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ABSTRACT 
 

WRF-MODEL DATA ASSIMILATION STUDIES OF LANDFALLING 
ATMOSPHERIC RIVERS AND OROGRAPHIC PRECIPITATION OVER 

NORTHERN CALIFORNIA 
 

by Arthur J. Eiserloh Jr. 
 

In this study, data assimilation methods of 3-D variational analysis (3DVAR), 

observation nudging, and analysis (grid) nudging were evaluated in the Weather Research 

and Forecasting (WRF) model for a high-impact, multi-episode landfalling atmospheric 

river (AR) event for Northern California from 28 November to 3 December, 2012.  Eight 

experiments were designed to explore various combinations of the data assimilation 

methods and different initial conditions.  The short-to-medium range quantitative 

precipitation forecast (QPF) performances were tested for each experiment.  Surface 

observations from the National Oceanic and Atmospheric Administration’s (NOAA) 

Hydrometeorology Network (HMT), National Weather Service (NWS) radiosondes, and 

GPS Radio Occultation (RO) vertical profiles from the Constellation Observing System 

for Meteorology Ionosphere and Climate (COSMIC) satellites were used for assimilation. 

Model results 2.5 days into the forecast showed slower timing of the 2nd AR episode by a 

few hours and an underestimation in AR strength.  For the entire event forecasts, the non-

grid-nudging experiments showed the lowest mean absolute error (MAE) for rainfall 

accumulations, especially those with 3DVAR.  Higher-resolution initial conditions 

showed more realistic coastal QPFs. Also, a 3-h nudging time interval and time window 

for observation nudging and 3DVAR, respectively, may be too large for this type of 

event, and it did not show skill until 60-66 h into the forecast.
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1. Introduction 

California receives most of its rainfall during its cool season when mid-latitude 

(ML) cyclones track farther south into the northeastern Pacific Ocean.  The warm sector 

within these ML cyclones includes a low-level jet (LLJ) that is responsible for 

transporting large amounts of heat and moisture from the tropics to the mid-latitudes. 

These relatively thin warm-conveyor belts of heat and moisture transport are known as 

“atmospheric rivers” (ARs) (Newell et al. 1992).  They are responsible for more than 

ninety percent of the atmosphere’s meridional moisture transport at any given time (Zhu 

and Newell 1998; Ralph et al. 2004).  Most ARs affect California during the cool season 

(October through March) and tap heat and moisture directly from the tropics (Neiman et 

al. 2008).  Ralph et al. (2004) classify ARs as having a narrower width (< 1000 km) 

relative to their length (> 2000 km) and observed vertically integrated water vapor (IWV) 

values greater than or equal to 2 cm.  The majority (~75%) of the horizontal water vapor 

transport in ARs exists below 2.25 km., and the LLJs within these ARs rest about 1 km 

above the ocean surface and usually have a maximum jet strength greater than 20 ms-1 

(Ralph et al. 2005).   

Landfalling ARs are extremely important for California’s water resources, but 

they can also cause dangerous flooding.  Previous studies have documented the 

connection between landfalling ARs and flooding events along the U.S. West Coast 

(Ralph et al. 2003, 2006; Neiman et al. 2011).  Millions of dollars in property damage can 

occur as a result from this type of flood event (Neiman et al. 2002).  Although they can 

cause flooding, ARs are also responsible for twenty-five to fifty percent of California’s 
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annual precipitation (Dettinger et al. 2011).  Ralph and Dettinger (2012) found that 

almost all 3-day precipitation events from 1997 to 2008 that were greater than 400 mm 

happened in California, Texas, or the Southeastern U.S.  Also, they found that from 1950 

to 2008, more than ninety-one percent of 3-day precipitation events that were greater 400 

mm in the western U.S. occurred simultaneously with a landfalling AR.  Thus, they are 

vital for California and are an important connection between California’s weather and 

climate. 

FIG. 1. Geographical features of interest in this study over Northern California.  
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 Orographically enhanced precipitation is the primary mechanism that causes 

flooding from landfalling ARs and winter storms along the windward slopes of 

California’s mountain ranges (Fig. 1).  The strength of orographic precipitation depends 

on a variety of variables including terrain height, upstream moisture content, impinging 

wind speed and direction, and slope steepness (Lin et al. 2001; Neiman et al. 2002; Ralph 

et al. 2003).  Along the Coastal Range (mountain heights ~500-2200 MSL), Neiman et al. 

(2002) found strong correlation coefficients ( > 0.7) between the wind speed 

perpendicular to the mountains and the magnitude of hourly rainfall rates, with the 

highest correlations near the height of the LLJ (~ 1 km).  Ralph et al. (2003) showed that 

wind differences of only 10 degrees can put a river basin either in the direct path of the 

strongest orographic rainfall rates or in a rain shadow.  If the onshore flow has some 

degree of stability but is forced to rise over the quasi-linear northwest-southeast Sierra 

Nevada and Coastal Range, then blocked flows and barrier jets (e.g., Sierra Barrier Jet 

and Coastal Barrier Jet) can form at the base of the mountains.  These processes can 

redistribute rainfall maxima and cause frontal modifications (Marwitz 1987; Neiman et 

al. 2004; Reeves et al. 2008; Smith et al. 2010; Hughes et al. 2012; Kingsmill et al. 

2013).  These multiple dependencies on orographic precipitation strength and duration 

can make mesoscale short-to-medium range [i.e., 12-240 h (World Meteorological 

Organization 2010)] quantitative precipitation forecasts (QPFs) for California during 

high-impact AR events extremely challenging.  

Higher resolution mesoscale models such as the Weather Research and 

Forecasting (WRF) model show increased skill in terms of QPF spatial distributions for 
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orographic rainfall events; however, they still overestimate rainfall on windward slopes 

and underestimate it on the lee slopes (Colle and Mass, 2000).  For landfalling winter 

storms on the West Coast, WRF has a positive moisture bias upstream (Hahn and Mass 

2009; Ma et al. 2011) overpredicting orographic precipitation (Garvert et al., 2005).  

WRF also has wintertime wet bias in both short- and long-term forecasts (Chin et al. 

2010). 

On the improvement of QPFs in mountainous regions, Richard et al. (2005) 

suggested that increased efforts for mesoscale assimilation of the initial data for high-

resolution numerical weather prediction and more studies on the predictability of 

convection and precipitation are needed.  Although there have been numerous studies on 

WRF’s performance during West Coast winter storms, there are not many WRF data 

assimilation studies investigating potential ways to improve orographic rainfall 

forecasting for California during high-impact, multi-day AR events.  Recently, Ma et al. 

(2011) assimilated satellite GPS Radio Occultation (RO) soundings into WRF using the 

three-dimensional variational method (3DVAR) during a landfalling AR in the Pacific 

Northwest.  In doing so, they slightly improved the representation of the offshore 

moisture profile for a 24-h forecast, specifically in the lower levels.  Unfortunately, they 

did not further evaluate the potential QPF improvement.  No studies have compared WRF 

data assimilation methods of 3DVAR and Four-Dimensional Data Assimilation (FDDA) 

methods of observation and/or analysis nudging during AR events in terms of QPFs for 

Northern California.  
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The goal of this study is to advance our understanding of orographic rainfall along 

the U.S. West Coast.  The performance of various WRF data assimilation methods 

including 3DVAR, observation nudging, grid nudging and combinations of those are 

evaluated on their short-to-medium range QPFs during a high-impact, multi-day AR 

event for Northern California from 28 November to 03 December 2012.  During this 

event, four separate ARs or “episodes” affected California in less than six days.  The 

discussion of most results in this paper will focus on the second AR episode, Episode 2, 

which showed the highest 6- and 12-h rainfall rates.  The data assimilation methods used 

the National Oceanic and Atmospheric Administration (NOAA)’s Hydrometeorology 

Testbed (HMT) surface stations and Constellation Observing System for Meteorology 

Ionosphere and Climate (COSMIC) satellite GPS RO soundings in an attempt to improve 

initial conditions.  The hypothesis for this study was that the WRF simulations using 

3DVAR with COSMIC profiles will produce more reliable representations of the ARs 

and more accurate QPFs because 3DVAR for WRF can include COSMIC GPS RO 

vertical profiles for added moisture observations upstream in the Pacific.  In Section 2, 

data used for the event analysis and assimilation are described.  The WRF experimental 

designs are described followed by an explanation of the data assimilation methods of 

FDDA nudging and 3DVAR in Section 3.  The synoptic and mesoscale overview of the 

AR event is given in Section 4.  Nested model outcomes and results of eight numerical 

experiments are evaluated in Section 5, concluding with a summary in Section 6.  
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2. Data and Analysis Methods 

NOAA’s HMT-West surface station network, originally established in California 

in the late 1990s to help improve short-term forecasting (i.e., 12-72 h) of landfalling West 

Coast winter storms (NOAA 2014), provided surface data for this study.  The HMT goal 

includes collecting data for research on floods and other heavy precipitation events that 

are hydrological threats in water basins and river sheds.  All available HMT-West surface 

stations in California surface weather stations (data downloaded from 

ftp://ftp1.esrl.noaa.gov/psd2/data/) were used for both assimilation purposes and for 

observation analyses.  HMT surface variables available for assimilation include 2-m air 

temperature, relative humidity, and 10-m horizontal wind speed and direction (See 

Appendix B).  Not all stations used for this study were equipped with rain gauges, and 

many stations with rain gauges showed inaccurate rainfall observations.  Rainfall 

observations from these surface stations were also used for comparison with simulation 

QPFs in this study.  Model experiment performance was evaluated by calculating the 

mean absolute error (MAE) with the HMT surface sites with the following equation: 

                                                 
1

1 n

i i
i

MAE f y
n =

= −∑   ,                           (1) 

where n represents the number of forecasts hours,  f  is the model’s forecasted value, and 

y is the observed value.  In addition, observations from available upper air soundings 

from the National Weather Service (NWS) rawinsonde network were used as extra 

assimilation data (See Appendix B). 



