples/pwm 

$> make clean 

$> make 
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This created an ARM11 executable named pwm_test, which was copied into the 

$SD_ROOT/Apps dir.  After booting the Linux on the Tiny6410 SDK, the SD card was 

inserted into the SD card slot and the program was invoked from the /sdcard/Apps 

directory.   

The following commands were executed on SDK using the “Tera Term” console. 

$> cd /sdcard/Apps 

$> ./pwm_test 

 

The console output is shown in Fig. 38.   

 

 

Fig. 38.  pwm_test Run using the “Tera Term” Console 

 

This program uses a buzzer and applies different frequencies of sound.  Users may 

increase or decrease the frequency of the sound using the “+” or “–” keys.  To terminate 

this program, the “Esc” key must be used.   
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IV. WRITING SIMPLE DEVICE DRIVER 

A. Writing the sample device driver 

The simplest device driver was given in the Linux source code as 

Tiny6410_hello_module.c.  This simple loadable device driver prints a message on the 

console.  The source listing is shown in Table 6. 

Table 6.  Source Code Listing for the Tiny6410_hello_module.c 

Line # Source code 

1 #include <Linux/kernel.h> 

2 #include <Linux/module.h> 

3 static int __init 

 Tiny6410_hello_module_init(void){ 

4 printk(" Kaushik CMPE244 Hello, Tiny6410 module is installed 

!\n"); 

5 return 0;} 

6 static void __exit 

 Tiny6410_hello_module_cleanup(void){ 

7 printk(" Kaushik CMPE 244 Good-bye, Tiny6410 module was 

removed!\n");} 

8 module_init(Tiny6410_hello_module_init); 

9 module_exit(Tiny6410_hello_module_cleanup); 

10 MODULE_LICENSE("GPL"); 

 

Lines 1–2 include the required header files Linux/kernel.h and Linux/module.h.  Lines 

3–5 define the initialization function for this module (Line 4 prints the message on the 

console).  Lines 6–7 define the exit process for the module.  Lines 8–9 register the 

module’s initialization and exit functions into the OS.  Line 10 defines the license type. 
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B. Adding module in the config menu 

To add this module into the menuconfig, the following section needs to be added in the 

Kconfig file at linux-2.6.38/drivers/char directory. 

config TINY6410_HELLO_MODULE 

tristate "CMPE 244 Tiny6410 module sample" 

depends on CPU_S3C6410 

help 

      CMPE244 Tiny6410 module sample. 

 

  

 

Fig. 39.  Menu Configuration Selection
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C. Compiling “hello world device driver.” 

The “hello world device driver” was selected as a loadable module using “make 

menuconfig” at the linux-2.6.38 directory.  Through a series of selection operations as 

following Fig. 39, the “hello world device driver” was selected as a loadable module.  

Once the configuration was saved, the modules were built using “make modules” at the 

linux-2.6.38 directory.  After the build process was done, the Tiny6410_hello_module.ko 

was generated at the drivers/char directory.  This Tiny6410_hello_module.ko was then 

copied into $SD_ROOT/Apps dir.  Then the driver was tested using the Tiny6410 SDK 

with the following commands: 

$> cd /sdcard/Apps 

$> insmod Tiny6410_hello_module.ko 

$> rmmod Tiny6410_hello_module.ko 

 

Fig. 40 shows the output on the “Tera Term” console on this example run. 

 

Fig. 40.  Testing Sample Loadable Device Driver 
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V. CONCLUSION 

With all the experiments done with the Tiny6410 SDK, it was concluded that the 

development environment was right, the board was functioning correctly, and a 

dynamically loadable device driver could be implemented.    
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APPENDIX B 

Setting Up UV Spectrometer SDK on ARM11 

I. INTRODUCTION 

The OceanOptics Corporation (http://www.oceanoptics.com) is the world’s first 

company to bring miniature spectrometer.  This company manufactures different types of 

spectrometers, of which the spectrometer with the USB interface is the most useful in a 

university laboratory environment.  The advantage of this type of USB-interfaced 

spectrometer is having a very easy interface for data collection.  In this experiment, Ocean 

Optics Red Tide USB650 Spectrometer [53] was used. 

 

Fig. 41.  RED TIDE USB650 Device 

 

 

However, OceanOptics provides only a Windows-based interface application to collect 

data.  This document explains the compilation and installation of SDK on an i386 and an 

ARM11-based platform running Linux operating system.  In the following sections, 

download and installation instructions, as well as the software directory structure, are 
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described.  All the instructions documented in this paper are based on the following 

operating system: Ubuntu SMP Thu Mar 8 17:34:21 UTC 2012 i686 i686 i386 

GNU/Linux.  A tcsh shell was used for command-line input. 

II. DOWNLOAD AND INSTALLATION 

A. Downloading the package 

OceanOptics usually does not provide the SDK source for any platform other than 

Windows.  The Computer Engineering Department of San Jose State University obtained 

special permission from OceanOptics to get the SDK source code and compile it on a 

platform other than Windows.  In the SDK source, there are two directories containing 

platform-specific source code as shown in Table 7.   

Table 7.  Spectrometer Source Code per Platform 

Directory Platform 

OEM/SeaBreezeOSX Apple Macintosh OSX operating system. 

OEM/SeaBreezeWinSource Microsoft Windows operating system. 

 

Because Apple Macintosh OSX is a variation of the UNIX operating system, the 

corresponding source code was selected for compilation on a Linux platform for both i386 

and ARM11 architecture.  The i386 architecture was included in this experiment to 

eliminate operating system porting-related issues for the SDK.  Additionally, it was 

assumed that the environment variable $SEA_BREEZE_DEV_ROOT contained the 

source code root for the SDK.  For the current experiment, the value of this environment 

variable was as follows: 
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$> echo $SEA_BREEZE_DEV_ROOT 

/import/thesis/Study/Thesis/COD-

ANN/SpectraSuite/SeaBreezeTiny6410/Linux_122011/OceanOptics/OceanOpticsF

TP/OEM/SeaBreezeOSX/seabreeze/ 

 

In addition, the libusb source code was downloaded from http://www.libusb.org 

because the ARM11-compatible libusb was not available in precompiled form.  The 

downloaded package was installed in a directory named $SEA_BREEZE_DEV_ROOT, 

because this compiled libusb was compiled along with rest of the SDK.  This experiment 

made libusb an integral part of OceanOptics SDK for USB spectrometer.  In this 

experiment, the package for the source code of libusb was unpacked into the libusb 

directory.   

$> ls $SEA_BREEZE_DEV_ROOT/libusb 

libusb-1.0.8.tar.bz2 

$> cd $SEA_BREEZE_DEV_ROOT/libusb 

$> bunzip2 libusb-1.0.8.tar.bz2 

$> ls 

libusb-1.0.8.tar 

$> tar –zvf libusb-1.0.8.tar 

$> ls 

libusb-1.0.8 libusb-1.0.8.tar 

 

B. Installation 

The top-level makefile was modified for the seabreeze SDK to implement a new set of 

targets.  Additionally a new script was created to compile libusb on an ARM11 platform.  

There was no corresponding script to build libusb on an i386 platform because i386 
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UBUNTU already comes with a libusb package integrated.  All the changes and additions 

are discussed in Section III. 

Table 8.  Top-Level Makefile Targets to Build/Test the Spectrometer Device Driver 

Target Action 

default           To build seabreeze lib on Linux i386 in lib/i386_Linux directory. 

test             To build the test program under the test/i386_Linux directory. 

clean            To clean the temporary files. 

clean_test        To clean the temporary files for testing. 

install_test  

 

To install the application along with the library in the test/install/i386_Linux 
directory.  The sub directory “app” contains the executable and “lib” contains 
the required libraries. 

run_test To run the test application. 

help To display the list of targets and macros. 

 

Table 8 shows the available make targets to build libraries and test applications.  Table 

9 shows the available macro to execute the targets for the specific architecture. 

Table 9.  List of Macros for Architecture to Build Spectrometer Device Driver 

Macro Values Notes 

TARGET i386  This is the default value for the macro and compiles the application 
and libraries for i386 architecture. 

arm11 With this macro value, the application and libraries are compiled for 
ARM11 architecture. 

 

To switch target architecture from i386 to ARM11 or vice versa, the “clean” target had 

to be run first.  The following is the example command sequence used to build a test app 

for ARM11. 

$> cd $SEA_BREEZE_DEV_ROOT 

$> make clean TARGET=arm11 
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$> make clean_test TARGET=arm11 

$> make TARGET=arm11 

$> make install_test TARGET=arm11 

 

The above set of commands was used to create the following directories under 

$SEA_BREEZE_DEV_ROOT/test dirs. 

Table 10.  Install Directory Structure for Spectrometer Device Driver 

Directory Notes 

install/arm11_Linux/app The test application executable is installed in this directory. 

install/arm11_Linux/lib All the required libraries are installed in this directory. 

 

These installation directories (as shown in Table 10) can be copied into an ARM11-

based platform and then the test application can be executed.  For the i386 target 

architecture, the installation directory contained the platform directory i386_Linux. 

 

III. CHANGES IN ORIGINAL PACKAGE 

Three new files were created in the original extracted package content inside the 

$SEA_BREEZE_DEV_ROOT directory.  Table 11 shows the files that were new or 

replaced with new revision. 

Table 11.  New/Changed Files to Build/Test Spectrometer Device Driver 

File Notes 

Makefile This is a replacement for the existing Makefile. 

test/Makefile This is a replacement for the existing Makefile. 

libusb/libusb-1.0.8/local-install-arm11 This is a new script for compiling libusb for 
ARM11 architecture. 
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The following subsections describe each of the above files and their content. 

