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ABSTRACT 

EFFECTS OF TEMPERATURE ON SEXUAL COMPETITION IN KELPS: 
IMPLICATIONS FOR RANGE SHIFTS IN FOUNDATION SPECIES 

 
By Alexis Cynthia Howard 

 
Kelp populations inhabit some of the most dynamic environments on the planet 

and often exist close to the limits of their temperature tolerances. Temperature cues 

reproductive processes in many kelps and fluctuating temperatures can affect kelp 

recruitment and population persistence.  Some kelps compete sexually through their 

microscopic life history stages by releasing a pheromone that triggers the premature 

release of spermatozoids of neighboring species, leading to recruitment failure.  It is 

unknown, however, whether changing temperature modifies competitive hierarchies 

among kelp species. To address this issue, I investigated how temperature affects sexual 

competition between microscopic stages of three co-existing and possibly competitive 

kelps in central California.  Laboratory studies were conducted to test the effects of 

temperature on germination, gametogenesis, fertilization, and recruitment.  At 4°C, 8°C, 

and 12°C, Macrocystis pyrifera outcompeted Nereocystis luetkeana, but was 

outcompeted by Pterygophora californica.  At 16°C, Nereocystis did not survive and 

Pterygophora sporophyte recruitment decreased relative to that of Macrocystis.  All three 

of these kelps showed increased time to fertility of female gametophytes with decreasing 

temperatures.  This demonstrated that temperature could alter the competitive hierarchies 

among these three species and suggests that increasing ocean temperatures due to climate 

change will favor Macrocystis over Nereocystis and Pterygophora, increasing 

Macrocystis’ dominance along the central California coast. 
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INTRODUCTION 

Foundation species play essential roles in the stability and structure of ecological 

communities through the creation of biogenic habitat (Dayton 1972, Bruno et al. 2003, 

Rohr et al. 2009) and the provisioning of energy and nutrients to food webs. The presence 

of foundation species has been shown to positively affect biodiversity and even alter 

hydrology (Ellison et al. 2005).  Foundation species include corals, grasses, oysters, 

many canopy-forming trees, and kelps (Harvell et al. 1999, Ellison et al. 2005, Altieri and 

Witman 2006).  It is important to understand the role that each of these foundation 

species plays in the ecosystem to predict how they, and the ecosystem they inhabit, may 

be affected by perturbations (Ebenman and Jonsson 2005). 

Many species respond negatively to anthropogenic stresses (Ellison et al. 2005).  

For example, tree species can decline in their survival due to a variety of factors, 

including over-harvesting and high-intensity forestry, deliberate removal of certain forest 

species, native pests, and introductions and outbreaks of nonindigenous pests and 

pathogens (Ellison et al. 2005).  There is currently no sign that these anthropogenic 

stressors will be diminishing any time soon.  Many tree taxa have exhibited range shifts, 

either in latitude or elevation, in response to climate change, and paleoecology evidence 

indicates that range shifts occurred rapidly at the end of the last glacial interval (Davis 

and Shaw 2001).  With increasing temperatures predicted to accelerate over the next 

century, the distributions of many species have begun shifting pole-ward or are 

hypothesized to begin shifting soon (Walther et al. 2002).  All foundation species are 

limited by additional factors other than temperature.  Reef building corals may not be 
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able to shift their range due to light limitations at extreme latitudes (Walther et al. 2002).  

This would negatively impact all of the species that depend on coral reefs for food, 

refuge, or habitat, and allow for less complex turf algae to take its place.  This multifactor 

effect may affect many foundation species and with increasing threats, conservation 

actions may be needed to help preserve these species that establish and maintain habitats 

that support other species (Rohr et al. 2009). 

Kelp forests are some of the most diverse and productive ecosystems in the 

marine environment (reviewed by Dayton 1985, Steneck et al. 2002, Graham et al. 2007).  

Kelps are large conspicuous brown algae (order Laminariales) that are found on every 

continent around the world, except Antarctica.  Forest-forming kelps are considered to be 

foundation species because they provide food and habitat for marine flora and fauna 

(North 1971).  The complex morphology and high biodiversity associated with kelps 

make them essential to community structure because they dampen water motion, shade 

the benthos, scrub nutrients, alter sediment transport, and provide a fairly stable physical 

structure for organisms (North 1971, Reed and Foster 1984, Dayton 1985, Clark et al. 

2004, Graham et al. 2007).  Kelps not only change the abiotic environment, but they also 

provide energy and habitat through kelp forests that support 40 to over 275 common 

species (Graham 2004, Graham et al. 2007). 

Kelp populations inhabit some of the most dynamic environments on the planet 

(Graham et al. 2007) and changing environmental conditions, such as temperature, 

salinity, light, nutrients, sedimentation, or wave action, can heavily influence the 

condition and health of kelps (Dayton 1985, Springer et al. 2006).  Environmental change 
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may also influence the diversity of organisms that depend on kelp forest systems, 

especially along changing coastlines (North 1971).  Healthy kelp populations can be 

either annual or perennial.  However, environmental fluctuations can have an impact on 

the annual stability of the population and the successful recruitment of subsequent 

cohorts (Graham et al. 2007). 

Climate change may have dramatic effects on kelp populations through factors 

other than temperature (Dayton et al. 1998, Graham et al. 2007).  Not only is temperature 

expected to increase with climate change, but salinity could change due to increased 

storms or droughts, nutrients could be depleted from decreased upwelling, changes in pH 

due to CO2 and sedimentation, and wave action could increase from increasing numbers 

and severity of storms (Briggs 1995, Harley et al. 2006).  All of these factors could affect 

the successful recruitment of kelps as well as their ability to mature (Dayton et al. 1998). 

Successful recruitment of kelps is essential to the persistence of kelp forest 

populations.  Variability in the abiotic system (e.g., changes in temperature, light, 

salinity, etc.) can be important to each life history stage by affecting survival, maturity, 

and reproduction (Luning and Neushul 1978).  Kelps have a biphasic life history that 

includes macroscopic and microscopic stages.  The large conspicuous individuals that 

make up a kelp forest are comprised of the 2N sporophyte stage (Fig. 1).  This form 

becomes reproductive when conditions allow (high nutrients, low temperature, enough 

light) and produces specialized blades called sporophylls that have sporangia aggregated 

in sori (Neushul 1963).  These sporangia contain microscopic biflagellate zoospores 

created through meiosis followed by mitosis (Fritsch 1945, Graham et al. 2007).  Once 
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released, 1N zoospores disperse and settle, germinate, and become microscopic male and 

female 1N gametophytes.  After maturation, females produce oogonia (eggs) that release 

the pheromone lamoxirene (the pheromone released by all kelp taxa at this stage of 

reproduction), which triggers male gametophytes to release their spermatozoids (Maier et 

al. 1987, 2001) that then track the pheromone back to the egg for fertilization (Maier et 

al. 1987, 2001).  Spore settlement densities must be greater than 1 per mm² to ensure 

successful fertilization, because male spermatozoids have limited dispersal abilities and 

male gametophytes must be close enough to females to detect the pheromone cue (Reed  

 

 
Figure 1.  The life history of the kelp, Macrocystis pyrifera, representing the 
alternation of generations experienced by all kelps (Reed 1990). 
 