7 
 

In an attempt to improve upstream moisture fields, COSMIC GPS RO soundings 

were included in some of the assimilation experiments.  COSMIC (COSMIC-

1/FORMOSAT-3) is a 2006 U.S./Taiwan joint mission that provides ~1500-2000 vertical 

soundings daily around the globe (Anthes et al. 2008).  These soundings are generally 

scattered randomly across the globe.  Out of all satellite missions that provide global GPS 

RO soundings (e.g., CHAMP and GPS/MET), COSMIC is the only one to provide data 

within the study area and time of interest.  There are many benefits in using COSMIC 

GPS RO soundings.  They are minimally affected by aerosols and precipitation, and they 

are not affected by instrument drift (Cucurull et al. 2007).  Also, most soundings (90%) 

are able to get data below 1 km (Anthes et al. 2008).  All soundings were downloaded in 

the “wetPrf” format from the COSMIC Data Analysis and Archive Center (CDAAC) 

(cdaac-www.cosmic.ucar.edu/cdaac/index.html).  The wetPrf soundings have a vertical 

resolution near 100 m in the lower troposphere (Wick et al. 2008).  

An observational analysis and validation of the strength and location of the AR 

along with the spatial distributions of rainfall accumulations was performed using vertical 

IWV data from the Special Sensor Microwave Imager Sounder (SSMIS) and Stage IV 6-

h gridded rainfall data from the National Centers for Environmental Prediction (NCEP). 

SSMIS is a passively conically scanning microwave radiometer with a ground swath of 

approximately 1700 km and a grid size of 25 km (Northrop Grumman 2002).  The 

SSMIS water vapor retrieval algorithm has difficulty in areas with heavy rainfall, and 

SSMIS itself has limited spatial and temporal resolution (Wentz 1997).  In addition to 

SSMIS, upper-level synoptic analyses from the North American Regional Reanalysis 
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(NARR) dataset were studied for the AR event.  NARR has a horizontal resolution of 32 

km, a temporal resolution of 3 h, and a vertical resolution of 29 vertical pressure levels. 

All simulated QPFs in this study were compared with NCEP’s Stage IV 

precipitation analyses.  NCEP Stage IV is a regional multi-sensor precipitation estimate 

of accumulated rainfall data composed of both observations from rain gauge data and 

radar derived quantities (Baldwin and Mitchell 1996).  The data were quality controlled 

manually by each NWS River Forecast Center before being gridded onto a 4 km 

resolution grid.  Inaccuracies in NCEP stage IV data exist in mountainous regions due to 

lack of rain gauges, radar echo blockage from the mountains, and not enough radar 

coverage (Jankov et al. 2007). 
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3. WRF Model Configuration and Experimental Designs 

3.1. WRF Model Configuration 

Experiments for this study were conducted with the Advanced Research WRF 

(WRF-ARW) model version 3.4 (Skamarock et al. 2008).  WRF-ARW is 3-D, non-

hydrostatic, and fully compressible with a terrain-following sigma coordinate system.  

All experiments were initialized at 0000 UTC 28 November 2012 and run for 138 h until 

the end of the AR event at 1800 UTC 03 December.  They were configured with a nested 

grid system including an outer and inner domain (Fig. 2).  Horizontal resolutions of 12 

and 3 km were chosen for the outer (D1) and inner (D2) domains, respectively.  The 

domains were positioned as such to include as many upstream COSMIC sounding 

locations over the ocean as possible.  Both domains have a vertical resolution of 51 

levels.  Because it was configured with an even parent-grid ratio, feedback was turned 

off. The Thompson graupel (2-moment) microphysics scheme (Thompson et al. 2004) as 

well as the YSU boundary layer scheme (Hong et al. 2006) were used.  The Thompson 

microphysics scheme was used because it has been found to produce a smaller wet-bias 

in cold season QPFs over areas of Northern California than other available microphysics 

options in WRF (Jankov et al. 2007).  All experiments in this study, except one, used the 

GFS 0.5 degree forecast model (~55 km horizontal resolution) for initial conditions and 

boundary conditions, and the other used the ECMWF Reanalysis (ERA)-Interim [~79 km 

horizontal resolution (Dee et al. 2011)]. 



 

3.2. Data Assimilation Methods

This study used the two FDDA

nudging, and 3DVAR (Liu et a

experiment used either one or a combin

results in more accurate QPFs during a high

study attempted to determine

methods in this paper are similar to the methods discussed in Yu et al. (2007). 

is an empirical data assimilation method

2014).  FDDA nudging methods have been found to show

FIG. 2. Outer (D1) and inner (D2) domains used for the WRF 
experiments. 
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Data Assimilation Methods 

the two FDDA nudging methods, observation nudging and

nudging, and 3DVAR (Liu et al. 2005; Barker et al. 2004) for data assimilation

either one or a combination of those to test which of the three

ore accurate QPFs during a high-impact AR event for California

determine if it is advantageous to combine these methods

are similar to the methods discussed in Yu et al. (2007). 

is an empirical data assimilation method, whereas 3DVAR is a statistical method (Huang 

FDDA nudging methods have been found to show better results f

Outer (D1) and inner (D2) domains used for the WRF 

observation nudging and grid 

data assimilation.  Each 

of the three methods 

impact AR event for California.  Also, this 

these methods.  The 

are similar to the methods discussed in Yu et al. (2007).  Nudging 

whereas 3DVAR is a statistical method (Huang 

better results for short-term 
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forecasts (0-12 h) (Yu et al. 2007).  3DVAR methods that use satellite data have been 

preferred for short-to-medium range forecasting particularly for tropical cyclone tracks 

(Routray et al. 2012).  

3.2.1. FDDA Nudging 

Nudging (i.e. “Newtonian Relaxation”) relaxes the model’s grid toward the 

observations over time by introducing artificial variables and weighting terms into the 

prognostic equations (Stauffer and Seaman 1994).  Stauffer and Seaman (1994) explain 

two ways this can be achieved: 1) nudging the model’s grid points directly to near-

continuous observations that can be spatially and temporally non-uniform (i.e. 

observation nudging), and 2) nudging the model toward a gridded analysis from synoptic 

observations which must be time-interpolated to match the model’s time step (i.e. “grid” 

nudging). 

Observation nudging can be used for all types of observations, but it is better for 

continuous data assimilation of asynoptic observations like surface data, wind profilers, 

sodars, etc.  Observation nudging only uses the observations that are within a user-

defined nudging time window.  Equation (2) below (Stauffer and Seaman 1994) shows 

how the observation nudging process is implemented into WRF: 

                  

( )
( ) ( )

( )

2
01

1

ˆ,*
, ,  *

,

N

i ii

N

ii

W tp
F t G p

t W t
α

γ α αα
α

=

=

 −∂  = +
∂

∑
∑

x
x

x
 ,                       (2) 

where p* is the flux form of pressure; α represents one of the variables that may be 

nudged (temperature, horizontal winds, or water vapor mixing ratio); F represents all of 

the model’s physical forcing terms; Gα is the nudging factor; W is the weighting function 
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(W = wxywσwt) that has horizontal, vertical, and time weights; iγ  is the observational 

quality factor that ranges from 0 to 1; �� is the actual observed value; and  �� is the 

model’s 3-D interpolated value.  The horizontal weighting function (wxy) is defined as a 

Cressman function that depends on a user-defined horizontal radius of influence (RINxy) 

and the distance between the observation and model grid point.  The second term on the 

right-hand side of equation (2) is called the observation nudging term.  Over model 

integration time, artificial adjustments are made to the model grid points by applying a 

weighted average of the differences from all the observations within the RINxy.  The 

nudging factor, Gα, is what determines the relative strength of the nudging for each 

nudging variable, α.  Figure 3 shows what observation nudging looks like after Dudhia 

(2014).  The circles represent the extent of the user-defined RINxy around the observations 

(circles), and only a few observations may be close enough to affect the model grid point 

(square). 

 

FIG. 3. Schematic illustrating observation nudging after Dudhia (2014). The 
circles extending from the dots represent the radii of influence and the square 
represents a model grid point. 
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Analysis nudging is a slightly simpler form of equation (1) and does not depend 

on a RINxy.  Equation (3) (Stauffer and Seaman 1994) is how analysis nudging is 

accomplished in WRF: 

                               ( ) 0( , )
*

ˆ, (,  ( )) *W
p

F tt G p
t α

α
α α αε

∂
= + −

∂
x xx ,                         (3) 

where most of the terms are defined similarly as in observation nudging but instead apply 

to the gridded analyses from observations, and ( )ε x  is the gridded analysis quality factor 

that ranges from 0 to 1.  WRF allows both forms of nudging to be applied to all nested 

domains.  Observation files for nudging purposes in this project were created from the 

OBSGRID program for WRF.  