A. The top-level makefile 

The top-level makefile contained the top-level target and macro definitions.   

export UNAME:=$(shell uname) 

export TARGET=i386 

export PLATFORM=$(TARGET)_$(UNAME) 

export SEABREEZE=$(SEABREEZE_DIR)/include 

export LIB_USB_DIR=$(SEABREEZE_DIR)/libusb/libusb-1.0.8 

export LIB_USB_PATH=$(SEABREEZE_DIR)/libusb/libusb-1.0.8/install/lib/ 

export LIB_USB_INC_PATH=$(SEABREEZE_DIR)/libusb/libusb-

1.0.8/install/include/libusb-1.0 

export SEABREEZE_LIB=$(SEABREEZE_DIR)/lib/$(PLATFORM) 

export TCSH = /usr/bin/tcsh 

export SEABREEZE_TEST=$(SEABREEZE_DIR)/test 

 

The above macros defined different directories, paths, and shells. 

export CC_PREFIX= 

ifeq ($(TARGET),arm11) 

export CC_PREFIX=arm-Linux- 

endif 

export CC=$(CC_PREFIX)gcc 

export CPP=$(CC_PREFIX)g++ 

 

The above makefile statements defined the target compiler.  Depending on the 

TARGET macro value, either gcc/g++ or arm-Linux-gcc/arm-Linux-g++ was used.   

export CFLAGS=-c -Wall -Wunused -Wmissing-include-dirs -ggdb3 -

I${SEABREEZE} -fpic -fno-stack-protector  

ifeq ($(TARGET),arm11) 

CFLAGS += -I$(LIB_USB_INC_PATH) 

endif 
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LFLAGS=-shared -Wl,--export-dynamic –nostdlib 

ifeq ($(TARGET),arm11) 

LIBS=-L$(LIB_USB_PATH) -Wl,-rpath=$(LIB_USB_PATH) –lusb 

else 

LIBS=-L/usr/lib -lusb 

endif 

export SUFFIX=so 

 

The above makefile statements defined the compilation flag CFLAG, linker flag 

LFLAGS, and linker argument LIBS.  For the i386 architecture, linker linked to the 

default libusb in the Linux system.  For ARM11, linker linked to the compiled libusb.   

all: libseabreeze.${SUFFIX} 

ifeq ($(TARGET),arm11) 

libseabreeze.${SUFFIX}: libusb-arm11 

else 

libseabreeze.${SUFFIX}: 

endif 

 mkdir -p $(SEABREEZE_LIB) 

 +make -C src && (echo; echo Build was successful.; echo) 

 $(CPP) $(LFLAGS) -o $(SEABREEZE_LIB)/libseabreeze.$(SUFFIX) 

$(SEABREEZE_LIB)/*.o $(LIBS) 

.PHONY:libusb-arm11 

libusb-arm11:  

 $(TCSH) -c "cd $(LIB_USB_DIR) && pwd && ./local-install-arm11" 

 

The above makefile statements constructed the default target to build the seabreeze 

library.  If the target architecture was ARM11, the libusb was also compiled. 

B. The test makefile 

The test/makefile contained a test target and macro definitions for the test program.  In 

this experiment, the default test program was seabreeze_test.   
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OBJS = $(PLATFORM)/seabreeze_test.o \                        

       $(PLATFORM)/spectral_correction.o 

LINKER_REC_PATH = -Wl,-rpath=$(SEABREEZE_LIB) \ 

                  -Wl,-rpath=\$$ORIGIN/../lib/ 

APP_PATH = $(shell pwd)/install/$(PLATFORM)/app 

LIB_PATH = $(shell pwd)/install/$(PLATFORM)/lib 

 

The previous makefile statements defined the application and related library installation 

paths, a list of objects for the target application, and the definition for the linker record 

path.  The linker record path recorded a relative path from the installation of the 

application as $ORIGIN/../lib, which told the loader to search for the shared library in the 

path ../lib.  This path was relative to the installation directory for the target application. 

all: $(PLATFORM)/seabreeze_test 

$(PLATFORM)/seabreeze_test : $(OBJS) 

 ${CC} $^ -o $@ -L$(SEABREEZE_LIB) $(LINKER_REC_PATH) -lseabreeze -

lusb -lstdc++  

 

$(OBJS): $(PLATFORM)/%.o : %.c $(PLATFORM) 

 ${CC} ${CFLAGS} -o $@ $< 

$(PLATFORM): 

 mkdir -p $(PLATFORM) 

 

The previous makefile statements defined the default rule for building the test 

application.  This created a platform directory and built all the objects and executable 

under that platform directory. 

install: make_dir cp_seabreeze cp_usb cp_app  

 @echo "Installation done." 

make_dir: 

 /bin/mkdir -p $(APP_PATH) 
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 /bin/mkdir -p $(LIB_PATH) 

cp_seabreeze: 

 /bin/cp $(SEABREEZE_LIB)/*.so  $(LIB_PATH) 

ifeq ($(TARGET),arm11) 

cp_usb: 

/bin/tcsh -f -c "cd $(LIB_USB_PATH) && tar -cvf $(LIB_PATH)/libusb.tar 

*" 

/bin/tcsh -f -c "cd $(LIB_PATH) && tar -xvf libusb.tar && /bin/rm 

libusb.tar" 

else 

cp_usb: 

   @echo "Nothing to do for libusb installation for $(TARGET)" 

endif 

cp_app: $(PLATFORM)/seabreeze_test 

    /bin/cp $(PLATFORM)/seabreeze_test $(APP_PATH) 

 

The previous makefile statements defined the installation target actions.  It created 

installation directory structures and copied the required binaries into the structure.  For the 

ARM11 architecture, libusb libraries were also copied along with the seabreeze library.   

C. Compilation script for libusb 

A new shell script was added into the $SEA_BREEZE_DEV_ROOT/libusb/libusb-

1.0.8 directory to compile and install libusb into the ARM11 architecture. 

#!/usr/bin/tcsh -f 

/bin/rm -rf install 

/bin/mkdir -p install 

./configure --host=arm-Linux --prefix=`pwd`/install 

make clean 

make 

make install 
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The above script removed and created a new directory named “install.”  The next step 

was to configure the build for ARM11 using “--host=arm-Linux-” and local installation 

with the --prefix=`pwd`/ install option.  After the configuration was done, it cleaned, built, 

and installed libusb.  This script made targets that were defined in the Makefile shipped 

with the original source. 

 

 

Fig. 42.  HyperTerminal for Test App Run 
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IV. TESTING SPECTROSCOPY APPLICATION 

In this testing, the ARM11-compiled test application was invoked in the Tiny6410 

system without the actual spectrometer attached.  This was to ensure that compilation and 

installation were all right for the ARM11 architecture.  Fig. 42 is a screen shot of such a 

testing. 

 

V. CONCLUSION 

With all the experiments done with the spectrometer, it could be concluded that the 

spectrometer integration with Tiny6410-embedded platform was ready to be used. 
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APPENDIX C 

NFS/SSH Server Setup Using ARM11 Board as Client 

I. INTRODUCTION 

The Tiny6410, as shown in Fig. 43, is a development board from FriendlyARM 51 

using the SMDK6410 platform from Samsung (http://www.samsung.com/us).  The 

processor on this board is an ARM11 implementation from Samsung Inc. 

 

Fig. 43.  Tinys6410 SDK 

 

This paper discusses how to set up a network system using Tiny6410 as the client and 

one server for NFS and the other server for the application server.  The first section 

describes the overall system to be implemented.  The second section describes how to set 
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up the server side of the system.  The third section discusses the client side changes for 

Tiny6410 to set up the board as NFS and the application server client. 

II. OVERALL SYSTEM DESIGN 

A. The Physical System 

The overall proposed system contained one file server hosting NFS service, one 

application server, one router, and the Tiny6410 board.  Fig. 44 depicts the physical 

connection between the components. 

 

 

Fig. 44.  NFS/SSH-Based System Design 

 

A file server, an application server, and an arm board were physically connected to the 

router.  This way, all the components could communicate with each other. 
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B. The system concept 

At the conception level, three components—the file server, application server, and 

Tiny6410—can communicate with each other for storage sharing and the remote 

application execution.  Fig. 45 depicts this concept. 

 

Fig. 45.  Overall System Concept 

 

The NFS server hosted the NFS using its location disk.  This storage could be accessed 

by the application server and the Tiny6410 board to read and write files.  The application 

server was configured to handle remote requests to run specific applications using an SSH 

tunnel.  This way the application server was protected from any unauthorized access from 

within the network.  The Tiny6410 board was configured with clients for mounting the 

NFS and executing remote applications using the SSH tunnel.  This allowed the Tiny6410 

board to be attached to a network and to access all the services offered by the servers in 

the network. 
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III. SERVER SIDE CONFIGURATION 

Both the servers described here ran the UBUNTU Linux operating system as the 

following version. 

$> uname -a 

Linux boson-srvr-01 3.0.0-17-generic #30-Ubuntu SMP Thu Mar 8 17:34:21 

UTC 2012 i686 i686 i386 GNU/Linux 

 

This experiment used an NFS server named boson-srvr-01 and an application server 

named boson-srvr-02.  The LAN was set up with a dynamic allocation of address (DHCP) 

for the servers. 

A. Configuring the application server 

The application server was configured to accept any remote execution request of the 

application though an SSH tunnel.  The configuration steps were taken from the 

UBUNTU document regarding the OpenSSH server [67].   

The first step was to install the OpenSSH server and the client for completeness of the 

installation. 

$> sudo apt-get install openssh-client 

$> sudo apt-get install openssh-server 

 

Once the server package was installed, there was need to modify/add the following into 

the /etc/ssh/sshd_config file: 
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$> sudo vi /etc/ssh/sshd_config 

$> sudo cat /etc/ssh/sshd_config | grep Pubkey 

PubkeyAuthentication yes 

$> sudo cat /etc/ssh_sshd_config | grep RSAAuth 

RSAAuthentication yes 

 

The SSH server was required to be restarted after modifying the configuration file.  

However, this step was not required for every rebooting of the system because the 

configuration was loaded upfront during the system boot time. 

$> sudo /etc/init.d/ssh restart 

 

B. Configuring the NFS Server 

The NFS server was configured to share a specific directory on the server local disk 

over a LAN.  This specific directory then could be accessed from NFS clients within the 

same LAN.  The steps to set up the NFS server were taken from UBUNTU documents 

titled SettingUpNFSHowTo [68].   

The first step was to obtain and install the NFS server components: 

$> sudo apt-get install rpcbind nfs-kernel-server 

 

The next step was to make a sharing directory and make it accessible to anyone.  

However, instead of making this shared directory accessible to everyone, steps were taken 

to make the sharing more secure, but this was not within the scope of this experiment.  For 

the purposes of this experiment, access permission for everyone was acceptable. 
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$> sudo mkdir –p /export/cod_ann_fs 

$> sudo chmod –R 777 /export 

 

Once the shared directory was created, the next step was to add an NFS sharing 

definition to the /etc/exports file.  The content looks like the following: 

$> sudo cat /etc/exports 

.  .  . 