1990).  Conditions, such as light (40 µmol·m-2·s-1) and temperature (2°C to 18°C 

depending on the species), must be right for germination, gametogenesis, fertilization, 

and the eventual production of a microscopic sporophyte.  Once the egg is fertilized 
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through syngamy, a 2N embryonic sporophyte develops, which eventually will become a 

macroscopic sporophyte and complete the life cycle.  Kelps have shown plasticity in 

reproductive timing by responding to favorable environmental conditions, making them 

more successful than some other algae despite their fairly short life span (Reed et al. 

1996). 

Differential timing of gametogenesis among kelp taxa can lead to competitive 

interactions between microscopic stages that can influence recruitment patterns (Reed 

1990).  Chemical competition experiments among microscopic stages of Pterygophora 

californica Rupr. and Macrocystis pyrifera (L.) C. Agardh showed that inhibition of 

Macrocystis recruitment by Pterygophora was asymmetrical (Reed 1990); Macrocystis 

never inhibited Pterygophora, but Pterygophora inhibited Macrocystis.  Pterygophora’s 

competitive advantage was likely caused by Macrocystis male gametophytes sensing the 

pheromone released by Pterygophora female gametophytes before Macrocystis female 

gametophytes were mature (Maier et al. 2001).  The use of this pheromone for the 

premature release of spermatozoids by Macrocystis could cause it to miss the fertilization 

of an entire cohort.  This reproductive inhibition has been demonstrated only once before 

between these two species and has yet to be explored between any other kelp taxa or at 

temperatures above or below ambient, and it remains unclear how environmental factors 

might influence this interaction (Reed 1990). 

Variability in the abiotic system (i.e., temperature, light, salinity, etc.) can affect 

the survival, maturity, and reproduction of each life history stage (Luning and Neushul 

1978).  Temperature is one of the environmental cues that trigger reproduction, and 
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variation in temperature can strongly influence the physical maturation and life history of 

kelps.  In addition to abiotic environmental variables (Reed 1990), competition can be 

important in determining kelp recruitment.  The chemical competition among 

microscopic stages of Pterygophora californica and Macrocystis pyrifera was mediated 

by the release of a pheromone (lamoxirene) by female gametophytes of both species.  

The species that matures and releases the pheromone first may cause premature release of 

male spermatozoids of the other species, thus resulting in a subsequent recruitment 

failure (Reed 1990, Maier et al. 2001).  Such competition can be critical to kelp 

recruitment success and be heavily influenced by environmental factors, especially 

temperature. 

The frequency of warm sea surface temperature events have increased since 1977, 

and is predicted to increase further, but how this affects marine populations and 

communities is not well understood (Briggs 1995, McGowan et al. 1998).  There is 

additional evidence to show that ocean temperatures in upwelling zones may decrease, or 

have longer cool periods due to intensification of wind-driven ocean upwelling from 

greenhouse related thermal low-pressure cells (Bakun 1990, Snyder et al. 2003, Bakun et 

al. 2010).  However, a pole-ward shift/expansion of the warm-temperate regions along 

the coast of western North America is expected at the expense of the cold-temperate 

regions (Bartsch et al. 2012).  Many kelps live near their temperature tolerances 

especially when close to their lower latitude range (Harley et al. 2006); therefore, any 

change in temperature could greatly affect the performance and survival of a population.  

Due to pending climate change, scientists have warned that negative effects on kelp 
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populations may have lasting impacts on the entire ecosystem (Dayton et al. 1998, 

Winder and Schindler 2004, Sexton et al. 2009).  Thus, it is important to study the effects 

of temperature (decreases and increases) on the different microscopic and macroscopic 

kelp life stages, and how kelp populations will react to these changes. 

All kelp life stages respond physiologically to changes in temperature above and 

below their optimal temperature which varies among locations, with decreases in growth 

or survival (Vadas 1972, Luning and Neushul 1978, Fain and Murray 1982, Schiel et al. 

2004); yet, the various stages of kelp life histories can have different levels of 

susceptibility to changes in water temperatures (Fain and Murray 1982).  Previous 

experiments have examined how the growth and development of various kelp species 

respond to increases in temperature; however, most studies have not tested the effects of 

temperature decreases and increases on the timing to egg production or between multiple 

competing species (Vadas 1972, Luning and Neushul 1978, Fain and Murray 1982).  For 

example, nine different central California kelp species have a narrow thermal tolerance 

window for embryonic development, such that temperatures less than 12°C and greater 

than 17°C inhibit growth of these species to healthy embryonic sporophytes (Luning and 

Neushul 1978).  Female fertility was also shown to decrease at temperatures higher or 

lower than 12°C in most of the species tested.  In two other experiments, the highest 

temperature of 20°C resulted in decreased growth and survival of female gametophytes 

of Nereocystis luetkeana (Mert.) Postels and Ruprecht and no germination or 

survivorship in Alaria marginata Postels and Ruprecht (Vadas 1972, Hoffman et al. 

2003).  It is important to understand how each life history stage will be affected in 
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canopy-forming and understory kelps, especially gametogenesis, and give us insight into 

the demographic importance of each stage. 

Giant kelp (Macrocystis pyrifera), bull kelp (Nereocystis luetkeana), and stalked 

kelp (Pterygophora californica) form extensive kelp forests in the Pacific Northwest and 

are foundation species for fishes, invertebrates, and other algae (Springer et al. 2006, 

Graham et al. 2007).  Macrocystis and Pterygophora are perennial kelps and occur in the 

eastern Pacific from Baja California, Mexico, to southern Alaska and Vancouver Island, 

British Columbia (Abbott and Hollenberg 1976, Graham et al. 2007), whereas 

Nereocystis is an annual kelp found from central California to Alaska (Table 1, Setchell 

1908, Miller and Estes 1989).  Macrocystis is the dominant kelp from Baja California to 

northern California and becomes patchy and sparse in its distribution from northern 

California to Alaska, where Nereocystis is the dominant kelp (Edwards and Estes 2006).  

  
Table 1.  Relevant average temperatures at range limits for Macrocystis pyrifera and 
Nereocystis luetkeana, and the average temperature for their overlapping range (NOAA 
NODC & Hickey et al. 1991). 
 

Average Temperatures 
                                    Macrocystis pyrifera           Nereocystis luetkeana            Pterygophora californica 

Northern limit           5.3°C (Southern Alaska)   2.9°C (Eastern Aleutians)     8°C (Vancouver Island) 

Southern limit           20°C (Baja California)      12.7°C (Piedras Blancas)      20°C (Baja California) 

Central CA                12°C                                    12°C                                        12°C 

(over-lapping range) 

 

Pterygophora is the dominant understory kelp throughout most of its range from 

Vancouver Island to Bahia Rosario, Baja California, Mexico (Matson and Edwards 

2007).   Coexistence of these three species within the same beds frequently occurs in 
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central California, which may result in intense competition for space (Dayton et al. 1984, 

Dayton 1985, Dayton et al. 1992, Schiel et al. 2004).  Given the overlapping ranges and 

habitat requirements of Macrocystis, Nereocystis, and Pterygophora, they are the ideal 

kelps to study the effects of competition because they naturally co-occur and serve 

similar functions (foundation and canopy-forming species) in the ecosystem. 

