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ABSTRACT 

SEASONAL AND SEX-SPECIFIC DIET IN RHINOCEROS AUKLETS 

By Ryan Carle  

 We used stable isotopes (𝛿15N and δ13C) and conventional chick-diet sampling 

methods to evaluate seasonal shifts in diets of adult male and female rhinoceros 

auklets (Cerorhinca monocerata) and prey provided to chicks by each sex in 

California during 2012-2013.  Rhinoceros auklet isotope values underwent similar 

shifts in both years, which differed in environmental and prey conditions.  Mixing 

models indicated that northern anchovy (Engraulis mordax) were important prey for 

adults during fall/winter and juvenile rockfish spp. were important prey during 

incubation in both years.  Adult trophic level increased between the incubation and 

chick-rearing periods, and mixing models indicated that adults likely ate similar prey 

species as those fed to chicks during both years.  𝛿15N and δ13C of males and females 

were similar (P = > 0.05) during most seasons.  During the 2012 chick-rearing period, 

however, adult female diet and meals delivered to chicks by females contained more 

Pacific saury (Cololabis saira) and less market squid (Doryteuthis opalescens) than 

male diet and meals delivered to chicks by males.  Chick growth and survival to 

fledging were less during 2012 than during 2013, likely because chicks were fed 

lesser quality prey or fed less frequently in 2012.  Lesser body condition of females 

but not males during incubation in 2012 indicated that sex-specific diet and chick 

provisioning differences during the 2012 chick-rearing period may have been related 

to energetic constraints on females. 
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INTRODUCTION 

The interaction between seasonal energetic constraints and seasonal prey availability is 

critical for the fitness of predators, including seabirds (Ainley et al. 1990, Soto et al. 

2004, Frederiksen et al. 2006).  Many seabirds live in environments where primary 

productivity and prey availability vary on seasonal and inter-annual scales (e.g., polar 

ecosystems and eastern boundary upwelling currents).  Often seabird life history 

constraints such as molt and central place foraging during breeding result in decreased 

mobility concurrent with increased energetic demands; the resulting energetic “pinch 

points” can be critical to fitness (Nelson 1980).  For instance, communities of seabirds 

may suffer diminished reproductive success when prey availability is reduced during 

breeding (Ainley et al. 1995, Fredericksen et al. 2006), and seabird die-offs sometimes 

occur when quality prey is not sufficiently available to birds to fulfill energetic needs 

during non-breeding periods (Bodkin and Jameson 1991, Baduini et al. 2001).  

 In seabirds, sexes may use prey resources differently during the energetically 

demanding breeding period (Phillips et al. 2011).  Sex-specific differences have been 

observed in many aspects of seabird reproduction, including chick-provisioning (Wiggins 

and Morris 1987, Wagner 1997, Quillfeldt et al. 2004), diet (Bearhop et al. 2006, Phillips 

et al. 2011), and foraging behavior (Gonzalez-Solis et al. 2000, Lewis et al. 2002, Peck 

and Congdon 2006).  Differences between sexes occur most frequently in species with 

pronounced sexual dimorphism (Phillips et al. 2011) and may be the result of competitive 

exclusion of the smaller sex by the larger (Gonzalez-Solis et al. 2000, Forero et al. 2005) 

or physiological differences allowing one sex access to different foraging niches (e.g., 
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deeper diving depth of the heavier sex; Bearhop et al. 2006).  Sex-specific diets or 

behaviors in monomorphic seabirds were hypothesized to be related to differing energetic 

constraints on each sex during the breeding season (Fraser et al. 2002, Paredes et al. 

2008, Welcker et al. 2009).  The majority of studies reporting sex-specific differences in 

seabird diets were conducted during the breeding season (Phillips et al. 2011); thus, little 

is known about whether sex-specific patterns occur during non-breeding periods.  

Knowledge of the diet of both sexes during the entire year, as birds experience a variety 

of energetic constraints, would be useful for understanding why and how sex-specific 

differences in seabird diets occur.  

 The Rhinoceros auklet (Cerorhinca monocerata; Family Alcidae) is a seabird in 

the puffin tribe (Gaston and Dechesne 1996).  Rhinoceros auklets breed on nearshore 

islands and spend winter mainly over shelf waters (<200 m depth) in the North Pacific 

Ocean from California to Japan (Gaston and Dechesne 1996).  Male rhinoceros auklets 

are slightly larger and heavier than females (males in this study averaged 5% heavier than 

females), but morphometric differences are not diagnostic (Pyle 2008).  Rhinoceros 

auklets breed in burrows, females lay single egg clutches, and both parents contribute to 

incubation and chick-rearing (Gaston and Dechesne 1996).  Parents carry whole fishes 

and cephalopods in their bills and deliver them to chicks in “bill-loads” (Thayer and 

Sydeman 2007), with each adult averaging one bill-load delivered a night (Takahashi et 

al. 1999).  Adults consume krill in the spring pre-breeding and incubation periods in 

some regions (Ito et al. 2009, Sorensen et al. 2010). Adult trophic level increases after 

chicks hatch, likely because adults switch at this time to eating fish with greater caloric 
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content, which are required by growing chicks (Ito et al. 2009, Davies et al. 2009, 

Hipfner et al. 2013).  Adult males and females may consume similar species and size 

classes of prey as they provide to chicks, but results of observational and trophic studies 

have been mixed (Davoren and Burger 1999, Ito et al. 2009, Hipfner et al. 2013).  No 

clear sex-specific differences in diet or in provisioning patterns have been documented in 

rhinoceros auklets. 

 To examine seasonal diet shifts and potential sex-specific patterns, we used stable 

isotopes (𝛿15N and δ13C) of rhinoceros auklet tissues and prey at Año Nuevo Island, CA.  

We also compared the frequency of occurrence and proportions of prey species delivered 

to chicks (termed provisioning) by males and females.  To investigate the influence of 

inter-annual environmental variation on potential seasonal diet shifts and sex-specific 

patterns, we conducted the study in two years with differing oceanographic conditions.  

Whereas dramatic inter-annual variability in composition of rhinoceros auklet prey has 

been documented in this study population (Thayer and Sydeman 2007, Hester et al. 

2013), potential seasonal and sex-specific differences in diet in this region remain 

unexamined.  We hypothesized that rhinoceros auklet diet would shift seasonally and 

inter-annually.  Specifically, rhinoceros auklet isotopes should reflect greater trophic 

level consumption (i.e. δ15N values) during mid-summer when larger size-classes of 

forage fish were selected to meet greater overall energy demands (i.e., concurrent self-

foraging and chick-provisioning).  Due to minimal sexual dimorphism in rhinoceros 

auklets, we hypothesized no sex-specific differences in diet exist according to season and 

no sex-specific differences exist in composition of prey provided to chicks.  
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METHODS 

Study Site and Field Methods 

Año Nuevo Island (ANI; 37° 06’ N, 122° 20’ W) is 1 km off central California.  Within 

the California Current upwelling system, seasonal peaks in primary productivity and prey 

abundance occur during spring and summer in response to wind-forced upwelling 

(Chavez et al. 2002). At ANI, rhinoceros auklets lay eggs from mid-April to late May, 

and young are provisioned by both parents from June through August (Figure 1; Thayer 

and Sydeman 2007).   

 

 

Figure 1. Reproductive and molt phenology of rhinoceros auklets at Año Nuevo Island, 
California.  Black bar in box above months indicates breeding period; white bar indicates 
non-breeding period.  
 

Approximately 260 rhinoceros auklets nested annually at ANI during the study period 

(Hester et al. 2013). 