3.2.2. 3DVAR 

3DVAR is a data assimilation method used in mesoscale numerical weather 

prediction in order to produce the best estimate of the atmospheric state at any given 

analysis time by iteratively reducing a prescribed quadratic cost-function, 

                1 11 1
( ) ( ) ( ) ( ) (R) ( )

2 2
b o b T b o T oJ x J J x x B x x y y y y− −= + = − − + − −  ,        (4) 

(Barker et al. 2004).  bJ  is the background term, oJ  is the observation term, x represents 

any given analysis state, bx  represents the background or previous forecast, y represents 

a separate procedure for transforming the analysis into observational space in order to 

compare analysis against observations,oy  represents the observations within a given time 

window, and B and R represent the background and observation error covariance 

matrices, respectively.  Through this iteration, the analysis state, x, that provides the 



 

minimum cost function, J x

with the least amount of variance between the observations and the background error 

from previous model forecasts (Barker et al. 2004).

covariances of the background error and 

Gaussian probability density functions

the WRF Data Assimilation

3DVAR works in conjuncti

3DVAR with its minimization loop of the cost

Three elements are needed for 3DVAR simulations: 1) the backgroun

for input into WRFDA, 2) observation

background error covarianc

datasets to produce updated initial and time

ingest into WRF.  3DVAR can be executed in either cold

FIG. 4. Flow chart after Barker et al. (2004) of how 3DVAR is operated within WRF, 
where xb, xa, yo, and B represent the initial background analysis, final 3DVAR 
analysis, observations, and the background error, respectively. 
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( )J x , represents the most likely estimate of the analysis solution 

with the least amount of variance between the observations and the background error 

ecasts (Barker et al. 2004).  This cost function assumes that the 

covariances of the background error and observations are statistically described with 

Gaussian probability density functions with no mean error.  3DVAR is run in WRF

Data Assimilation package (WRFDA).  Figure 4 demonstrates the flow of how 

njunction with WRF, and Figure 5 shows the various inner

3DVAR with its minimization loop of the cost-function. 

Three elements are needed for 3DVAR simulations: 1) the backgroun

2) observation datasets (i.e. asynoptic data), and 3) the 

background error covariance statistical analysis.  3DVAR will incorporate those extra 

datasets to produce updated initial and time-dependent lateral boundary conditions for 

3DVAR can be executed in either cold-start mode or cycling mode. 

FIG. 4. Flow chart after Barker et al. (2004) of how 3DVAR is operated within WRF, 
represent the initial background analysis, final 3DVAR 

analysis, observations, and the background error, respectively.  

imate of the analysis solution 

with the least amount of variance between the observations and the background error 

cost function assumes that the 

statistically described with 

3DVAR is run in WRF via 

demonstrates the flow of how 

shows the various inner-details of 

Three elements are needed for 3DVAR simulations: 1) the background analysis 

and 3) the 

3DVAR will incorporate those extra 

dependent lateral boundary conditions for 

start mode or cycling mode. 

FIG. 4. Flow chart after Barker et al. (2004) of how 3DVAR is operated within WRF, 
represent the initial background analysis, final 3DVAR updated 
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For cold-start simulations, WRF takes the newly generated background analysis from 

3DVAR only at the forecast starting time and allows WRF to generate the rest of the 

forecast.  Cycling mode uses the forecasts generated from WRF after a certain time (e.g., 

3 h in this study) as new input background files for 3DVAR instead of the normal 

background analysis produced from previous weather forecasting models.  Cycling mode 

requires lower boundary conditions to be updated on the newly generated analysis before 

proceeding with the forecast.  This cyclic process continues as long as needed with the 

aforementioned time interval. 

 

  

FIG. 5. Inner details of 3DVAR after Barker et al. (2004). 



16 
 

3.3. Experimental Designs 

A total of eight high-resolution WRF experiments were performed to evaluate 

different combinations of observation nudging, grid nudging, and 3DVAR during the 

high-impact AR event (Table 1).  The control experiment (CTRL) has no data 

assimilation.  The experiments that include FDDA nudging methods used Cressman-style 

objective analysis from the OBSGRID program in order to improve the initial and 

boundary conditions throughout the model integration at 3-h intervals.  Depending on the 

experiment, either just the HMT surface station data or both the HMT surface and NWS 

sounding data were assimilated.  Figure 6 shows the locations of all HMT surface stations 

and NWS soundings used in this study.  

In the second experiment, SN1, observation nudging was used solely with the 

HMT surface sites.  Only the HMT surface data were used in SN1 to study how effective 

surface observation nudging is on the QPFs.  Observation nudging was performed at 3-h 

time intervals throughout the entire forecast period.  Although observation nudging is 

best for real-time and almost-continuous data assimilation, a relatively coarse 3-h 

nudging time interval was chosen for all other experiments that use a FDDA nudging 

method because of computer power restraints in assimilating over the 138-h forecast.  All 

stations were assigned a RINxy of 40 km with observation nudging coefficients of 3.0 x 

10-4 s-1 for temperature, moisture, and horizontal winds. 

Experiments N2 and N3 combined both observation nudging and grid nudging, 

and they included both HMT surface data and upper-level NWS sounding data. Grid 

nudging was included both at the surface and in the upper levels.  N2’s RINxy  was 
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increased to 100 km for all surface and upper air observations.  Pattantyus (2011) 

suggested that a larger RINxy for mesoscale FDDA observation nudging in WRF produces 

more realistic precipitation patterns in comparison to radar returns in short-range 

forecasts.  N2 has the same observation nudging coefficients as SN1 but with grid 

nudging coefficients of 6.0 x 10-4 s-1.  In order to test the effects of different RINxy values 

for the upper air soundings and surface data, an upper air RINxy of 120 km and a surface 

RINxy of 60 km were chosen. Both N2 and N3 also have nudging intervals of 3 h.  

Experiment Starting 
Model 

DA Method(s) Data Used DA Specifics 

CTRL GFS 0.5° none -------- -------- 

SN1 GFS 0.5° 
observation 

nudging HMT surface 
RIN

xy
  = 40 km 

G
 
= 6.0 x 10

-4 
s

-1
 

time interval = 3 h 

N2 GFS 0.5° observation & 
grid nudging 

HMT surface 
+ RAOB 

RIN
xy

  = 100 km 

G
 
= 6.0 x 10

-4
s

-1
 

time interval = 3 h 

N3 GFS 0.5° observation & 
grid nudging same as N2 

Same as N2 except: 
surface RIN

xy
= 120 km 

upper air RIN
xy

= 60 km 

3DVT1 GFS 0.5° 

3DVAR cold-
start + 

observation & 
grid nudging 

HMT surface 
+ 

RAOB + 
COSMIC 
GPS RO 

3DVAR: 
 t

0
 window = 12 h 

Nudging: same as N3 

3DVT2 GFS 0.5° 3DVAR cold-
start 

same as 
3DVT1 

t
0
 window =12 h 

3DVT3 GFS 0.5° 3DVAR cycl. 
same as 

3DVT1 
cycling window = 3 h 

3DVT3 

ERA 
ERA-Interim 3DVAR cycl. 

Same as 

3DVT1 
cycling window = 3 h 

TABLE 1. WRF Experimental Designs. 
 



 

                    

FIG. 7. Locations of all 46 COSMIC GPS RO soundings within D1 from 0000 UTC 
28 November to 1800 UTC 03 December 2012.

FIG. 6. Locations of HMT surface stations (blue dots) and NWS radiosonde 
observations (RAOB) (red dots) within D1.
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. 7. Locations of all 46 COSMIC GPS RO soundings within D1 from 0000 UTC 
to 1800 UTC 03 December 2012. 

. 6. Locations of HMT surface stations (blue dots) and NWS radiosonde 
observations (RAOB) (red dots) within D1. 

                               

 

. 7. Locations of all 46 COSMIC GPS RO soundings within D1 from 0000 UTC 

. 6. Locations of HMT surface stations (blue dots) and NWS radiosonde 
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The last four experiments included COSMIC GPS RO data and the 3DVAR 

method but with different data assimilation combinations.  Only 46 COSMIC GPS RO 

soundings were available throughout the event and within the parent domain.  The 

scattered spatial distribution of the RO soundings is shown in Figure 7.  The 3DVT1 

experiment is a hybrid of all three data assimilation techniques (observation nudging, grid 

nudging, and 3DVAR), and it included all data sources (HMT surface, upper air 

soundings, and COSMIC data).  Also, it has the same settings as N3, but it performed 

cold-start 3DVAR at the model starting time with a relatively large 12-h time window to 

take advantage of as many COSMIC GPS RO profiles as possible.  3DVT2 is purely a 

cold-start 3DVAR run with the same 12-h time window as 3DVT1 but without nudging.  