/export   

 192.168.1.0/255.255.255.0(rw,sync,no_subtree_check) 

/export/cod_ann_fs 

 192.168.1.0/255.255.255.0(rw,sync,no_subtree_check) 

.  .  . 

 

The above two entries enabled the NFS server to share the directory “/export” and 

“/export/cod_ann_fs” with any machine having an address starting with 192.168.1.  For 

example, with this configuration, a machine having 192.168.1.149 can access (both read 

and write) the NFS shared directory.  Once the configuration was in place, sharing was 

enabled with the following command. 

$> sudo exportfs -ra 

 

To test this sharing for the first time, the following services were restarted.  However, 

this was not necessary once the server machine was rebooted. 

$> sudo /etc/init.d/portmap restart 

$> sudo /etc/init.d/nfs-kernel-server restart 
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IV. CLIENT SIDE CONFIGURATION 

A. Mounting NFS Partition 

The first step was to create a client directory that could be mounted as the report NFS 

directory.  Usually the same name as the NFS directory is given.  The directory permission 

was open for all to read, write, and execute.  However, more strict access to the mounted 

directory may be set up.   

$> sudo mkdir –p /export/cod_ann_fs 

$> sudo chmod –R 777 /export 

 

Once the mount partition was identified, there were two ways to perform the NFS 

mounting.  One way was to use explicit options in the command line.  The other way was 

to use /etc/fstab file to put the mount point definitions and mount the NFS with a simpler 

command line. 

The following was the command line with an explicit NFS mount point definition.   

$> mount -orw,nolock,intr \ 

         -t nfs \ 

         boson-srvr-01:/export/cod_ann_fs \ 

         /export/cod_ann_fs 

$> cd /export/cod_ann_fs/ 

$> ls 

authorized_key dropbear-pkg notes z 

 



 

 

109 

 

The alternate way to mount NFS was to use a definition entry in the /etc/fstab file.  The 

following was the entry into the file for the same mount point definition, as in the earlier 

example. 

 

 

$> cat /etc/fstab  

# Mount the export dir 

boson-srvr-01:/export/cod_ann_fs /export/cod_ann_fs nfs 

rw,nolock,intr 0 0 

 

The following was the command to mount the NFS with a simpler command. 

$> mount boson-srvr-01:/export/cod_ann_fs 

$> cd /export/cod_ann_fs/ 

$> ls 

authorized_key dropbear-pkg notes z 

 

After mounting the NFS, all the standard file system operations could be done on this 

directory.  The following is an example of such operations on the NFS-mounted directory. 

$> cd /export/cod_ann_fs/ 

$> pwd 

/export/cod_ann_fs 

$> du -k . 

Filesystem           1K-blocks      Used Available Use% Mounted on 

boson-srvr-01:/export/cod_ann_fs 

                       7034240   1847712   4833664  28% 

/export/cod_ann_fs 

$> cat z 
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HELLO WORLD!!! 

boson-lnx-01 

Friendly ARM 

 

B. Installing, configuring, and using the SSH client 

The Tiny6410 development board ran a variation of the Linux system as follows: 

$> uname -a 

Linux FriendlyARM 2.6.38-FriendlyARM #16 PREEMPT Sun May 27 12:41:24 

PDT 2012 armv6l GNU/Linux 

 

This Linux installation contained Busybox [70], which is an umbrella application 

containing most of the commonly used Linux commands.  However, it does not contain 

advanced utilities like an SSH server/client, PERL scripting language, and so on.  The 

Busybox page [70] contains a pointer to an alternate application Dropbear [69], which is 

equivalent to the SSH server/client yet small enough for ARM11 development board 

usage. 

The standard Dropbear tool contained five utilities as shown in Table 12. 

Table 12.  Dropbear Utility Names and Usage 

Utility name Purpose 

dropbear The SSH server program to allow Tiny6410 to accept remote 
execution requests through SSH.   

dbclient The SSH client program to allow Tiny6410 to send remote 
execution requests to a remote host through SSH. 
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Utility name Purpose 

dropbearkey To generate a private-public key pair for auto authentication. 

dropbearconvert To convert the dropbear public key to a standard SSH public key. 

scp A secure copy application program for Tiny6410. 

 

Before the actual installation, an installation directory was created in the NFS partition 

so the application could be cross compiled on a host machine and shared with the 

Tiny6410 board through the NFS partition.  The following NFS directory was created on 

the host machine where the dropbear applications were cross compiled. 

$> mkdir -p /export/cod_ann_fs/arm-Linux/bin 

 

The following steps were used to extract the dropbear application source from the 

downloaded tar file dropbear-2012.55.tar.gz and configure the package for a cross 

compilation.  It was assumed that all the cross compilation tools were available in the 

default path with a prefix of “arm-Linux-” (e.g., arm-linux-gcc). 

$> tar -zxvf dropbear-2012.55.tar.gz 

$> cd dropbear-2012.55 

$> ./configure --host=arm-Linux 

 

 The next step was to clean and rebuild the dropbear application with cross 

compilation.  In this example, all the dropbear utilities were statically linked to eliminate 

any library dependency at run time on the Tiny6410 execution environment. 
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$> make clean 

$> make  PROGRAMS="dropbear dbclient dropbearkey dropbearconvert scp" 

STATIC=1 

 

Once the utilities were built, they required stripping to obtain a smaller execution 

footprint.  This was needed to run dropbear utilities in a memory-restrictive environment 

such as Tiny6410.  The following steps were used to strip and install the utilities into the 

installation location. 

$> make strip 

$> foreach exefile ( dropbear dbclient dropbearkey dropbearconvert 

scp ) 

foreach? cp $exefile /export/cod_ann_fs/arm-Linux/bin 

foreach? end 

 

At this point, all the installed utilities could be verified as stripped and statically linked 

as follows: 

$> file /export/cod_ann_fs/arm-Linux/bin/* 

/export/cod_ann_fs/arm-Linux/bin/dbclient:        ELF 32-bit LSB 

executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 

2.6.27, stripped 

/export/cod_ann_fs/arm-Linux/bin/dropbear:        ELF 32-bit LSB 

executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 

2.6.27, stripped 

/export/cod_ann_fs/arm-Linux/bin/dropbearconvert: ELF 32-bit LSB 

executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 

2.6.27, stripped 

/export/cod_ann_fs/arm-Linux/bin/dropbearkey:     ELF 32-bit LSB 

executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 

2.6.27, stripped 

/export/cod_ann_fs/arm-Linux/bin/scp:             ELF 32-bit LSB 

executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 
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2.6.27, not stripped 

 

Once installed, dropbear could be used on the Tiny6410 execution environment.  The 

following steps were used to configure Tiny6410 for auto authentication of any SSH-

based remote execution.  Using these steps, a private-public key pair was generated on the 

Tiny6410, and the public key was copied to the remote server so that any remote 

execution from Tiny6410 would be honored without asking for a password.  These steps 

were taken based on an article published on the Internet [71].  In this example, the NFS 

directory was used to move the public key to the remote server.  However, there are more 

secure ways to accomplish the same task.  The client side command was as follows: 

[FriendlyARM]# dropbearkey -t rsa -f ~/.ssh/id_rsa 

[FriendlyARM]# dropbearkey -y -f ~/.ssh/id_rsa | grep "^ssh-rsa" >> 

/export/cod_ann_fs/authorized_key 

 

 The server-side command was as follows: 

boson-srvr-02> cat /export/cod_ann_fs/authorized_key >> 

~/.ssh/authorized_keys 

 

Once done, a remote execution request was generated from Tiny6410 as follows:   

[FriendlyARM]# dbclient -i ~/.ssh/id_rsa -l kpatra boson-srvr-02 cat 

/export/cod_ann_fs/z 

HELLO WORLD !!! 

boson-lnx-01 

Friendly ARM 
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The command dbclinet was equivalent to the SSH command.  The option “-i 

~/.ssh/id_rsa” was used to pass the private key file, unlike the SSH application, which 

found the private key from the ~/.ssh directory.  The option “-l kpatra” requested the 

server to execute the following command as the user kpatra.  The server was required to 

have the corresponding user account.   

 

V. CONCLUSION 

With the completion of this experiment, two objectives were accomplished.  The first 

was the setup of a Tiny6410-accessible NFS directory.  The second was the setup of an 

SSH-based remote execution from Tiny6410.  These two features opened up many 

possibilities including running complex programs on Tiny6410 through remote execution 

and storing /sharing large amounts of data without consuming any storage resource 

onboard. 

 

  



 

 

115 

 

APPENDIX D 

Introduction to the FANN Software Library Package 

I. INTRODUCTION 

The study of artificial neural networks (ANNs) and their engineering applications has 

been going on for decades.  McCullouch and Pitts [46] proposed the first mathematical 

model for a neural network in 1943.  Later, Rosenblatt [47] developed a perception model 

to implement a pattern-recognition algorithm based on a two-layer learning computer 

network.  However, neural network research was halted from 1969 for almost 6 years 

when Minsky and Papert [48] pointed to two key issues in neural network computation 

machines.  The first issue was the inability of a single perception network model to 

process XOR logic.  The second issue was the lack of a powerful-enough computer to 

process a large neural network.  In 1975, Kunihiko Fukushima [49] designed cognition, 

which was a precursor to a trainable multilayered neural network.  Later, rediscovery of a 

back propagation algorithm for neural network training popularized neural network 

research and application in engineering problem solving [18].   

Many software applications have been developed to implement neural networks.  The 

Fast Artificial Neural Network (FANN) is an open-source software library [60] that 

implements generalized feed forward ANNs.  This library application can implement 

neural networks of any desired size by selecting an application-specific number of inputs, 

outputs, hidden layers, and hidden neurons per layer.  Several other parameters can be 

adjusted per the application’s needs.   
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In the following sections, download and installation instruction, API usage, and 

software directory structure are described.  All the instructions documented in this paper 

are based on the Ubuntu SMP Thu Mar 8 17:34:21 UTC 2012 i686 i686 i386 GNU/Linux 

operating system.  The command examples are based on tcsh as the shell for command-

line input. 