 

5 
 

 During the annual incubation period, we collected blood, breast feathers, and 

plume feathers from both parents of all pairs breeding in artificial nest sites (n = 42 in 

2012, n = 34 in 2013). All birds were banded with a metal U.S. Fish and Wildlife Service 

leg band, and band numbers were recorded from birds previously banded.  The mass of 

each bird and the bag it was weighed in were determined ± 5.0 g using a 600 or 1000 g 

spring scale.  The mass of each bird was total mass minus mass of the bag (± 1.0 g using 

a 300 g spring scale).  Blood was sampled within 7 to 14 days of egg lay (May 1-30 

2012, April 25-June 5 2013).  The expected isotopic turn-over rate in blood for equivalent 

sized birds is ~20 days (Carleton and Martinez del Rio 2005, Hipfner et al. 2013); 

therefore, we assumed isotope values of blood sampled from incubating birds represented 

the period in April or May just before egg-laying (hereafter termed incubation).  Blood 

(~1 ml per bird) was collected in unheparinized capillary tubes and stored in glass vials 

for isotope analysis (frozen at -20° C) and on paper FTA cards (Fast Technology for 

Analysis of nucleic acids; Whatman brand, General Electric, Fairfield, CT, USA) for 

DNA sex analysis (Fridolfsson and Ellegren 1999). 

 We plucked 2 breast feathers that appeared freshly grown and clipped <1 cm of 

facial plume feathers from each incubating bird.  Feathers are metabolically inert, and 

stable isotope values reflect diet at the time of feather formation (Hobson and Clark 

1992).  Most body feathers are molted between August and January, but some breast 

feathers are grown in a pre-alternate molt during February and March (Figure 1; Pyle 

2008).  Facial plume feathers are grown slowly between October and January (Figure 1; 

Pyle 2008).  The isotope values of fresh breast feathers, therefore, were considered a 
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signal of diet from the February-March pre-breeding period (hereafter pre-breeding), 

whereas plume feathers were considered an integrated signal of diet during the previous 

October-January (hereafter fall/winter).  

 To evaluate chick diet, we sampled chick blood (as described for adults; n = 16 in 

2012, n = 9 in 2013) at five weeks of age (July 10-31 2012, June 27-July 25 2013), when 

blood isotope values should reflect only the post-hatching diet of the chick (Quillfeldt et 

al. 2008, Sears et al. 2009).  

 We checked and weighed (± 1.0 g using a 300 or ± 5.0 using a 600 g spring scale) 

all chicks in artificial nest sites every 7 days, from expected hatch date to fledging.  To 

compare reproductive success between years, we quantified hatching success, chick 

growth, and chick survival to fledging.  We defined hatching success as the ratio of 

chicks hatched to eggs laid (excluding re-lays).  We calculated chick growth (g d-1) for 

the linear growth stage from days 14 to 35 (detailed methods described in Thayer and 

Sydeman 2007).  We defined chick survival to fledging as the ratio of chicks hatched to 

chicks fledged.  We considered chicks fledged if they reached 40 days of age, had a mass 

≥200 g, and were classified as fully-feathered on the last check before disappearance 

(Hester 1998). 

 To obtain isotope values for prey delivered and quantify a sex-specific metric of 

chick provisioning, we collected bill-loads from parents returning to feed chicks during 4 

capture events in each year (June 26-July 24 2012, June 27-July 18 2013).  We caught 

birds in mist nets and collected dropped prey items (n = 164 individual prey in 27 bill-
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loads in 2012, n = 54 individual prey in 25 bill-loads 2013).  We determined mass (± 0.1 

g using an electronic scale) and standard length (SL, fishes) or mantle length (ML, 

cephalopods; both ± 1.0 mm) for each prey item.  Chick meals were quantified by the 

bill-load— a statistically independent unit representing one load of prey carried in the bill 

of one adult.  We measured total bill-load mass (± 0.1 g), percent mass (%M), percent 

number (%N), and percent frequency of occurrence (%FO) of each prey species per bill-

load.  The %M of prey in bill-loads reflects the likely proportions of prey consumed by 

chicks; it was therefore used for comparison with chick δ15N and δ13C.  The metrics %N 

and %FO were used to test differences in prey composition of bill-loads carried by adults.  

We analyzed stable isotopes of prey species that were at least 2%M of chick diet.  In 

2013, we also analyzed stable isotopes of prey items reported from past studies that were 

not present in chick diet samples (i.e., the euphausiid Thysanoessa spinifera, and market 

squid, Doryteuthis opalescens). Euphausiid and market squid samples were collected in 

May 2013 near ANI during National Marine Fisheries Service (NMFS) mid-water 

rockfish trawl surveys (Wells et al. 2013).  

  We sampled tissues from confirmed breeding adults caught in mist nets (n = 26 

in 2012, n = 24 in 2013) to obtain an isotope signature during chick-rearing (whole 

blood) and to augment pre-breeding (breast feather) and fall/winter (plume) sample sizes.  

We considered birds confirmed breeders if they were carrying fish when captured or were 

previously sampled at a nest site during incubation and identified via leg bands.  Birds 

carrying fish were sampled for blood, breast feathers, and plumes using methods 

described for birds captured at nest sites.   
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 In each year, a small number of individuals were sampled twice for bill-loads (2 

males and 2 females of 23 birds in 2012, 2 males and 1 female of 22 birds in 2013), 

though sampling events of individuals were always at least a week apart. We qualitatively 

inspected bill-loads to assess the importance of individual specialization.  Eighty-six 

percent of double-sampled birds (6 of 7) had either no overlap in prey species or a 

different majority of prey species in each bill-load.  Thus, individual preference appeared 

unlikely to be a confounding bias, so we tested differences between sexes using all bill-

loads sampled. 

 

DNA Sex Analysis 

Sex was determined for all birds sampled at nest sites or mist nets (n = 90 adults, 24 

chicks) using DNA extracted from blood or feathers (Fridolfsson and Ellegren 1999).  

Sex analysis was performed at the University of Hawai’i Center for Conservation 

Research and Training, Manoa, HI, USA.  To assess accuracy, duplicate blood samples 

were tested each year (n = 6 in 2012, n = 10 in 2013).  In both years, 100% of the 

duplicates matched the originally identified sex.  In 6 instances (separate of the duplicate 

samples), both individuals of a breeding pair were identified as the same sex.  We re-

analyzed these pairs and found that 5 individuals had been incorrectly identified the first 

time.  By re-analyzing these suspect identifications, sex-identification should be ~100% 

accurate. 
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Stable Isotope Analysis  

We measured δ13C and δ15N  in adult whole blood, breast and plume feathers, chick 

whole blood, and prey muscle tissue.  Whole blood and prey tissues (~1 g white muscle, 

excluding calcified parts) were dried at 60°C for 24 hr and powdered using a mortar and 

pestle (Pinnegar and Pulanin 1999).  Prey samples were lipid extracted by placing in a 2:1 

chloroform:methanol solution and agitating in a sonicator for 30 min (Bligh and Dyer 

1959, Ruiz-Cooley et al. 2011).  Chemicals were decanted and this process was repeated 

until the solvent became clear (Logan et al. 2008).  The pellet was retained and dried 

under a fume hood for 24 hr.  Before lipid extraction, euphausiids were soaked for 3 hr in 

a 10% HCL solution to remove calcified parts (Jacob et al. 2005). We did not lipid 

extract blood because it is considered unnecessary for avian blood (Bearhop et al. 2000, 

Cherel et al. 2005).  Feathers were rinsed in 3 subsequent baths of 2:1 

chloroform:methanol and dried under a fume hood for 24 hr.  Plume feathers and the 

distal 2 cm of each breast feather were homogenized in a grinder, including the vane and 

rachis.   

 Stable isotope analysis was performed at the Idaho State University 

Interdisciplinary Laboratory for Elemental and Isotopic Analysis, Pocatello, ID, USA.  

Aliquots of 0.5 mg of blood, feathers, and prey tissues were placed in tin capsules.  

Samples were combusted and analyzed using Elemental Combustion System 4010 

interfaced to a Delta V advantage mass spectrometer through the ConFlo IV system.  

