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ABSTRACT

ADAPTIVE FILTERING FOR HEART RATE SIGNALS

by Samira Jaafari

This work focused on the effects of suppressing the motion artifact of wrist 

photoplethysmographic heart rate signals.  Monitoring of the heart can offer important 

insight with regard to health and wellness.  The objective of the experiment conducted 

here was to recover the distorted signal resulting from body movement while measuring 

the heart rate signal non-invasively from the wrist.

The class of filters, known as adaptive filters, that can extract meaningful information 

from the distorted signal, used predetermined initial conditions to equalize the signal 

distortion due to motion.  These filters do not require prior knowledge about the system. 

Adaptive filters of LMS-type and RLS-type were used in this study to recover the 

distorted heart rate signal.  This study also presented a comparison on short-range 

wireless technologies, such as Bluetooth and ANT+, that can be used for data 

transmission of the heart rate signal.  
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1 Introduction

1.1 Heart Rate Signal

The heart rate signal is one of various biomedical signals transmitted throughout the 

human body.  Monitoring this signal leads to important information about the state of this 

critical organ, with important implications for an individual's health [1]. 

Heart rate and exercise are directly related to losing weight.  Non-invasive heart 

rate monitors have been integrated into wristwatches and fitness machines that display 

caloric expenditure during exercise and body movement.  Fitness machines have metal 

sensors that are able to detect and display the heart rate only when in contact with both 

palms simultaneously.  Wristwatches that measure heart rate require that a chest strap 

sensor be worn at all times.  However, holding onto metal sensors without interruption 

during exercise can be problematic in the context of high intensity movement.  Chest 

strap sensors represent an alternative for overcoming this problem, as they remain in 

contact with the body even during the most intensive exercise.  
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Figure 1.1:  Normal Heart Pulse
 

Figure 1.1 illustrates a normal heart pulse, showing consistent peaks and valleys.  

Heart rate, together with other biomedical signals, gives important information about 

various aspects of an individual's health.  Devices that can accurately measure the 

hemoglobin oxygen saturation content together with the heart rate are known as pulse 

oximeters [2].  Pulse oximetry refers to the non-invasive measurement of the level of 

oxygen saturation and of the pulse rate in veins.  Pulse oximeters are generally used in 

the medical field for taking a variety of body measurements.  Blood circulates throughout 

the body in rhythm with the heartbeat [3].  Thus, measuring the signal of the rate that 

blood moves throughout the body is one way of gauging the heart rate [4].  A non-

invasive optical method of measuring the heart rate with the use of light-emitting diodes 

(LEDs) and photodiodes is known as photoplethysmography [5].  Using this technique, 

light directed toward the skin is partially absorbed by hemoglobin, with the remainder of 

the light reflected off of the skin or anatomical layers beneath the skin, as blood pulsates 
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throughout the veins [6].  With photoplethysmography, heart rate can be gauged by 

measuring the amount of reflected light.

Pulse oximeters use photoplethysmography to direct the light through the fingertip, 

measuring the heart rate signal based on the volume of the backscattered light received by 

the photodiode.  The photodiode then converts the amount of backscattered light to an 

output voltage. 

Similarly, photoplethysmography can be used to acquire the heart rate signal from 

the wrist, thereby eliminating the need to constantly hold onto the metal sensors or wear a 

chest strap sensor.  In this way, the need for wearing a chest strap sensor in combination 

with a wristwatch is eliminated.  Although the heart rate signal that is acquired from the 

wrist using photoplethysmography is distorted by body movement, the signal can be 

recovered [1], [5].  The heart rate signal is distorted in the process of body movement by 

intersymbol interference (ISI), dispersion of the pulse in the transmission channel, as a 

result of light absorption by the skin, tissues, and muscles.  Although the backscattered 

light is not in sync with the heart beat when the body is in motion, the signal can be 

recovered using an adaptive filter.

1.2 Motivation

The motivation for this work originated from heart rate monitoring for health 

awareness.  Devices that have integrated heart rate monitoring are typically used in the 
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area of sports monitoring and for various health applications.  The two main benefits of 

adaptive filtering of the distorted heart rate signal are active noise cancellation and 

improved accuracy of measurement during body movement.

The wrist, where the heart rate signal is acquired, is a common location for 

wearable electronic devices such as wristwatches and wristbands.  The integration of this 

precise method of heart rate acquisition in similar devices is consistent with the current 

trend toward greater health awareness and health consciousness.

 The heart rate signal reconstructed by an adaptive filter can be used in sports 

monitoring or health related applications, not limited to any single purpose.  

Photoplethysmography allows for mobility in implementation, which is advantageous 

relative to other methods that lack mobility.  The myriad potential usages are what 

inspired this study.

1.3 Literature Survey

Clean signals transmitted through a noisy channel, when recovered at the receiver 

contain noise, as a result of ISI.  In the experiment conducted for this study, the measured 

heart rate signal was passed through a noisy channel.  This noisy channel results from the 

backscattered light due to a combination of the skin, blood, tissues, and muscles. 

The heart rate signal that was passed through the noisy channel was distorted at the 

receiving end.  In order to determine a reliable measurement, it is necessary to recover 
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the signal or to reconstruct the original signal, unaltered by channel noise.  Although 

other devices use non-invasive photoplethysmography, they retrieve the heart rate signal 

from other locations of the body, such as the palm, finger, forehead, or earlobe [7].

An adaptive filter, which is a digital filter, can reconstruct the distorted heart rate 

signal.  This type of filter is self-designing and relies for its operation on a recursive 

algorithm.  Starting with predetermined initial conditions, an adaptive filter converges to 

the optimum solution to some desired value [8].  While general digital filters have fixed 

coefficients, the coefficients of an adaptive filter adjust themselves, based on the 

magnitude of the error signal.  Several algorithms, including the LMS-type and the RLS-

type, estimate the coefficients of an adaptive filter.

1.4 Research Objective

The main objective of this study was to examine the effects of suppressing the 

motion artifact of wrist photoplethysmographic heart rate signals.  The method for 

equalizing the ISI from the distorted heart rate signal was to adaptively filter the output 

response from the noisy channel.  An adaptive filter is unique in the sense that its filter 

coefficients are driven to adjust by the error signal magnitude and converge to some 

desired value, representing an optimum solution [8].  The output result was the recovered 

heart rate signal.

The heart rate signal, recovered by the adaptive filter, can be transmitted wirelessly 
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to other devices, as it is acquired from the wrist.  Popular short-range wireless 

communication technologies include Bluetooth and ANT+.  Although Bluetooth and 

ANT+ technologies are short-range wireless standards, they are both high-demand 

technologies that are ubiquitous today.  ANT+ technology is commonly used in health 

applications and sports monitoring, whereas Bluetooth technology is integrated across 

several platforms of electronic equipment and is a more common form of electronic 

communication in mobile devices.

1.5 Overview of Thesis

This study focused primarily on the adaptive filtering of the heart rate signal that is 

distorted by ISI as a result of body movement.  A supplemental comparison presented 

short-range wireless standards for transmitting the reconstructed heart rate signal to 

mobile devices.  

Chapter 2 discusses the fundamental adaptive filtering theory.  A block diagram is 

used to describe an ideal adaptive filter, as well as the governing equations.  The more 

commonly used algorithms that tune the filter coefficients, especially LMS-types and 

RLS-types, are discussed.

Chapter 3 compares short-range wireless standards, in particular Bluetooth and 

ANT+.  It is hoped that combining data transmission with signal recovery will broaden 

the potential uses and applications of the study findings.  The comparison was done 
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primarily to determine which technology would be most suitable for applications 

integrating the photoplethysmography methodology.

Chapter 4 reviews the performance of the filter algorithms.  Practical results are 

examined relative to the fundamental adaptive filtering theory.  The impact on the 

adaptive filtering of heart rate signals is investigated, and the conclusions with regard to 

each adaptive algorithm are summarized.
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2 Adaptive Filters

2.1 Signal Properties

Various types of interference distort the heart rate signal during 

photoplethysmographic (PPG) monitoring as a result of body movement.  ISI that distorts 

the signal is caused by light absorption in the skin, tissues, and muscles.  Light absorption 

reduces the amount of backscattered light at the receiving end, as well as the peak-to-

peak amplitude of the signal.

 The heart rate signal is measured by the circulation of blood in veins during body 

movement.  Specifically, the amount of light that is reflected back to the photodiode is 

directly proportional to the frequency at which the heart pumps blood throughout the 

body.  The amplitude of the signal, based on the amount of backscattered light measured 

by the photodiode, increases or decreases at the same frequency that blood is pumped by 

the heart.  The properties of the resulting signal can aid in digital processing and assist in 

gauging a reliable heart rate. 

Two components of the signal properties are the DC component and the AC 

component.  The DC component is relatively invariant in regard to pulsating blood and 

provides a constant signal amplitude.  The AC component directly corresponds to the 

amount of backscattered light and is time-varying.  Figure 2.1 illustrates that the AC 

component of the signal provides important information about the signal frequency [9]. 
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Figure 2.1:  AC and DC Components in a PPG Signal

The AC component of the PPG signal is distorted as a result of body movement.  

Absorption of light in the skin, tissues, and muscles attenuates and distorts the AC 

component of the signal during body movement.  One method to recover the distorted AC 

component is by adaptively filtering the heart rate signal. 

An adaptive filter, further discussed in Section 2.2, can reconstruct the AC 

component such that the original signal properties are nearly recovered.  Signal 

reconstruction is more easily done in the digital domain than the analog domain because 
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it is more cost efficient.  By passing the AC component of the signal through an analog-

to-digital converter it can be converted to corresponding digital values.

The microcontroller used in this experiment, known as an Arduino Micro, 

converted the AC component to digital values and passed them through adaptive filters.  