II. DOWNLOAD AND INSTALLATION 

A. Downloading the package 

The latest package can be downloaded from the following link: 

http://sourceforge.net/projects/fann/files/fann/2.2.0/FANN-2.2.0-Source.zip/download 

This downloads the file FANN-2.2.0-Source.zip.  The UNIX command “unzip” is used 

to unzip this file. 

$> unzip FANN-2.2.0-Source.zip 

 

A new directory FANN-2.2.0-Source is created after unzipping the file.   

B. Installation 

As a pre-requisite, the system must have cmake, make, gcc, and g++. 

$> which cmake make g++ gcc 

/usr/bin/cmake 

/usr/bin/make 

/usr/bin/g++ 

/usr/bin/gcc 
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Installation can be done at the system’s /usr/local/lib dir, which needs super user 

privileges (by running the installation command via sudo command in UBUNTU Linux).  

This is the default mode of installation.  There is also another scope to install it in a user-

defined library directory.  The following shows the installation steps using the default 

location. 

$> cd FANN-2.2.0-Source 

$> sudo make install 

 

This install step creates the artifacts in the system in the following two directories. 

 /usr/local/lib The entire shared library files go here. 

 /usr/local/include: The entire header files go here. 

 

There are four files (which are soft links) inside the /usr/local/lib directory, which are 
important to know. 

 

1. libfann.so   Same as libfloatfann.so 

2. libfloatfann.so FANN library with floating point. 

3. libdoublefann.so FANN library with double precision floating point. 

4. libfixedfann.so   FANN library with fixed point. 

 

To test the installation, the following steps must be performed successfully:   

 

$> setenv LD_LIBRARY_PATH /usr/local/lib 
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$> cd ./examples 

$> make runtest 

 

To install FANN in an alternate location, the following cmake command must be used 

instead of the standard cmake command mentioned earlier. 

cmake -D CMAKE_INSTALL_PREFIX:PATH=/home/abc/lib. 

 

III. FANN API USAGE 

The FANN library provides two modes of operation: 

1. Training mode: In this mode, the application creates, trains, and stores the neural 

network. 

2. Operation mode: In this mode, the application loads a pretrained neural network 

used to compute output. 

In general, for a target application there should be two different programs implemented.  

The first one is the training program.  The purpose of the training program is to create and 

train the ANN with an existing input and desired output.  Once trained, meaning the 

connection weights are adjusted to produce the desired result for a set of inputs, the ANN 

is stored in a file to be used in the real application program. 

The second type is the target application program.  This program typically loads an 

already stored trained neural network and uses it to compute the result of given inputs for 

the application.  Fig. 46 shows the overall steps for the two modes.  The application 

program has to have the fann.h header file to include the prototype definition of any 
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FANN API needed.  In addition, it needs to link to the shared library of FANN to access 

the APIs at run time. 

 

 

Fig. 46.  FANN Usage Steps. 

 

A. Training mode APIs 

Table 13 shows the four available APIs needed to perform the steps in training mode. 

Table 13. API List of ANN Training 

API Description 

fann_create Creates and returns the pointer to struct fann.  The parameters to be 
passed into this API are connection rate (1.0 for fully connected 
network), learning rate, number of layers, and number of neurons per 
layer starting with the input layer and ending with the output layer. 

fann_train_on_file Trains a given network with a given training data file.  The 
parameters to be passed are the network, train file, max number of 
epochs, number of epochs to produce a status, desired mean square 
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API Description 

error.  The training steps at max epoch or mean square error are lower 
than the desired value, which ever happens first. 

fann_save Saves the network in a text file.  The parameters passed are the 
network and file name to the text file where the network is to be 
stored. 

fann_destroy Cleans the memory allocation during the previous steps.  This should 
happen just before quitting the application. 

 

The following are examples and explanations of sample usage of each of the above 

APIs. 

1. struct fann *ann = fan_create(1.0, 0.7, 3, 2, 2, 1); 

 

The previous function call will create an ANN with full connection (first argument), 

learning rate 0.7 (second argument), 3 layers (third argument), 2 neurons in input layers 

(fourth argument), 2 hidden neurons in one hidden layer (fifth argument), and one neuron 

at output layer (sixth argument). 

2. fann_train_on_file(ann, “xor.data”, 500000, 1000, 0.0001); 

 

The previous function call will train ANN with the data from the xor.data file with 

maximum epoch (during one epoch, each of the training pairs are trained for one iteration) 

of 50,000 (third argument), reporting training status between epochs as 1,000 (fourth 

argument) and with a desired mean square error as 0.0001 (fifth argument).  With this 

specific example, the training will stop when either the number of epochs is greater than 

50,000 or the desired mean square error is below 0.0001, whichever happens first. 

3. fann_save(ann, “xor_float.net”); 
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The previous function saves the trained ANN as xor_flaot.net inside a text file. 

4. fann_destroy(ann); 

 

The previous function destroys all the memory allocated by the ANN structure.  This is 

usually the last call before returning from the main routine of the application. 

B. Operation mode APIs 

The Table 14 lists the three APIs needed to perform the steps in training mode. 

Table 14.  FANN API List of ANN Operation 

API Description 

fann_create_from_file Creates and returns pointer to struct fann, reading the network 
definition from file.  The parameter to be passed into this API is 
the ANN definition file name. 

fann_run Computes and returns the output for a given input. 

fann_destroy Cleans the memory allocation during the previous steps.  This 
should happen just before quitting the application. 

 

An example of the two new APIs is discussed in this subsection.  Usage example for 

fann_destroy was shown in the previous subsection. 

1. struct fann *ann = fann_create_from_file(“xor.net”); 

 

The previous function call creates a FANN structure by reading the network definition 

from the xor.net files.  The format of the definition is not important in this context.  The 
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recommendation is to create such a definition only by using the fann_save API during the 

training mode operation of the application. 

 

2. fann_type input[2]; 

3. input[0] = 1; 

4. input[1] = -1; 

5. fann_type *calc_out = fann_run(ann, input); 

 

The previous piece of code computes the result and returns it as an array into calc_out 

(which is at least an array containing one element).  The arguments are ANN and the input 

values for the computation. 

 

C. Advance Usage of API 

The FANN library supports adjustment of the following ANN parameters. 

1. Activation method for both hidden and output neuron layers. 

2. Steepness parameter used in the sigmoid family activation function. 

3. Learning rate of the neural network. 

4. Initial weight of the connection.  By default, it is set randomly between –1.0 

and 1.0. 

During the network-training phase, it is sometimes necessary to adjust these advanced 

parameters to fine-tune the outcome of the network.  Table 15 shows the APIs to adjust 

such advance parameters. 
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Table 15.  FANN API List of ANN Operations 

API Description 

fann_set_learning_rate Sets the learning rate of an ANN.  The arguments 
are the network and the learning rate. 

fann_set_learning_rate(ann,0.55) 

fann_randomize_weight Sets the user-defined random weight boundary for 
the connections.  The arguments are the network, 
lower boundary, and upper boundary. 

fann_randomize_weight(ann,-0.6,0.8) 

fann_set_activation_function_hidden Sets the activation function for the hidden layers.  
The arguments are the network and the function 
type. 

fann_set_activation_function_hidden 
(ann,FANN_SIGMOID_STEPWISE) 

fann_set_activation_function_output Sets the activation function for the output layers.  
The arguments are the network and the function 
type. 

fann_set_activation_function_output(ann, 
FANN_SIGMOID_SYMMETRIC) 

fann_set_activation_hidden_steepness Sets the activation steepness for the sigmoid family 
activation functions for the hidden layer. 

fann_set_activation_hidden_steepness(ann,0.5) 

fann_set_activation_output_steepness Sets the activation steepness for the sigmoid family 
activation functions for the output layer. 

fann_set_activation_output_steepness(ann,0.8) 

 

The following are the different activation functions supported by the FANN 2.2.0 

library package. 

FANN_LINEAR 

FANN_THRESHOLD 

FANN_THRESHOLD_SYMMETRIC 

FANN_GAUSSIAN_STEPWISE, 

FANN_ELLIOT 

FANN_ELLIOT_SYMMETRIC 
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FANN_SIGMOID 

FANN_SIGMOID_STEPWISE 

FANN_SIGMOID_SYMMETRIC 

FANN_SIGMOID_SYMMETRIC_STEPWISE 

FANN_GAUSSIAN 

FANN_GAUSSIAN_SYMMETRIC 

FANN_LINEAR_PIECE 

FANN_LINEAR_PIECE_SYMMETRIC 

FANN_SIN_SYMMETRIC 

FANN_COS_SYMMETRIC 

FANN_SIN 

FANN_COS 

 

D. FANN Train File Format  

Because the training files are to be created by the application users, it is important to 

describe the training file format in the context of FANN API usage.  The FANN training 

file has a very simple format but is not very flexible (there is no support for the comment 

or blank lines).  The first line has three numbers that are space- or tab-separated (a data set 

composed of the input pattern and output pattern), the number of inputs, and the number 

of outputs.  From the next line onward, each of the two lines composes one data set.  In a 

data set, the first line has the space- or tab-separated input values and the second line has 

the space- or tab-separated output values.  Table 16 shows an example of the training set 

for XOR training.   

Table 16.  Training Set for XOR Training 

Content Explanation Section 

4 2 1 4 data set with 2 inputs 
and 1 output 

Definition line 

1 –1 Input 1 and –1 Data Set 1 

–1 Output –1 

–1 1 Input –1 and 1  Data Set 2 

1 Output 1 

1 –1 Input 1 and –1 Data Set 3 

1 Output 1 
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Content Explanation Section 

1 1 Input 1 and 1 Data Set 4 

–1 Output –1 

 

IV. FANN PACKAGE DIRECTORY STRUCTURE 

It is very important to know the directory structure of the unzipped package in order to 

change or experiment with the source code and examples.  Table 17 shows the 

subdirectory and its content upon extracting the zip file.   

Table 17.  FANN 2.2.0 Directory Structure 

Dir name / file name Purpose 

bin Directory storing precompiled libraries and executable. 

CMakeLists.txt   Configuration file for cmake. 

COPYING.txt   Copyright statement file. 

examples  Directory-storing example application programs using FANN 
library. 

src Directory storing source code and header files (inside the 
subdirectory named include) for FANN library. 

cmake    Directory-storing files required for cmake. 