3DVT3 is a 3DVAR cycling run with both a cycling interval and observation time 

window of 3 h. Not every 3-h window had COSMIC soundings available, and there was 

only an average of one sounding within the parent domain per 3-h time window (Fig. 8).  

3DVT3 ERA is the 3DVT3 experiment but with ERA-Interim data for initial and 

boundary conditions instead of GFS 0.5 degree.  The purpose of 3DVT3 ERA was to test 

how 3DVAR cycling performs with different initial conditions.         

 
 
 
 
 
 
 
 
 
 

FIG. 8.  Number of COSMIC Soundings in D1 per 3-h time window. 
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4. Synoptic and Mesoscale Overview 

From 0000 UTC 28 November to 1800 UTC 03 December 2012, four AR 

episodes made landfall over northern and central California.  A deep longwave trough 

was present over the northeastern Pacific Ocean upstream of an amplified ridge from the 

Pacific Northwest to Alaska.  This blocking event persisted and allowed the upper air 

pattern to become quasi-stationary.  Multiple shortwave troughs circulated around the 

longwave trough and brought four AR episodes of high IWV content and heavy 

precipitation to California within six days (Fig. 9a-d).  The NWS issued multiple flash 

flood and high wind warnings across many northern California counties (NCDC 2012). 

All episodes except Episode 3 showed stronger, more well-defined landfalling ARs with 

IWV values greater than or equal to 30 mm and maximum IWV values possibly 

exceeding 40 mm.  Values of NARR vertically integrated horizontal water vapor 

transport (IVT) from the surface to 300 hPa (Neiman et al. 2008) exceeded 800 kg m-1s-1 

with Episode 4 showing very strong values greater than 1000 kg m-1s-1 (Fig. 10).  Heavy 

rainfall within the frontal bands prevented SSMIS from getting IWV retrievals in the 

ARs’ cores.  Although the moisture source during Episode 1 originated more directly 

from the tropics, it was not as wide and not as perpendicular to the coast as Episodes 2 

and 4.   



 

 

FIG 9. SSMIS IWV for AR Episod
hPa NARR height analysis (dam): (a) Episode 1 (28 Nov): 1518 UTC SSMIS / 1500 
UTC NARR; (b) Episode 2 (30 Nov): 1623 UTC SSMIS/ 1500 UTC NARR; (c) 
Episode 3 (01 Dec): 1441 UTC SSMIS / 1500 UTC NARR; and (d) Episode 4 (02 
Dec): 1600 UTC SSMIS/ 1500 UTC
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SSMIS IWV for AR Episodes 1-4 (a-d) overlaid with the most recent 500
hPa NARR height analysis (dam): (a) Episode 1 (28 Nov): 1518 UTC SSMIS / 1500 
UTC NARR; (b) Episode 2 (30 Nov): 1623 UTC SSMIS/ 1500 UTC NARR; (c) 
Episode 3 (01 Dec): 1441 UTC SSMIS / 1500 UTC NARR; and (d) Episode 4 (02 

IS/ 1500 UTC. 
 

most recent 500-
hPa NARR height analysis (dam): (a) Episode 1 (28 Nov): 1518 UTC SSMIS / 1500 
UTC NARR; (b) Episode 2 (30 Nov): 1623 UTC SSMIS/ 1500 UTC NARR; (c) 
Episode 3 (01 Dec): 1441 UTC SSMIS / 1500 UTC NARR; and (d) Episode 4 (02 



 

 
 
  TABLE 2. Maximum 6- and 12

Episode Landfall Time Period

  

1 
1200 UTC 28th - 

29th 

2 
1200 UTC 29th - 

1st 

3 
1200 UTC 1st   - 0000 UTC 

2nd 

4 
0000 UTC 2nd  - 0600 UTC 

3rd 
 

FIG. 10. Vertically integrated horizontal
derived from NARR for all 4 AR episodes
Episode 2 (1200 UTC 30 Nov); (c) Episode 3 (1500 UTC 01 Dec); (d) Episode 4 
(1500 UTC 02 Dec). The direction and magnitude of IVT is displayed with the black 
vectors. The reference IVT vector is 800  kg s
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and 12-h rainfall rates for each AR episode. 

Landfall Time Period 
Largest NCEP Stg. IV 6-h 

Rainfall Rates 

Largest NCEP Stg IV

Rainfall Rates

Ending Time 
6-h Rate 

mm (6 h)-1 Ending Time

 0000 UTC 
1800 UTC 28th 62 0000 UTC 29

 0600 UTC 
1800 UTC 30th 131 0000 UTC 1

0000 UTC 
1800 UTC  1st 104 0000 UTC 2

0600 UTC 
1200 UTC 2nd 110 1800 UTC 2

. Vertically integrated horizontal water vapor transport (IVT; kg s
derived from NARR for all 4 AR episodes: (a) Episode 1 (1500 UTC 28 Nov); (b) 
Episode 2 (1200 UTC 30 Nov); (c) Episode 3 (1500 UTC 01 Dec); (d) Episode 4 

. The direction and magnitude of IVT is displayed with the black 
vectors. The reference IVT vector is 800  kg s-1 m-1). 

(a) 

(c) 

 

 

Largest NCEP Stg IV 
12-h 

Rainfall Rates 

Ending Time 
12-h Rate 

mm (12 h)-1 

0000 UTC 29th 77 

0000 UTC 1st 195 

0000 UTC 2nd 114 

1800 UTC 2nd 190 

(IVT; kg s-1 m-1) 
UTC 28 Nov); (b) 

Episode 2 (1200 UTC 30 Nov); (c) Episode 3 (1500 UTC 01 Dec); (d) Episode 4 
. The direction and magnitude of IVT is displayed with the black 

(b) 

(d) 



 

                                

                        
FIG. 12. NCEP Stg. IV time periods with the maximum 12
rainfall accumulations (mm) for Episode 2 (a,c) and Episode 4 (b,d)

FIG. 11. NCEP Stg. IV accumulated rainfall (mm) for entire event from 0000 UTC 28 
November to 1800 UTC 03 December.

(a) 

(c) 
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NCEP Stg. IV time periods with the maximum 12-h (a-b) and 6

rainfall accumulations (mm) for Episode 2 (a,c) and Episode 4 (b,d) from Table 2

NCEP Stg. IV accumulated rainfall (mm) for entire event from 0000 UTC 28 
November to 1800 UTC 03 December. 

(b) 

(d) 

 

b) and 6-h (c-d) 
from Table 2. 

NCEP Stg. IV accumulated rainfall (mm) for entire event from 0000 UTC 28 
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This event brought strong orographic precipitation to most of Northern California. 

Figure 11 shows the entire event rainfall accumulations from NCEP Stage IV rainfall 

analysis.  The three regions that experienced the highest orographic rainfall totals were 

the Coastal Range, northern Sierra Nevada/extreme southern Cascades, and the Trinity 

Alps/Mount Shasta region.  The event maximum of 588 mm (~23.15 in) occurred in 

Humboldt County, located in the northern Coastal Range.  In order to identify when and 

where the heaviest rainfall rates occurred, every 6- and 12-h interval in the NCEP stage 

IV data were studied to find the time period and episode that received the highest 6- and  

12-h accumulations, respectively.  Table 2 shows the largest 6- and 12-h accumulations 

for all four episodes along with their time periods.  Both Episodes 2 and 4 had the largest 

6- and 12-h accumulations overall with Episode 2 showing slightly higher 6-h and 12-h 

rainfall rates of 131 mm (1200—1800 UTC 30th) and 195 mm (1200 UTC 30th—0000 

UTC 1st), respectively, along the windward slopes of the Santa Lucia Mountain Range 

(Fig. 12), which has one of the steepest coastal reliefs in the continental United States 

(Hapke 2005).  Although Episode 4 caused more widespread heavy rainfall across most 

of Northern California, it did not produce the largest localized maximum 6-h and 12-h 

rainfall rates.  The NWS sounding from Oakland (KOAK) during Episode 2 at 1200 UTC 

shows a strong LLJ moving onshore with southwest winds of 50-55 kt (~26-28 m s-1) 

between 850 and 900 hPa and with nearly saturated conditions (Fig. 13).  Therefore, the 

evaluation of the WRF experiments mostly focused on Episode 2’s period of highest 6-h 

orographic rainfall rate in D2 (i.e., forecast hours 60-66). 
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FIG. 13. Skew-t sounding from Oakland, CA (KOAK) valid at 1200 UTC 30 
November 2012. Wind barbs on the right depict wind speed (knots). (Image from 
http://weather.uwyo.edu/upperair/sounding.html) 
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5. Experiment Results 

5.1. Characteristics of AR Episode 2 

To evaluate the performance of the WRF experiments during Episode 2’s 

maximum 6-h rainfall time period (1200 to 1800 UTC 30 November), the experiment 

results of accumulated rainfall during this 6-h period were compared to NCEP Stage IV 

rainfall estimates (Fig. 14).  All WRF experiments did not capture the correct location 

and timing of the front associated with the AR 66 h into the forecast (Figs. 14b-i). The 

experiments were much slower to progress the cold front associated with the AR 

southward.  In addition to the timing error, the simulations were not able to correctly 

predict the localized rainfall maximum in the coastal windward slopes of the Santa Lucia 

Mountains.  They underestimated the rainfall by about 60-70 mm in the next 6-h period 

(not shown).  3DVT3 ERA (Fig. 14i) shows the most realistic results in this time period 

by producing 20-30 mm of rainfall further south along the windward slopes of the Santa 

Lucia Range, a slightly more southward front, and less rainfall behind the front.   