The microcontroller contains a 10-bit analog-to-digital converter and an Atmel 

ATmega32u4 microprocessor.  The adaptive filters in this experiment operated on two 

input signals.  The two input signals were the desired heart rate signal plus ISI and 

accelerometer signals.  The adaptive filters used reference input signals from an 

accelerometer, known as the ADXL335 triple-axis accelerometer.  Both the heart rate 

sensor and the accelerometer were placed on the wrist.  The accelerometer signals, 

measuring accelerations of !3G up to +3G, isolated ISI and motion artifacts in the 

distorted heart rate signal during body movement.  The accelerometer signals assisted in 

the recovery of the heart rate signal.

2.2 Adaptive Filter Theory

Many types of filters are prevalent in signal processing.  Filters manipulate signals 

to reject unwanted characteristics.  Noise, interferences, and erroneous frequencies are 

undesirable characteristics that affect data in signals.  These unwanted attributes can be 

extensively minimized or nearly eliminated with the use of filters.  An adaptive filter, also 

known as a transversal filter, is one that self-adjusts its parameters to converge to 
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specified target values.  Adaptive filters are useful when the characteristics of the 

incoming signal are unknown or likely to vary.

An adaptive filter uses a recursive algorithm to adjust its parameters based on 

predetermined initial conditions.  The filter output converges to target values after several 

parameter iterations.  Choosing which recursive algorithm to implement is determined by 

the prioritization of the following adaptive filter characteristics: rate of convergence, 

misadjustment, tracking, robustness, computational requirements, structure, and 

numerical properties [8]. 

The idealities of an adaptive filter should be considered as practical frames of 

references for the application that it is integrated into.  Above all, computational cost, 

performance, and robustness are the three main factors for the type of adaptive filter to 

implement in an application [8]. 

The least-mean squares (LMS) algorithm is simple to implement and aids in 

identifying areas of improvement for the characteristics of the adaptive filter.  After areas 

of improvement have been identified, more sophisticated algorithms can be substituted in 

place of the LMS algorithm [8].  A simple block diagram of an adaptive filter is depicted 

in Figure 2.2. 
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Figure 2.2:  Adaptive Filter Block Diagram

The block diagram in Figure 2.2 represents one of four classes of adaptive filters.  

Referred to as the interference-cancelling type, the fourth class of adaptive filters cancels 

unknown interferences contained in a signal.  A reference signal from a separate sensor 

provides correlated information that is used to cancel the interference [8]. 

The primary input d(n) is the incoming signal that contains the original signal x(n) 

plus noise m(n).  However, the noise is uncorrelated with the original signal.  The primary 

input d(n) is defined in Equation 2.1.

 d(n) = x(n)+m(n)                                                          (2.1)

The reference input u(n) is measured separately and contains noise that is correlated 

with the noise m(n) from the primary input.  The noise from the reference input passes 

through an adaptive filter that estimates the noise of the original signal, known as y(n) in 

Figure 2.2.  The noise estimate is subtracted from the primary input to produce an 

estimate of the original signal.
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On each iteration, y(n) is estimated by the adaptive filter coefficients and is driven 

by the error signal e(n).  The error signal, the difference between the desired signal and 

the incoming signal, is the estimated system output.  Noise y(n) is subtracted from the 

primary input d(n) to provide an estimate of the system output.  Over several iterations, 

the system output converges to the primary input signal without noise [2].

The error signal is given by Equation 2.2, and the estimated noise signal y(n), 

which is the addition of the PPG signal d(n) and the motion artifact signal w(n), is given 

by Equation 2.3 [2].

    e(n) = d(n)! y(n)                                                          (2.2)

y(n) = d(n)+w(n)                                              (2.3) 

In Equation 2.3, d(n) and w(n) are known on each iteration of the algorithm [10].  

Haykin refers to y(n) as the model output, formulated in Equation 2.4.

y(n)= ŵk (n)u(n! k)
k=0

M!1

"                                       (2.4)  

In Equation 2.4, !0(n) through !M-1(n) are the estimated filter coefficients, also 

known as tap weights, u(n) through u(n-M+1) are the reference input values at time n, 
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and M is the filter order length in the recursive algorithm [8].  The filter output is 

computed on each iteration and adjusted by the error signal e(n).  The recursive algorithm 

iterates until the error signal magnitude is smaller than a desired value [8]. 

2.3 Adaptive Filter Type

2.3.1 Least Mean-Square (LMS) Type

The LMS algorithm has low computational complexity and functions as a widely 

used algorithm for FIR adaptive filters [10].  The algorithm is a member of the family of 

stochastic gradient algorithms and produces the least mean-square of the error signal [8].

The primary signal noise m(n) in Figure 2.2 is uncorrelated with the noise from the 

reference input.  The system output is expressed by Equation 2.5.

ŝ(n) = d(n)+m(n)! y(n)                                    (2.5)

The term on the left of Equation 2.5 is the system output and is the same as the 

error e(n).  The terms in Equation 2.5 are squared and expressed in Equation 2.6.  The 

expected value of the terms in Equation 2.6, also known as the mean value, is given by 

Equation 2.7.

s2 = d(n)2 + (m(n)! y(n))2 + 2d(n)(m(n)! y(n))                         (2.6)

E[ŝ2]= E[d(n) 2]+ E[(m(n)! y(n))2]+ 2E[d(n)(m(n)! y(n))]                (2.7)
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The third term on the right in Equation 2.7 reduces to zero, due to the fact that the 

input signal d(n) is not correlated with any of the noise components.  Minimizing the 

output noise power, which is the rightmost term in Equation 2.7, subsequently minimizes 

the output power of the estimated signal.  The signal-to-noise ratio (SNR) increases when 

the output noise power is minimized because the signal power is independent of the 

noise.  Hence, the least mean-square value is simplified in Equation 2.8.

minE[ŝ2]= E[d(n)2]+minE[(m(n)! y(n))2]                          (2.8)

 The simplicity of the LMS algorithm lies in the fact that it does not require 

correlation functions or matrix inversions that other algorithms use [8].  Two features of 

an adaptive or a transversal filter are that the filter derives the estimated output y(n) and 

filter coefficients or tap weights adjust in a recursive format.  Table 2.1 summarizes the 

input and output parameters of the LMS algorithm.  Figure 2.3 illustrates an ideal LMS 

filter structure with a delay line for each tap-weighted coefficient.   

Table 2.1:  Mth-Order FIR Adaptive Filter Parameters

!"#$%&

'$%#$%& !!""! #!"" $!""! ())*)
!"#$+,+-.-#%/0(+1/2%()+*$%#$%+,

3+,+1/2%()+2("4%5
6+,+&%(#7&/8(+1-9%*)

%"#$+,+/"#$%+.-%-+%*+-.-#%/0(+1/2%()
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Figure 2.3:  LMS Filter Structure

The filter length corresponds to the number of coefficients that are computed in the 

algorithm, and the initialization value for the first coefficients are zero.  The step-size 

factor ! is a constant value that is applied to the error signal on each iteration to update 

the subsequent filter coefficient wk(n).  The value chosen for ! must be small enough 

such that the misadjustment is minimized and the filter coefficients progress slowly 

instead of producing large jumps at the filter output [8].  The output w(n+1) updates the 

initial value of the filter coefficient or tap weight with a correction factor based on the 

step-size !.

The estimated PPG signal, also known as the system output, e(n) in Figure 2.2 

loops back to the LMS filter input.  The input passes through the tapped-delay line in the 
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filter, and the filter coefficients are adjusted based on the values in the reference input     

u(n) as well as in the step-size factor !.  The estimated noise output y(n) is subtracted 

from the primary input d(n) to produce an estimate of the output e(n).  The iterative 

procedure continues until the error is smaller than a desired value.  The LMS filter 

structure has low computational cost and is simple to implement for PPG heart rate 

reconstruction.

2.3.2 Recursive Least-Squares (RLS) Type

The recursive least-squares (RLS) algorithm recursively derives the filter 

coefficients that minimize a weighted least-squares cost function, also known as error 

signal, in an adaptive filter.  Unlike the LMS-type, the RLS-type belongs to the class of 

deterministic input signals and has a rate of convergence that is typically an order of 

magnitude faster [8].  However, the high convergence rate consists of high computational 

complexity.

The RLS algorithm derives the filter coefficients recursively in time.  As incoming 

data are processed, the influence of old data decreases based on the algorithm memory.  

The forgetting factor ! represents the memory of the algorithm [11].  The forgetting 

factor is commonly exponentially weighted, such that older data have less impact on the 

current filter coefficients [8].  The filter coefficients are optimized from the time the filter 

starts to the time that the current values of the error are minimized [10].  Figure 2.4 
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illustrates the RLS algorithm structure. 
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Figure 2.4:  RLS Filter Structure

The incoming signal d(n) contains the original signal plus noise.  The time-varying 

gain vector k(n) updates the filter coefficients on each time iteration n.  In Equation 2.9, P 

is the correlation matrix and is initialized to P(0) in Equation 2.10.

k(n)= P(n!1)!!1u(n)
(1+ u(n)H P(n!1)!!1u(n))                                   

(2.9)

P(0)= ! !1I                                                         (2.10)

The u(n)H in Equation 2.9 refers to the Hermitian transpose of the reference input  

u(n), also known as the conjugate transpose, and ! is the exponentially weighted 

forgetting factor of the algorithm.  The forgetting factor is valued between 0 < ! ! 1 

typically, and the special case when !=1 corresponds to infinite memory [8].  
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Furthermore, the minimum square error (MSE) is given by Equation 2.11.

E[e2 (n)]= E[x2 (n)]+ E[{m(n)! y(n)}2 ]+ 2E[x(n){m(n)! y(n)}]              (2.11)

The third term on the right side of Equation 2.11 reduces to zero, and Equation 2.12 

expresses the minimum MSE (MMSE) [11].

minE[e2 (n)]= E[x2 (n)]+ E[{m(n)! y(n)}2 ]                                    (2.12)

The algorithm updates the correlation matrix with the filter coefficients after the 

matrix is initialized.  The RLS algorithm is summarized in Table 2.2 [8]. 