Macrocystis is adapted to warmer temperatures compared to other kelps and has 

been shown to colonize areas previously inhabited by Nereocystis and Pterygophora 

when water temperatures were too high for Nereocystis and Pterygophora to persist 

(Schiel et al. 2004).  Macrocystis naturally out-competes Nereocystis in areas optimal for 

both species because Macrocystis is perennial and can recruit year-round, whereas 

Nereocystis is annual with a limited recruitment window (Dayton 1985, Schiel et al. 

2004).  Pterygophora is a perennial with limited recruitment windows; however, it has 

reproductive periods more than once a year (De Wreede and Klinger 1990).  For the 

canopy-forming kelps, Nereocystis has been shown to be more tolerant of wave-

exposed/shallow areas than Macrocystis; however, the two species do co-occur in beds 

from Piedras Blancas and up through northern California (Abbott and Hollenberg 1976, 

Edwards and Estes 2006, Graham et al. 2007).  Macroscopic sporophytes of these species 

clearly compete for light and space but it is unclear whether competition occurs on the 

microscopic level during gametogenesis (the reproductive stage) in these areas and if 

there is an effect of temperature on competitive success. 

The goal of this study, therefore, was to quantify the effects of temperature on the 

microscopic life stages of Nereocystis, Pterygophora, and Macrocystis and to determine 
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how temperature affects competition at the microscopic level among these species.  If the 

competitive outcome between these taxa is affected by temperature, climate change could 

have drastic effects on kelp forest systems.  Laboratory studies were focused on the 

microscopic life history stages of M. pyrifera, P. californica, and N. luetkeana and the 

effects of temperatures that encompass the upper and lower temperature limits of both 

kelps.  Chemical competition among microscopic stages was quantified between 

Macrocystis and Nereocystis, and Macrocystis and Pterygophora, using varying ratios of 

the kelps in laboratory experiments to determine if the competitive effects of the 

relationship were asymmetrical (or simply density-dependent).  All competitive 

experiments included Macrocystis as one of the species because it is the dominant kelp 

along the central California coast.  Timing of egg production plays a major role in this 

competitive relationship and the time to maturation of each species at the various 

temperatures was also quantified.  Determining the temperature tolerances for these three 

kelp taxa while considering their competitive relationship allows for a better 

understanding of how their ranges may change in the future.  The goals of this study were 

addressed with the following questions:  Are Macrocystis pyrifera and Pterygophora 

californica, as well as Macrocystis pyrifera and Nereocystis luetkeana competing at the 

microscopic level?  Are these competitive relationships temperature-dependent?  Does 

timing to egg production change with temperature? 
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METHODS 

Competitive dynamics in microscopic stages of kelp 

To test the hypothesis that Macrocystis competes with both Pterygophora and 

Nereocystis at a microscopic level, reproductive material (spore-bearing blades) was 

collected periodically (~2 months) for approximately 15 months from several (~10) adult 

Macrocystis, Pterygophora, and Nereocystis plants growing at Stillwater Cove, 

California (36°33′56.79′′N, 121°56′35.88′′W).  Experiments testing temperature 

tolerances and competitive interactions were conducted in the laboratory to control light 

levels (40 µmol photons·m-2·s-1 with 14:10 h light/dark photoperiod) (Luning and 

Neushul 1978, Reed et al. 1996), temperature, nutrients, and spore densities.  To induce 

spore release, sporophylls were rinsed in a 1% iodine solution for 30 seconds, placed in 

D.I. water for 30 seconds, scrubbed with a final rinse in sterile sea water, wrapped in 

damp paper towels, and stored in a dark room at 10° C.  After three hours, sporophylls 

were placed in 18° C sterile seawater for one hour under ambient room light, with the 

resulting spore solution density counted using a hemacytometer at 400x magnification 

and diluted to the desired concentration (Reed et al. 1991). 

Monocultures were grown as positive controls and density estimates were made 

for the different microscopic life stages (e.g., settlement, germination, gametophytes, and 

sporophytes) of each kelp species.  The spore solutions were cultured in three-part Petri 

dishes (one enclosure with only Macrocystis, one with only Nereocystis, and one with 

only Pterygophora).  The spore solutions were replaced with nutrient enriched seawater 

solution (Provasoli 1968) to enhance spore growth and germination.  Petri dishes were 
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seeded with spore solution at > 1 spore per mm² (optimal ~50 spores per mm²) 

concentrations (Reed 1991).  In addition to the initial spore density and germination 

count (after 24 to 48 hours), gametophytes (7 to 10 days), and embryonic sporophytes (4 

to 10 weeks) were estimated for each treatment.  Density estimates were made using 40X 

magnification, with 15 haphazardly selected ocular quadrants to determine an average 

recruitment density for each treatment and life stage.  Survival and maturation to 

sporophyte was quantified (counted) once there were no eggs left for fertilization or once 

there was no survival. 

Treatments with two kelps settled on the same dish were performed to detect 

chemical competition according to the methods of Reed (1990).  Three different ratios of 

the two species were seeded in three-part Petri dishes for competition trials to determine 

whether different ratios of the species (high-high, high-low, and low-high) affect 

competitive interactions.  Seeding ratios included dishes with low densities of one species 

and high densities of the second species (1:10 and 10:1 spores per mm2), and high 

densities of both species (10:10 spores per mm2) as shown in Figure 2.  

 

 

 

 

 

 

 

 
 

Figure 2.  Three-part divided Petri dish with ratios of kelp species used 
for experiment (each ratio is per mm2 multiplying each by 2,000). 
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Petri dishes were seeded with spore solution at >1 spore per mm² (optimal ~50 spores per 

mm²) concentrations (Reed 1991). 

To differentiate between species, one species was released first, allowed to settle 

for 24 hours, then dyed with 20% Fungi-fluorTM (0.01% calcofluor white stain) and 

sterile sea water for the next 24 hours.  Fungi-fluorTM fluoresces when excited by UV 

light (240-400 nm; peak excitation 345-365 nm; Baselski and Robinson 1989) by binding 

a non-lethal bio-stain to beta-linked polysaccharides (Edwards 1999; Fig. 3).  

 

 
Figure 3.  A.  Fluorescently labeled Pterygophora californica gametophyte (blue) 
with sporophyte (red) recruitment (red fluorescence is due to excitation of chlorophyll 
by UV light).  B.  Pterygophora californica sporophyte under white light. 
 

The cell walls of microscopic stages of laminarian species have been previously stained 

using these methods (Cole 1964, Hsiao and Druehl 1973) and it was found to be non-

toxic and have no effect on cell growth (Nakazawa et al. 1969).  After this initial 48 

hours, the dye was discarded and the settled spores were rinsed three times with sterile 

salt water to remove remaining dye.  The second species was then allowed to settle for 24 

hours in the dishes using the same spore release process.  To account for the time 

difference between the settlement of the two species, the order in which the species were 

settled was switched between experiments.  After the settlement period, the spore 

solutions were replaced with nutrient enriched seawater solution (Provasoli 1968) to 

a.# b.#
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enhance spore growth and germination. The nutrient enriched solution was changed in 

the dishes once per week. 