Also, all WRF experiments with GFS initial conditions [hereto referred as WRF-

GFS experiments (Figs. 14b-h)] overestimated the rainfall behind the front in the 

northern Coastal Range, Trinity Alps, and Mount Shasta regions.  In addition, a large wet 

bias exists in the Sacramento Valley for all experiments.  With respect to frontal position, 

all experiments with grid-nudging (N2, N3, and 3DVT1) depict a more N-S orientation of 

the front in the Sacramento Valley, whereas the ones without grid nudging (CTRL, SN1, 

3DVT2, 3DVT3, and 3DVT3 ERA) show a frontal angle that matches more closely to 

NCEP stage IV.  



 

      
FIG. 14. 6-h accumulated rainfall during 
November in D2 for (a) NCEP Stg. IV (b) CTRL (c) SN1 (d) N2 (e) N3 (f) 3DVT1 
(g) 3DVT2 (h) 3DVT3 (i) 3DVT3 ERA.

(a) 

(d) 

(g) 
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accumulated rainfall during AR Episode 2 ending at 1800 UTC 30 
2 for (a) NCEP Stg. IV (b) CTRL (c) SN1 (d) N2 (e) N3 (f) 3DVT1 

(i) 3DVT3 ERA. 

(b) (c) 

(e) (f) 

(h) (i) 

 

 

ending at 1800 UTC 30 
2 for (a) NCEP Stg. IV (b) CTRL (c) SN1 (d) N2 (e) N3 (f) 3DVT1 
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In addition to the accumulated precipitation during Episode 2, the experiments’ 

representations of the AR in terms of IWV values were compared to SSMIS observations 

(Fig. 15).  At 1623 UTC, SSMIS IWV observations (Fig. 15a) show an AR with core 

IWV values of 37-40 mm and with its central axis just south of Monterey Bay.  

Nevertheless, the WRF experiments at 1600 UTC (Figs. 15b-i) show the AR lagging by a 

few hours with their central axes at the San Francisco Peninsula and with less-

perpendicular orientations than observations.  Although SSMIS could not get 

measurements near the coast, inland, or in the heavy rainfall, it can be inferred from 

Figure 15a that there were higher IWV values closer to the coast than the WRF 

experiments.  

 Only subtle differences in the landfalling AR exist between the WRF-GFS 

experiments (Figs. 15b-h).  The WRF-GFS models that applied grid nudging show 

weaker IWV values but had a larger AR width (Figs. 15d-f), and the ones without grid 

nudging show a thinner core AR but with more accurate maximum IWV values (Figs. 

15b-c, g-h).  Of the WRF-GFS experiments, SN1 shows the best improvement by 

showing a farther extension of higher IWV values closer to the San Francisco Peninsula.  

3DVT3 ERA’s AR horizontal structure (Fig. 15i) matched closest to SSMIS 

observations because it extended higher values of IWV (33-37 mm) closer to the coast 

with a broader core and it showed higher IWV values farther south along the coast.  Like 

SSMIS observations, 3DVT3 ERA did not show IWV values greater than 20 mm north of 

39 °N.  Weaker IWV values closer to the coast and a less perpendicular AR angle are two 

possible explanations for why the WRF experiments could not accurately predict the 



 

maximum rainfall amount in the Santa Lucia Mountains during Episode 2.

FIG 15. IWV in D2 during 
1623 UTC and the WRF experiments (b
(d) N2 (e) N3 (f) 3DVT1 (g) 

(a) 

(d) 

(g) 
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maximum rainfall amount in the Santa Lucia Mountains during Episode 2.

2 during AR Episode 2 on 30 November 2012 for (a) SSMIS at 
1623 UTC and the WRF experiments (b-d) valid for 1600 UTC: (b) CTRL (c) SN1 
(d) N2 (e) N3 (f) 3DVT1 (g) 3DVT2 (h) 3DVT3 (i) 3DVT3 ERA. 

(b) 

(e) 

(h) 

maximum rainfall amount in the Santa Lucia Mountains during Episode 2. 

                             

2012 for (a) SSMIS at 
d) valid for 1600 UTC: (b) CTRL (c) SN1 

(c) 

(f) 

(i) 
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aaaaaaaaaaaaaaaaaaaaa  

 
Analysis into the onshore and inland moisture flow, dynamics, and timing of the 

AR within Episode 2 was performed in the vertical dimension.  A N-S cross section along 

the California coast and a W-E cross section across the Sacramento Valley were 

constructed within D2 (Fig. 16).  Both cross sections were taken in the middle of the 6-h 

time period at forecast hour 63 (1500 UTC 30 November).  Figure 17 shows the N-S 

cross section (Line 1 in Fig. 16) of relative humidity and wind speed for the experiments.  

They all show a frontal inversion, an upper-level jet of 55-60 m s-1 and a LLJ on the 

warm side of the front greater than or equal to 20 m s-1 near 1 km.  The model’s 

representation of these features is consistent with dropsonde observations of landfalling 

LLJs in ARs (Ralph et al. 2004).   The grid-nudging experiments show slightly weaker 

FIG. 16. N-S along-coast cross section (Line 1) and W-E cross section through the 
Sacramento Valley (Line 2). 
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low-level winds between 3 and 4 km ahead of and behind the main cold front.  Also, they 

do not show convective updrafts behind the front, whereas the non-grid-nudging 

experiments do.   

The most notable difference between the WRF-GFS experiments (Figs. 17a-g)     

is the substantial smoothing of the results in the grid-nudging experiments (Figs. 17c-e) 

versus the finer details in the non-grid-nudging experiments (Figs. 17a-b, f-g).  These 

results are most likely caused by nudging the finer scale model grid-points in D2 toward 

the coarser objective analysis grids.  Stauffer and Seaman (1994) suggested that 

assimilating relatively coarse-resolution gridded data onto a finer-scale grid does more 

harm than good by preventing the model’s innate ability to develop finer-scale details.   

3DVT3 ERA (Fig. 17h) shows slightly better timing of the front but with a more 

relaxed frontal inversion and a shallower layer of moisture behind the cold front.  3DVT3 

ERA also shows LLJ wind speeds of 25-30 m s-1 at 1.5 km, and they are closer to the 

wind speeds observed on the Oakland sounding.  The slightly better timing and more 

accurate LLJ wind speeds seen here is the effect of using reanalysis data as initial and 

boundary conditions. 

  



 

 

FIG. 17. N-S along-coast 
(shaded contours) and wind speed (m 
Episode 2 at forecast hour 63 (1500 UTC 30
CTRL (b) SN1 (c) N2 (d) N3 (e) 3DVT1 (f) 3DVT2 (g) 3DVT3
Wind speed contour interval is 5 m
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coast vertical cross section (Line 1) of relative humidity 
contours) and wind speed (m s-1) (solid black contour lines) during 

Episode 2 at forecast hour 63 (1500 UTC 30 November) for each experiment: (a) 
CTRL (b) SN1 (c) N2 (d) N3 (e) 3DVT1 (f) 3DVT2 (g) 3DVT3 (h) 3DVT3 ERA
Wind speed contour interval is 5 m s-1. 

(a) (b) 

(d) (e) 

(g) (h) 

cross section (Line 1) of relative humidity 
) during AR 

) for each experiment: (a) 
(h) 3DVT3 ERA. 

(c) 

(f) 



 

FIG. 18. W-E cross section across Sacramento Valley (Line 2) of the v
component (m s-1) (shaded) and specific humidity (g kg
during Episode 2 at forecast hour 63 (1500 UTC 30
experiment: (a) CTRL (b) SN1 (c) N2 (d) N3 (e) 3DVT1 (f)
3DVT3 ERA. The specific humidity contour interval is 1 g kg
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E cross section across Sacramento Valley (Line 2) of the v
) (shaded) and specific humidity (g kg-1) (solid black

during Episode 2 at forecast hour 63 (1500 UTC 30 November
experiment: (a) CTRL (b) SN1 (c) N2 (d) N3 (e) 3DVT1 (f) 3DVT2 (g) 3DVT3 (h) 
3DVT3 ERA. The specific humidity contour interval is 1 g kg-1. 