Table 2.2:  RLS Algorithm Summary
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The RLS algorithm retains memory from the very start of the process.  Because of 

this, the RLS algorithm has the ability to converge to the optimum solution quicker than 

the LMS algorithm.  However, the RLS algorithm has more computational cost and 
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requires large storage capacity [10].  The algorithm should be selected based on an 

application frame of reference in which it is integrated into and on the prioritization of 

the filter characteristics listed in Section 2.2.

2.3.3 Other Filters

Among other filters, the LMS and RLS filter types are in the family of adaptive 

filters.  Other common filters that are used to reject noise and interference are the Wiener 

solution, the method of steepest descent, and Kalman filters. 

The LMS algorithm is derived from the Wiener solution, first derived by Wiener 

[8].  Wiener filters are grouped in the class of linear optimum discrete-time filters.  The 

requirement for Wiener filters is to minimize the MSE with the following two 

restrictions: The filter is linear, and the filter operates in discrete-time [8].  The main 

differences between Wiener filters and adaptive filters are that Wiener filters have no a 

priori knowledge on the statistics of the signal nor do they require a separate reference 

input signal [2].  If the statistical characteristics of the incoming data do not match the a 

priori information for which the filter was designed to expect, then the filter will not 

provide the optimum solution [8].  Although both the SNR and the correlation coefficient 

in [2] were found to be higher for Wiener filters than LMS adaptive filters, the complete 

data set on which the algorithm was performed on was recorded before it was actually 

processed.  Thus, the real-time implementation for Wiener filters in the recovery filtering 
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of the heart rate signal is not feasible.

Another adaptive filter is the method of steepest descent, which refers to finding the 

bottom point of a bowl-shaped surface, also known as the error-performance surface [8].  

The method of steepest descent is a recursive algorithm that minimizes the error on each 

iteration as it progressively steps toward the bottom point.  The filter coefficients or tap-

weighted vector takes on the minimum value wo, which is defined by the Wiener-Hopf 

equation in Equation 2.13 [8].

Rwo = p                                                          (2.13)

In Equation 2.13, the correlation matrix R is nonsingular and p is the cross-

correlation vector between the reference inputs of the filter [8].  The issue of stability is 

critical for the method of steepest descent and relies on the step-size parameter ! and the 

correlation matrix R.  The value of the step-size parameter ! dictates how the transient 

response of the loop behaves, yet there is no direct mathematical model to solve for the 

precise value [8]. Moreover, Kalman filters are another type of common filters.  The 

Kalman filter structure is illustrated Figure 2.5. 



22

!"#$
% &

'()

*"#()$

+"#$
*"#$(

,

*("#$

Figure 2.5:  Kalman Filter Structure

A Kalman filter is a linear recursive filter characterized by state-space concepts.  

The current state is computed by the previous estimate and the new data. This implies 

that the previous state estimate value requires storage [8].  In Figure 2.5, the matrix A 

predicts the next state x! -[t] by using the current estimate x![t-1].  The matrix H calculates 

the error signal by generating a prediction that is based on the value of the reference 

signal subtracted from z[t].  The error signal is multiplied by the Kalman gain matrix K to 

produce a correction toward the optimum solution and yield the final estimate x![t].

A Kalman filter was used in [12] to successfully reduce the motion artifact from 

PPG signals that were measured from the finger.  However, the distorted heart rate signal 

in [12] had fewer motion artifacts than PPG signals that are measured from the wrist, 

resulting from anatomical differences in these two body locations.

Similarly, in [13] a fixed-interval Kalman smoother showed superior performance 

to normalized LMS (NLMS) and RLS-type filters for PPG signals that were measured 
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from the finger.  In general, Kalman and RLS-type filters showed similar performances, 

which are both superior to NLMS [13].  In addition, RLS-type filters can be represented 

in the state-space concept.  Kalman filters can also be used in real-time processing, while 

the fixed-interval Kalman smoother in [13] must be used in offline post-processing.

Furthermore, several families and classes of filters can be used to cancel noise in 

signals.  Variations of each algorithm have also been implemented, such as the NLMS-

type that was aforementioned.  Each algorithm must be evaluated for the particular 

application it is integrated into.  As demonstrated in [12], [13], different techniques have 

proven to be superior to adaptive filters for PPG signals and to suppressing the motion 

artifacts as a result of body movement.  The difference between the experiment 

conducted in this study and the work in [12], [13] was the body location of where the 

PPG signal was measured from; This experiment acquired the signal from the wrist and 

[12], [13] acquired the signal from the finger.

2.4 Summary

The requirement to adaptively filter the PPG signal originates from the motion 

artifact that is embedded in the heart rate signal, as a result of body movement.  The 

causes of the motion artifacts are light-absorption variations in the pulsatile blood during 

movement and ISI from the skin-to-air channel between the body and the PPG sensor.  

Figure 2.6 illustrates the skin-to-air channel.
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Figure 2.6:  Wrist Source and Sensor Placement

The skin-to-air channel is represented by the arrows.  Figure 2.6 illustrates the 

location of the wrist PPG signal in regard to the sensor placement.  In this experiment, the 

PPG sensor was susceptible to noise and light absorption variations as a result of body 

movement.  In order to recover the corrupted heart rate signal, an adaptive filter 

processed primary and reference inputs. 

Two types of adaptive filters, LMS-types and RLS-types, were used on the same 

data sets to compare their performances.  The incoming data to the PPG sensor were 

supplemented with a separate reference input from an accelerometer that was also located 

next to the PPG sensor.  The accelerometer is an ADXL335 triple-axis accelerometer that 

works with Arduino microcontrollers.  The PPG sensor, which is an open-source sensor, 
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and the accelerometer were linked to the Arduino Micro microcontroller that was 

connected to a computer for data transfer and storage.  Furthermore, Chapter 4 presents 

the hardware and software test setups for gathering the data, as well as the experiment 

results.  The next chapter compares short-range wireless technologies, such as ANT+ and 

Bluetooth, that are commonly used in health monitoring and mobile electronic devices.
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3 Wireless Technology

3.1 Short-Range Wireless Technology

Wireless communication is a major demand among consumer electronic devices.  

Some forms of communication are more popular than others, and some are specific in 

regard to certain applications.  However, common features that all wireless technologies 

provide are convenience, flexibility, and remote control.  Almost all consumer electronic 

devices today are compatible with one or more short-range wireless technologies.  

Choosing a particular wireless technology for a device depends on several factors such as 

range, data rate, complexity, environment, size, space, security, user experience, and other 

notable considerations like licensing fees.  A few of the popular short-range wireless 

technologies include radio-frequency identification (RFID), near-field communication 

(NFC), ANT+, and Bluetooth.  Each of these technologies consists of distinct networks.

3.1.1 Networks

Networks are formed by wireless communication over the air between multiple 

devices.  A wireless local area network (LAN) is a computer network that uses wireless 

connections for connecting network nodes [14].  LANs connect laptops and other 

portable devices in the local area, and they are designed for high data rates [15].  The 
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major standards for wireless LANs are defined in the IEEE 802.11 family, although 

smaller-scale standards such as Bluetooth exist [15].  Figure 3.1 illustrates the topology 

for a star wireless network.  
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Figure 3.1:  Star Wireless Network Topology

Although the slave units in Figure 3.1 cannot communicate to each other directly, 

they can communicate and transfer data through the master unit.  The star network 

configuration is one out of many, and other topologies, illustrated in Figure 3.2, include 

the ring, bus, tree, and mesh structures. 

Other short-range wireless networks include personal area networks (PANs) and 

body area networks (BANs), also known as body sensor networks (BSNs).  The IEEE 

802 standards committee mandates wireless PAN (WPAN), which includes a subset task 
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group that governs BANs [16], [17].
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Figure 3.2:  Network Topologies

A PAN, consisting of consumer devices, enables wireless communication with 

existing infrastructure networks [18].  The devices that typically create PANs, such as 

mobile phones, personal digital assistants, and laptops, have large batteries and powerful 

processors that can provide high data rates [18].  Figure 3.3 illustrates a wireless BAN 

with sensor nodes around the human body.
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Figure 3.3:  Wireless Body Area Network (BAN)

A BAN is a subset of PANs that relays body sensor information to a mobile phone 

or a remote server.  These sensor nodes monitor body signals and body movement.  

BANs enable remote health monitoring at a level of convenience and personal comfort.  

Multiple wireless communication standards and data-exchange technologies for the 

health field are detailed in the following sections.  Key features, such as power, range, 

and speed, are compared for each technology.



30

3.2 Wireless Technologies for Health Applications

The awareness of health monitoring has surged in recent years partly due to 

technological advancements in consumer devices.  As more attention regarding health 

and wellness emerges, the demand for monitoring physiological activity and body signals 

has increased.  Nowadays, the bond between wireless data exchange and health and 

wellness is inseparable.  Many wireless technologies are suitable for applications in 

health and fitness sectors. 

RFID is a widely used wireless technology that uses radio-frequency 

electromagnetic fields to transfer data.  The ability to transfer data lies in the 

identification process of using tags that are attached to the objects to be identified.  The 

signaling between a tag and a reader, which is the counterpart of a tag, is when data 

exchange occurs.  RFID has been used in health and medical applications for patient 

tracking and positioning.  This wireless technology is moving beyond the perception of 

being solely used as an asset tracker.  Instead, RFID is being viewed as a technology that 

can improve individual care by tracking vulnerable patients or staff in medical and health 

facilities [19].

Another wireless technology that is growing in popularity among consumer devices 

is NFC.  As an extension of RFID, NFC is a form of contactless communication that 

utilizes electromagnetic radio fields based on tags and readers.  Standardized in ISO/IEC 

18092 [20], NFC is interoperable with other wireless communication technologies. 



31

As its name indicates, NFC can only be used for short ranges of up to 10 

centimeters [21].  It is more suitable for access-verification applications in vehicles, 

offices, airports, stores, and theaters as a result of its range boundary.  As integration for 

this technology increases, the robustness of security becomes a major concern [21].

Although RFID and NFC are both widely used, their applications are limited.  Both 

technologies utilize active and passive tags.  The tradeoffs between the two types of tags 

are power consumption and range.   An active tag consumes more power and can receive 

and transmit data over greater distances, whereas the opposite is true for passive tags. 