By varying seeding ratios of the competitor, I was able to test whether the two 

kelp species were having negative interspecific effects on the recruitment of one another 

and what level of competition was occurring.  There were six replicates of each density 

ratio per trial that were averaged, for each of three trials.  Univariate two-way fixed-

factor analysis of variance (ANOVA) was conducted to test the competitive dynamics 

between species (n=3), where the interaction between species and the seeding ratio was 

the output of interest.  The competitive outcome was statistically tested for each 

interaction using pairwise comparisons with the Holm-modification applied (Holm 1979).  

The competitive interactions were the treatments with equal portions of both species 

present (10:10).  Comparisons were also made for a species when there were high 

quantities of the competitor present versus low quantities of the competitor present (10:10 

vs 10:1).  The monocultures were analyzed by determining whether the results for the 

competitive interactions fell within the 95% confidence intervals of the monocultures. 

 

Effects of temperature on competitive dynamics 

To test the hypothesis that temperature changes the competitive relationship 

between Macrocystis and Pterygophora/Nereocystis, the methods from the previous 

section were repeated using incubators that allowed for temperature manipulations.  Two 

incubators were used (M.R.C. Growth Chamber, Model LE-539) allowing two 

temperatures to be tested per trial.  A total of four temperatures were tested: 4°C, 8°C, 
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12°C, and 16°C.  A digital display continuously reported the temperature within the 

incubators, and temperature monitors recorded the temperature. 

Survival and maturation were tested for each microscopic stage of Macrocystis, 

Pterygophora and Nereocystis in response to exposure to the four temperature levels. 

There were six replicates of each species interaction and temperature treatment per trial 

for Macrocystis versus Pterygophora and Macrocystis versus Nereocystis.  Each trial was 

run three times during the 15-month period that collections occurred and the replicates 

within each trial were averaged and the mean was used as a replicate.  Each trial was used 

as a replicate to test each temperature and species interaction.  A univariate two-way 

fixed-factor ANOVA was conducted to test the effect of each temperature on the 

competitive outcome between species, where the interaction between species and the 

seeding ratio was the output of interest (n = 3), similar to the previous test.  The 

Macrocystis/Pterygophora and Macrocystis/Nereocystis competitive treatment 

experiments at 4°C had zero recruitment in one treatment level in all three trials; 

therefore, this temperature was analyzed using a univariate one-way fixed-factor 

ANOVA.  The competitive outcome was statistically tested for each interaction using 

pairwise comparisons with the Holm-modification applied (Holm 1979).  To test for the 

effect of temperature on sporophyte recruitment (n = 3), a pairwise comparisons test was 

done for the competitive treatment (10:10) with equal settlement densities of each species 

at each temperature. 
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Timing of egg production 

The monocultures used as positive controls were also used to test the hypothesis 

that time to egg production changes with temperature.  Monocultures were grown at all 

four temperatures (4°C, 8°C, 12°C, and 16°C) for each species (Macrocystis, Nereocystis, 

and Pterygophora) and sampled to determine the percentage of female gametophytes 

with released eggs for each kelp species with six replicates per experiment.  One 

experiment was run for each species at each temperature.  Fifty randomly-chosen females 

were sampled every one to three days to determine the ratio of females with eggs to 

females without eggs.  This sampling was conducted before females began producing 

eggs and continued until all eggs had become sporophytes or the gametophytes had died.  

Comparisons between time of egg production for Nereocystis, Pterygophora, and 

Macrocystis at the different temperatures were analyzed by comparing differences in the 

time until 80% females had produced eggs.  To analyze the effect of temperature on the 

time of egg production for each species, a one-way univariate analysis of variance 

(ANOVA) was conducted with temperature being the fixed factor and day at which 80% 

egg production was reached being the dependent variable (n = 6).  This 80% time point 

was used to allow temperature to affect the rate at which eggs were produced.  The 

difference to 80% egg production of each species at each temperature was statistically 

tested for using pairwise comparisons with the Holm-modification applied (Holm 1979).  

To analyze the effect of species on the time of egg production at each temperature, a one-

way univariate analysis of variance (ANOVA) was conducted with species being the 

fixed factor and day at which 20% egg production was reached being the dependent 
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variable (n = 6).  This 20% time point was chosen because it would allow me to 

determine which species would have the initial advantage by releasing eggs before the 

other species.  The difference to 20% egg production between species at each temperature 

was statistically tested for using pairwise comparisons with the Holm-modification 

applied (Holm 1979). 

 

RESULTS 

Competitive dynamics in microscopic stages of kelp and the effects of temperature 

Macrocystis pyrifera vs. Pterygophora californica 

Three trials were analyzed as replicates of the competition experiment at each 

temperature (4°C, 8°C, 12°C, 16°C).  All trials had successful sporophyte recruitment at 

all treatment levels, except 4°C (Fig. 4).  At 4°C, both Macrocystis and Pterygophora 

showed low sporophyte recruitment and Macrocystis had zero recruitment when seeded 

at densities of 1 zoospore/mm2 (Fig. 4d).  Macrocystis showed a greater decline in 

recruitment than Pterygophora with the presence of Pterygophora in the mixed species 

treatments (Fig. 4d).   The effect of seeding ratio on sporophyte recruitment was 

significant (P = 0.004; Table 2a).  Pterygophora had significantly (P = 0.001) greater  

recruitment densities than Macrocystis when equal quantities of both species were 

present (i.e., 10M:10P; Table 3).  Recruitment densities of Pterygophora did not differ 

with varying quantities of Macrocystis (i.e., 10M:10P vs. 1M:10P; P = 0.067).  

Recruitment densities of Macrocystis differed with varying quantities of Pterygophora 

(i.e., 10M:10P vs. 10M:1P), only by a small margin (P = 0.050). 
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Figure 4.  Recruitment densities of Macrocystis pyrifera and Pterygophora 
californica in mixed-species treatments and monocultures at 4°C (d), 8°C (c), 
12°C (b), and 16°C (a).  The variables on the x-axis represent the seeding ratios 
of either 10 spores/mm2 or 1 spore/mm2 of Macrocystis (M) or Pterygophora 
(P).  Values are means + 1 SE.  Monocultures of each species show 95% CI to 
compare to mixed species treatments. 
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At 8°C, Macrocystis sporophyte recruitment decreased with increasing quantities 

of Pterygophora present (i.e., 10M:1P vs. 10M:10P) in the mixed-species treatments 

(Fig. 4c).  The interaction between species and seeding ratio was significant (P = 0.002; 

Table 2b).  Recruitment of Pterygophora was significantly higher than Macrocystis with 

equal quantities of both species present (i.e., 10M:10P; P = 0.004; Table 3).  Recruitment 

densities of Macrocystis did not differ with varying quantities of Pterygophora (i.e., 

10M:1P vs. 10M:10P; P = 0.079), nor did recruitment densities of Pterygophora differ 

with varying quantities of Macrocystis (i.e., 1M:10P vs. 10M:10P; P = 0.985). 