(d) (e) 

(g) (h) 

(a) (b) 

E cross section across Sacramento Valley (Line 2) of the v-wind 
black contours) 

November) for each 
3DVT2 (g) 3DVT3 (h) 

(f) 

(c) 
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 Differences in the frontal positions between all experiments can be seen more 

clearly in the W-E vertical cross section of specific humidity and the meridional wind, or 

v-wind, component (Fig. 18) in the Sacramento Valley.  In Episode 2, the grid-nudging 

models (Figs. 18c-e) were slower to bring the front across the valley than all the non-

grid-nudging models (Figs. 18a-b, f-h) and still had the cold front moving through the 

Coastal Range. Of the WRF-GFS non-grid-nudging models (Figs. 18a-b, f-g), SN1 was 

the most progressive and most accurate in its movement and timing of the front.  SN1 and 

3DVT3 show more evidence that a post-frontal coastal barrier jet formed with higher  

near-surface southerly wind speeds in the Pacific Ocean west of the Coastal Range.  Also, 

all the non-grid-nudging experiments show a stronger connection between the upper-level 

winds and the surface cold front than the grid-nudging experiments.  All WRF-GFS 

experiments show a relatively compressed low-level moisture layer with the non-grid-

nudging models showing higher surface values of water vapor mixing ratio off the coast 

and in the Coastal Range.  Again, 3DVT3 ERA has a more advanced position of the front 

in comparison to all experiments but with a weaker southerly wind component impinging 

the Sierra Nevada.  It also shows a much thicker layer of shallower moisture off the coast 

than all the WRF-GFS experiments.  

 In the W-E cross section of the zonal wind, or u-wind, component across the 

Coastal Range and Sacramento valley (Fig. 19), the non-grid-nudging experiments (Figs. 

19a-b,f-h) show stronger winds above the ocean surface between 3 and 4 km reaching 

down to the surface behind the cold front.  Again, SN1 (Fig. 19b) shows the most 

progressive frontal location in the valley of the WRF-GFS experiments (Figs. 19a-g).  
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SN1 produces the strongest zonal winds at the surface off all the experiments.  The grid-

nudging experiments (Figs. 19c-e) do not have the front passing through the Sacramento 

Valley at this time, and they show a negative u-wind component along with a tongue of 

drier air sinking down along the windward slopes of the Sierra Nevada.  This drier air 

most likely originated from diabatic cooling of the downdrafts from the orographic 

precipitation along the windward slopes of the Sierra Nevada.  Here, 3DVT3 ERA’s 

surface front is generally in the same location as the other experiments (Fig. 19h). 



 

FIG. 19. W-E cross section across Sac
component (m s-1) (shaded) and specific humidity (g kg
Episode 2 at forecast hour 63 (1500 UTC 30
CTRL (b) SN1 (c) N2 (d) N3 (e) 
The specific humidity contour interval is 1 g kg
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cross section across Sacramento Valley (Line 2) of the u
) (shaded) and specific humidity (g kg-1) (solid contours) during 

Episode 2 at forecast hour 63 (1500 UTC 30 November) for each experiment: (a) 
CTRL (b) SN1 (c) N2 (d) N3 (e) 3DVT1 (f) 3DVT2 (g) 3DVT3 (h) 3DVT3 ERA.
The specific humidity contour interval is 1 g kg-1. 

(a) (b) 

(d) (e) 

(g) (h) 

  

ramento Valley (Line 2) of the u-wind 
) (solid contours) during 

) for each experiment: (a) 
3DVT2 (g) 3DVT3 (h) 3DVT3 ERA. 

(c) 

(f) 
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5.2. Event Total QPFs  

To gain a measure of how the simulations performed in terms of QPFs for the 

entire event (138 h), their total QPF results in D2 were compared to NCEP Stage IV 

observed total precipitation accumulations (Fig. 20).  At the end of the event, all of the 

models were able capture the general spatial precipitation patterns in most regions, but 

they resulted in different event accumulation values.  The WRF-GFS simulations (Figs. 

20b-h) overestimated the precipitation patterns in the higher peaks of the extreme 

northern Sierra Nevada and extreme southern Cascades northwest of Lake Tahoe, the 

eastern mountains of the north central Coastal Range, and the higher peaks in the Mount 

Shasta/Trinity Alps region.  Also, they slightly underestimated the rainfall along the 

northern Coastal Range, especially in the coastal mountains of Humboldt County, which 

received the highest precipitation accumulations for the entire event, and in the extreme 

northern coast of California.  The grid-nudging experiments (Figs. 20d-f) produced 

slightly higher precipitation amounts on Mount Shasta, the peaks in the northern Sierra 

Nevada, and the peaks in the northern Coastal Range than in the non-grid-nudging 

experiments. 

  



 

  

FIG. 20. Accumulated rainfall in D
November to 1800 UTC 03 December 2012 
(d) N2 (e) N3 (f) 3DVT1 (g) 3DVT2 (h) 3DVT3 (i) 3DVT3 ERA.

(a) 

(d) 

(g) 
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Accumulated rainfall in D2 for the entire event from 0000 UTC 28 
November to 1800 UTC 03 December 2012 for (a) NCEP Stg. IV (b) CTRL (c) SN1 
(d) N2 (e) N3 (f) 3DVT1 (g) 3DVT2 (h) 3DVT3 (i) 3DVT3 ERA. 

(b) (c) 

(e) (f) 

(h) (i) 

 

for the entire event from 0000 UTC 28 
for (a) NCEP Stg. IV (b) CTRL (c) SN1 
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 3DVT3 ERA (Fig. 20i) underestimated total precipitation accumulations for most 

of the Coastal Range, slightly overestimated precipitation in the peaks of the northern 

Sierra Nevada, and did reasonably well in the Mount Shasta/Trinity Alps region.  

Although all of the simulations generally overestimated the precipitation in the Central 

Valley, 3DVT3 ERA produced the most accurate spatial accumulation values there.  

Using ERA-Interim Reanalysis data, which has a resolution approximately 30 km coarser 

than GFS 0.5 degree, as initial and boundary conditions was harmful for predicting the 

coastal orographic precipitation.  Even though the WRF experiments used 3 km 

resolution, it still had the memory of the coarser ERA-Interim data that is not able to 

accurately resolve the finer terrain features of the Coastal Range. 

 For a better model intercomparison of event total QPF results and to see the 

effects of different assimilation methods more completely, difference plots were created 

for total event accumulations between CTRL and the other experiments (Figs. 21a-g).  In 

general, all nudging experiments (Figs. 21a-d) produced more rainfall in the Sacramento 

Valley compared to CTRL.  More dramatic differences were seen in the grid-nudging 

experiments (Figs. 21b-d).  They produced more precipitation in the Sacramento Valley 

and in the higher mountains of the Coastal Range but produced less for most of the Sierra 

Nevada, particularly near Lake Tahoe and further south.  There appeared to be no 

noticeable long-term affect in having different values of RINxy among the grid nudging 

experiments.  SN1 (Fig. 21a) was the only model to produce more rainfall for most of the 

entire Central Valley.  Also, SN1 produced less precipitation in the Santa Lucia 

Mountains, whereas the grid-nudging models produced more.  Both SN1 and 3DVT3 
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(Figs. 21a, f) had a very distinct line of contrast in Northern California extending from 

the Trinity Alps/Mt. Shasta region to the northeast corner of the state with more 

precipitation on the southeast side of the line of no change and less precipitation on the 

northwest side. SN1, however, shows a clearer connection between the more precipitation 

seen in the Sacramento Valley and the area southeast of this contrasting line.  The cold-

start 3DVAR experiment, 3DVT1 (Fig. 21e), expectedly had the least differences in 

rainfall from CTRL because only its initial analysis was changed.  3DVT3 ERA (Fig. 

21g) dramatically shows much less rainfall than CTRL for most of the entire state except 

for parts of the northern Sierra Nevada and on their lee side.  

  



 

 

(d) 

(g) 

(a) 

FIG 21. Total event accumulated rainfall
all other experiments (CTRL minus 
UTC 28 November to 1800 UTC 03 December 2012 
3DVT1 (e) 3DVT2 (f) 3DVT3 (g

(g) 
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(c) 

(e) (f) 

(b) 

ccumulated rainfall difference plots from CTRL experiment 
all other experiments (CTRL minus experiment) in D2 for the entire event from 0000 
UTC 28 November to 1800 UTC 03 December 2012 for (a) SN1 (b) N2 (c) N3 (d) 
3DVT1 (e) 3DVT2 (f) 3DVT3 (g) 3DVT3 ERA. 

difference plots from CTRL experiment for 
for the entire event from 0000 

SN1 (b) N2 (c) N3 (d) 



 

5.3. Statistical Comparison of P

 To further evaluate 

clusters of HMT surface stations we

Coastal Range and the windward Sier

accumulated rainfall time 

accumulated rainfall time series for both the

experiments. Locations of the HMT surface sites we

experiments in order to get the accumulated rainfal

consistent rainfall data wer

central Coastal Range Region and the windward Sierra Nevada

FIG. 22. North central Coastal Range
sites (right box) for area
time series. 
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Statistical Comparison of Precipitation over Coastal Range and Sierra

To further evaluate performance in the simulated QPFs among the models, two 

of HMT surface stations were separated into two regions: the north central 

the windward Sierra Nevada (Fig. 22).  For each region, all

accumulated rainfall time evolutions for each station were averaged to get a site

accumulated rainfall time series for both the HMT surface observations and the 

ions of the HMT surface sites were interpolated in the WRF 

experiments in order to get the accumulated rainfall time series.  Only HMT stations wit

rainfall data were used.  There were a total of 8 and 13 stations in the north 

central Coastal Range Region and the windward Sierra Nevada region, respectively.

entral Coastal Range sites (left box) and windward Sierra Nevada
(right box) for area-averaged HMT sites for entire event accumulated rainfall

and Sierra Nevada 

the models, two 

rth central 

For each region, all the 

averaged to get a site-averaged 

observations and the 

re interpolated in the WRF 

Only HMT stations with 

re a total of 8 and 13 stations in the north 

region, respectively. 