In addition, the RFID and NFC tags are susceptible to electrostatic discharge 

(ESD).  Over a period of time, ESD can degrade the device that these technologies are 

integrated into.  Despite the drawbacks for certain applications, RFID and NFC are 

commonly used in medical fields and by health professionals [19]. 

Moreover, many health care and technology companies support ZigBee Health 

Care.  Detailed in [22], the IEEE 11073-10441 standard defines the set of protocols for 

personal health device communication by ZigBee networks [23].  ZigBee network is a 

mesh network based on the IEEE 802.15.4 standard for the low data rate WPANs (LR-

WPAN) [24].  There are slightly different variations of this network, including ZigBee 

PRO and ZigBee Smart Energy.  

Although ZigBee wireless technology is considered to have low power 

consumption, the complexity and power requirements do not make it acceptable for long 

term and unmaintained devices that run on limited power sources [25].  To combat the 
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power consumption issue, ZigBee and other technologies have started to support energy 

harvesting and energy-efficient mechanisms.  ZigBee PRO is optimized for low power 

consumption and has the ability to support large networks with thousands of devices.  

The quality of performance has led ZigBee to become a standard by a large part of the 

health care industry [24], [25].

Unlike the aforementioned technologies, the ANT protocol is a proprietary wireless 

technology for sports, fitness, and health sectors [27].  ANT+ is the low-power wireless 

standard built on top of the ANT protocol, and it evolved from the need to communicate 

wireless sensor data that run on limited power sources [27].  ANT is used extensively in 

sports and health monitoring systems.  ANT+ ensures that all devices are interoperable in 

a managed network, allowing reliable data exchange and transfer [27].  As future 

technology aims to implement BSNs, ANT+ has the potential to grow with new devices.

Bluetooth is a wireless technology standard that is most commonly found in 

consumer electronic devices today.  Bluetooth technology exchanges data over short 

distances, forming PANs.  One of the earliest applications of Bluetooth was the 

communication link between mobile phones and hands-free headsets.  Since then, 

Bluetooth has grown into many sectors and has been used to transmit health sensor data 

from medical devices to mobile phones and tele-health devices [28].  Bluetooth 

technology is suitable for connecting two devices that are nearby each other, such as a 

hands-free headset and a mobile phone.  Over the last two decades, Bluetooth technology 

has been improved to accommodate for the speed and power bottleneck.
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3.3 Bluetooth Standard

Bluetooth is a WPAN technology that operates on the 2.4 GHz industrial, scientific, 

and medical (ISM) radio band.  The maximum number of devices that Bluetooth can 

support in its point-to-point topology, also known as a piconet, is eight, one master and 

seven slaves [29].  The connection between devices is called a pairing, and each piconet 

in one network can be connected to seven slaves, allowing them to create their own 

network, and so on [28].  Thus, a large network of Bluetooth-enabled devices can 

communicate simultaneously, as illustrated in Figure 3.4. 
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Figure 3.4:  Bluetooth Piconet
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Bluetooth has been integrated in devices at a fast rate over the last decade, and 

many consumer electronics are compatible with this technology.  Due to the 

minimizations in device dimensions, power sources have been reduced in size, which 

imposes a need for consumer electronics to implement low-power and low-energy 

wireless technologies.

3.3.1 Frequency Spectrum

Bluetooth technology includes 79 frequency channels that are spaced at 1 MHz 

apart and have the ability of frequency-hopping.  The frequency band spreads from 2400 

MHz to 2483.5 MHz.  The initial format for frequency modulation was chosen to be 

Gaussian frequency-shift keying (GFSK).  To support higher data rates, Bluetooth version 

2.0 implemented phase-shift keying modulation.  However, Bluetooth version 3.0 did not 

achieve higher data rates by changing the modulation, but instead by working with the 

IEEE 802.11g physical layer [28].

For wireless technologies that share the ISM band, interferences and collisions are 

important issues on crowded frequencies.  Multiple technologies using the same 

frequency band results in a slower data-exchange rate.  However, the adaptive frequency-

hopping (AFH) mechanism was designed to reduce the amount of interferences and 

collisions.  AFH scans among the 79 frequencies at 1 MHz intervals to provide better 

performance interaction when other technologies are operating simultaneously [28]. 
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3.3.2 Range

Different from other short-range wireless technologies mentioned in Section 3.2, 

Bluetooth technology has various ranges that depend on the radio signal strength.  The 

Bluetooth Core Specification protocol defines a minimum range that must be adhered to 

[28].  The ranges for the different radio classes are defined in Table 3.1.

Class two radios are most commonly found in mobile devices, and class one radios 

are used primarily in industrial applications. 

Table 3.1:  Bluetooth Radio Class Versus Range [28] 
(Adapted from Bluetooth Basics)
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3.3.3 Power

Low power consumption is one of the most challenging aspects among the design 

of wireless technologies.  High data-exchange rates require an increase in power 

consumption.  Restrictions in the design layout, such as the form factor, limit the capacity 

of a power source that can be used as the power supply.  Bluetooth was designed for low-

power consumption, and the class two radios use 2.5 mW of power, equivalent to 4 dBm 
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[28], as listed in Table 3.2.

Table 3.2:  Bluetooth Class Versus Output Power [28]
(Adapted from Bluetooth Basics)
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Bluetooth Low Energy (BLE), also known as Bluetooth SMART or Bluetooth Ultra 

Low Power (ULP), is a feature of Bluetooth version 4.0 intended to power applications 

running off of a coin battery cell.  The current version of Bluetooth, version 4.1, extends 

version 4.0 devices to act as both a peripheral and as a hub [30].  Table 3.3 summarizes 

the data rates for different operations of version 4.1.

Table 3.3:  Bluetooth 4.1 Data Rates [30] 
(Adapted from Bluetooth Specification Version 4.1)
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For BLE, the data rates of 1 Mbps are attained on 37 frequency channels of 2 MHz 

spacing [30], and low power consumption between one-half and one-hundredth of the 
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power of the basic Bluetooth technology is implemented [28].

3.4 ANT Technology

ANT is a low-power proprietary protocol in the 2.4 GHz ISM band.  It was derived 

from the need to transfer running-distance data from a tiny device placed in a shoe to a 

local wearable device.  ANT supports scalable network topologies, illustrated in Figure 

3.5.  The supported network structures span from simple two-node networks to full-

complex point-to-multipoint communication networks [31].

Figure 3.5:  ANT Networks

The primary sector that implements ANT is the sports sector, specifically fitness 

and health monitoring sectors, where the update of information does not require data 
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transfer of more than a few times per second. 

3.4.1 Frequency Spectrum

The frequency spectrum that ANT technology supports spreads from 2400 MHz to 

2524 MHz.  Each channel operates on a single frequency, every 1 MHz apart unless 

otherwise specified by the application host [31].  The specific frequency band of 2457 

MHz is reserved for ANT+ devices [27].  Similar to the frequency-hopping mechanism 

that Bluetooth implements, ANT has the ability to switch the operating frequencies, 

improving the coexistence with other wireless devices, which is referred to as the 

frequency agility.  However, this functionality monitors channel performance and only 

changes operating frequencies when signal integrity drops below predefined values [31].

3.4.2 Range

The ANT protocol emphasizes ultra low power (ULP) because of the low data rate.  

The general message rates, which are the time periods between transmissions, span from 

0.5 Hz to 200 Hz for the basic rate.  In a burst transfer mode, the maximum data 

throughput of 20 Kbps to 60 Kbps is attained on the raw data rate of 1 Mbps depending 

on the ANT chip that is used [27].

Detailed in [32], ANT can support a range between 1 and 30 meters or reach 

kilometer distances depending on the topology and the number of nodes in the network.  
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The modules are designed to work for line-of-sight, and the range can be extended with 

external power amplifiers and antennas [27].

3.4.3 Power

The ANT protocol developed the low-power form factor needed to run off of a 

coin-sized battery [29].  To save power, the ANT protocol uses very short duty cycles and 

utilizes asynchronous transmission when required by the application.  Asynchronous 

transmission only occurs when there are new data to send, allowing the devices to be in a 

sleep mode for extended periods of time, drastically reducing the power consumption 

[31].  When the data rate changes to a burst transfer mode, the power consumption 

increases.  Similarly, a high duty search, which is when a slave unit searches for a master 

unit, consumes more power [31].

Each device has the ability to control the transmit power levels.  In addition, it is 

possible to decimate the message rate of the slave unit relative to the master unit, as long 

as the possibility of missed data packets is tolerable [31].  Table 3.4 summarizes the 

power level settings for various ANT devices.

The nRF24AP2 ANT chip, made by Nordic Semiconductor, possesses ultra low-

power consumption, down to an average current draw of 9 !A when operating in a simple 

broadcast mode [33].
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Table 3.4:  ANT Output Power Level Settings per Device [31] 
(Adapted from ANT Message Protocol )
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3.5 Other Technologies

Among technologies such as Bluetooth and ANT, lies another low-power, short-

range technology that was introduced in Section 3.2.  ZigBee creates highly reliable mesh 

networks that allow all participating devices to communicate with each other by acting as 

repeaters, as illustrated in Figure 3.2 [34].  Other supported network topologies include 

the star and the cluster tree.

Globally, the ZigBee raw data rate is limited to 250 Kbps on the unlicensed 2.4 

GHz ISM band.  In North America, the data rate is limited to 40 Kbps in the 915 MHz 

band [24].  ZigBee has 16 frequency channels that require 5 MHz of bandwidth in the 2.4 
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GHz band and 10 channels in the 915 MHz band [25], [35], which is a significant 

difference from the Bluetooth and ANT frequency spectrums.  The main objective was 

intended for short-range reliable operation, low cost, and low power consumption [26].

To minimize the interferences and collisions, ZigBee implements a “listen before 

you talk” strategy [35].  This technique in the 802.15.4 standard is known as carrier-

sense, multiple-access (CSMA).  The device first listens to see if the channel is busy.  