VS2010 Directory-storing Visual Studio 2010 project definitions. 

datasets      Directory-storing training and testing file for the examples. 

README.txt The README file. 

 

 

V. CONCLUSION 

With all the experiments done with the FANN library, it can be concluded that the FANN 

library can be successfully used to create and use an ANN. 
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APPENDIX E 

Extending FANN Library for Compact C-model Generation 

I. INTRODUCTION 

The fast artificial neural network (FANN) library [60] provides the functionality to 

create, train, store, and reload a neural network for application-implementing solutions 

using a neural network technique.  It stores the network definition in a text file.  Using the 

provided API, the trained network can be reloaded for the purposes of application usage.  

However, reusing the neural network through the native API is costly in the sense that the 

application needs to 

1. Load all the APIs in FANN unnecessarily; most of them are not needed. 

2. Create a lot of pointer-based structures to represent a neural network, which is 

not necessary while using the neural network for computation purposes. 

Often in the case of embedded applications, it is good to keep the memory footprint to 

a minimum and within a predictable, executable size.  This document describes an 

extension to the FANN 2.2.0 library to generate a compact C-model, which can be 

integrated into the application at the source-code level.  This compact C-model does not 

need any of the APIs from the original library and it represents the neural network purely 

with static arrays.  Hence, the application memory footprint is completely predictable.  It 

is the size of the target-compiled application (the assumption is that a target application 

only uses static arrays).   
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II. BASIC ARCHITECTURE  FOR THE ANN C-MODEL 

A. General ANN architecture 

Fig. 47 depicts a neural network model with two inputs, one output, and one hidden 

layer containing two neurons.  An ANN contains at least one input layer and one output 

layer.  It may contain one or more hidden layers.  Each layer contains multiple neurons 

and one bias neuron (marked as b in the diagram).  Each neuron presents a numerical 

value for the next layer. 

 

Fig. 47.  Basic ANN Architecture 

 

For a fully connected network, each neuron in a noninput layer is connected to all the 

neurons in the previous layer with different weights.  The input to a neuron from its 

predecessor neuron is the product of the value from its predecessor neuron and the 

connection weight w.  The neurons in the input layer and bias neurons usually do not 

contain any activation function or linear function.  The bias neuron’s value is usually set to 

a singular value of 1. 
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B. The equivalent C-model architecture 

The fundamental motivation to design a C-model for ANN is to represent the target 

ANN structure with static arrays.  Using that approach, ANN size can be very compact 

and predictable, which is a suitable model for embedded application usage.  From the 

general ANN architecture, it can be concluded that there are three distinct components to 

be represented in a corresponding ANN C-model: the neuron, perception layers, and 

neuron connections. 

Because the goal is to represent an already trained ANN, all the parameters (the 

activation function, the connection weight, and so on) are known in advance.  Hence, it is 

possible to represent the entire ANN using a group of static arrays.  All three distinct 

components, as described earlier, can be represented with three static arrays.  Fig. 48 

depicts the basic architectural concept for the ANN C-model, where the dotted connection 

shows the conceptual relations between different arrays. 

In this architecture, all the neurons are placed in one array and are sorted according to 

their layer position (i.e., neurons in the first layer go first, neurons in the second layer go 

next, and so on).  In addition, the bias neuron for a layer has the highest index in the 

neuron array compared to other neurons in the same layer.  A neuron is a collection of 

values and activation functions in the C-model.  In the example of Fig. 48, there are nine 

neurons (including the bias neurons).  In Fig. 48, all the nine neurons are placed in an 

array of size nine. 
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Fig. 48.  Top level ANN C-model Architecture 

 

All the layer definitions are placed in another array.  The layer definition contains the 

start neuron index and the end neuron index.  The end neuron index always points to a 

bias neuron in this proposed ANN C-model architecture.  In the example, three layers are 

represented in the array of layers, as shown in Fig. 48. 

All the connections are placed in another array where a connection definition contains 

the index of the source neuron and the connection weight.  All the connections are 

arranged inside the connection array in such a way that the connection sequence 

corresponds to the neuron sequence as the destination neuron in the connection.  The 

destination neuron sequence starts from the second layer, skipping all the bias neurons.  

The number of connections from a neuron can be determined from the layer information 

of the immediately preceding layer.  In Fig. 48, there are nine connections, which are 

represented in the connection array in Fig. 48.  According to this architecture, Neuron N4 
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is connected to N1, N2, and N3 neurons with connection weight w1, w2, and w3 

respectively.  Inherently, this architecture assumes the full connection rate.  However, it is 

also possible to implement partial connections using a connection weight of 0.  Inherently 

this architecture assumes the full connection rate.  However, it is also possible to 

implement partial connections using a connection weight of 0.   

III. THE COMPLETE C-MODEL ECHO SYSTEM 

The C-model, described in Section II, is accompanied using a different set of APIs, 

which together compose the complete ANN C-model echo system.  The API system is 

classified into three module categories: core APIs, IO APIs, and statistics APIs.  Each of 

these categories can be complied and linked as needed by the target application.  The core 

API is independent and can be linked with an application without any other APIs.  On the 

other hand, both the IO API and statistic API need the application to have the core API 

linked as well.  However, the IO and statistic API are independent of each other. 

The core API contains the ANN C-model, as described in Section II, and the API to 

compute the result using ANN C-model.  The target application can pass the input to 

compute the API and get the output back from the module.  The output is computed using 

the ANN C-model.  Additionally, this module has other query APIs to get the number of 

inputs, outputs, layers, and other information about the ANN. 

The utility API module contains an API to read the ANN training data file [2] and 

provide input and expected output to the target application.  This API module can be used 

to test ANN with an existing data set to validate the result. 
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The statistic API module contains an API to collect all the outputs and maintain an 

error database.  The application can return error statistics (mean relative error and standard 

deviation of means relative error) and relative error distribution data.  The relative error is 

defined in terms of the percentage of expected output.  The relative error (“err”) is defined 

by Equation 14, where O is the output and E is the expected output. 

      
(   )

 
     Equation 14 

If the expected output is 0, both the current output and expected output are added with a 

unity value so that Equation 1 does not run into an invalid condition. 

 

 

 

Fig. 49.  ANN C-model Echo System 

 

Fig. 49 depicts the complete C-model echo system.  The circles represent different 

modules of the system.  The arrows represent the I/O of the module.  The ANN C-model, 
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as described in section II, is associated with the ANN compute API module.  In section V, 

the details of the data structure and APIs are discussed. 

IV. FANN-2.2.0 EXTENSION 

To translate the FANN 2.2.0 internal model into C-model, the following new API has 

been created, as shown in Table 18.   

Table 18. API for ANN C-model Generation 

API Description 

fann_save_C Saves the FANN internal ANN model to a C-model, which can 
be compiled with any general C compiler, such as gcc.  The 
argument for this API is struct fann *.  

e.g.  fann_save_C(ann) 

 

A new source file (fann_io_embedded.c) and a new header file (fann_io_embedded.h) 

are created under the FANN-2.2.0 source distribution.  In this experiment, instead of a 

make-based system, Netbeans was used to define the FANN extension project and was 

compiled using Netbeans GUI.  However, because the FANN-2.2.0 source distribution is 

very simple, it is possible also to extend the existing make/cmake system to include this 

newly introduced piece of code. 

There is another piece of new code: fann_utils.c (and corresponding fann_utils.h) was 

added to FANN-2.2.0 to implement some common statistic APIs used in both the FANN 

library and ANN C-model APIs.  Details of the APIs are discussed in section V.  The only 

relevant information is that to compile this file as a part of the FANN library, the compiler 

macro FANN_LIB must be defined (in gcc it is passed using DFANN_LIB). 
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$> gcc –c fann_utils.c -DFANN_LIB –o fann_utils.o 

 

The fann_save_C API creates the following list files in the current run dir as shown in 

Table 19.   

Table 19. Files Generated with FANN C-model Generation 

File Description 

fann_app_global.h The C-model definition for ANN. 

fann_app.h   The header files of the core API module to be included in the 
source code of the target application. 

fann_app_int.h   This is the internal header file for the core API module. 

fann_utils.h This is the header file of the IO and statistic API module to 
be included in the target application if needed. 

fann_app.c   The implementation for the core API module. 

fann_example_app.c An example application program that can be used as the 
starting point of an application program using the ANN C-
model. 

fann_utils.c The implementation for the IO and statistic API module. 

Makefile A simple GNU makefile to build the target application. 

 

Except for fann_app_global.h, all files are copied from a predefined directory.  For this 

purpose, a new directory “config” is added to the FANN-2.2.0 package directory and 

compiler macro FANN_COFIG_DIR is used to define this directory location inside the 

source code.  In the Netbeans project definition, the FANN_CONFIG_DIR compiler 

macro is added so that compilation command has the following switch: 

 

-DFANN_CONFIG_DIR=”\”/home/kpatra/ThesisProjects/COD-ANN/FANN/FANN-2.2.0-

Source/config\”” 
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V. ANN C-MODEL APIS 

A. C data structure definition 

In the file fann_app_int.h, the data structure for the neuron, layer, and connection has 

been defined.  A neuron data structure is defined as follows: 

typedef struct { 

  int         num_of_input; 

  Fann_Actfn_Type actfn; 

  float   activation_steepness; 

  float             value; 

} Fann_Neurone; 

 

A neuron data structure contains information about the number of inputs 

(num_of_input), activation function (actfn), activation steepness for the sigmoid group of 

activation functions (activation_steepness), and the current value of the neuron (value). 

A layer data structure is defined as follows: 

typedef struct { 

 int start_neuron_index; 

 int     end_neuron_index; 

 int     conn_weight_start_index; 

} Fann_Layer; 

 

A layer data structure contains a star and end neuron index for the layer in the neuron 

array index (start_neuron_index and end_neuron_index).  There is also a start index for 

the connection in the connection array (conn_weight_start_index).  Although this 

connection array can be determined at execution time, it has been included in the data 
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structure to save some computation time while keeping the memory footprint under 

control.  It is not usual to have a very large number of layers in any ANN architecture; 

thus this extra storage in the layer data structure should not consume a significant amount 

of memory.   