 

indward Sierra Nevada 
averaged HMT sites for entire event accumulated rainfall. 
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  Figure 23 shows the site-averaged accumulated rainfall time evolutions for each 

of the regions throughout the forecast period.  For the north central Coastal Range region 

(Fig. 23a), all the WRF experiments on average underestimated the rainfall amounts for 

the first half of the event.  Right after Episode 2 and near forecast hour 60, the WRF-GFS 

non-grid-nudging models (CTRL, SN1, 3DVT2, and 3DVT3) and grid-nudging models 

(N2, N3, and 3DVT1) diverged in their results.  For the rest of the forecast, the WRF-

GFS non-grid-nudging models overestimated the rainfall and the grid-nudging models 

stayed near the observations until the end where they underestimate the rainfall.  The 

WRF-GFS non-grid-nudging models overestimated the rainfall by approximately 15-20 

mm, and the grid-nudging models underestimated by about 30 mm.  3DVT3 ERA largely 

underestimated the rainfall throughout the entire event for this area and on average 

underestimated the total rainfall by 100 mm at the ending forecast hour.  Also, during 

Episode 2, the other models performed better at simulating the average rainfall rates than 

3DVT3 ERA.  



 

For the windward Sierra Nevada region

accurate results of the rainfall accumulation time series, staying very close to 

observations throughout the entire time period.

the rainfall even more than 

WRF-GFS non-grid-nudging models recover

grid-nudging models that show

Coastal Range.  As seen before

nudging and WRF-GFS non

FIG. 23. Area-averaged hourly time series of accumulated rainfall for observations 
(black line) and all experiments (colored lines) for (a) north central Coastal Range and 
(b) windward Sierra Nevada.

(a) 

(b) 

44 

For the windward Sierra Nevada region (Fig. 23b), 3DVT3 ERA had

accurate results of the rainfall accumulation time series, staying very close to 

observations throughout the entire time period.  All the other experiments 

even more than in the north central Coastal Range until Episode 4

nudging models recovered back to the observations 

that showed an underestimation similarly seen in the no

As seen before in the north central Coastal Range region, the grid

non-grid-nudging models in the windward Sierra Nevada also

averaged hourly time series of accumulated rainfall for observations 
(black line) and all experiments (colored lines) for (a) north central Coastal Range and 
(b) windward Sierra Nevada.  

3DVT3 ERA had the most 

accurate results of the rainfall accumulation time series, staying very close to 

All the other experiments underestimated 

until Episode 4.  Here, the 

 except for the 

seen in the north central 

in the north central Coastal Range region, the grid-

in the windward Sierra Nevada also 

averaged hourly time series of accumulated rainfall for observations 
(black line) and all experiments (colored lines) for (a) north central Coastal Range and 
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began to diverge during Episode 2 two-and-a-half days into the forecast.  Here, the grid-

nudging models underestimated the final result by about 40 mm. 

 Lastly, the MAE was calculated for each model and for each region with the 

accumulated rainfall time series (Table 3).  The regular error, i if y− , was also taken at 

the end of the event, hour 138 (Table 4).  For the north central Coastal Range sites, 

3DVT3 performed the best with the least MAE of 10.95 mm, and for the windward Sierra 

Nevada sites, 3DVT3 ERA had the least MAE of only 6.51 mm.  In general, the 

experiments had larger MAE values for the windward Sierra Nevada sites than in the 

north central Coastal Range, except for 3DVT3 ERA.  It had the opposite, showing both 

the highest MAE for the north central Coastal Range and the least MAE for the windward 

Sierra Nevada.  At the end of the event, SN1 on average best predicted the entire event 

accumulated rainfall for the north central Coastal Range sites with the least error of 13.58 

mm.  3DVT3, on average, best predicted the entire event accumulated rainfall at hour 138 

for the windward Sierra Nevada sites with the least error of 1.29 mm.  

 
 
 
 

 
MAE (mm) 

 
CTRL SN1 N2 N3 3DVT1 3DVT2 3DVT3 3DVT3 

ERA 

North Central 
Coastal Range 13.07 11.52 12.12 11.51  14.63 13.44 10.95*   56.16 

Windward  
Sierra Nevada 24.09 24.36 39.89 40.15 41.08 22.72 23.40    6.51* 

* least MAE 
 

TABLE 3. Area-averaged MAE of forecasted hourly accumulated rainfall time series. 
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Error (mm)  

 
CTRL SN1 N2 N3 3DVT1 3DVT2 3DVT3 3DVT3 

ERA 

North Central 
Coastal Range 18.94 13.58* 30.53 29.07 36.85 23.88 13.90 96.82 

Windward  
Sierra Nevada 4.54 2.58 39.21 39.20 41.04 10.33 1.29* 7.70 

* least Error 
  

TABLE 4. Area-averaged error in forecasted total rainfall at forecast hour 138. 
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6. Summary and Conclusions 

Various WRF data assimilation methods of observation nudging, grid nudging, 

and 3DVAR were evaluated for the high-impact, multi-day AR event for Northern 

California from 0000 UTC 28 November to 1800 UTC 03 December 2012.  The purpose 

of this study was to determine various ways short-to-medium QPFs could be improved 

for AR events affecting the U.S. West Coast.   This study used combinations of data from 

the HMT surface stations, NWS network soundings, and COSMIC satellite GPS RO 

soundings for assimilation.  During this event, a total of four ARs impacted California 

within six days producing heavy orographic rainfall and flash flooding.  In particular, the 

second AR episode produced the highest 6- and 12-h rainfall rates along the windward 

slopes of the Santa Lucia Mountains along the coast based on NCEP Stage IV rainfall 

analysis.  Therefore, most of the results of the numerical experiments focused on the 

precipitation forecast during this episode.  A total of eight high resolution WRF 

experiments were designed that employed various WRF data assimilation combinations 

of observation nudging, grid nudging, and 3DVAR.  The last experiment used ERA-

Interim Reanalysis data instead of the GFS 0.5 degree forecast data to test 3DVAR with 

different initial conditions. 

Results of the experiments during the period in Episode 2 that had the highest 6-h 

rainfall rate showed that all WRF experiments were a few hours slower than observations 

with the timing and location of the AR and its associated cold front 66 h into the forecast.  

Also, the WRF experiments showed an incorrect landfalling AR angle.  The experiments 

could not recapture the maximum 6-h rainfall rate on the windward slopes of the Santa 
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Lucia Mountains during Episode 2 and largely underpredicted this amount in future 

model time steps.  Of the WRF-GFS experiments during Episode 2, SN1 showed the best 

improvement in the timing and location of the front associated with the AR.  3DVAR 

ERA had the most accurate AR representation in terms of IWV and the 6-h rainfall rate; 

However, this was most likely because it showed better timing (faster), it had a more 

accurate angle of the cold front (more south along the coast), and it produced LLJ winds 

that were closer to observations. 

 It appears that this under-prediction of rainfall in all the experiments during 

Episode 2 was associated with the strength and size of the AR and the weaker LLJ winds 

simulated by the models.  Another reason for the under-prediction of rainfall at the coast 

could be that a fine grid resolution of 3 km may still not be fine enough to resolve cloud 

microphysics on the steep windward slopes of the Santa Lucia Mountains of the Coastal 

Range.   

 Cross sections along the coast and across the Sacramento Valley during Episode 

2 revealed that applying grid nudging to the inner domain from a coarser domain may not 

be ideal for mesoscale precipitation forecasts because it smooths out some mesoscale 

features which can affect the rainfall forecast amounts.  The fact that 3DVT3 ERA 

showed a stronger and broader LLJ with slightly more low-level moisture during this 

time in Episode 2 may be a reason why more orographic precipitation was seen here.  

Overall, the data assimilation experiments without grid nudging showed the best 

results in terms of the precipitation forecast time evolution, especially 3DVAR.  Even 

though 3DVT3 ERA showed the best results during Episode 2, it largely underpredicted 
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the event total amount of orographic rainfall for a majority of California west of the 

Sierra Nevada.  A reason for this may be because the ERA-Interim Reanalysis grid is 

much coarser than the GFS 0.5 degree, and it cannot accurately represent smaller terrain 

details along the coast.  For the entire event rainfall accumulation time series, the 

3DVAR cycling simulation had the least MAE for the north central Coastal Range HMT 

sites, and 3DVAR cycling experiment with ERA-Interim showed the least MAE for the 

windward Sierra Nevada sites.  The assimilation of the COSMIC soundings appears to be 

beneficial for precipitation forecasts here especially for the north central Coastal Range 

HMT sites. In terms of the precipitation forecasts at the end of the event, the WRF-GFS 

experiments of surface observation nudging and the 3DVAR cycling gave the least error 

for the north central Coastal Range and the windward Sierra Nevada, respectively. 