Only when the channel is not busy, the device begins to transmit messages.  Furthermore, 

the ZigBee device that initiates formation, known as the ZigBee Coordinator (ZC), is 

required to scan the available channels to automatically select the channel with the least 

interference [35]. 

The frequency spreading technique of the IEEE 802.15.4 standard, called direct-

sequence spread spectrum (DSSS), promotes coexistence in the ISM band.  DSSS 

implements a pseudo-random code sequence that modulates the basic carrier signal and 

encodes the data being transmitted [35].

Transmission distances range from 10 to 1600 meters depending on the power 

output and environmental conditions [36].  The low power consumption stems from the 

ability of powered devices to go to a sleep mode for hours or even days.  In addition, the 

duty cycle of ZigBee was designed to be very low.  Operation modes are beacon mode 

and non-beacon mode.  In beacon mode, the ZC wakes up other nodes to check for 

messages.  If there are no messages, the nodes and the ZC go back to a sleep mode [25].  

Thus, the device batteries can last for years.
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The ZigBee Health Care standard already supports medical devices such as pulse 

oximeters, blood pressure monitors, pulse monitors, weight scales, and glucose meters 

[34].  The benefits of the large mesh networks and sleep modes enable ZigBee to be one 

of the main contenders among the short-range wireless technologies.

3.6 Summary

Several short-range wireless technologies use the 2.4 GHz ISM band.  Each 

technology may have been created for specific applications initially, but they are now 

beginning to overlap and compete in similar sectors.  A few of the areas of overlap 

include home automation and control, fitness, medical, and more.  Nonetheless, each 

technology is dominant in the sector that it serves.  For example, Bluetooth is popular in 

consumer electronic devices, ANT in sports and fitness, and ZigBee in health and 

automation.  These technologies are varying their capabilities and features to reach out to 

new areas, and many of the variations include low-power modes, sleep modes, and burst 

modes.  Table 3.5 summarizes the technologies discussed in the previous sections. 
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Table 3.5:  Comparison of Short-Range Wireless Technologies 
(Adapted from Bluetooth Basics, ANT Message Protocol, and ZigBee Specifications)
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The comparison of wireless short-range technologies presented in this section 

considers important factors such as the frequency band, interference avoidance, range, 

and power.  Although they are similar in these features, each technology is superior in 

their own regard.  In comparison to ANT and ZigBee, Bluetooth may appear inferior due 

to its ability to manage only eight devices in one network.  Contrary to that belief, 

Bluetooth is a very popular short-range technology because it is reliable for a handful of 

devices and can combine many piconets in one network.  Moreover, ANT and ZigBee 

have many similar features with each other, but ANT consumes less power in 
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comparison.  Thus, devices running off of coin cells can last for many years.  Figure 3.6 

illustrates the range relationship between ANT, Bluetooth, and ZigBee.
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Figure 3.6:  Range Versus Data Rate for ANT, Bluetooth, and ZigBee Technologies

These three technologies partially overlap with each other, while each technology 

maintains their own network range.  WMAN is the abbreviation for wireless metropolitan 

area network.

It is notable to mention that the factors that were not presented, such as security 

level, complexity, size, space, user experience, and licensing fees, must also be 

considered for a thorough analysis of a wireless technology.  However, in the context of 

consumer mobile devices, the power attributes discussed in the previous sections are very 

significant.  Due to the limitations in device power-source size, power consumption is 

one of the most critical factors in the design and varies for each application.
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4 Methods
The previous chapter compared the short-range wireless technologies that are 

typically integrated in most commonly used consumer electronic devices.  The number of 

applications that the recovered heart rate signal can be used in is likely to increase if this 

signal can be wirelessly transmitted.  This chapter presents the hardware and software test 

setups for data acquisition, the analysis, the test results, and the summary.

4.1 Setup

The heart rate signal was measured by a PPG sensor for Arduino microcontrollers, 

known as the Pulse Sensor®, and is pictured in Figure 4.1. 

Figure 4.1:  Pulse Sensor Front
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The reference input to the adaptive filter was the accelerometer signal.  Both of the 

signals were inputs to the microcontroller that communicated to a computer by USB.  

The data were stored on a computer and processed by MATLAB.  Figure 4.2 illustrates 

the test setup configuration, in which the accelerometer was placed next to the PPG 

sensor on the wrist that is depicted in Figure 2.6.  Both of the signals were inputs to the 

microcontroller that transmitted data to a computer.

Figure 4.2:  Setup Configuration

4.1.1 Hardware

The PPG sensor used an ambient light sensor made by Avago®, with a peak 

spectral response between 500 nm and 600 nm.  For the optimum results, the PPG sensor 

has integrated into it a green Super Bright LED from Kingbright®, a passive resistor-

capacitor filter, an operational amplifier, and a few other components.  The PPG sensor 
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was optimized for both 3 V and 5 V.  Figure 4.3 pictures the back of the Pulse Sensor, 

which contains its circuit components.   

Figure 4.3:  Pulse Sensor Back
 

The pulse sensor integrated a Microchip MCP6001 low-power operational 

amplifier of approximately 4.5 mA that has a gain-bandwidth product of 1 MHz.  Thus, 

the gain of the signal depended on the frequency range of the heart rate.  Heart rate is 

measured in beats per minute (BPM) and can be roughly between 40 and 200 BPM, 

depending on the individual and their level of activity and health condition.  The BPM 

range corresponds to a signal frequency of 0.66 Hz and 3.3 Hz.  Therefore, the gain of the 

operational amplifier, calculated directly from the gain-bandwidth product, was between 

100 dB and 120 dB for the heart frequency range.

The accelerometer block, illustrated in Figure 4.2, provides analog output signals 
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proportional to the acceleration that it senses.  The accelerometer has a small form factor 

of 4 mm by 4 mm by 1.45 mm and consumes low power, 350 !A.  The magnitude of 

acceleration can be measured as a result of any motion, shock, or vibration. The 

bandwidth of the accelerometer signal can be adjusted by adding capacitors across the 

output pins and the ground reference.  Equation 4.1 defines how to set the capacitor value 

of the bandwidth for each axis signal.   

F!3dB = 5µF /C(x,y,z)                                                    (4.1)

The capacitor implements low-pass filtering for antialiasing and noise reduction.  

To achieve a 3 dB bandwidth of 5 Hz, capacitors with values of 1 !F were selected.  

Figure 4.4 pictures the front of the accelerometer and the direction of each axis.  

Figure 4.4:  Accelerometer Front

After viewing the results and reading product reviews, it was discovered that the X 

and Y pins were switched than what was marked on the front of the accelerometer.  The 
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X, Y, and Z accelerometer outputs and the heart rate signal were four inputs to the 

Arduino microcontroller.

The microcontroller board was an Arduino Micro with an Atmel ATmega32u4 

processor, depicted in Figure 4.5.  The primary considerations for choosing the 

microcontroller were form factor and software compatibility.

Figure 4.5:  Arduino Micro Front

The microcontroller circuit board dimensions are 4.8 cm by 1.77 cm, which allows 

for easy placement on a breadboard or an electronic module holder.  The Arduino-based 

microcontrollers allow for serial communication with a computer over USB, appear as 

virtual COM ports to software on computers, and are easily programmable with Arduino 

software.

The three outputs of the accelerometer and the single output of the Pulse Sensor 

were four analog inputs to the microcontroller.  The analog inputs were passed through a 

10-bit analog-to-digital converter (ADC) that was integrated into the microcontroller 
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analog channels.  The ADC provides 210, or 1024, different values to represent the analog 

voltage as a decimal number.  The ADC equally divides 1024 by the full swing of the 

input voltage, also known as the full-scale range. 

The default voltage that powered the Pulse Sensor was 5 V.  However, the upper 

end of the full-scale range was changed from 5 V by applying an external voltage to the 

AREF pin on the microcontroller and by utilizing the analogReference() function in 

Arduino software.  An external voltage of 3.3 V supplied power to the Pulse Sensor.

4.1.2 Software

The Arduino software received the transfer of the analog signals to the computer.  

The Arduino integrated development environment (IDE) is an open-source program 

environment, written in Java, and made to work across all Arduino microcontroller 

platforms.  The Arduino IDE contains built-in libraries, functions, and example code that 

is compatible with any Arduino microcontroller.

The Pulse Sensor, used as the PPG sensor in this experiment, was delivered with 

programming code that is compatible with the Arduino Uno microcontroller.  The open-

source code for the Pulse Sensor was modified to be compatible with the Atmega32u4 

processor on the Arduino Micro microcontroller.  

The software code was programmed to sample the heart rate and the accelerometer 

signals at 125 Hz, or every 16 milliseconds.  The signals were in the range of 0.66 Hz to 
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3.3 Hz.  Thus, the sampling rate obeyed the Nyquist criterion, such that oversampling 

occurred at over 20 times the Nyquist sampling rate of 6.6 Hz.  The digital values of the 

analog outputs were transferred to the computer through USB ports and processed in 

MATLAB® R2010b.

MATLAB is a very powerful computing tool that has the ability to operate on large 

data sets.  The basic element of MATLAB is the matrix, and mathematical operations, 

such as cross-products, dot-products, and determinants, are built-in functions of the 

language.  All recorded data sets from this experiment were passed through adaptive 

filters in MATLAB.  The MATLAB graphical user interface allowed for ease of complex 

computation and data plotting.

4.2 Data Acquisition

The PPG sensor and accelerometer signals were wired to the microcontroller analog 

inputs.  The four signals were passed through ADCs that quantized the voltage levels to 

digital values in the range of 0 to 1024.  The values for each signal were transmitted to 

the Arduino serial monitor and saved in a text file for processing.

Processing the signals required importing the recorded data from the text file into 

the MATLAB workspace.  It is important to note the condition of the heart rate signal 

before processing the distorted signal.  The heart rate signal, illustrated in Figure 4.6, 

clearly shows the peaks of each pulse in a six-second window.
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Figure 4.6:  Wrist PPG Heart Rate

Seven noticeable pulses were recorded when there was no body movement.  The 

Arduino IDE controlled the PPG sensor to maintain a mean voltage of VDD/2, where 

VDD was 3.3 V.  The ADC midpoint value was 512 and each peak above that value 

corresponded to one heart pulse.