Isotope ratios of δ13C are reported as ‰ values relative to the Vienna PeeDee Belemnite 

scale, whereas δ15N values are reported as ‰ values relative to air-N2.  Based on 



 

10 
 

replicates of an in-house standard (DORM-3), instrument error (SD) was estimated to be 

± 0.17‰ for δ15N and ± 0.06‰ for δ13C.    

 

Stable Isotope Fractionation Rates 

Year-specific rates for whole blood δ15N and δ13C fractionation were estimated by 

comparing observed isotope values of chick whole blood with weighted isotope means of 

prey observed in chick diet during bill-load sampling (using similar methodology to 

Davies et al. 2009 and Hipfner et al. 2014).  We used feather fractionation literature 

values of + 3.7‰ for δ15N and + 1.0‰ for δ13C, from a study on Common Murres (Uria 

aalge; Becker et al. 2007). 

 

Mixing Model   

We used the mixing model Isosource (Phillips and Gregg 2003) to calculate potential 

contributions of each prey type to adult diet during each period.  If sex-specific isotope 

differences occurred in a period, we also used mixing models to compare the estimated 

diets of males and females in that period.  Using dual isotope values, Isosource 

accommodates up to ten sources and examines all possible combinations of each source 

contribution (Phillips and Gregg 2003).  Solutions were considered feasible if they 

summed to the observed rhinoceros auklet isotope value within a tolerance level of 0.1‰.  

As potential diet sources, we used the year-specific mean isotope values of all prey types 

that were ≥5%M of chick diet in at least one year.  For 2012, we included euphausiids as 

a potential source and used isotope values of T. spinifera sampled in 2013 (we did not 
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collect euphausiid samples in 2012).  For 2013, we included market squid, euphausiids 

(T. spinifera), and Pacific sand lance (Ammodytes hexapterus) as potential sources 

although they did not appear in our chick diet sample that year. Euphausiid and market 

squid samples were collected during NMFS mid-water trawls near ANI in 2013 (Wells et 

al. 2013), and one Pacific sand lance was opportunistically collected at a rhinoceros 

auklet burrow.  Assumptions of the mixing model were that we included all relevant prey 

sources, fractionation rates were accurate, and prey isotope values did not change 

seasonally.  We report the mean and range (1st-99th percentile) of estimated prey 

contributions to adult diet for each period.     

  

Statistics  

We used the statistical package JMP (SAS Institute Inc., Cary, NC, USA) for all statistics 

except bootstrap tests, for which we used the program Resampling Stats for Excel 

(Statistics.com, Arlington, VA, USA). We tested differences between years in hatching 

success and chick survival using likelihood ratio χ2 tests and differences in chick growth 

between years using a two-tailed t-test.  We tested for differences in fractionation-

adjusted δ15N and δ13C between each tissue type and year using a full-factorial 

MANOVA.  We tested differences in δ15N and δ13C between sexes for each tissue using 

10,000 iteration bootstrap tests.  We did not quantitatively test adult vs. chick isotopes 

because of uncertainty in fractionation rates between age classes; instead, we visually 

assessed the likely similarities/differences of adult and chick diet.  We tested for sex-

specific differences in the %FO of commonly occurring prey species in bill-loads 
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delivered to chicks using likelihood ratio χ2 tests.  We tested sex-specific differences in 

the proportions (%N) of common prey species delivered to chicks using 10,000 iteration 

bootstrap tests.  We log-transformed bill-load masses and tested differences between 

sexes and years using a full-factorial ANOVA.   Finally, we tested differences among 

δ15N and δ13C of prey using full-factorial ANCOVAs, with each isotope as the dependent 

variable, species and year as independent variables, and prey length (fish SL or 

cephalopod ML) as the independent covariate.  For this test, we included only prey 

species for which we had samples in both years and had ≥10 total isotope samples.  Post-

hoc two-tailed t-tests or F tests were conducted to further investigate significant effects. 

Residuals were tested for normalcy with Shapiro-Wilk tests and for homoscedasticity by 

plotting against expected values and assessing symmetry.  

 In several tests we made multiple comparisons.  We did not use Bonferroni 

adjustments for multiple comparisons because recently researchers have criticized these 

adjustments for mathematical and logical flaws, and because they may inflate Type II 

error in situations with low statistical power (Perneger 1998, Moran 2003, Nakagawa 

2004).  Instead, for each pair-wise test (i.e. t-tests, paired t-tests, and χ2 tests), we report 

the test statistic, the exact P value, and the absolute value of Cohen’s d metric of 

standardized effect size, where a score of ≤0.2 is considered a “small effect,” ≥0.5 is 

considered a “medium effect,” and ≥0.8 is considered a “large effect” (Cohen 1988).  All 

values are reported as the �̅� ± 1 SE unless otherwise noted.  

 

 



 

13 
 

RESULTS 

Reproductive Success 

 Hatching success did not differ between years (82% in 2012 vs. 72% in 2013; χ2
1 = 0.6, n 

= 41, P = 0.42, d = 0.30).  Average chick growth was 1.8 g d-1 less in 2012 than in 2013 

(5.1 ± 0.55 g d-1 in 2012, n = 15, 6.9 ± 0.62 g d-1 in 2013, n = 10; t23 = 2.1, P = 0.05, d = 

0.87).  The percentage of chicks that survived to fledging was more than twice as great in 

2013 as in 2012 (32% in 2012 vs. 75% in 2013; χ2
1

 = 5.8, n = 31, P = 0.02, d = 0.95).    

 

Adult Mass During Incubation  

The mass of males during incubation did not differ between years (540 ± 26 g in 2012 vs. 

546 ± 34 g in 2013, n = 16 both years; t30 = 0.5, P = 0.62, d = 0.20).  The mass of females 

during incubation averaged 17 g less in 2012 (504 ± 8 g, n = 23) than in 2013 (521 ± 5 g, 

n = 17; t38 = 1.7, P = 0.10, d = 0.56).  We directly compared body condition of 

individuals in each year by testing differences in mass of individuals that were weighed 

both years (i.e. serially weighed).  There was no difference between years in mass of 

serially weighed males (1 ± 7 g heavier in 2013, n = 8; paired t-test, t7 = 0.1, P = 0.90, d 

= 0.05), but serially weighed females were 19 ± 8 g heavier in 2013 than in 2012 (n = 10; 

paired t-test, t9 = 2.3, P =0.05, d = 0.72).  
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Chick Diet 

In 2012, rhinoceros auklets provided chicks with 13 prey species (Appendix 1);  Pacific 

saury (Cololabis saira; hereafter saury) comprised the majority of chick diet followed by 

market squid (hereafter squid) and Pacific sand lance (hereafter sand lance; Table 1).  All 

other prey types combined were 18% of chick diet in 2012, with no individual species 

greater than 5% (Table 1).   
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Table 1. Prey δ15N and δ13C (�̅� ± SD ‰), length range of individual prey sampled for 
isotopes (standard length: SL, mantle length: ML), and % mass (%M) and % number 
(%N) per bill-load of prey (�̅� ± SE) in rhinoceros auklet chick diet (n = 27 bill-loads in 
2012, n = 25 bill-loads in 2013).  Bolded species comprised >10%M or %N of chick diet 
in a year. 
 