The connection data structure is defined as following.  It contains the source neuron 

index for the connection and the connection weight.  As discussed in section II, ANN data 

structure indirectly indicates the destination neuron for the connection. 

typedef struct { 

int  from_neuron_index; 

float weight; 

} Fann_Conn_Info; 

 

In the file fann_app_global.h file, the actual C-model for ANN is defined.  The 

following is an example of such a model for XOR implementation using ANN. 

Fann_Neurone fann_neurones[] = { 

    {0, FANN_LINEAR, 0.00000e+00, 0},   

    {0, FANN_LINEAR, 0.000000e+00, 0},  

    {0, FANN_LINEAR, 0.00000e+00, 1},  

    {3, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 0}, 

    {3, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 0}, 

    {3, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 0}, 

    {0, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 1}, 

    {4, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 0}, 

    {0, FANN_SIGMOID_SYMMETRIC, 1.00000e+00, 1} 

}; 

Fann_Layer  fann_layers[] = { 

 { 0, 1, -1 }, 

 { 3, 5, 0 }, 
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 { 7, 7, 9 } 

}; 

Fann_Conn_Info fann_connections [] = { 

 {0, 1.53974294662475585938e+00}, 

 {1, -2.43024516105651855469e+00}, 

 {2, -1.62801718711853027344e+00}, 

 {0, 9.18790340423583984375e-01}, 

 {1, 1.18300104141235351562e+00}, 

 {2, 2.06007146835327148438e+00}, 

 {0, -1.89169239997863769531e+00}, 

 {1, 1.38891375064849853516e+00}, 

 {2, -1.66912353038787841797e+00}, 

 {3, 3.17120909690856933594e+00}, 

 {4, 2.57782721519470214844e+00}, 

 {5, 3.42049527168273925781e+00}, 

 {6, 8.41499686241149902344e-01} 

     }; 

 

B. ANN C-Model APIs 

The following are the core APIs that an application should need to use the C-model as 

shown in Table 20. 

Table 20.  C-model Core APIs 

File Description 

fann_get_number_of_layers   Returns the number of layers. 

fann_get_number_of_input  Returns the number of inputs. 

fann_get_number_of_output Returns the number of outputs. 

fann_get_number_of_neurons Returns the total number of neurons. 

fann_get_number_of_conns Returns the total number of connections. 

fann_execute Computes the output for a given input using the ANN.  
It takes arguments as an array of ouputs and an array of 
inputs.  The output array is populated with computed 
results after the execution is done.  It returns the 
execution status as Boolean (an enum with values true 
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File Description 

and false). 

e.g., Boolean stat = fann_execute(out,in); // out => 
array of float, in => array of float 

 

The following are the IO utility APIs included in the application using fann_utils.h, as 

shown in Table 21.   

Table 21.  C-model IO Utility APIs 

File Description 

fann_utils_open_train_file To open a FANN training file for reading; the 
argument is the training file name.  The function 
returns Boolean status upon completion. 

e.g., stat = fann_utils_open_train_file (“xor.dat”) 

fann_utils_get_next_data To get the next data set (input and expected output) 
from the opened training file; the arguments are the 
pointer to the input array and the pointer to the output 
array.  This function allocates the required array inside 
the function itself so that the application does not need 
to allocate the array beforehand.  This function returns 
a Boolean status upon completion.  If the training file 
reaches the end, this function will return false and 
close the file descriptor for the training file. 

e.g., while (fann_utils_get_next_data (in_pattern, 
out_pattern) ) { 

  // do something with the data 

  // where in_pattern is float **  

  // where out_pattern is float ** 

} 

fann_utils_init_util THIS FUNCTION IS FOR THE FANN LIBRARY 
ONLY AND IS ONLY FOR USING THE 
STATISTICAL UTILITY FUNCTION. 

This function initializes the internal structures of the 
utility module for providing the statistical APIs.  The 
arguments are the number of data sets and the number 
of outputs.  It returns a Boolean status upon 
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File Description 

completion. 

e.g., stat = fann_utils_init_util(455, 3); 

 

The following are the statistic utility APIs, as shown in Table 22.   

Table 22.  C-model Statistics Utility APIs 

API Description 

fann_utils_insert_compare_data To open insert comparison data in statistical 
database of the utility; the argument is the 
constant array to expected output and actual 
output.  The function returns a Boolean status 
upon completion. 

e.g., stat =  

fann_utils_insert_compare_data( 

exp,out); 

 

fann_utils_get_mean_relative_error Returns mean relative error so far; no argument 
is needed. 

e.g.  mre = 
fann_utils_get_mean_relative_error(); 

fann_utils_get_std_dev_of_relative_err
or 

Returns standard deviation for relative error; no 
argument is needed. 

e.g.  mestd= 
fann_utils_get_std_dev_of_relative_error(); 

fann_utils_dump_err_stat Creates an error statistics file named after the 
given argument.   

e.g., fann_utils_dump_err_stat(“err.stat”); 

 

The error statistics file contains tab-separated information about the mean relative 

error, standard deviation of relative error, and distribution information on the deviation 
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between –100% to +100%.  This file can easily be imported into any spreadsheet 

application for further analysis. 

VI. USAGE OF GENERATED C-MODEL 

A. Building the application program 

The generated C-model for ANN also contains a sample application program named 

fann_example_app.c, which can be used as the starting point for the target application 

program.  This example program can be built with the created Makefile.  The Makefile has 

a target “help” as follows: 

$> make help 

make APP_NAME=<app name> [TRAIN_DATA=<train data file>] 

[USE_FANN_UTILS=<YES|NO>] [ STAT_FILE=<stat file> ] [CC_EXT <compiler 

prefix>] 

 

Table 23 explains each make macro and its usage. 

Table 23.  Make File Macros for Building an Application Using the ANN C-model 

MACRO Description 

APP_NAME To supply the application name <app_name>; it is assumed that 
the corresponding source file <app_name>.c exists.  This macro 
has to be used in the Make command line. 

TRAIN_DATA To supply the FANN training data file; this is optional.  The 
default train data file name is SAMPLE.DAT. 

USE_FANN_UTILS An optional macro that takes a YES or NO value.  To include 
the FANN utility APIs (both IO and statistics), this macro must 
be passed with a YES value.  The default value is NO. 

STAT_FILE This is an optional macro to define the generated statistic file 
name.  Only if this macro is defined, the statistics utility code is 
compiled.  The default value is CMODEL.STAT. 

CC_EXT This is an optional macro to define the prefix of the cc 
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MACRO Description 

command.  This is useful for compiling the application with 
cross compilers. 

 

The following is an example for compiling an application program generated through 

FANN extension testing. 

$> make APP_NAME=fann_example_app \ 

        TRAIN_DATA=”\”xor.dat\”” \ 

        USE_FANN_UTILS=YES \ 

        STAT_FILE=”\”xor.cmodel.stat\””\ 

        CC_EXT=arm-Linux- 

 

The above example compiles the application with a main source at 

fann_example_app.c with the arm-Linux-cc compiler, using xor.dat as a training file and 

xor.cmodel.stat as a statistics file.  The application will also include the IO utility and 

statistics utility module in the compilation. 

B. Understanding the example application program 

The following is the source code listing for the created example application program. 

1 #include <stdio.h> 

2 #include <stdlib.h> 

4 #include "fann_app.h" 

5 #include "fann_utils.h" 

7 #ifndef FANN_TRAIN_DATA 

8 #define FANN_TRAIN_DATA "SAMPLE.DAT" 

9 #endif 
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11 #ifndef FANN_STAT_FILE 

12 #define FANN_STAT_FILE "CMODEL.STAT" 

13 #endif 

14 

 16 int main(int argc, char** argv) { 

17     float *input = NULL; 

18     float *expected_output = NULL; 

19 

    float *output = 

malloc(sizeof(float)*fann_get_number_of_output()); 

22 

    printf("INFO : Number of layers 

%d\n",fann_get_number_of_layers()); 

23 

    printf("INFO : Number of input 

%d\n",fann_get_number_of_input()); 

24 

    printf("INFO : Number of output 

%d\n",fann_get_number_of_output()); 

25 

    printf("INFO : Number of neurons 

%d\n",fann_get_number_of_neurones()); 

26 

    printf("INFO : Number of connections 

%d\n",fann_get_number_of_conns()); 

27     printf("\n"); 

29     if (!fann_utils_open_train_file(FANN_TRAIN_DATA)) { 

30         return EXIT_FAILURE; 

31     } 

32     while(fann_utils_get_next_data(&input,&expected_output)) { 

33         fann_execute(output, input); 

34         #ifndef NO_FANN_UTIL_STAT 

35         fann_utils_insert_compare_data(expected_output,output); 

36         #endif 

37     } 

38     #ifndef NO_FANN_UTIL_STAT 

39 
    printf("INFO: Dumping error statistics at 
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%s\n",FANN_STAT_FILE);    

40     fann_utils_dump_err_stat(FANN_STAT_FILE); 

41     #endif 

43     free(output); 

44     return EXIT_SUCCESS; 

45 } 

 

Table 24 explains each source code line of the example application program. 

Table 24.  Source Code Explanation for Application Using the ANN C-model 

Lines Description 

4-5 Includes core and IO APIs. 

8,12 Sets default train data and stat file name. 

19 Allocates floating type array with a size equal to the number of outputs of the 
ANN. 

21-27 Prints ANN information. 

29 Opens training data file to be read. 

32-37 A while loop that continues until all the data are read.  It stores the input 
pattern and expected output pattern. 

33 Executes the ANN to compute output into the output array. 

35 Inserts the comparison data into a statistical database. 

40 Creates the error statistic file. 

 

VII. VALIDITY OF GENERATED C-MODEL 

A. General validation strategy 

The general strategy to validate the C-model result is to compare it to the output from 

the sample application using the FANN 2.2.0 library.   
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It is easier to inspect the output from smaller test cases by reviewing the results.  This is 

not the case for larger test cases.  For larger test cases, statistical validation has been 

adapted to verify and validate the C-model.  The mean relative error and standard 

deviation from the mean relative error are compared between applications using the C-

model and the same application using the FANN-2.2.0 library.  There should be no 

difference or very little difference (within 1% of error tolerance) between these statistical 

metrics.  In addition, the error distribution between two runs should be identical or have 

very small differences. 

B. List of test cases 

The following are the test cases used to validate the C-model as shown in Table 25. 