The heart rate signal was distorted during body movement, as a result of ISI.  The 

anatomy of the wrist also affected the signal integrity during body movement.  The 

reconstruction of the heart rate signal was possible with the implementation of adaptive 

filters.  The interference-cancelling adaptive filters used the reference input to minimize 

noise from the primary input and to guide the output to the correct values as if the 

primary input was not distorted to begin with.  The heart rate signal during body 
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movement is illustrated in Figure 4.7.
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Figure 4.7:  PPG Wrist HR During Movement

The heart rate signal was recorded for roughly 45 seconds during four distinct 

periods of time.  The four distinct periods include no movement and movement in each 

axial direction alone that are roughly 10 seconds each.  It is clearly visible in Figure 4.7 

that the heart rate signal was distorted during arm movement in the X, Y, and Z 

directions, as this signal should ideally resemble the characteristics of those in Figure 4.6. 

The measurement of the heart rate signal during body movement was not possible 

without a supplemental input or additional signal processing.  The adaptive filters were 

applied to the distorted signal in MATLAB for signal reconstruction.  The accelerometer 

signals during body movement are illustrated in Figure 4.8.
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Figure 4.8:  Accelerometer Signals During Movement

 The three accelerometer signals during the last three distinct time periods were 

unique in comparison to each other.  Each of the three signals in each of the last three 

distinct periods were used as the reference input to the adaptive filter, one at a time.  The 

adaptive filter produced a system output for each axial direction.

The heart rate and accelerometer signals were superposed in one MATLAB plot, 

illustrated in Figure 4.9, to show their relationship in each window of time.
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Figure 4.9:  Accelerometer Signals and Wrist HR During Movement

The axis signal, corresponding to the direction of movement, had a high correlation 

to the heart rate signal in that respective window of time.  For example, the X-axis signal 

was closely related to the heart rate signal when movement in the X direction occurred.  

Each individual accelerometer signal was used as the reference input to the adaptive 

filters, providing nine unique data sets to use as the reference input. 

4.3 LMS Adaptive Filter

The LMS adaptive filter was applied to nine sets of data to produce nine unique 

system outputs.  The nine sets correspond to the X, Y, and Z axes in the last three time 

periods, illustrated in Figure 4.9. 
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The system output is the error signal from the adaptive filter, depicted in Figure 2.2.  

The filter output for the accelerometer X-axis with movement in the X direction is shown 

in Figure 4.10.  It is important to note that the signals were superposed on the same plot 

and reduced to unit amplitude for signal processing.
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Figure 4.10:  LMS Output for X-Axis in X Direction

The adaptive filter was tested on different step-sizes ! and filter lengths M, with 

only one parameter changed per test.  The step-size ! and the filter length M influenced 

the filter coefficients or tap weights, as referred to in Chapter 2.  The step-sizes of 0.008, 

0.08, and 0.8 were used to compare the system output to the value of the step-size.  The 

smaller the step-size was, the more time it took for the output to converge.  Conversely, 

the larger the step-size was, the greater the jump was in the system output.  A series of 
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tests can provide a reasonable value for the step-size.  Nonetheless, it is favorable to have 

a slower convergence rate and a more accurate output than a fluctuating and a noisy 

output due to a large step-size value.

The filter order length is another critical factor in the performance of the adaptive 

filter.  Filter order lengths of 10 and 100 with the same step-sizes were tested to compare 

differences in the system output.  The greater the filter length was, the more complex the 

computations were.  A series of tests may provide a more accurate filter order length for 

the optimum system output.  The filter output for the accelerometer Y-axis with 

movement in the X direction is shown in Figure 4.11, and the filter output for the 

accelerometer Z-axis with movement in the X direction is shown in Figure 4.12.
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Figure 4.11:  LMS Output for Y-Axis in X Direction
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Figure 4.12:  LMS Output for Z-Axis in X Direction

In the time period for movement in the X direction, it did not appear that the heart 

rate was fully reconstructed in any of the three system outputs.  The different step-sizes 

and filter order lengths reduced the noise content of the primary input signal, but the 

peaks of the heart rate signals in these results were not as clearly visible as they were 

when there was no body movement, as in Figure 4.6.

The accelerometer signals for movement in the Y direction were tested with the 

same LMS adaptive filter as they were for movement in the X direction.  Based on the 

results, it appears that the correlations between the accelerometer heart signal were higher 

than they were for movement in the X direction.  The filter output for the accelerometer 

X-axis with movement in the Y direction is shown in Figure 4.13, and the filter output for 

the accelerometer Y-axis with movement in the Y direction is shown in Figure 4.14.
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Figure 4.13:  LMS Output for X-Axis in Y Direction
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Figure 4.14:  LMS Output for Y-Axis in Y Direction
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The correlation for the X and Y accelerometer signals with movement in the Y 

direction appeared to be higher than any of the same signals with movement in the X 

direction.  There was a clear time lag between the accelerometer signals and the heart 

rate.  Intuitively, this lag implied that there was a change in the heart rate after some 

movement had occurred.  The heart rate was partially reconstructed in Figure 4.13 and 

Figure 4.14, and the BPM calculations may be possible with additional signal processing.  

The filter output for the accelerometer Z-axis with movement in the Y direction is shown 

in Figure 4.15. 
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Figure 4.15:  LMS Output for Z-Axis in Y Direction

The system output appeared to have some partial reconstruction, but it was also not 

fully reconstructed.  The large step-size of 0.8 produced a system output that had many 
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fluctuations.  This is an undesired effect of adaptive filters of any kind.  The filter output 

for the accelerometer X-axis with movement in the Z direction is shown in Figure 4.16, 

and the filter output for the accelerometer Y-axis with movement in the Z direction is 

shown in Figure 4.17. 
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Figure 4.16:  LMS Output for X-Axis in Z Direction

The system output for the X and Y axes did not provide reconstruction of the heart 

rate signal.  The peaks and valleys of the system output did not line up to a reconstructed 

signal.  The filter output for the accelerometer Z-axis with movement in the Z direction is 

shown in Figure 4.18.
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Figure 4.17:  LMS Output for Y-Axis in Z Direction
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Figure 4.18:  LMS Output for Z-Axis in Z Direction
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The system output for the Z-axis was similar to the system outputs for the X and Y 

axes.  There was no reconstruction of the heart rate signal, and it would be very difficult 

for any subsequent signal processing to recover the distorted signal.  Of the nine data 

sets, sets with the system outputs with movement in the Y direction yielded the most 

acceptable results, although the heart rate signal was only partially reconstructed.  The 

next section used the same nine data sets on the RLS adaptive filter.

4.4 RLS Adaptive Filter

The RLS adaptive filter is computationally more complex than the LMS adaptive 

filter.  However, the tradeoff for the increased complexity is the improved accuracy.  The 

nine data sets that were used on the LMS adaptive filter were also used on the RLS 

adaptive filter for comparison between the two filter types.  

The parameters for the RLS adaptive filter included the filter order length, the 

forgetting factor, and the inverse covariance matrix.  These three parameters are outlined 

in Chapter 2; M is the filter order length, ! is the forgetting factor, and P(0) is the inverse 

covariance matrix initialization as defined in Table 2.2.  The filter output for the 

accelerometer X-axis with movement in the X direction is shown in Figure 4.19.  The 

system outputs were varied by changing the parameters, one at a time.  The forgetting 

factor of values 0.99, 0.49, and 0.09 were used.  The RLS adaptive filter in this 

experiment used an upper value of 0.99 and a lower value of 0.09 for the forgetting 

factor.
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Figure 4.19:  RLS Output for X-Axis in X Direction

When the forgetting factor ! is zero, the RLS adaptive filter has no memory.  

Conversely, when the forgetting factor ! is one, the RLS adaptive filter has an infinite 

memory.  This means that the current value that is being processed by the adaptive filter 

contains information on the previous output values from the very instant the algorithm 

starts processing the data.  It is important to note that infinite memory is very difficult to 

implement in reality and a ! value close to one, but not equal to one, is more realistic.  

The system output was very noisy with a forgetting factor of 0.09 and a filter order 

length of 10.  This implied that the lack of memory of the previous output values caused 

large overcompensations in the current value that was being processed by the adaptive 

filter.  The filter outputs in Figure 4.19, without the two smaller forgetting factors of 0.09 
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and 0.49, are shown in Figure 4.20.
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Figure 4.20:  RLS Output for X-Axis in X Direction Without Smaller Forgetting Factors

The system outputs that had a large forgetting factor of 0.99 were more stable than 

the system outputs that had a smaller forgetting factor.  This was due to the fact that the 

RLS adaptive filter retained more information with a larger forgetting factor.  In addition, 

the differences between the two filter outputs were their filter order lengths.  The output 

with a greater filter order length minimized the error more than the output with a smaller 

filter order length.  The filter outputs for the accelerometer Y-axis with movement in the 

X direction are shown in Figure 4.21, and the filter outputs for the accelerometer Z-axis 

with movement in the X direction are shown in Figure 4.22.
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Figure 4.21:  RLS Output for Y-Axis in X Direction
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Figure 4.22:  RLS Output for Z-Axis in X Direction
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The filter outputs for three data sets were very similar to each other with movement 

in the X direction.  The primary and reference inputs to the adaptive filter were not highly 

correlated with each other, which led to poor results.  The RLS adaptive filter did not 

successfully reconstruct the heart rate signal.  Although the filter output in Figure 4.20 

minimized the error, the BPM calculation requires additional signal processing.

With movement in the Y direction, the filter outputs for the accelerometer X-axis 

are shown in Figure 4.23, the filter outputs for the accelerometer Y-axis are shown in 

Figure 4.24, and the filter outputs for the accelerometer Z-axis are shown in Figure 4.25.  

The outputs are the results of forgetting factors equal to 0.99, as the results of lower 

forgetting factors had poor performance and were not plotted in the following tests.

!" !# !$ %& %! %"

&'"

&'!