Species n 

Sampled 
for 
isotopes 

SL/ML 
range 
(mm) 

δ15N (‰) δ13C (‰) %M  
chick diet  

%N  
chick diet  

2012       

Pacific saury 10   84-145 13.98 ± 1.1 -19.12 ± 0.7 43 ± 9% 43 ± 9% 

Market squid  10   37-63 13.08 ± 0.4 -17.31 ± 0.7 30 ± 7% 28 ± 7% 

Pacific sand lance   9   85-121 13.28 ± 0.6 -16.27 ± 0.4 12 ± 6% 13 ± 6% 

Northern anchovy   3   81-123 14.18 ± 0.7 -16.16 ± 0.5  5 ± 4%  6 ± 4% 

Rockfish spp.  10   35-63 11.80 ± 0.5 -19.67 ± 0.4  5 ± 3%  5 ± 4% 

Pacific sanddab   4   37-41 11.52 ± 1.3  -21.13 ± 1.0  2 ± 2%  3 ± 3% 

Lingcod   5   63-72 13.22 ± 0.2 -18.08 ± 0.7  2 ± 2%  2 ± 2% 

Sablefish     2 107-144 12.31 ± 0.7 -16.71 ± 0.4  1 ± 1%  1 ± 1% 

2013       

Shortbelly rockfish  10   70-86 12.62 ± 0.5 -18.25 ± 0.8 58 ± 9% 59 ± 9% 

Northern anchovy 11   85-119 14.69 ± 0.7 -15.67 ± 0.3 36 ± 9% 36 ± 9% 

Sablefish   2 108-133 12.80 ± 1.2 -17.86 ± 0.7   7 ± 5%   5 ± 4% 

Market squid 10   34-52 12.69 ± 0.4 -16.23 ± 0.5     ----     ---- 

Krill (T. spinifera) 10     ----   9.62 ± 0.6 -17.33 ± 0.4     ----     ---- 

 

For analysis, we pooled the four species of juvenile rockfish (Sebastes spp.) that occurred 

in chick diet in 2012 (Appendix 1) as the prey type “juvenile rockfish.”  In 2013, 

rhinoceros auklets provided chicks only with juvenile shortbelly rockfish (Sebastes 
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jordani), northern anchovy (Engraulis mordax; hereafter anchovy), and juvenile sablefish 

(Anaplopoma fimbria; Table 1). 

 

Prey Isotope Values  

Prey types with sufficient sample sizes for testing of isotope values (n ≥ 10) were 

juvenile rockfish, anchovy, and squid. δ15N and δ13C differed between prey types (δ15N 

F2, 42 = 9.2, P = < 0.001; δ13C F2, 42 = 32.8, P = < 0.001; Table 1).  δ15N of prey did not 

differ between years (F1, 42 = 0.4, P = 0.56), but prey δ13C values were more positive in 

2013 than in 2012 (F1, 42 = 8.5, P = 0.006; Table 1).  Mean δ13C values were 0.59‰ 

(anchovy), 1.08‰ (squid), and 1.42‰ (juvenile rockfish) greater in 2013 than in 2012 

(Table 1).  Prey length affected δ15N (F1, 42 = 10.4, P = 0.002); visually assessing this 

trend it was clear that longer fish had greater δ15N.   There also was a year*length 

interaction effect (F1, 42 = 4.6, P = 0.04).  Across both years, there was no effect of prey 

length (F1, 42 = 1.2, P = 0.29), or interaction effects on δ13C (P = > 0.10 for all).  

 

Blood Isotope Fractionation Rates  

Isotope fractionation rates of chick whole blood were + 2.0‰ in 2012 and + 1.4‰ in 

2013 for δ15N, and - 0.2‰ in 2012 and - 0.4‰ in 2013 for δ13C.  Growth and/or 

starvation in chicks can affect isotope fractionation rates, especially of δ15N (Sears et al. 

2009).  Greater δ15N fractionation in chicks in 2012 may have been related to food 

restriction that year (Hobson et al. 1992, Hobson et al. 1993), whereas rapid growth of 

healthy chicks in 2013 may have resulted in decreased δ15N fractionation (Sears et al. 
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2009).  Due to uncertainty associated with differences in chick blood fractionation 

between years, we chose to apply the average chick blood fractionation rates (+ 1.7‰ for 

δ15N and - 0.3‰ for δ13C) to adult whole blood in both years.  δ13C fractionation should 

be similar in adults and chicks because in captive experiments, δ13C fractionation of 

rhinoceros auklet chicks was unaffected by metabolic processes (Sears et al. 2009). 

 

Inter-annual and Seasonal Diet Patterns 

Fractionation-adjusted δ15N and δ13C of adults differed between 2012 and 2013 overall 

(F2, 319 = 17.5, P = < 0.001), with significant differences in adult δ15N and δ13C between 

years for all tissues (fall/winter F2, 319 = 10.0, incubation F2, 319 = 20.5, chick-rearing     

F2, 319 =  24.3, P = < 0.001 for all) except breast feathers (pre-breeding period; F2, 319 = 

1.6, P = 0.20).  The greatest inter-annual differences in isotope values occurred in δ13C in 

blood of incubating adults, chick-rearing adults, and chicks; all had ~1‰ greater δ13C in 

2013 vs. 2012 (Figure 2).  
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Figure 2. Fractionation-adjusted stable isotope values (𝛿15N and 𝛿C13,  �̅� ± SE ‰) of 
rhinoceros auklet tissues and prey in 2012(A) and 2013(B). Circles represent fall/winter 
(plume feathers), triangles represent pre-breeding (breast feathers), squares represent 
incubation (whole blood), diamonds represent chick-rearing (whole blood), and and X 
represents chicks (whole blood).  Prey sample sizes are in parentheses.  See Table 3 for 
rhinoceros auklet tissue sample sizes. 
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This trend matched the ~1‰ average increase in prey δ13C values between 2012 and 

2013 (Table 1).  Fall/winter and pre-breeding values differed more in δ15N than δ13C 

values between years (Figure 2).    

 Across both years, dual isotope values adjusted with tissue-specific discrimination 

factors differed by tissue type (F6, 638 = 
 90.7, P = < 0.001).  We did not individually test 

differences between δ15N and δ13C of tissue types in each year because differences were 

visually apparent when graphed (Figure 2).  Mixing model results indicated that anchovy 

was likely the dominant prey of adult rhinoceros auklets during fall/winter and pre-

breeding periods of both years (Table 2). 
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Table 2. Mean and range (1st-99th percentile, in parentheses) of feasible solutions for prey 
contributions to adult diet from dual isotope (δ15N and δ13C) mixing model IsoSource 
(Phillips and Gregg 2003).  Results are means of both sexes pooled for fall/winter (Nov-
Jan; plume feathers), pre-breeding (Feb-March; breast feathers), incubation (April-May; 
whole blood), and chick-rearing periods (June-July; whole blood) of 2012 and 2013.  
Species for which the 99th percentile solution was greater than 25% in a period are 
bolded. 
 
 Fall/winter Pre-breeding Incubation Chick-rearing 
2012     

Pacific saury 00 (00-01)  08 (01-13) 44 (33-59) 65 (56-73)   

Market squid 00 (00-04)  04 (00-16) 06 (00-21) 08 (00-30)  

Pacific sand lance 24 (01-46)  05 (00-19) 04 (00-14) 07 (00-22)  

Rockfish spp. 00 (00-01)  01 (00-06)  34 (19-45) 03 (00-11)  

Northern anchovy 71 (52-90) 79 (68-89) 04 (00-14)  09 (00-23)  

Sablefish 03 (00-12) 02 (00-09)  04 (00-15) 05 (00-18)  

Euphausiid (T. spinifera) 02 (00-05) 01 (00-03) 04 (00-16)  02 (00-07)  

     

2013     

Market squid  03 (00-11)  03 (00-11)  03 (00-12) 00 (00-01)  

Pacific sand lance 08 (00-25) 19 (00-42) 12 (00-42)  02 (00-05)  

Shortbelly rockfish  07 (00-20) 16 (00-36) 51 (06-81) 65 (55-70)  

Northern anchovy 73 (68-79) 53 (46-60) 05 (00-13) 29 (28-30)  

Sablefish  08 (00-23)   15 (00-41)  28 (00-85) 04 (00-17)  

Euphausiid (T. spinifera) 01 (00-04)  01 (00-04) 01 (00-05)  00 (00-00)    

 

Fractionation-adjusted δ15N and δ13C decreased between the pre-breeding period and 

incubation periods (Figure 2).  During incubation in 2012, likely primary prey of adults 

were Pacific saury (1st-99th percentile 33-59%) and juvenile rockfish (19-45%; Table 2).  
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During incubation in 2013, likely primary prey of adults were juvenile shortbelly rockfish 

(6-81%) and/or juvenile sablefish (0-85%; Table 2).  δ15N and δ13C increased between the 

incubation and chick-rearing periods of both years (Figure 2).  In 2012, saury likely was 

the primary prey in adult diet during chick-rearing (56-73%), with a potentially important 

contribution of squid (0-30%; Table 2).  In 2013, the likely primary prey of adults during 

chick-rearing were juvenile shortbelly rockfish (55-70%) and anchovy (28-30%; Table 

2).  Probable primary prey in adult diet during the chick-rearing period were the same 

species as observed in bill-loads delivered to chicks each year (Table 1, Table 2). 