 
Table 2.  Univariate one-way analysis of variance for 4°C (a) and two-way analysis of 
variance for 8°C (b), 12°C (c), and 16°C (d) looking at sporophyte recruitment densities 
of Macrocystis pyrifera and Pterygophora californica at different seeding ratios. 
a. 4°C 
Source df MS F value     P 
Seeding ratio with species 4 0.241 7.953     0.004* 
Error 10 0.030   
b. 8°C 
Source df MS F value P 
Species 1 25.139 10.796 0.007* 
Seeding Ratio 2 1.654 0.710 0.511 
Species*Seeding Ratio 2 24.712 10.612 0.002* 
Error 12 2.329   
c. 12°C 
Source df MS F value P 
Species 1 143.805 7.522 0.018* 
Seeding Ratio 2 8.995 0.470 0.636 
Species*Seeding Ratio 2 226.280 11.835 0.001* 
Error 12 19.119   
d. 16°C 
Source df MS F value P 
Species 1 5.017 5.052 0.044* 
Seeding Ratio 2 2.026 2.040 0.173 
Species*Seeding Ratio 2 2.059 2.074 0.168 
Error 12 0.993   
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At 12°C, all experiments had successful sporophyte recruitment at all treatment 

levels.  Macrocystis sporophyte recruitment declined with the presence of Pterygophora 

in the mixed species treatments relative to monoculture treatments (Fig. 4b).  The 

interaction between species and seeding ratio was significant (P = 0.001; Table 2c).  

Pterygophora had significantly greater recruitment densities than Macrocystis when 

equal quantities of the two species were present (i.e., 10M:10P; P = 0.004; Table 3).  

Recruitment densities of Pterygophora did not differ significantly with varying densities 

of Macrocystis (i.e., 1M:10P vs. 10M:10P).  Recruitment densities of Macrocystis 

differed significantly with varying settlement densities of Pterygophora (i.e., 10M:1P vs. 

10M:10P; P = 0.042); however, only by a small margin. 

 
Table 3.  Multiple comparisons test with the Holm-modification applied between 
Macrocystis pyrifera and Pterygophora californica showing competitive factors of 
interest and all temperatures tested. 
 4° 8° 12° 16° 
Macro (10M:10P) vs. Ptery (10M:10P) P=0.001* 

Ptery 
P=0.004* 

Ptery 
P=0.004* 

Ptery 
P=0.044* 

Macro 
Macro (10M:10P) vs. Macro (10M:1P) P=0.050* P=0.079 P=0.042* P=0.486 
Ptery (10M:10P) vs. Ptery (1M:10P) P=0.067 P=0.985 P=0.769 P=0.907 

 

 
Results at 16°C differed from those observed at 4°C, 8°C, and 12°C.  In the three 

replicate trials, Macrocystis outcompeted Pterygophora (Fig. 4a).  Pterygophora had 

decreased recruitment in all treatments when compared to Macrocystis.  The interaction 

between species and seeding ratio was not significant (P = 0.168; Table 2d), although the 

effect of species on sporophyte recruitment was significant (P = 0.044).  Macrocystis had 

significantly greater sporophyte recruitment density than Pterygophora with equal 
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quantities of both species present (i.e., 10M:10P; P = 0.044; Table 3).  Recruitment 

densities of Macrocystis did not significantly differ with varying quantities of 

Pterygophora present (i.e., 10M:1P vs. 10M:10P; P = 0.486), nor did recruitment 

densities of Pterygophora significantly differ with varying quantities of Macrocystis (i.e., 

1M:10P vs. 10M:10P; P = 0.907). 

 

Macrocystis vs. Nereocystis 

To test the hypothesis that temperature changes the competitive interaction 

between Macrocystis and Nereocystis, three trials were analyzed as replicates of the 

competition experiment at four different temperatures (4°C, 8°C, 12°C, 16°C).  All trials 

had successful sporophyte recruitment at all temperatures, except 4°C; at 4°C, both 

Macrocystis and Nereocystis experienced an overall decline in sporophyte recruitment 

and Nereocystis had zero recruitment when seeded at densities of 1 zoospore/mm2.  

Nereocystis recruitment decreased with the presence of Macrocystis in the mixed species 

treatments (Fig. 5d).  The effect of seeding ratio on sporophyte recruitment was 

significant (P < 0.001; Table 4a).  Recruitment of Macrocystis was significantly greater 

than Nereocystis when equal quantities of both species were present (i.e., 10M:10N; P < 

0.001; Table 5).  Recruitment densities of Macrocystis differed significantly with varying 

quantities of Nereocystis; however, this seems due to high variability among experiments 

(i.e., 10M:1N vs. 10M:10N; P = 0.001).  Whereas recruitment densities of Nereocystis 

did not differ with varying quantities of Macrocystis (1M:10N vs. 10M:1N; P = 0.496). 
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Figure 5.  Recruitment densities of Macrocystis pyrifera and Nereocystis 
luetkeana in mixed-species treatments and monocultures at 4°C (d), 8°C (c), 
12°C (b), and 16°C (a).  The variables on the x-axis represent the seeding ratios 
of either 10 spores/mm2 or 1 spore/mm2 of Macrocystis (M) or Nereocystis (N).  
Values are means + 1 SE.  Monocultures of each species show 95% CI to 
compare to mixed species treatments. 
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At 8°C, both Macrocystis and Nereocystis had greater variability in all treatments 

than at 4°C, though Macrocystis remained competitively dominant (Fig. 5c).  The effects 

of species, seeding ratio, and the interaction between the two factors were not significant 

(Table 4b).  This is likely due to the increased variability among experimental replicates 

because two of the trials had much lower recruitment densities for Macrocystis than the 

third experiment did.  The pairwise comparison between Macrocystis and Nereocystis 

was not significant when there were equal quantities of both species present (i.e., 

10M:10N) likely due to the increased variability (Table 5).  Recruitment densities of 

Macrocystis did not differ with varying quantities of Nereocystis (i.e., 10M:1N vs. 

10M:10N), nor did recruitment densities of Nereocystis differ with varying quantities of 

Macrocystis (i.e., 1M:10N vs. 10M:10N). 

 
Table 4.  Univariate one-way analysis of variance for 4°C (a) and two-way analysis of 
variance for 8°C (b) and 12°C (c) looking at sporophyte recruitment densities of 
Macrocystis pyrifera and Nereocystis luetkeana at different seeding ratios. 
a. 4°C 
Source df MS F value          P 
Seeding Ratio with species 4 0.134 75.300     <<0.001* 
Error 10 0.002   
b. 8°C 
Source df MS F value P 
Species 1 1.998 0.539 0.477 
Seeding Ratio 2 0.026 0.007 0.993 
Species*Seeding Ratio 2 10.155 2.742 0.105 
Error 12 3.704   
c. 12°C 
Source df MS F value P 
Species 1 5.928 6.225 0.028* 
Seeding Ratio 2 0.653 0.686 0.522 
Species*Seeding Ratio 2 7.068 7.422 0.008* 
Error 12 0.952   
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At 12°C, all trials had successful sporophyte recruitment at all treatment levels.  