Table 25.  FANN C-model Test Cases 

Name # of inputs # of outputs # of layers # of hidden 

neurons 

# of test data 

XOR 2 1 3 3 4 

1pClass 2 1 2 0 6 

Robot 48 3 3 96 594 

Mushroom 125 2 3 32 4062 

 

C. Output Comparison 

The following is the statistical comparison between test cases as shown in Table 26. 

Table 26.  FANN C-model Test Results 

Name Mean relative error Standard deviation of relative error 

FANN C-MODEL DIFF FANN C-MODEL DIFF 
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Name Mean relative error Standard deviation of relative error 

FANN C-MODEL DIFF FANN C-MODEL DIFF 

XOR –1.45 –1.45 0 0.31 0.31 0 

1pClass 0 0 0 0.6 0.6 0 

Robot 3.45 3.45 0 15.2 15.2 0 

Mushroom 0.06 0.06 0 2.46 2.46 0 

 

For all the statistical metrics, the results of FANN 2.2.0 and the C-model are identical.   

Table 27 shows the mean error distribution between FANN and the C-model for the 

robot and mushroom test cases. 

 

Table 27.  FANN C-model Mean Error Distribution 
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The following is the output from the XOR C-model application. 

INPUT: (-1.000000,-1.000000)  OUTPUT: (-0.987475)  EXPECTED: (-

1.000000) DIFF: (0.012525) 

INPUT: (-1.000000,1.000000) OUTPUT: (0.983460)  EXPECTED: (1.000000)

 DIFF: (-0.016540) 

INPUT: (1.000000,-1.000000) OUTPUT: (0.981609)  EXPECTED: (1.000000)

 DIFF: (-0.018391) 

INPUT: (1.000000,1.000000) OUTPUT: (-0.989289)  EXPECTED: (-

1.000000) DIFF: (0.010711) 

 

The following is the output from the 1pClass C-model application. 

 

INPUT: (1.000000,2.000000) OUTPUT: (0.998061)  EXPECTED: (1.000000)

 DIFF: (-0.001939) 

INPUT: (1.000000,3.000000) OUTPUT: (0.999996)  EXPECTED: (1.000000)

 DIFF: (-0.000004) 

INPUT: (2.000000,3.000000) OUTPUT: (0.998061)  EXPECTED: (1.000000)

 DIFF: (-0.001939) 

INPUT: (2.000000,1.000000) OUTPUT: (0.001993)  EXPECTED: (0.000000)

 DIFF: (0.001993) 

INPUT: (3.000000,1.000000) OUTPUT: (0.000004)  EXPECTED: (0.000000)

 DIFF: (0.000004) 

INPUT: (3.000000,2.000000) OUTPUT: (0.001993)  EXPECTED: (0.000000)

 DIFF: (0.001993) 
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VIII. CONCLUSION 

The experimental results show that the C-model ANN evaluation is functionally 

equivalent to the FANN 2.2.0 ANN evaluation. 
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APPENDIX F 

“anCod” A Software for Analyzing Water COD 

I. INTRODUCTION 

Chemical oxygen demand (COD) is one of the unique parameters for determining 

water quality.  There have been many types of chemical, electrochemical, photochemical, 

and pure photometry-based procedures to determine the COD content of water.  Among 

these different procedures, photometry-based analysis is the easiest and quickest process, 

simply because it does not involve any chemical process.  This photometry-based analysis 

exploits the unique spectral signature for water contaminants.   

In this project, a software suit has been developed, which can be executed on a cloud-enabled embedded 

platform using ANN-based COD measurement to collect spectrometry data from a portable spectrometer.  

The following sections describe the requirement (section II), architecture (section III), user 

interface (section IV), implementation (section V), and experiment result on training 

(section VI). 

II. REQUIREMENT FOR THE SOFTWARE 

The proposed software has three distinct components.  One component is responsible 

for collecting photometry data, sending it over the cloud to a server for data analysis, and 

collecting the result from the server side.  The other component is the server component, 

which collects the data from the client, runs analysis, and sends the result back.  The third 

component is the ANN model generator using training data.  Either the training data are 

mathematically generated or field collected real with a known water sample COD. 
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A. Client Component Requirements 

The following is the itemized requirement for the client component. 

1. The client can be executed on an ARM11-based mobile platform.   

2. The client should be able to collect data from the photometry device.   

3. The client should be able to store the data on a remote server using the cloud.   

4. The client should be able to request the server to start analyzing the collected 

data.   

5. The client should be able to collect the COD results from the server and display 

the results locally.   

6. The client should be able to create ANN training and test data using a 

mathematical model for the photometry data.   

7. The client should be able use collected photometry data for analyzing. 

B. Server Component Requirements 

The following is the itemized requirement for the client component. 

1. The server may be executed on a non-ARM11 platform with more 

computational power.   

2. The server must be communicated over the cloud.   

3. The server should provide both storage and COD analysis capabilities.   

4. The server should implement ANN-based COD analysis.   
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5. The server should provide the capability of testing ANN for COD analysis. 

C. ANN Model Generator Component Requirements 

The following is the itemized requirement for the client component: 

1. The model generator may be executed on a non-ARM11 platform.   

2. The ANN model generator should generate a pluggable C-model for the COD 

analysis server. 

 

III. ARCHITECTURE OF THE SOFTWARE 

The overall system is depicted in Fig. 50.  The system consists of the following 

components: 

1. The photometer is used to generate the absorption spectrum of the water 

sample.   

2. Cloud storage is used to store the collected absorption spectrum.   

3. The cloud server is the application server to analyze the collected absorption 

spectrum.   

4. An ARM11-based portable system is a portable device to collect the spectrum 

data from the photometer, store the data over cloud storage, and display the 

analysis results from the cloud server.   
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Fig. 50.  COD Analysis System. 

 

The software, anCod, is a collection of three distinct utilities as proposed by the 

requirement described in section II. 

1.  anCod is the client program, which is primarily executed on the portable 

ARM11 system. 

2. anCodServer is the application server program, which is primarily executed on 

the cloud server platform. 

3. anCodTrainer is the ANN trainer to recognize the COD absorption pattern.  

This program is also mainly executed on the cloud server platform. 

The anCod client software works as the following flow steps depicted in Fig. 51.  First 

it collects photometry data and stores them on the cloud.  Second it initiates the analysis 

on the cloud server, once the data are collected and the deposit is completed.  The client 
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would then wait for the server notification of analysis completion and display the analysis 

results on the local display. 

 

 

Fig. 51.  anCod Client Flow 

 

After receiving the processing request from a client, the server, anCodServer, first 

preprocesses the collected photometry data compatible with the ANN.  This processed 

information is then analyzed by ANN to produce the COD result for the given water 

sample.  Fig. 52 depicts the overall server-side flow. 
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Fig. 52.  anCodServer Server Flow 

 

The trainer, anCodTrainer, works on training data and creates an ANN model to be 

consumed by the anCodServer.  The following is the workflow for the anCodTrainer.  Fig. 

53 depicts the trainer flow. 
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Fig. 53.  anCodTrainer Trainer Flow 

 

 

IV. USER INTERFACE 

The anCod software suite has two types of user interfaces to control software behavior.   

One is the command line interface and the other is the parameter setting in the 

configuration file.  In the following subsections, both the interfaces are discussed.   

A. Command-line interface 

The anCod client software has the following command line usage. 

$> anCod -help 

USAGE : anCod [-sim <sim data file>] 

              [-gen_rnd_sim] 

              [-train <output value>] 

              [-save_as <file name>] 

              [-local] 

              [-train_sin] 

              [-help] 
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Table 28 explains the options.  Without any option, anCod captures photometry data 

from the photometer and requests the server to analyze the data to determine the water 

COD. 

Table 28.  The anCod Options 

Option Purpose 

-sim <sim data file> To use photometry data collected off-line or generated with 
simulation.   

-gen_rnd_sim To generate the ANN training file with random data. 

-train <value> To supply ANN output values for the ANN training file.  This 
option also turns on the training file generation (which keeps 
appending new training patterns onto the existing training file). 

-save_as <file name> To save the photometry raw data. 

-train_sin To generate ANN training data and test data. 

-local To run analysis locally instead of on the server. 

-help  To print on-screen help/usage. 

 

The anCod server software, or anCodServer, has the following command line usage: 

$> anCodServer -help 

USAGE : anCodServer [-test <id>] [-help] 

 

Table 29 explains the options for anCodServer.  Without any option, anCodServer 

analyzes the captured photometry data stored by the anCod client and stores the analysis 

result on a shared remote disk for the anCod client to pick up. 

Table 29.  The anCodServer Option 

Option Purpose 

-test <id> To run the ANN test for the given ANN type.  For the time being, sin 

and pm are supported.  The ID “sin” means to test if ANN recognizes 

that a signal consists of multiple sine waves.  The pm mode test is to 
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Option Purpose 

test ANN against the training patterns. 

-help  To print on-screen help/usage. 

 

The anCod trainer software, or anCodTrainer, has the following command line usage: 

$> anCodTrainer -help 

USAGE : anCodTrainer -train <id> [-help] 

 

Table 30 explains the options for ancodTrainer.  

Table 30.  The anCodTrainer Options 

Option Purpose 

-train <id> To generate a trained ANN model for a given type of signal recognition.  
Currently sin and pm IDs are supported.  The ID “sin” means to 
generate an ANN model that recognizes that a signal consists of 
multiple sine waves.  The pm means to generate an ANN model for 
recognizing real photometry data. 

-help  To print on-screen help/usage. 

 

B. Configuration parameters 

The anCod software suite uses makefile configuration parameters for the software run.  

All these parameters are defined as shell (SH) environment variables and have some 

default values.  Users can point to their own configurations using the pointer in the 

environment variable as shown in the following example: 

 $> setenv ANCOD_USER_CONFIG_FILE ./test_06-config.sh 
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This configuration file is an SH shell script file.  Hence, any SH-supported command 

can be used in this configuration file.  The usual command is to set the parameter as the 

environment variable inside the Bourne shell as follows: 

export anCod_result_file="anCod_cod.rpt" 

 

There are three major categories of parameters: 

1. General parameters. 

2. Composite sine waves recognizing ANN-related parameters. 

3. Composite sine wave-generation parameters. 

Table 31 shows the list of available general parameters. 