 

Sex-specific Chick Provisioning 

We tested sex-specific differences in prey provisioned to chicks using the dominant prey 

provided to chicks each year: saury and squid in 2012, shortbelly rockfish and anchovy in 

2013.  In 2012, bill-loads of females contained significantly greater %N of saury (65 ± 

14%, n = 12) than bill-loads of males (26 ± 10%, n = 15; 2 sample bootstrap, P = 0.04, d 

= 0.89; Figure 3A, 3B). 
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Figure 3. Prey provided to chicks by male and female rhinoceros auklets, calculated 
as �̅� % number and % frequency of occurrence of species per bill-load for A) females in 
2012, B) males in 2012, C) females in 2013, and D) males in 2013. 
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Saury occurred in 66% of female bill-loads vs. 40% of male bill-loads, but this difference 

was not strong statistically (χ2
1

 = 1.9, n = 27, P = 0.17, d = 0.56; Figure 3A, 3B).  In 

2012, bill-loads of females contained less %N of squid (10 ± 6%) than bill-loads of males 

(42 ± 10%; 2 sample bootstrap, P = 0.02, d = 1.01; Figure 3A, 3B).  Squid occurred less 

frequently in bill-loads of females (%FO = 25%) than in those of males (%FO = 73%; χ2
1

 

= 6.5, n = 27, P = 0.02, d = 1.13; Figure 3A, 3B).  In 2013, bill-loads of females (n = 10) 

had a lesser %N of anchovy than those of males (n = 15; 15 ± 11% females vs. 50 ± 13% 

males; 2 sample bootstrap, P = 0.05, d = 0.82; Figure 3C, 3D).  Bill-loads of females also 

contained anchovy less frequently than bill-loads of males, but this difference was not as 

strong statistically as the difference in %N (females %FO = 20% vs. males %FO = 53%; 

χ2
1

 = 2.9, n = 25, P = 0.09, d = 0.73; Figure 3C, 3D).  In 2013, bill-loads of females had 

greater %N and %FO of shortbelly rockfish than bill-loads of males, but these differences 

were not strong statistically (females %N = 75 ± 13% vs.  males %N = 48 ± 12%; 2 

sample bootstrap, P = 0.15, d = 0.60; females %FO = 80% vs. males %FO = 53%; χ2
1

 = 

1.9, n = 25, P = 0.16, d = 0.58; Figure 3C, 3D). 

 Bill-load mass of females (n = 22) and males (n = 30) did not differ across years 

(females = 25.0 ± 3.5 g vs. males = 25.4 ± 0.4 g; F1, 48 = 0.3, P = 0.61, d = 0.16) or within 

years (2012 t48 = -0.8, P = 0.42, d = 0.28; 2013 t48 = 1.5, P = 0.14, d = 0.60).  Bill-load 

mass of both sexes together was greater in 2012 (28.6 ± 3.0 g, n = 27) than in 2013 (21.5 

± 2.3 g, n = 25; F1, 48 = 6.0, P = 0.02, d = 0.53).  This trend was driven by heavier bill-

loads of females in 2012 (31.1 ± 9.0 g, n = 12) than in 2013 (17.6 ± 2.8 g, n = 10;           

t48 = -2.7, P = 0.01, d = 1.53), whereas mass of males’ bill-loads did not differ between 
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years (26.6 ± 3.1 g in 2012, n = 15, 24.1 ± 3.2 g in 2013, n = 15; t48 = -0.7, P = 0.53, d = 

0.20). 

 

Male vs. Female Isotope Values  

During most seasons, isotope values of male and females were similar (i.e. P > 0.10), and 

in some cases the means of males and females were virtually identical (Table 3, Figure 

4).   
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Table 3. δ15N and δ13C of male and female rhinoceros auklet tissues (�̅� ± SE ‰), and 
results of 10,000 iteration bootstrap tests (P value) and Cohen’s d comparing values of 
sexes during each period.  Bolded values represent differences between sexes in the same 
tissue and year with P ≥ 0.05 and d ≥ 0.8.  Tissue type sampled and months represented 
for each period are in parentheses.  

 2012   2013   

 δ15N (‰) δ13C (‰) n δ15N (‰) δ13C (‰) n 

 
Fall/winter (plume feather; Oct-Jan) 
 
Male  17.62 ± 0.05 -15.25 ± 0.14 24 17.90 ± 0.07 -15.26 ± 0.07 26 
Female   
 
Test Result  

17.43 ± 0.04 

     
     P  = 0.003 
      d = 0.86 

-15.06 ± 0.09      
      
       P  = 0.27 
        d = 0.33 

28 17.86 ± 0.05 
       
      P  = 0.71 
       d = 0.13 

-15.18 ± 0.10 
        
        P = 0.53 
        d = 0.19 

22 
 

 
Pre-breeding (breast feather; Feb-Mar) 
 
Male 17.74 ± 0.19 -15.49 ± 0.20 25 17.55 ± 0.21 -15.55 ± 0.19 27 
Female 17.71 ± 0.16 -15.53 ± 0.18 30 17.40 ± 0.25 -15.88 ± 0.29 22 

Test result       P = 0.97 
       d = 0.03                  

       P = 0.90  
        d = 0.04                  

        P = 0.56 
       d = 0.13 

        P = 0.34 
        d = 0.28 

 

 
Incubation  (whole blood; Apr-May) 
 
Male 14.41 ± 0.10 -19.13 ± 0.15 18 14.59 ± 0.08 -18.18 ± 0.11 15 

Female 14.33 ± 0.07 -19.13 ± 0.14 20 14.48 ± 0.10 -18.16 ± 0.14 16 

Test result       P = 0.52  
      d = 0.21 

       P  = 0.98 
         d = 0.0  

       P  = 0.40 
       d = 0.30  

        P = 0.90   
         d = 0.04 

 

 
Chick-rearing (whole blood; Jun-Jul) 
 
Male  15.36 ± 0.04 -18.37 ± 0.16 13 15.14 ± 0.06 -17.78 ± 0.08 13 
Female 
 
Test result 

15.32 ± 0.10 
       
      P = 0.71 
      d = 0.15 

-18.97 ± 0.19 

        
       P = 0.02 
        d = 0.95 

13 14.91 ± 0.07 

        
       P = 0.02 
        d = 1.0  

-17.96 ± 0.07 
         
        P = 0.12 
        d = 0.68 

11 
 

 
Chicks (whole blood; Jun-Jul)  
  

15.39 ± 0.08   
 
-18.47 ± 0.13 

 
16 

 
14.76 ± 0.11 

 
-17.54 ± 0.18 

   
  9 
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Figure 4. Fractionation-adjusted stable isotope values (𝛿15N and 𝛿C13, �̅� ± SE ‰) of 
adult male and female rhinoceros auklet and chick tissues in 2012(A) and 2013(B).  
Black shapes represent adult female values, white shapes represent adult male values, and 
an X represents chick values. See Table 2 for sample sizes. 
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δ15N and δ13C of males and females did not differ during the incubation or pre-breeding 

periods in either year, or during fall/winter 2012-13 (P = > 0.10, d = < 0.5 for all; Table 3 

and Figure 4).  The greatest magnitude difference between sexes occurred during the 

2012 chick-rearing period, when the δ13C of males (-18.37 ± 0.16‰) was 0.60‰ greater 

than that of females (-18.97 ± 0.19‰; P = 0.02, d = 0.95), whereas there was no 

difference between sexes in δ15N during the same period (P = 0.71, d = 0.15; Table 3 and 

Figure 4, 5).   
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Figure 5. Fractionation-adjusted isotope values (δ15N and δ13C) of individual adult male 

and female rhinoceros auklets and chicks, and individual and mean values of dominant 

prey during the 2012(A) and 2013(B) chick-rearing periods.  Error bars are ± 1 SD.  
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The δ13C of the primary prey types provided to chicks in 2012 (saury and squid) differed 

by 1.81‰ (Table 1 and Figure 5).  Mixing models indicated that adults of both sexes 

were feeding on a mixture of saury, squid, and other prey during the 2012 chick-rearing 

period (Table 4). 