&

&'!

&'"

()*+,-./0.1

2
3
45
678
-)

9:63;:</;,-/=)>):),*)/?,487./>+:/=@(/2-;476A)/B657):/>+:/C+A)3),7./6,/D/E6:)*76+,

 

 

F 2G6.
H:6.7/I=

!" !# !$ %& %! %"

&'"

&'!

&

&'!

&'"

()*+,-./0.1

2
3
45
678
-)

=@(/2-;476A)/B657):/J::+:/>+:/F 2G6./2**)5):+3)7):/A.'/H:6.7/I=/

 

 

@;3K-;L&'MMN/CLO&
@;3K-;L&'MMN/CLO&&

Figure 4.23:  RLS Output for X-Axis in Y Direction
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Figure 4.24:  RLS Output for Y-Axis in Y Direction
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Figure 4.25:  RLS Output for Z-Axis in Y Direction
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The results for the filter outputs in the Y direction show that the filter partially 

reconstructed the heart rate signal.  Additional signal processing is required to calculate 

the heart rate BPM.  Because there was high correlation between the primary and 

reference inputs, the filter outputs for large forgetting factors produced acceptable results.  

Three data sets in the Y direction, in comparison to the first three data sets, provided 

results with more potential for signal recovery. 

With movement in the Z direction, the filter outputs for the accelerometer X-axis  

are shown in Figure 4.26, the filter outputs for the accelerometer Y-axis are shown in 

Figure 4.27, and the filter outputs for the accelerometer Z-axis are shown in Figure 4.28. 
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Figure 4.26:  RLS Output for X-Axis in Z Direction
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Figure 4.27:  RLS Output for Y-Axis in Z Direction
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Figure 4.28:  RLS Output for Z-Axis in Z Direction
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The results for the RLS adaptive filter with movement in the Z direction were poor.  

The reason for this was because the primary and reference inputs were not correlated 

closely enough to each other.  The signal integrity of the filter outputs was very poor.  

The filter outputs did not contain meaningful information and they lacked sufficient 

peaks in the time frame required to calculate the heart rate BPM.  The heart rate could not 

be calculated from the filter outputs in any of the last three data sets with movement in 

the Z direction. 

4.5 Summary

The LMS and RLS adaptive filters were applied to nine unique sets of data.  Each 

set provided the filter outputs of the primary and the reference signals, which were the 

heart rate signal and the accelerometer signals, respectively.  The previous sections 

presented the results of the adaptive filters for each of the nine data sets. 

The LMS adaptive filter is computationally less expensive than the RLS adaptive 

filter.  In contrast, the RLS adaptive filter minimizes the error quicker than the LMS 

adaptive filter.  The two filters provided somewhat acceptable results in a few of the data 

sets, where acceptable results imply that the heart rate was partially reconstructed or 

could have been reconstructed with additional signal processing. 

The data sets with movement in the Y direction provided the best results.  The high 

correlation between the primary and reference inputs allowed the filter outputs to recover 
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the heart rate signal partially.  The remaining data sets might have had the capabilities of 

reconstruction had inputs been more closely correlated with each other. 

In comparison, the RLS filter outputs reconstructed the heart rate signal more 

accurately than the LMS filter outputs did.  The reasons for this rely solely on the RLS 

algorithm and its complexity.  Nonetheless, the RLS adaptive filter requires more 

processing power than the LMS adaptive filter to achieve the smaller error.  The decision 

of which of the two adaptive filters to use is defined by the prioritization of the filter 

characteristics, as presented in Chapter 2.  
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5 Conclusions
Health and fitness awareness has continued to grow and expand with the new trend 

of wearable devices.  One of the more important topics in this scope is the heart rate 

conditioning.  Among other biological signals that can be monitored in the human body, 

the heart rate can reveal considerable insight regarding one’s health. 

The number of calories expended in one day can be calculated accurately based on 

the heart rate.  Although it is possible to accurately obtain this number from sensors 

attached to fitness machines or chest straps, these methods can be cumbersome for long 

and continuous periods of time.  Hence, the continuous and non-invasive method of PPG 

for acquiring the heart rate is attractive for applications in wearable devices.

In addition, short-range wireless technologies were explored for heart rate data 

communication.  The transmission of heart rate data to mobile devices provides more 

versatility in what can be done with the data, such as being stored in an digital fitness 

journal to be reviewed at a later time.  There are three ideal short-range wireless 

technologies for the heart rate data transmission.  Bluetooth, ANT, and ZigBee provide 

strong features that would be considerable for the findings of this study.

Furthermore, wrist PPG is appealing because it can non-invasively measure one of 

the most critical biological signals in the human body from low-power LEDs, as opposed 

to sensors that have large form factors and are likely to consume more power.  The only 

setback with the PPG method are motion artifacts as a result of body movement and how 

the heart rate signal becomes distorted.
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The distorted heart rate signal can be processed digitally and passed through an 

adaptive filter with a reference input.  The reconstruction of the heart rate signal directly 

depends on the correlation between the desired heart rate signal and the reference signal.  

The heart rate signal from the wrist PPG method suffers from low amplitude, which 

impacts the ability of the adaptive filters to reconstruct the distorted signal.

5.1 Future Work

The low amplitude heart rate pulses from this wrist PPG method significantly 

impair the ability of the adaptive filter to fully reconstruct the distorted signal.  The low 

amplitude was a result of the combination of anatomy of the wrist and the consequences 

of light reflection and absorption in the tissue and skin during body movement.

The potential to amplify the wrist PPG signal is significant.  There are various 

choices of LEDs that can be used to measure the PPG signal.  The wavelengths of the 

LEDs may have different effects on the reflection and absorption of light by the 

hemoglobin, which can lead to higher peak-to-peak amplitudes and correlations with 

other reference signals. 

The partial reconstruction of the heart rate signal with the most commonly used 

adaptive filters indicates that further testing can yield improved results.  Other filters have 

been compared to the LMS and RLS adaptive filters and yield similar or better results. 

Kalman filters in [12], [13] proved to be successful and have potential to produce 

improvements on the experiment conducted in this study. 
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Appendix A: MATLAB Code

 LMS

%LMS Adaptive Filter
close all
%
% ***Ranges***
% No Movement = (21, 1242)
% X Direction = (1284, 2527)
% Y Direction = (2696, 3907)
% Z Direction = (4044, 5189)
 
 
start= 1284; % Start index for Y direction
stop = 2527; % End index for Y direction
 
accel=time_arr((start:stop),3); %3 for X axis, 4 for Y axis and 5 

for z axis
hr=time_arr((start:stop),2); %2 for HR
 
% Normalized Unit Amplitude
hr=(hr-mean(hr));
accel=(accel-mean(accel));
hr=hr.*(3/1024);
accel=accel.*(6/1024);
 
step=0.008;
order=10;
 
step1=0.08;
order1=10;
 
step2=0.8;
order2=10;
 
step3=0.008;
order3=100;
 
LMS=adaptfilt.lms(order, step);
[out, error]=filter(LMS,accel,hr);
 
LMS1=adaptfilt.lms(order1, step1);
[out1, error1]=filter(LMS1,accel,hr);
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LMS2=adaptfilt.lms(order2, step2);
[out2, error2]=filter(LMS2,accel,hr);
 
LMS3=adaptfilt.lms(order3, step3);
[out3, error3]=filter(LMS3,accel,hr);
 
% Accelerometer X axis 
figure
subplot(2,1,1)
plot(time_arr((start:stop),1),accel,'r',...
     time_arr((start:stop),1),hr,'b')
    hold on; legend('X Axis','Wrist HR'); legend

('Location','NorthWest'); title('Primary and Reference Inputs for LMS 
Adaptive Filter for Movements in X Direction','Fontsize',16)

    xlabel('milliseconds mS','Fontsize',16);ylabel
('Amplitude','Fontsize',16);

subplot(2,1,2)
plot(time_arr((start:stop),1),error,'b',...
     time_arr((start:stop),1),error1,'r');
 hold on;
    plot(time_arr((start:stop),1),error2, 'Color',[0 0.5 0])
    hold on;
    plot(time_arr((start:stop),1),error3, 'Color',[1 0.5 0])
    hold on; legend('Error(System Output) for step=0.008, 

M=10','Error(System Output) for step=0.08, M=10','Error(System Output) 
for step=0.8, M=10','Error(System Output) for step=0.008, M=100'); 

    legend('Location','SouthWest'); 
    title('LMS Adaptive Filter Error for X-Axis Accelerometer vs. 

Wrist HR ','Fontsize',16)
    xlabel('milliseconds mS','Fontsize',16);ylabel

('Amplitude','Fontsize',16);
 
 % Accelerometer Y axis
 accel=time_arr((start:stop),4); %3 for x axis, 4 for y axis and 5 

for z axis
 accel=(accel-mean(accel));
 accel=accel.*(6/1024);
 
LMS=adaptfilt.lms(order, step);
[out, error]=filter(LMS,accel,hr);
 
LMS1=adaptfilt.lms(order1, step1);
[out1, error1]=filter(LMS1,accel,hr);
 
LMS2=adaptfilt.lms(order2, step2);
[out2, error2]=filter(LMS2,accel,hr);
 
LMS3=adaptfilt.lms(order3, step3);
[out3, error3]=filter(LMS3,accel,hr);
 
 figure
 subplot(2,1,1)
 plot(time_arr((start:stop),1),accel,'r',...
     time_arr((start:stop),1),hr,'b')
    hold on; legend('Y Axis','Wrist HR'); legend
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('Location','NorthWest'); title('Primary and Reference Inputs for LMS 
Adaptive Filter for Movements in X Direction','Fontsize',16)

    xlabel('milliseconds mS','Fontsize',16);ylabel
('Amplitude','Fontsize',16);

subplot(2,1,2)
plot(time_arr((start:stop),1),error,'b',...
     time_arr((start:stop),1),error1,'r');
 hold on;
    plot(time_arr((start:stop),1),error2, 'Color',[0 0.5 0])
    hold on;
    plot(time_arr((start:stop),1),error3, 'Color',[1 0.5 0])
    hold on; legend('Error(System Output) for step=0.008, 

M=10','Error(System Output) for step=0.08, M=10','Error(System Output) 
for step=0.8, M=10','Error(System Output) for step=0.008, M=100'); 

    legend('Location','SouthWest'); 
    title('LMS Adaptive Filter Error for Y-Axis Accelerometer vs. 