Nereocystis sporophyte recruitment declined in the presence of Macrocystis in the mixed 

species treatments relative to monoculture treatments (Fig. 5b).   The interaction between 

species and seeding ratio was significant (P = 0.008; Table 4c).  Macrocystis had 

significantly higher recruitment densities than Nereocystis when equal quantities of both 

species were present (i.e., 10M:10N; P = 0.031; Table 5).  Recruitment densities of 

Macrocystis did not differ with varying quantities of Nereocystis (i.e., 10M:1N vs. 

10M:10N).  Recruitment densities of Nereocystis did not differ with varying quantities of 

Macrocystis (i.e., 1M:10N vs. 10M:10N); however, only by a small margin. 

 
Table 5.  Multiple comparisons test with the Holm-modification applied between 
Macrocystis pyrifera and Nereocystis luetkeana showing factors of competitive interest 
and all temperatures tested. 
 4° 8° 12° 
Macro (10M:10N) vs. Nereo (10M:10N) P<0.001* 

Macro 
P=0.260 

NS 
P=0.031* 

Macro 
Macro (10M:10N) vs. Macro (10M:1N) P=0.001* 

Macro 
P=0.860 

NS 
P=0.343 

NS 
Nereo (10M:10N) vs. Nereo (1M:10N) P=0.496 

NS 
P=0.235 

NS 
P=0.123 

NS 
 

The results at 16°C were generated from a single experiment, and were not 

analyzed because there was no survival of Nereocystis in any of the treatments.  Results 

for Macrocystis recruitment densities were presented graphically (Fig. 5a).  A summary 

of competitive outcomes for each species interaction and temperature are given for the 

experiments with equal quantities of both species present (i.e., 10M:10P and 10M: 10N; 

Table 6). 
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Table 6.  Pairwise comparisons using the Holm-modification to determine which species 
was the competitive dominant when there were equal quantities of both species present at 
each temperature.  Comparisons between Macrocystis pyrifera to Pterygophora 
californica and Nereocystis luetkeana. 
Competition Temperature Significance Outcome Ratio 

(10:10) 
Outcome 

Macro vs Ptery 4°C P=0.001* 1:6 Ptery 
Macro vs Ptery 8°C P=0.004* 1:8 Ptery 
Macro vs Ptery 12°C P=0.004* 1:9 Ptery 
Macro vs Ptery 16°C P=0.044* 5:1 Macro 
Macro vs Nereo 4°C P<0.001* 20:1 Macro 
Macro vs Nereo 8°C P=0.260 6:1 NS 
Macro vs Nereo 12°C P=0.031* 22:1 Macro 
Macro vs Nereo 16°C N/A N/A Macro 
 
 
 

Effects of temperature on timing of egg production 

Female gametophytes of Macrocystis and Pterygophora successfully produced 

eggs for fertilization at all temperatures (4°C, 8°C, 12°C, and 16°C), while Nereocystis 

produced eggs at only 4°C, 8°C, and 12°C (Fig. 6).  Timing to egg production had a 

negative relationship with temperature (Fig. 6); gametophytes exposed to the warmest  

 

 
Figure 6.  Effect of temperature on the timing of egg release by female gametophytes of 
Macrocystis pyrifera (a), Pterygophora californica (b), and Nereocystis luetkeana (c).  
For each temperature n=6 culture dishes.  Values are means + 1 SE. 
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temperature (16°C) produced eggs the fastest for both Macrocystis and Pterygophora, 

and timing to egg production increased with decreasing temperature for all species (Fig. 

6).  Timing to 80% egg production was compared for the four temperatures for 

Macrocystis and Pterygophora, and the three temperatures for Nereocystis.   

 
Table 7.  Univariate one-way analysis of variance of the effect of temperature on the 
timing to egg release by female gametophytes of Macrocystis pyrifera (a), Pterygophora 
californica (b), and Nereocystis luetkeana (c).  For each temperature n=6 culture dishes. 
a. Macrocystis pyrifera 
Source df MS F value      P 
Temperature 3 2528.944 363.877 <<0.001* 
Error 20 6.950   
b. Pterygophora californica 
Source df MS F value      P 
Temperature 3 2843.833 344.707 <<0.001* 
Error 20 8.250   
c. Nereocystis luetkeana 
Source df MS F value      P 
Temperature 2 2770.667 1061.106 <<0.001* 
Error 15 2.611   
 

Timing to 80% egg production was significantly different among treatments for all 

species (P < 0.001; Table 7). When using pairwise comparisons, timing to 80% egg 

production was significantly different between the four temperatures for Macrocystis and 

the three temperatures for Nereocystis (Table 8).  For Pterygophora, timing to 80% egg 

production was significantly different between 4°C, 8°C, and 12°C (P < 0.001); however, 

the timing to 80% egg production was not significantly different between 12°C and 16°C 

(P = 0.766; Table 8). 
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Table 8.  Multiple comparisons test with the Holm-modification applied showing if 
temperature on time to 80% egg production for Macrocystis pyrifera, Pterygophora 
californica, and Nereocystis luetkeana. 

 4° to 8° 8° to 12° 12° to 16° 
Macrocystis P<0.001* P<0.001* P=0.006* 
Pterygophora P<0.001* P<0.001* P=0.766 
Nereocystis P<0.001* P<0.001* N/A 
 

To be able to better compare each species at the different temperatures, time to 

20% egg production was displayed for each temperature with all species (Fig. 7).  At 

4°C, Macrocystis and Pterygophora gametophytes did not significantly differ in time to 

20% eggs released (P = 0.256); however, Nereocystis was significantly different from 

both Macrocystis (P < 0.001) and Pterygophora (P < 0.001; Table 9 and 10).  At 8°C and 

12°C, Macrocystis and Pterygophora gametophytes were significantly different in time to 

20% eggs released (P < 0.001, P < 0.001), but Macrocystis and Nereocystis were not 

 

 
Figure 7.  Difference in timing of egg release by female gametophytes of Macrocystis 
pyrifera, Pterygophora californica, and Nereocystis luetkeana at 4°C (a), 8°C (b), 12°C 
(c), and 16°C (d).  For each species n=6 culture dishes.  Values are means + 1 SE. 
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Table 9.  Univariate one-way analysis of variance of the effect of species on the time to 
20% egg release by female gametophytes of Macrocystis pyrifera, Pterygophora 
californica, and Nereocystis luetkeana at 4°C (a), 8°C (b), 12°C (c), and 16°C (d; 
Macrocystis and Pterygophora).  For each temperature n=6 culture dishes. 
a. 4°C 
Source df MS F value P 
Species 2 1190.222 138.041 <<0.001* 
Error 15 8.622   
b. 8°C 
Source df MS F value P 
Species 2 282.722 74.619 <<0.001* 
Error 15 3.789   
c. 12°C 
Source df MS F value P 
Species 2 214.889 43.170 <<0.001* 
Error 15 4.978   
d. 16°C 
Source df MS F value P 
Species 2 8.333 2.747 0.128 
Error 15 3.033   
 

significantly different (P = 0.254, P = 0.090; Table 10).  At 16°C, Macrocystis and 

Pterygophora gametophytes did not significantly differ in time to 20% eggs released, and 

there were no eggs produced by Nereocystis at this temperature (P = 0.128; Table 10). 

 

Table 10.  Multiple comparisons test with the Holm-modification applied showing if 
temperature on time to 20% egg production for Macrocystis pyrifera, Pterygophora 
californica, and Nereocystis luetkeana. 