Table 4. Mean and range (1st-99th percentile, in parentheses) of feasible solutions for prey 
contributions to the diet of adult female and male rhinoceros auklets from dual isotope 
(δ15N and δ13C) mixing model IsoSource (Phillips and Gregg 2003).  Results are shown 
for periods during which mean δ15N or δ13C values differed (P ≥ 0.05 and d ≥ 0.80) 
between sexes.  Species for which the 99th percentile solution was greater than 25% in a 
period are bolded.  Pacific saury was not included as a potential diet source in 2013 
models.  

 Fall/winter 
2012 
females 

Fall/winter 
2012  
males 

Chick- 
rearing  
2012  
females 

Chick- 
rearing  
2012  
males 

Chick-
rearing  
2013  
females 

Chick-
rearing  
2013  
males 

Pacific saury 00 (00-01)   01 (00-04)  75 (66-83)  56 (46-63)      -----     ----- 

Market squid 01 (00-04)  03 (00-12)  06 (00-21)  08 (00-32) 03 (00-10)  02 (00-07)  

Pacific sand lance 27 (01-63)  10 (00-30)  04 (00-14)  09 (00-31)  13 (00-48) 09 (00-32) 

Rockfish spp. 00 (00-01)   01 (00-03)  05 (00-12)  03 (00-11)  39 (01-70) 40 (03-63)  

Northern anchovy 67 (34-90)  80 (64-92)  04 (00-15)  17 (01-33)  18 (10-26)  29 (23-35)  

Sablefish 03 (00-13)  04 (00-14) 02 (00-08) 02 (00-07) 27 (00-76)  21 (00-67)  

Euphausiid  
(T. spinifera) 

02 (00-06) 00 (00-05) 04 (00-15)  05 (00-18)  01 (00-04) 00 (00-02)  

 

The 1st and 99th percentile mixing model estimates for saury in diet of adults were 20% 

greater for females than males (females 66-83% vs. males 46-63%; Table 4).  The 1st and 

99th percentile solutions for squid during chick-rearing 2013 were 0-22% for females vs. 

0-31% for males (Table 4).  The estimated differences in diet of males and females were 



 

30 
 

similar in direction to those seen in bill-loads in 2012, when females provided more saury 

and males more squid to chicks (Figure 3A, 3B).  

 During the 2013 chick-rearing period, δ15N and δ13C of males were greater than 

those of females by 0.23‰ (2 sample bootstrap, P = 0.02, d = 1.0) and 0.18‰ 

respectively (2 sample bootstrap, P = 0.12, d = 0.68; Figure 4 and Table 3).  Mixing 

models indicated that during the 2013 chick-rearing period adult females were consuming 

1-70% rockfish and 10-26% anchovy, whereas adult males were consuming 3-63% 

rockfish and 23-35% anchovy (Table 4).  This trend matched the pattern in bill-loads in 

2013 in which males provided chicks more anchovy and females more shortbelly rockfish 

(Figure 3C, 3D).  However, due to the small magnitude of the difference in isotope values 

and uncertainty of mixing model estimates, we considered differences in male and female 

diet during the 2013 chick-rearing period inconclusive. 

 During the fall/winter of 2011-2012, the δ15N and δ13C of males were greater than 

those of females by 0.19‰ (Figure 4 and Table 3).  This difference was significant for 

δ15N (2 sample bootstrap, P = 0.003, d = 0.86) but not for δ13C (P = 0.27, d = 0.33).  

Mixing models indicated a 30% difference in the 1st percentile solution proportions of 

anchovy in the diet of females, but there was overlap in the 99th percentile solution 

proportions of anchovy in each sex’s diet (females 34-90% vs. males 64-92%; Table 4). 

Thus, males may have taken up to 30% more anchovy than females in fall/winter 2011-

12, but this result was inconclusive given the small magnitude of the difference in isotope 

values and the uncertainty associated with the mixing model estimates. 
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DISCUSSION 

Using stable isotope techniques, we found that the diet of adult rhinoceros auklets 

underwent similar seasonal shifts in consecutive years with differing environmental 

conditions. Stable isotopes of adult male and female rhinoceros auklets were similar    (P 

= ≥ 0.10) or virtually identical during most seasons. Sex-specific differences were most 

pronounced during the 2012 chick-rearing period, when bill-loads delivered to chicks by 

females contained more saury and less squid than those delivered by males, as did the 

estimated diet of females vs. males.  

 Rhinoceros auklet reproductive success was poor in 2012 compared with 2013.  

Hatching success did not differ significantly between years, whereas chick growth (g d-1) 

and survival to fledging were less in 2012 than in 2013.  These results indicated that the 

chick-rearing period was critical to determining the differences in overall reproductive 

success between these years.  Chick growth and survival in rhinoceros auklets have been 

linked with the abundance and quality of prey available during chick-rearing (Vermeer 

1980, Takahashi et al. 2001, Thayer and Sydeman 2007).  Poor chick growth and survival 

to fledging in 2012 may have been a result of chicks being fed mainly saury and squid 

that year.  Saury and squid are considered lesser quality prey for rhinoceros auklet chicks 

compared with juvenile rockfish and anchovy, which have greater caloric and lipid 

content (Vermeer 1980, Hester 1998, Thayer and Sydeman 2007, Beaubier and Hipfner 

2013).  Previous researchers of rhinoceros auklets at ANI (Thayer and Sydeman 2007) 

found that chick growth rate was positively correlated with the annual proportions of 

juvenile rockfish and anchovy, and negatively correlated with the annual proportion of 
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saury, in chick diet.  They also found that chick survival to fledging was positively 

correlated with the overall mass of bill-loads delivered to chicks.  In our study, however, 

bill-loads were significantly heavier in 2012 than 2013, whereas the percentage of chicks 

that survived to fledging was much less (32%) in 2012 than 2013 (75%).  This may be an 

indication that despite receiving larger meals in 2012, chicks still had poor growth and 

survival to fledging on a diet comprised mainly of lesser quality prey (i.e. saury and 

squid).  Alternatively, adults may have fed chicks less frequently in 2012, so that chicks 

received less food despite being fed larger meals. 

 Adult rhinoceros auklets may have selected saury and squid for chicks in 2012 

because more preferred prey were not available in the environment.  Thayer and 

Sydeman (2007) found that the composition of bill-loads fed to chicks each year at ANI 

reflected actual abundance of prey in the environment.  NMFS mid-water trawl surveys 

conducted in the central CA coastal region indicated that the abundance of juvenile 

rockfish was near the long-term average (1990-2013) in 2012, but was the greatest on 

record in 2013 (Wells et al. 2013).  Data from the same trawls indicated that the 

abundance of anchovy was well below average in 2012 and slightly below average in 

2013, whereas the abundance of squid was above average in both years, especially 2012 

(Wells et al. 2013). However, abundance estimates of anchovy and squid from these 

trawls must be taken only as a general estimate because the trawls specifically target only 

juvenile rockfish. No data exists on the abundance of saury in the environment during the 

study.  Upwelling and chlorophyll-a around ANI were greater in spring of 2013 than 

2012, which was potentially related to the greater abundance of preferred rhinoceros 
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auklet prey during the 2013 chick-rearing period (Bjorkstedt et al. 2012, Wells et al. 