Future WRF experiments that focus on short-to-medium range mesoscale QPF 

improvement for ARs should apply observation nudging or 3DVAR at time intervals or 

cycling intervals less than 3 h.  Using a 3-h frequency is not sufficient, and it only 

showed skill after 2.5 days of forecast time.  Future FDDA nudging experiments should 

be performed without applying grid nudging directly on the inner domains, especially for 

such a fine inner domain of 3 km horizontal resolution.  Also, more tests can be done on 

using different observation nudging factor values to determine which ones will lead to 

better QPF results.  Additionally, rather than applying observation nudging throughout 

the entire forecast, the effectiveness of a 6- or 12-h nudging pre-forecast initialization 

period should be tested with a much finer nudging time step interval to include more 

frequent observations.  As always, including a larger network of reliable surface 
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observations, more soundings and COSMIC GPS RO profiles, and more coastal 

observational datasets would only improve the data assimilation experiment results. 

Lastly, different data assimilation methods other than 3DVAR and FDDA nudging can 

also be used in WRF.  For example, other WRF data assimilation methods include true 

4D-Variational Analysis (4DVAR), 3DVAR’s first-guess at appropriate time (FGAT) 

approach, and Ensemble Transform Kalman Filtering (ETKF).  
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APPENDIX A 
 

Acronyms 
 

AR Atmospheric River 

AGL Above ground level 

CAL-JET California Land-falling Jet Experiment 

CDAAC COSMIC Data Analysis and Archive Center 

CHAMP Challenging Minisatellite Payload 

COSMIC Constellation Observing System for Meteorology Ionosphere and 

Climate  

D1 Domain 1 

D2 Domain 2 

ECMWF European Center for Medium range Weather Forecasting 

EnKF Ensemble Kalman Filtering 

ERA ECMWF Reanalysis 

ESRL                 Earth System Research Laboratory 

ETKF Ensemble Transform Kalman Filtering 

FDDA Four-Dimensional Data Assimilation 

FGAT First-Guess at Appropriate Time 

FORMOSAT FORMOsa Satellite 

GIS Geographic Information Systems 

GPS Global Positioning System 

GPS/MET Meteorological application of the United States Air Force GPS satellites 
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HMT Hydrometeorology Testbed 

IWV Integrated Water Vapor 

LEO Low-Earth Orbiting satellite 

LLJ Low-level Jet 

MAE Mean Absolute Error  

ML Mid-Latitude 

NARR North American Regional Reanalysis  

NCEP National Centers for Environmental Prediction 

NOAA National Oceanic and Atmospheric Administration 

N-S  North-South 

NWS National Weather Service 

OBSGRID Objective Analysis/Grid program for WRF 

PAC-JET Pacific Land-falling Jets Experiment 

QPF Quantitative Precipitation Forecast 

RAOB Radiosonde Observation 

RIN Radius of Influence 

RO Radio Occultation 

SSMIS Special Sensor Microwave Imager Sounder 

UCAR                University Corporation for Atmospheric Research 

UTC Universal Time Coordinate system 

W-E       West-East 

WRF Weather Research and Forecasting model 
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WRF-ARW Advanced Research WRF 

WRFDA WRF Data Assimilation package 

3DVAR Three-Dimensional Variational Analysis 

4DVAR  Four-Dimensional Variational Analysis 

3-D Three-Dimensional 
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APPENDIX B 
 

HMT Station and NWS Station Information 
 

California HMT Stations 

ID Name 

Rain 
Gauge

? 
(Y/N) Lat. Lon. 

Elevation 
(msl) 

Variables 
Assimilated* 

ata Alta Y 39.2 -120.82 1085 t,rh 
bbd Big Bend Y 39.3 -120.52 1739 t,rh,ws,wdir 
bkr Baker(P618) N 35.142 -116.104 258 t,rh,ws.wdir 
blu Blue Canyon Y 39.28 -120.71 1610 t,rh,ws,wdir 
brg Burnt Ridge Y 38.67 -123.23 240 t,rh,ws,wdir 
cco Chico Y 39.69 -121.91 41 t,rh,ws,wdir 
ccy CedarCyn(P298) N 36.02 -120.3 50 t,rh,ws,wdir 
cfx Colfax Y 39.09 -120.95 644 t,rh 
cmn Camino Y 38.735 -120.664 1003 t,rh 
cna Carona N 33.858 -117.609 300 t,rh,ws,wdir 
cnh Canada Hill Y 39.18 -120.53 2020 t,rh 
cpk Cooke Peak(P534) Y 37.06 -122.24 238 t,rh,ws,wdir 
crn Corning(P344) Y 39.929 -122.028 50 t,rh,ws,wdir 
czc Cazadero Y 38.61 -123.22 475 t,rh,ws,wdir 
dvs Davis Y 38.58 -121.86 30 t,rh,ws,wdir 
ffm Finch Farms(P268) Y 38.47 -121.65 7 t,rh,ws,wdir 
fhl Forest Hill Y 39.04 -120.8 1042 t,rh,ws,wdir 
gks Greek Store Y 39.08 -120.56 1728 t,rh,ws,wdir 
hbg Healdsburg Y 38.65 -122.87 62 t,rh 
hbk Hornbrook Y 41.9043 -122.5693 715 t,rh 
hcp Happy Camp Y 41.79 -123.39 366 t,rh 
hld Hopland Y 39.0 -123.12 165 t,rh 
hys Huysink Y 39.28 -120.52 2011 t,rh 
klm Klamath(P316) Y 41.559 -124.086 324 t,rh,ws,wdir 
knv Kernville Y 35.754 -118.419 802 t,rh 
lcd Lacrosse Drive (P217) Y 37.1 -121.65 105 t,rh,ws,wdir 
lgt Legget(P315) Y 39.864 -123.717 258 t,rh,ws,wdir 
log Llano Grand(P174) N 36.3 -121.05 403 t,rh,ws,wdir 
lsn Lake Sonoma Y 38.72 -123.05 398 t,rh 
lso Los Osos N 35.3 -120.86 1075 t,rh,ws,wdir 

mck Mills Creek Y 37.47 -122.36 466 t,rh,ws,wdir 
mhl MeachumLfl(P196) Y 38.3 -122.74 122 t,rh,ws,wdir 
mta Mendota(P304) Y 36.74 -120.4 50 t,rh,ws,wdir 
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ndn Norden Y 39.32 -120.37 2100 t,rh 
nvc Nevada City Y 39.385 -120.978 1055 t,rh 
ocr Onion Creek Y 39.27 -120.36 1886 t,rh,ws,wdir 

omm Old Mammoth (P630) Y 37.61 -119 2765 t,rh,ws,wdir 
ons O'Neals Y 37.204 -119.57 693 t,rh 
ovl Oroville Y 39.53 121.42 114 t,rh 
pan Point Arena(P059) Y 38.93 -123.73 21 t,rh,ws,wdir 
pfd Pine Flat Dam Y 36.83 -119.31 184 t,rh 
pld Planada(P305) Y 37.35 -120.2 128 t,rh,ws,wdir 
ppb Pt. Piedras Blancas Y 35.66 -121.29 11 t,rh,ws,wdir 
prv Porterville(P056) Y 36.03 -119.06 133 t,rh,ws,wdir 
ptv Potter Valley Y 39.336 -123.138 303 t,rh 
rod Rio Nido Y 38.51 -122.96 30 t,rh 
ser SJExpRange(P725) Y 37.09 -119.75 361 t,rh,ws,wdir 
sms Somis(P729) Y 34.263 -119.096 121 t,rh,ws,wdir 
smt Slate Mt.(P140) Y 38.83 -120.69 1105 t,rh,ws,wdir 
sns San Nicolas Island Y 33.28 -119.52 15 t,rh,ws,wdir 
spd Sugar Pine Y 39.13 -120.8 1066 t,rh,ws,wdir 
std Shasta Dam N 40.72 -122.43 183 t,rh 
sth St. Helena Y 38.5545 -122.485 135 t,rh,ws,wdir 
str Santa Rosa Y 38.51 -122.8 40 t,rh,ws,wdir 
svc Sibley Volcano(P224) Y 37.86 -122.22 439 t,rh,ws,wdir 
tbt Talbot N 39.19 -120.38 1780 t,rh 
tpk Three Peaks Y 35.85 -121.31 1021 --- 
wcc Wild Creek(P306) Y 37.8 -120.64 113 t,rh,ws,wdir 
wdc Ward Creek Y 39.14 -120.2 2012 t,rh 
wls Willits Y 39.796 -123.317 585 t,rh 

*p=pressure, t=temperature, rh=relative humidity, ws=wind speed, wdir=wind 
direction. t and rh are measured at 2-m AGL. Winds are measured at 10-m AGL. 

  
NWS Stations 

ID Name State Lat. Lon. Elevation 
(msl) 

Variables  
Assimilated* 

KOAK Oakland CA 37.73 -122.21 3 t,rh,ws,wdir 
KVBG Vandenburg AFB CA 34.75 -120.56 121 t,rh,ws,wdir 
KREV Reno NV 39.56 -119.80 1516 t,rh,ws.wdir 
KMFR Medford OR 42.36 -122.86 405 t,rh,ws,wdir 

  *p=pressure, t=temperature, rh=relative humidity, ws=wind speed, wdir=wind direction 
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