 M to P M to N P to N 
4°C P=0.256 P<0.001 P<0.001 
8°C P<0.001 P=0.254 P<0.001 
12°C P<0.001 P=0.090 P<0.001 
16°C P=0.128 N/A N/A 
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DISCUSSION 

Kelp recruitment can be affected by a variety of biotic and abiotic factors  

(Luning and Neushul 1978).  Successful recruitment depends on the proper temperature, 

light, nutrients, salinity, and settlement densities.  This study addressed the effects of 

temperature on kelp recruitment success, interspecies competition, and timing of egg 

production by female gametophytes.  Although the effects of temperature on recruitment 

and interspecies competition have been studied previously, the combined effects had yet 

to be explored.  It is important to look at the combined effects of various factors because 

it gives us a better picture of what may happen in the natural environment (Edwards 

2004). 

The effects of temperature on the microscopic life stages and recruitment of kelps 

has been studied in many species; however, most studies have not tested the effects of 

temperature change on the timing to egg production or between multiple competing 

species (Vadas 1972, Luning and Neushul 1978, Fain and Murray 1982, Schiel et al. 

2004).  Previous studies showed that temperatures less than 12°C and greater than 17°C 

inhibited growth of central California kelps to healthy embryonic sporophytes, and that 

female fertility decreased at temperatures higher or lower than 12°C (Luning and Neushul 

1978).  This effect of temperature on development and recruitment was then applied to 

the sexual competition previously observed between Macrocystis pyrifera and 

Pterygophora californica (Reed 1990).  Chemical competition experiments among 

microscopic stages of Pterygophora californica and Macrocystis pyrifera showed that 

Macrocystis’ recruitment inhibition by Pterygophora was asymmetrical (Reed 1990); 
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Pterygophora inhibited Macrocystis and this relationship never switched.  This 

competitive advantage was likely caused by Macrocystis male gametophytes sensing the 

pheromone (lamoxirene) released by Pterygophora female gametophytes before 

Macrocystis female gametophytes were mature (Fig. 7; Reed 1990, Maier et al. 2001).  

This chemical warfare between these species could cause Macrocystis to miss the 

fertilization of an entire cohort (Reed 1990). 

My study looked at this question of chemical competition between kelps with the 

addition of variation in temperature.  The effect of temperature on development and 

recruitment was then applied to the sexual competition between Macrocystis pyrifera and 

Pterygophora californica (Reed 1990), as well as Macrocystis pyrifera and Nereocystis 

luetkeana.  My study showed that this sexual competition among species was indeed 

affected by temperature in more than one way. 

First, I looked at the effect of temperature on the competitive dynamics between 

Macrocystis and Pterygophora.  Pterygophora was the competitive dominant over 

Macrocystis, and this competitive hierarchy remained consistent at 4°C, 8°C, and 12°C, 

with the greatest germination and survival at 12°C (Fig. 4).  Temperature above or below 

the ambient (12°C) temperature had a significant affect on germination and survival.  

Experiments at the lowest temperature tested (4°C) yielded low recruitment densities due 

to the low germination rates for both species (Fig. 4).  This decreased survival at the 

lowest temperature tested was expected because neither of these species commonly occur 

in areas where temperatures get that low.   
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In the 16°C treatment, the competitive relationship between Macrocystis pyrifera 

and Pterygophora californica changed (Fig. 4).  Pterygophora had overall lower 

recruitment densities at this higher temperature and Macrocystis appeared more tolerant 

of higher temperatures than Pterygophora californica.  However, egg development and 

release did not significantly vary between these two species at this temperature (P = 

0.128).  This was surprising since both Macrocystis and Pterygophora extend their ranges 

into southern California and even into Baja California.  It is likely, however, that 

Macrocystis outcompetes Pterygophora, but that recruitment of Pterygophora was 

simply reduced in all treatments at this higher temperature.  Macrocystis recruit density 

did not differ as a function of seeding density between the 10M:10P and 10M:1P 

treatments at 16°C when it was competitively dominant.  In contrast, at all other 

temperatures Macrocystis greatly increased its recruit density in the 10M:1P treatment 

relative to others with higher Pterygophora seeding ratios, indicating that this response 

was due to competitive release. 

Competitive hierarchies were also observed by looking at the recruitment 

densities of each species when there were high or low quantities of the other species 

present.  At 4°C, 8°C, and 12°C, Pterygophora had similar recruitment densities whether 

the competitors densities were high (~10/mm2), low (~1/mm2), or absent (Fig. 4).  This 

demonstrated that Pterygophora was not negatively affected by the presence or absence 

of Macrocystis in the culture.  When looking at the recruitment densities of Macrocystis 

at 4°C, 8°C, and 12°C, it was negatively affected by the settlement density of 

Pterygophora in the culture.  Macrocystis had higher recruitment densities when there 
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was zero or small quantities (~1/mm2) of the competitor (Pterygophora) present in mixed 

species treatments.  Macrocystis had significantly lower recruitment densities when there 

were high (~10/mm2) quantities of the competitor (Pterygophora) present in the culture.  

The interaction between species and seeding ratio was significant at 8°C, and 12°C, 

showing that the effectiveness of the competitor is determined by the seeding density 

(Table 2).  Reed (1990) had observed this same relationship; however, he grew his 

cultures in the field at the ambient temperature (15°C) for Santa Barbara, CA. 

After observing the impact that temperature had on the competitive dynamics 

between Macrocystis and Pterygophora, I looked at the same effects of temperature and 

competition between Macrocystis and Nereocystis.  At the ambient temperature of 12°C, 

Macrocystis outcompeted Nereocystis in competition experiments.  The competitive 

hierarchy between Macrocystis and Nereocystis remained consistent at all temperatures 

(4°C, 8°C, 12°C, and 16°C), with the greatest germination and survival at 12°C again 

(Fig. 4).  Temperature above 12°C or below 8°C had a significant affect on germination 

and survival.  Experiments at the lowest temperature tested (4°C) yielded low recruitment 

densities due to the low germination rates among both Macrocystis and Nereocystis (Fig. 

5).  Nereocystis luetkeana had decreased germination at this lower temperature, likely 

due to its adaptation to local, higher temperatures.  Another possible reason for 

Nereocystis’ overall lower recruitment densities at all temperatures could be that it is the 

one species that drops its sori from the reproductive blades (sporophylls) to settle onto the 

benthos, as opposed to staying attached to the adult sporophyte and gradually releasing 

spores from the sori like Macrocystis and Pterygophora do.  This likely leads to 
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extremely high settlement densities in the areas surrounding the sori (Abbott and 

Hollenberg 1976).  This could then indicate that Nereocystis needs extremely high 

zoospore densities compared to other kelps in order to have successful germination and 

eventual recruitment (Amsler and Neushul 1989). 