2013).   

 The diet of adult rhinoceros auklets underwent similar shifts each year despite 

differing environmental conditions.  δ15N and δ13C were more positive during fall/winter 

and pre-breeding of both years than during incubation or chick-rearing (Table 4 and 

Figure 4).  Mixing model results indicated that adult diet in fall/winter of both years was 

comprised primarily of anchovy and secondarily of sand lance (Table 2).  In a previous 

study, the stomachs of adult rhinoceros auklets sampled in winter in Monterey Bay, CA, 

contained primarily squid and anchovy (Baltz and Morejohn 1977), whereas squid was 

not an important fall/winter diet item in our study (1st-99th percentile 0-4% in fall/winter 

2011-2012, 0-11% in fall/winter 2012-2013; Table 2).  The differences between our 

findings and Baltz and Morejohn’s (1977) may be related to differences in methodology 

(i.e. stomach sampling vs. stable isotopes), or may indicate that rhinoceros auklets change 

their fall/winter diet in response to inter-annual variability in prey resources, as they have 

done during the chick-rearing period (Thayer and Sydeman 2007).  Anchovy are 

energetically rich (Becker et al. 2007), and may be an important prey during the 

fall/winter period when rhinoceros auklets undergo an energetically costly pre-basic molt 

of body feathers (Pyle 2008).  

 Rhinoceros auklet δ13C values were more negative during the incubation and 

chick-rearing periods than during fall/winter and pre-breeding in both years.  Based on 

mixing model estimates, this was a reflection of adults switching from eating anchovy 

and sand lance in fall/winter and pre-breeding to prey with lesser δ13C values such as 
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juvenile rockfish and/or saury during incubation and chick-rearing (Table 2).  Juvenile 

shortbelly rockfish were the most frequently occurring rockfish in chick diet (Appendix 

1).  Shortbelly rockfish are born in winter and early spring (Wylie Echevarria 1987) and 

probably become large enough for seabirds to eat around March-April (Ainley et al. 

1990).  Adult rhinoceros auklets probably fed heavily on juvenile rockfish during the 

incubation period (Figure 2 and Table 2); therefore, the heavier mass of incubating 

females during 2013 could have been related to the greater abundance of juvenile 

rockfish available in 2013 (Wells et al. 2013).   

 δ13C has been used as an indicator of nearshore vs. offshore feeding, with lesser 

δ13C values representing a more “offshore” signal (Hobson et al. 1994, Burton and Koch 

1999).  Rhinoceros auklet δ13C was lesser during the breeding season, when birds at ANI 

are constrained to return to the nearshore breeding colony.  It is possible that anchovies, 

which move offshore in the winter (Mais 1974), maintain a relatively greater δ13C signal 

acquired when they were located nearshore in summer (Santora et al. 2012). 

Alternatively, baseline shifts in isotopes may occur seasonally in relation to upwelling or 

other environmental factors (Michener and Kaufman 2007).  We found significant inter-

annual shifts in prey isotope values (Figure 2), but assumed that prey isotope values did 

not change significantly within years.  The significant inter-annual differences we found 

in prey isotopes underscore the necessity of using up-to-date prey samples (i.e. at least 

from the same year that predator tissues are sampled) to ensure accurate results for stable 

isotope food web studies involving forage fish.  
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  Contrary to results from other regions that euphausiids are an important pre-

breeding diet item for adult rhinoceros auklets (Hobson et al. 1994, Davies et al. 2009, Ito 

et al. 2009, Sorensen et al. 2010), our mixing models indicated that euphausiids were not 

an important component of adult diet during any period sampled (mean < 5% for all 

periods; Table 2). Rhinoceros auklets at ANI may not have fed as heavily on euphausiids 

as in other regions, but it is also possible that the isotope values of the breast feathers did 

not accurately reflect diet during the pre-breeding period.  The latter explanation should 

be seriously considered because the variability of isotope values in breast feathers was 

greater than in other tissues (Table 3 and Figure 2), and rhinoceros auklets molt only a 

portion of breast feathers during the February-March pre-breeding period.  Isotope values 

during the pre-breeding periods were most similar to those of the fall/winter periods 

(Table 3 and Figure 2), indicating that some of the breast feathers sampled may have 

been grown during the pre-basic molt (August-January), rather than during the pre-

alternate molt (February-March, described by Pyle 2008 as “absent/limited”; Figure 1).  

We propose that breast feather isotopes should be used cautiously as an indicator of 

seasonal diet in rhinoceros auklets because of the limited extent of the pre-alternate molt 

and the difficulty of visually selecting breast feathers by age in the field due to variable 

mechanisms causing feather wear. 

  Adult δ15N and δ13C values increased between incubation and chick-rearing, 

indicating a pattern observed in other populations of rhinoceros auklets and puffins 

(Figure 2; Davies et al. 2009, Ito et al. 2009, Hedd et al. 2010, Hipfner et al. 2013).  This 

pattern may be a result of adults optimizing foraging efficiency after chicks hatch by 
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switching from self-feeding on low trophic level prey to larger, energetically rich fish that 

chicks require (Hipfner et al. 2013).  Our results supported this hypothesis, indicating that 

during the chick-rearing period, adults likely ate the same species of prey in potentially 

similar proportions that they delivered to chicks (Figure 2 and Table 2).  In Japan, adults 

switched from eating euphausiids during incubation to eating Japanese anchovy 

(Engraulis japonicus) during chick-rearing, possibly because of seasonal changes in prey 

availability (Ito et al. 2009).  At ANI, proportions of each species in adult diet shifted 

between incubation and chick-rearing (Table 3), which could have been related to 

shifting prey availability.  However, in both years the dominant prey item during 

incubation (saury in 2012, juvenile shortbelly rockfish in 2013) continued to be dominant 

during chick-rearing (Table 2).  Prey δ15N also increased with prey length, so it is likely 

that rhinoceros auklet trophic level increased because they ate larger individuals of the 

same prey species later in the breeding season.  Thus, a combination of parental prey 

selection, changing prey availability, and prey growth was likely responsible for the 

increasing trophic level of adults between incubation and chick-rearing.  Our 

understanding of why adult trophic level increases during the breeding season in 

rhinoceros auklets and other puffins would benefit from closer examination of how prey 

isotopes change seasonally.  

 The diet of adult males and females was remarkably similar overall, and both 

sexes’ isotope values changed seasonally in similar directions and magnitudes (Figure 4 

and Table 3).  Thus, males and females likely used similar habitats and exploited similar 

niches during most of the year.  An interesting exception to the similarity of male and 
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female isotope values occurred during the chick-rearing period of 2012, when females 

had significantly lesser δ13C values than males (Figure 4, 5).  The difference in δ13C 

between sexes was likely due to diet and not metabolic processes, because δ13C was not 

affected by growth or starvation in a captive study of rhinoceros auklet chicks (Sears et 

al. 2009).  In mixing models, this δ13C difference corresponded to a greater contribution 

of saury and a lesser contribution of squid in the diet of females compared with males 

(Table 4).  During the same period, females provisioned chicks with more saury and less 

squid than males (Figure 3A, 3B).  These results together indicated males and females 

were targeting different prey during the chick-rearing period of 2012. Notably, similar 

but inconclusive trends occurred in the chick-rearing period of 2013, when female bill-

loads contained less anchovy and more juvenile rockfish than male bill-loads (Table 3 

and Figure 3C, 3D).  