Table 31.  List of general parameters for anCod 

Parameter  Default Notes 

anCod_data_dir /export/cod_ann_fs/data Defines the data directory 

where the collected 

photometry data are stored. 

anCod_freq_template anCod_freq.template Defines the list of 

frequencies (the x-axis 

values) used for the collected 

photometry data. 

anCod_data_file anCod_pm.dat Name of the data file where 

the photometry data are 

collected. 

anCod_train_file anCod_ann_train.dat Name of the ANN training 

file generated. 

anCod_rsa_private_key id_rsa.i386  

id_rsa.arm11 

Name of the private key file 

used by the remote shell. 
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Parameter  Default Notes 

anCod_remote_shell_cmd ssh for i386 

dbclient for ARM11 

The remote shell name. 

anCod_remote_server boson-srvr-02 Remote server name. 

anCod_remote_user kpatra Remote user name. 

anCod_ model_name ann_sin ANN model name. 

anCod_model_version 1.0.0 ANN model revision. 

anCod_build_tool /usr/bin/make Build tool for ANN model 

generation. 

anCod_model_loc <installation_dir>/ann_

model/<platform> 

Directory location where the 

generated ANN model is 

stored. 

anCod_ann_input 

 

20 Number of input nodes for 

the ANN. 

anCod_ann_output 

 

1 Number of output nodes for 

the ANN. 

anCod_ann_hidden_node 50 Number of nodes in the 

hidden layer. 

anCod_pm_integration_time 

 

2000000 Photometer integration time 

in microseconds. 

anCod_pm_scan_average 

 

10 Amount of data scanned to 

average out the result from 

the photometer. 

anCod_pm_spec_length 2048 Resolution of photometer 

operation.   

anCod_ref_blank_data pm-blank.data Reference photometer data in 

blank condition. This is used 

to measure absorption. 
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Table 32 shows the composite sine recognizing ANN-related parameters.  This ANN 

uses a single hidden layer.  The model is generated as lib<model name>_<model 

version>.so. 

Table 32.  ANN parameters for composite sine wave recognition 

Parameter  Default Notes 

anCod_train_sin_ann_input 20 Number of input nodes for the ANN. 

anCod_train_sin_ann_output 1 Number of output nodes for the 

ANN. 

anCod_train_sin_ann_hidden_node 50 Number of nodes in the hidden layer. 

 

Table 33 lists the composite sine wave and corresponding parameters to generate 

training or test data. 

Table 33.  Parameters to Generate Train/Test Data for Composite Sine Wave 

Parameter  Default Notes 

anCod_train_sin_base_amplitude 1.0 Base amplitude for the composite 

sine signal. 

anCod_train_sin_base_frequency 1000.0 Base frequency in Hz for the 

composite sine signal. 

anCod_train_sin_relative_noise 0.2 Relative random 

noise amplitude 

relative to the base 

amplitude. 

anCod_train_sin_sample_point 20 Number of sampling points for 

ANN training and test data 

preparation. 

anCod_train_sin_no_of_pts 1000 Number of discrete points for the 

generated composite sine signal. 
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Parameter  Default Notes 

anCod_train_sin_harmonics_amps 1.0 Comma-separated relative 

amplitude values for the harmonics 

in the composite sine signals. 

 

Example: 

1.0,0.8,0.4,0.2,0.1,0.05,0.25,0.25,0.

05,0.1,0.2,0.4,0.8,1.0 

anCod_train_sin_phase_shift true Adds random phase shift per 

composite sine signal generation.  

The shift happens randomly 

between 0-PI if set to true. 

anCod_train_sin_include_random_s

ignal 

true Generates random noise as training 

pattern that results in 

nonrecognition of the composite 

sine signal. 

anCod_train_sin_train_file anCod_train

_sin.train 

Generated ANN training file name. 

anCod_train_sin_data_file anCod_train

_sin.dat 

Data file base name for each 

composite sine signal used in ANN 

training.  The actual file name is 

extended with 

<rnd|sin>_train_<unique id> 

anCod_test_sin_data_file anCod_test_

sin.dat 

The data file base name for each 

composite sine signal.  The actual 

file name is extended with 

<rnd|sin>_test_<unique id> 

anCod_train_sin_test_file anCod_train

_sin.test 

Generated ANN test file name. 

anCod_train_sin_no_of_noise_data 100 Amount of training/test data to be 

generated with random noise. 

anCod_train_sin_no_of_amp_data 1 Level of amplitude variation.  The 

base amplitude is multiplied by the 

current iteration value. 
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Parameter  Default Notes 

anCod_train_sin_no_of_freq_data 1 Level of frequency variation.  The 

base frequency is multiplied with 

the current iteration value. 

anCod_generate_data_file false If set to true, all the signal patterns 

used in ANN training/test file 

generation are stored in the data 

directory. 

 

V. IMPLEMENTATION DETAILS 

For the initial implementation, a traditional NFS-based file system is used in place of 

cloud-based storage.  Likewise, a secured remote shell (SSH)-based application execution 

is used instead of a cloud-based application execution.  These basic changes should be 

sufficient to prove the concept of this software because the services using the cloud are 

accounted remote storage and servers.  With these basic changes, the top-level architecture 

looks like Fig. 54. 

The top-level commands—anCod, anCodServer, and anCodTrainer—are shell scripts 

that load all the required configuration parameters, determine the execution platform, and 

invoke the corresponding binary executable for the execution platform.  This software can 

be built for both i386 and ARM11 architecture.  Thus, the software can be executed on 

both platforms. 
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Fig. 54.  Implemented Software Architecture 

 

Table 34 shows the available targets that developers may invoke in a make-based build 

call.   

Table 34.  Makefile Targets to Build an anCod Application 

Target Purpose 

all To build and install for both i386 and ARM11. 

build  To build the software. 

install To install the software. 

smoke To smoke test the software.  Each command will be invoked with the “-

help” option. 

clean To clean the temporary build file for the given platform. 

clean_all To clean the temporary build files for the entire platform. 

 

Each build behavior can be controlled through the macros shown in Table 35.  The 

software installed in the directory is determined as follows: 

$(ANCOD_ROOT)/anCod/$(VERSION).   
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Table 35.  Makefile Macros Used in Building the anCod Application 

Macro Description 

ANCOD_ROOT Root of software installation 

VERSION Software revision 

ARCH Target platform for the software (i386 or arm11) 

 

The source directory root contains the following build files as shown in Table 36. 

Table 36.  List of Makefiles for anCod 

File name Notes 

Makefile Top-level makefile. 

MakeFiles/Common.mk Common macro definitions for all the 

modules. 

MakeFiles/Rules.mk All the build rules are defined here at this 

makefile. 

src/<module>/Makefile Source files and build related definitions for 

the module. 

 

The makefile for each module should contain the following macros, as shown in order 

in Table 37, to define build-related definitions and source files. 

Table 37.  Macros for Module Makefile in anCod Software 

Macro Description 

TOP_DIR Directory location for the MakeFiles dir. 

MODULE_NAME Name of the module.  All the following macros are 
related to this value. 

$(MODULE_NAME)-SRC List of source code to be compiled. 

$(MODULE_NAME)-INCLUDE Include path definition for compilation. 

$(MODULE_NAME)-LIBS Linking flag definitions. 

$(MODULE_NAME)-EXE Generated executable name. 



 

 

163 

 

 

The MakeFiles/Common.mk and the MakeFiles/Rules.mk should be included in the 

module makefile at a proper place as in the following example. 

TOP_DIR = $(shell cd ../../; pwd) 

MODULE_NAME = trainer 

# include common make files 

include $(TOP_DIR)/MakeFiles/Common.mk 

trainer-SRC     = anCodTrainer_main.c \ 

                  anCodTrainer_sin.c \ 

                  anCodTrainer_1_layer_ann.c \ 

             anCodTrainer_multilayer_feedforward_ann.c \ 

             anCodTrainer_build_model.c 

trainer-INCLUDE = $(FANN_INCLUDE) 

trainer-LIBS    = $(FANN_LIB) $(COMMON_LIB_FLAG) 

trainer-EXE     = anCodTrainer 

include $(TOP_DIR)/MakeFiles/Rules.mk 

 

VI. EXPERIMENT RESULTS 

For composite sine signal recognition, an experiment with the following attributes was 

performed: 

1. The composite sine signal was generated with a relative amplitude of 

component frequencies as 

{1.0,0.8,0.4,0.2,0.1,0.05,0.25,0.25,0.05,0.1,0.2,0.4,0.8,1.0}. 

2. One hundred training patterns with a composite sine signal and 100 training 

patterns with random white noise were created. 
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3. One hundred test patterns with a composite sine signal and 100 test patterns 

with random white noise were created. 

4. The ANN used 20 inputs, one output, and 50 hidden nodes in a single 

perception layer. 

Table 38 shows some examples of valid and invalid patterns, which were used to train 

and test the ANN. 

Table 38.  anCod Validation Test Patterns 

Train/test pattern Train/test pattern 
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Train/test pattern Train/test pattern 

  

 

The test results are as follows:   

$>./runme.test  

INFO : Using user configuration file ./test_06-config.sh ... 

**************************************************** 

                annCodServer (1.0.0) 

**************************************************** 

INSTALL DIR         : /import/thesis/Study/Thesis/COD-ANN/ancod-

install/anCod 

DATA DIR            : ./data 

FREQ TEMPLATE       : anCod_freq.template 

DATA FILE           : anCod_pm.dat 

RESULT FILE         : anCod_cod.rpt 

EXECUTED ON         : boson-lnx-01 (i386) 

EXECUTED ON         : Fri Jan 25 18:11:12 PST 2013 

CMD ARG             : -test sin 

**************************************************** 

INFO [anCodServer_sin.c@35)]: Using test file 

./data/anCod_train_sin.test 

INFO [anCodServer_sin.c@39)]: ANN model ann_test_sin version 1.0.1 is 

used from dir /import/thesis/Study/Thesis/COD-

ANN/anCod/test/test_anCod_06 

INFO [anCodServer_sin.c@76)]: 0 out of 200 tests failed (0.000000%) 
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The tests results show that all the valid patterns were recognized correctly and all the 

invalid patterns were discarded correctly.   

VII. CONCLUSION 

The test results show that the software anCod is ready to be used in the proposed 

thesis. 
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