Competitive hierarchies were also observed by looking at the recruitment 

densities of Macrocystis and Nereocystis when there were high or low quantities of the 

other species present.  At 4°C, 8°C, and 12°C, Macrocystis had similar recruitment 

densities whether the competitors (Nereocystis) densities were high (~10/mm2), low 

(~1/mm2), or absent (Fig. 4).  Nereocystis had fairly low recruitment densities in all 

treatments and at all temperatures but appeared to have further decreased recruitment 

with the presence of Macrocystis.  The interaction between species and seeding ratio was 

significant at 4°C and 12°C, supporting the hypothesis that sporophyte recruitment is 

affected by the presence of a competitor and that that affect can change depending on the 

seeding densities of the two species (Table 4).  The effect of seeding ratio on sporophyte 

recruitment was significant at 4°C and 12°C supporting the hypothesis of a competitive 

interaction between Macrocystis and Nereocystis.  The interaction between Macrocystis 

and Nereocystis was not significant at 8°C when there were equal quantities of both 

species present; however, there the mean recruitment was higher for Macrocystis than 

Nereocystis.  The interaction was not significant likely due to the increased variability 

because one experiment had a much higher recruitment density than the other two 

experiments.  Vadas (1972) showed that the fertility of female gametophytes was 

primarily affected by light intensity; however, temperature seems to have played a bigger 
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role in my experiments with Nereocystis that were run in optimal light conditions (40 

µmol photons·m-2·s-1 with 14:10 h light/dark photoperiod).   

The overall competitive trend among these three kelp species showed that 

Pterygophora californica outcompeted Macrocystis pyrifera, which outcompeted 

Nereocystis luetkeana.  This relationship was then tested further by looking at the timing 

of egg production by female gametophytes in these three kelp species (Fig. 6 and 7).  At 

8°C and 12°C, Pterygophora appeared to produce eggs a few days earlier than 

Macrocystis, and at a faster rate (Fig. 7).  This is similar to what Reed et al. (1991) found 

as well; however, in his experiments, the rate at which eggs were produced was much 

faster for both species, meaning that the gametophytes went from zero eggs to maximum 

egg production much faster than in my experiments.  This could be due to the aeration he 

used in his cultures, allowing females to put more of their energy into reproduction 

because of the increased availability of nutrients.  At 4°C and 16°C, Macrocystis and 

Pterygophora were not significantly different in the time to egg production.  In this study, 

it seems that fertility of female gametophytes did not decrease with temperature as 

suggested by Luning and Nueshul (1978); it was the timing to egg production that was 

affected.  Since their study only observed female gametophytes after 2 weeks, they may 

have not waited long enough to observe fertility because it appears that the timing of 

fertility was actually affected. 

The results for the timing to fertility among female gametophytes indicates that 

temperature had a stronger effect on Macrocystis than Pterygophora at 8°C, 12°C, and 

16°C (Fig. 6).  Pterygophora appeared to only change the timing to maturation slightly 
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between those three temperatures, while Macrocystis had no overlap in timing between 

the three temperatures.  This could support the observation that Macrocystis seems to be 

so prolific along the California coastline where all of these temperatures occur.  

Macrocystis may be outcompeted by Pterygophora during sexual competition; however, 

because of its tolerance to a larger range of temperatures, it has the potential for range 

expansion with future changes in the climate. 

Looking at the difference in time to egg production for Macrocystis compared to 

Nereocystis, there was no significant difference between the two at 8°C and 12°C likely 

due to the high variable in Macrocystis (Fig. 7).  However, at 4°C, Nereocystis did not 

reach 20% egg production until at least twenty days after Macrocystis.  A possible reason 

for this could be that Nereocystis may wait for periods of upwelling relaxation for 

germination to occur.  At 16°C, Nereocystis did not produce eggs or have any 

recruitment, possibly because this temperature is higher than the thermal tolerance of 

Nereocystis. 

Nereocystis appeared to become reproductive much later than both Macrocystis 

and Pterygophora, which could explain why this kelp is more opportunistic in where it 

grows.  Many of the Nereocystis beds along California’s coast tend to be in more wave-

exposed and harsh areas; however, these areas are usually prime upwelling centers as 

well.  It is possible that Nereocystis’ reproduction is triggered by bouts of cooler waters 

due to upwelling, or periods of storms causing their sori to fall and settle onto the benthos 

(Setchell 1908). 
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Kelp recruitment is dependent on a variety of factors.  Zoospore densities, 

distance to competitors, and temperature can all affect the successful recruitment of kelps 

and their population’s persistence.  The timing to reproduction can either give a kelp 

species the competitive advantage or loss of an entire cohort (Reed 1991).  Distance 

between zoospores is not only critical for fertilization within species, but it is also 

important for interspecies competition during reproduction (Reed 1990).  Temperature 

has also shown to affect female gametophyte fertility among many kelp species; 

however, the mechanism was unclear (Luning and Neushul 1978).  This study suggests 

that timing to reproduction was the factor driving competitive hierarchies but this 

competitive pressure could be lifted with changing temperatures.  It is important to 

understand clearly all the factors affecting kelp recruitment because successful 

recruitment is necessary for populations to persist and provide the structure and 

foundation for the dynamic kelp forest environment (Graham et al. 1997). 

The impacts of climate change, and specifically temperature, may affect 

population dynamics for older life stages through competition at the microscopic 

level.  Shifts from kelp forests to turf-forming algae mats due to changes in temperature 

and CO2 has drastically changed the underwater landscape in affected areas of southern 

Australia (Connell and Russell 2010).  Increased temperature has also been shown to 

inhibit the reproduction of Pterygophora californica in Baja California as well (Matson 

and Edwards 2007).  Kelp populations have shifted through ten years of induced ocean 

warming in Diablo Cove, California, nearly exterminating both Nereocystis and 

Pterygophora from an area where they were previously abundant (Schiel et al. 
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2004).  This study is one more example of how climate change may shift existing 

populations and their potential persistence.  Understanding how all the life stages of kelps 

and their competitive hierarchies might be affected by temperature and the other impacts 

of climate change is essential before these effects become irreversible. 

 
 

CONCLUSIONS 

The results from this study provide insight into how different microscopic life 

stages of Macrocystis pyrifera, Pterygophora californica, and Nereocystis luetkeana, and 

the potential chemical competition between these kelps, may be affected by changes in 

water temperature.   This chemical competition between kelp species needs to be better 

understood because this interaction may play a larger role in species and community 

dynamics than previously thought.  The chemical warfare taking place between co-

occurring species of kelp allows us to learn which species are dominant and what the 

resulting competitive hierarchies within the system may be.  Understanding how the 

different life stages of kelps react to an increase or decrease in water temperature will 

allow predictions of how population ranges of Macrocystis pyrifera, Pterygophora 

californica, and Nereocystis luetkeana may shift in the future.  This is important to study 

because range shifts may be partially determined by viability or competition between 

microscopic life stages.  Such shifts will likely affect species diversity and productivity of 

kelp forest communities, and the economy of people that depend on these organisms for 

fisheries, medicine, and food.  The results from this study indicate that Macrocystis 

pyrifera may become an even more dominant species within the kelp forest system as our 
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climate changes as it is released from its competitive disadvantage with Pterygophora at 

increasing temperatures.  Studying how these kelp species compete with one another and 

how this relationship will be affected by climate change is essential given the role played 

by Macrocystis, Pterygophora and Nereocystis as biogenic habitat and ecosystem 

engineers within the kelp forest. 
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