 The scope of this study did not allow us to determine with certainty why sex-

specific differences occurred during the 2012 chick-rearing period.  Physiological 

differences between males and females leading to niche separation seems an unlikely 

reason, because of the relatively small differences in male and female body size (males in 

this study averaged 5% heavier than females), and because sex-specific diet differences 

did not occur during most seasons.  Competitive exclusion also seems unlikely because of 

the small size of the colony at ANI (~260 breeding birds).  Our results indirectly support 

the hypothesis that sex-specific differences observed during the 2012 chick-rearing 

period were related to differing energetic constraints for each sex during reproduction.  In 

this hypothesis, which has been offered as a potential explanation for sex-specific 
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differences in other alcids (Bradley et al. 2002, Adams et al. 2004, Welcker et al. 2009), 

males and females behave differently during chick-rearing because females must recover 

body condition lost during egg formation and/or incubation. Females consequently need 

to self-feed more than males during the late breeding season and may take greater 

duration or distance foraging trips than males (Adams et al. 2004, Welcker et al. 2009) to 

more productive or reliable foraging locations (Weimerskirch 1998).  Examples of alcids 

in which this hypothesis may apply are marbled murrelets (Brachyramphus marmatus), in 

which males visited nests more often than females during the chick-rearing period 

(Bradley et al. 2002), dovekies (Alle alle), in which females provisioned chicks less 

frequently and made more long-duration foraging trips than males (Welcker et al. 2009), 

and Cassin’s auklets (Ptychoramphus aleuticus), in which females foraged an average 10 

km further from the breeding colony than males during the late breeding period (Adams 

et al. 2004).    

 Several of our results provide indirect support for an energetic-constraint driven 

hypothesis to explain sex-specific differences during the 2012 chick-rearing period: 1) 

the natural history and δ13C of prey taken during chick-rearing 2012, 2) female body 

condition in 2012, and 3) the bill-load mass of females in each year.  The natural history 

and δ13C of saury and squid indicated that males and females took different prey because 

they may have foraged in different habitats.  Although saury can sometimes be found 

nearshore, they generally occur in waters 65-160 km offshore (Leet et al. 1992). Market 

squid typically occurs in shelf and shelf break habitat in the immediate vicinity (i.e. <10 

km) of ANI in spring and summer (Santora et al. 2012).  Furthermore, δ13C of saury was 
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1.8‰ less than squid in 2012 (Figure 5), indicating a possibly more offshore distribution 

of saury than squid (Hobson et al. 1994, Burton and Koch 1999).  Thus, squid may have 

been available to rhinoceros auklets a short distance from ANI in summer 2012, whereas 

birds may have had to travel over 60 km to obtain saury.  The average foraging trip 

length of rhinoceros auklets in Japan was 87 km (Kato et al. 2003); presumably 

rhinoceros auklets at ANI can travel similar distances.  Based on these generalizations, 

female rhinoceros auklets may have taken more saury than males because they foraged 

further offshore. 

  Female body condition during the 2012 breeding season also provides indirect 

support for the hypothesis that energetic constraints caused sex-specific differences in 

diet and chick provisioning.  The body condition of females during incubation (as 

evidenced by serial mass measurements) was significantly less in 2012 than 2013, 

whereas the body condition of males did not differ between years.  This may have been a 

result of the need for females to expend more energy during the early breeding period in 

order to produce the egg.  A typical rhinoceros auklet egg (77.7 ± 6.4 SD g; Wilson 1977) 

is equivalent to 15% of the average body mass (504 ± 8 g SE, n = 23) of incubating 

females at ANI in 2012.  Like the poor growth and survival to fledging of chicks, poorer 

female body condition in 2012 may have been related to the lesser quality of prey 

available that year.  The poorer body condition of females in 2012 may have necessitated 

taking prey with different nutritional values, or foraging in more predictable or 

productive areas further from the colony to gain body condition during the energetically 

demanding chick-rearing period. 
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 Finally, the mass of bill-loads provided to chicks by females in 2012 also supports 

the hypothesis that females made more distant foraging trips that year. Bill-loads 

delivered to chicks by females in 2012 were significantly heavier than bill-loads 

delivered by males that year, or bill-loads delivered by females in 2013.  In the extreme 

example of long-distance travelling Procellariiform seabirds such as sooty shearwaters 

(Puffinus griseus), adults gained body condition and provided chicks with more food 

after long-duration foraging trips. Chicks were provided more food overall, however, if 

adults only took short trips (Weimerskirch 1998, Weimerskirch 2007).  Rhinoceros 

auklets travel lesser distances than Procellariiforms, so heavier bill-loads of females in 

2012 only hypothetically indicated longer foraging trips that year.  However, poor chick 

growth and survival to fledging in 2012, despite heavier bill-loads, indicated that chicks 

may have been fed infrequently.  Thus, we hypothesize that because females had lesser 

body condition during the 2012 breeding period, they prioritized feeding themselves over 

their chicks and foraged further from the colony than males.  This hypothetically would 

explain our observed results of females taking more offshore prey (i.e. saury) and males 

more nearshore prey (i.e. squid), and could have been a factor in poor chick growth and 

survival during 2012.  Differences may have been less pronounced during 2013 because 

preferred prey were abundant and females were in superior body condition.  This 

hypothesis is supported only indirectly by our results, so further study on sex-specific 

foraging areas, dive behavior, and chick-feeding frequency during years with differing 

prey availability is needed.  
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 In conclusion, we found that the diets of adult rhinoceros auklets underwent 

consistent seasonal shifts across 2 years with differing environmental conditions.  

Rhinoceros auklets used different prey species in different seasons and years, 

underscoring the importance of conserving a diversity of prey species for this species and 

other generalist seabirds.  Pronounced sex-specific differences in diet and in prey species 

delivered to chicks occurred when females were in lesser body condition while exerting 

energy to feed chicks and preferred prey appeared to be unavailable.  Prey isotope signals 

changed based on prey size and sampling year, and we caution that predator and prey 

tissues should be sampled during the same year to ensure accurate interpretation of 

results in stable isotope food web studies.  Our results underscore the value of examining 

the entire seasonal cycle during multiple years when attempting to understand the 

ecology of a species.  
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Appendix 1. Prey species provided to rhinoceros auklet chicks in 2012-2013, with size 
ranges (mm, SL = standard length, ML = mantle length). 

Common name  Latin name Length range  
(mm; SL or ML)  

n fish 
measured 

2012    
Pacific saury  Cololabis saira   59-170  52 
Market squid  Doryteuthis opalescens   35-90  41 
Northern anchovy  Engraulis mordax   81-123   3 
Pacific sand lance Ammodytes hexapterus   84-121 23 
Sablefish  Anoplopoma fimbria     107   1 
Lingcod  Ophiodon elongatus   63-72   4 
Shortbelly rockfish Sebastes jordani   35-64 10 
Widow rockfish Sebastes entomelas      42   1 
Yellowtail rockfish Sebastes flavidus      37   1 
Chilipepper rockfish Sebastes goodei      38   1 
Pacific sanddab Citharichthys sordidus   37, 41   2 
Northern lampfish Stenobrachius leucopsarus      67   1 
    
2013    
Shortbelly rockfish Sebastes jordani   68-86 36 
Northern anchovy  Engraulis mordax   85-128 12 
Sablefish  Anoplopoma fimbria 108, 133   2 
 


	Seasonal and sex-specific diet in rhinoceros auklets
	Recommended Citation

	Hobson K.A., J.F. Piatt, and J. Pitocchelli. (1994). Using stable isotopes to determine  seabird trophic relationships. Journal of Animal Ecology 63:786-798.
	Ito, M., H. Minami, Y. Tanaka, and Y. Watanuki. (2009). Seasonal and inter-annual  oceanographic changes induce diet switching in a piscivorous seabird. Marine  Ecology Progress Series 393:273-284.
	Jacob, U., K. Mintenbeck, T. Brey, R. Knust, and K. Beyer. (2005). Stable isotope food  web studies: a case for standardized sample treatment. Marine Ecology Progress  Series 287:251-253.