Wrist HR ','Fontsize',16)
    xlabel('milliseconds mS','Fontsize',16);ylabel

('Amplitude','Fontsize',16);
   
    
 % Accelerometer Z axis
 accel=time_arr((start:stop),5); %3 for x axis, 4 for y axis and 5 

for z axis
 accel=(accel-mean(accel));
 accel=accel.*(6/1024);
 
LMS=adaptfilt.lms(order, step);
[out, error]=filter(LMS,accel,hr);
 
LMS1=adaptfilt.lms(order1, step1);
[out1, error1]=filter(LMS1,accel,hr);
 
LMS2=adaptfilt.lms(order2, step2);
[out2, error2]=filter(LMS2,accel,hr);
 
LMS3=adaptfilt.lms(order3, step3);
[out3, error3]=filter(LMS3,accel,hr);
 
 figure
 subplot(2,1,1)
 plot(time_arr((start:stop),1),accel,'r',...
     time_arr((start:stop),1),hr,'b')
    hold on; legend('Z Axis','Wrist HR'); legend

('Location','NorthWest'); title('Primary and Reference Inputs for LMS 
Adaptive Filter for Movements in X Direction','Fontsize',16)

    xlabel('milliseconds mS','Fontsize',16);ylabel
('Amplitude','Fontsize',16);

subplot(2,1,2)
plot(time_arr((start:stop),1),error,'b',...
     time_arr((start:stop),1),error1,'r');
 hold on;
    plot(time_arr((start:stop),1),error2, 'Color',[0 0.5 0])
    hold on;
    plot(time_arr((start:stop),1),error3, 'Color',[1 0.5 0])
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    hold on; legend('Error(System Output) for step=0.008, 
M=10','Error(System Output) for step=0.08, M=10','Error(System Output) 
for step=0.8, M=10','Error(System Output) for step=0.008, M=100'); 

    legend('Location','SouthWest'); 
    title('LMS Adaptive Filter Error for Z-Axis Accelerometer vs. 

Wrist HR ','Fontsize',16)
    xlabel('milliseconds mS','Fontsize',16);ylabel

('Amplitude','Fontsize',16);

 RLS

%RLS Adaptive Filter
close all
% ***Ranges***
% No Movement = (21, 1242)
% X Direction = (1284, 2527)
% Y Direction = (2696, 3907)
% Z Direction = (4044, 5189)
 
 
start= 4044; % Start index for X direction
stop = 5189; % End index for X direction
 
accel=time_arr((start:stop),3); %3 for X axis, 4 for Y axis and 5 

for z axis
hr=time_arr((start:stop),2); %2 for desired HR
 
% Normalized Unit Amplitude
hr=(hr-mean(hr));
accel=(accel-mean(accel));
hr=hr.*(3/1024);
accel=accel.*(6/1024);
 
order=10;
ff=0.99;
incov=10*eye(order);
 
order1=10;
ff1=0.49;
incov1=10*eye(order1);
 
order2=10;
ff2=0.09;
incov2=10*eye(order2);
 
order3=100;
ff3=0.99;
incov3=10*eye(order3);
 
RLS=adaptfilt.rls(order,ff,incov);
[rls_out, rls_error]=filter(RLS,accel,hr);
 
RLS1=adaptfilt.rls(order1,ff1,incov1);
[rls_out1, rls_error1]=filter(RLS1,accel,hr);
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RLS2=adaptfilt.rls(order2, ff2,incov2);
[rls_out2, rls_error2]=filter(RLS2,accel,hr);
 
RLS3=adaptfilt.rls(order3, ff3,incov3);
[rls_out3, rls_error3]=filter(RLS3,accel,hr);
 
% Accelerometer X axis 
figure
subplot(2,1,1)
plot(time_arr((start:stop),1),accel,'r',...
     time_arr((start:stop),1),hr,'b')
    hold on; legend('X Axis','Wrist HR'); legend

('Location','NorthWest'); title('Primary and Reference Inputs for RLS 
Adaptive Filter for Movements in Z Direction','Fontsize',16)

    xlabel('milliseconds mS','Fontsize',16);ylabel
('Amplitude','Fontsize',16);

subplot(2,1,2)
plot(time_arr((start:stop),1),rls_error,'b',...
     time_arr((start:stop),1),rls_error1,'r');
 hold on;
    plot(time_arr((start:stop),1),rls_error2, 'Color',[0 0.5 0])
    hold on;
    plot(time_arr((start:stop),1),rls_error3, 'Color',[1 0.5 0])
    hold on; legend('Error(System Output) for lambda=0.99, 

M=10','Error(System Output) for lambda=0.49, M=10','Error(System 
Output) for lambda=0.09, M=10','Error(System Output) for lambda=0.99, 
M=100'); 

    legend('Location','SouthWest'); 
    title('RLS Adaptive Filter Error for X-Axis Accelerometer vs. 

Wrist HR ','Fontsize',16)
    xlabel('milliseconds mS','Fontsize',16);ylabel

('Amplitude','Fontsize',16);
    ylim([-0.6 0.4])
 
 % Accelerometer Y axis
 accel=time_arr((start:stop),4); %3 for x axis, 4 for y axis and 5 

for z axis
 accel=(accel-mean(accel));
 accel=accel.*(6/1024);
 
RLS=adaptfilt.rls(order,ff,incov);
[rls_out, rls_error]=filter(RLS,accel,hr);
 
RLS1=adaptfilt.rls(order1,ff1,incov1);
[rls_out1, rls_error1]=filter(RLS1,accel,hr);
 
RLS2=adaptfilt.rls(order2, ff2,incov2);
[rls_out2, rls_error2]=filter(RLS2,accel,hr);
 
RLS3=adaptfilt.rls(order3, ff3,incov3);
[rls_out3, rls_error3]=filter(RLS3,accel,hr);
 
 figure
 subplot(2,1,1)
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 plot(time_arr((start:stop),1),accel,'r',...
     time_arr((start:stop),1),hr,'b')
    hold on; legend('Y Axis','Wrist HR'); legend

('Location','NorthWest'); title('Primary and Reference Inputs for RLS 
Adaptive Filter for Movements in Z Direction','Fontsize',16)

    xlabel('milliseconds mS','Fontsize',16);ylabel
('Amplitude','Fontsize',16);

subplot(2,1,2)
plot(time_arr((start:stop),1),rls_error,'b',...
     time_arr((start:stop),1),rls_error1,'r');
 hold on;
    plot(time_arr((start:stop),1),rls_error2, 'Color',[0 0.5 0])
    hold on;
    plot(time_arr((start:stop),1),rls_error3, 'Color',[1 0.5 0])
    hold on; legend('Error(System Output) for lambda=0.99, 

M=10','Error(System Output) for lambda=0.49, M=10','Error(System 
Output) for lambda=0.09, M=10','Error(System Output) for lambda=0.99, 
M=100'); 

    legend('Location','SouthWest'); 
    title('RLS Adaptive Filter Error for Y-Axis Accelerometer vs. 

Wrist HR ','Fontsize',16)
    xlabel('milliseconds mS','Fontsize',16);ylabel

('Amplitude','Fontsize',16);
   ylim([-0.6 0.4])
    
 % Accelerometer Z axis
 accel=time_arr((start:stop),5); %3 for x axis, 4 for y axis and 5 

for z axis
 accel=(accel-mean(accel));
 accel=accel.*(6/1024);
 
RLS=adaptfilt.rls(order,ff,incov);
[rls_out, rls_error]=filter(RLS,accel,hr);
 
RLS1=adaptfilt.rls(order1,ff1,incov1);
[rls_out1, rls_error1]=filter(RLS1,accel,hr);
 
RLS2=adaptfilt.rls(order2, ff2,incov2);
[rls_out2, rls_error2]=filter(RLS2,accel,hr);
 
RLS3=adaptfilt.rls(order3, ff3,incov3);
[rls_out3, rls_error3]=filter(RLS3,accel,hr);
 
 figure
 subplot(2,1,1)
 plot(time_arr((start:stop),1),accel,'r',...
     time_arr((start:stop),1),hr,'b')
    hold on; legend('Z Axis','Wrist HR'); legend

('Location','NorthWest'); title('Primary and Reference Inputs for RLS 
Adaptive Filter for Movements in Z Direction','Fontsize',16)

    xlabel('milliseconds mS','Fontsize',16);ylabel
('Amplitude','Fontsize',16);

subplot(2,1,2)
plot(time_arr((start:stop),1),rls_error,'b',...
     time_arr((start:stop),1),rls_error1,'r');
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 hold on;
    plot(time_arr((start:stop),1),rls_error2, 'Color',[0 0.5 0])
    hold on;
    plot(time_arr((start:stop),1),rls_error3, 'Color',[1 0.5 0])
    hold on; legend('Error(System Output) for lambda=0.99, 

M=10','Error(System Output) for lambda=0.49, M=10','Error(System 
Output) for lambda=0.09, M=10','Error(System Output) for lambda=0.99, 
M=100'); 

    legend('Location','SouthWest'); 
    title('RLS Adaptive Filter Error for Z-Axis Accelerometer vs. 

Wrist HR ','Fontsize',16)
    xlabel('milliseconds mS','Fontsize',16);ylabel

('Amplitude','Fontsize',16);
ylim([-0.6 0.4])
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Appendix B: Pulse Sensor Schematic 
 The PPG sensor that was used in this work is depicted in Figure B.1. The sensor is 

made up of an LED, a photodiode, a diode, an operational amplifier, capacitors, and 

resistors. The Pulse Sensor can operate on 3 V or 5 V. 

 

Figure B.1:  Pulse Sensor Schematic [37] (Adapted from Pulse Sensor Amplified) 
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