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ABSTRACT 

INELASTIC ANALYSIS OF SEISMIC LOADING OF PRECAST CONCRETE 
CLADDING USING COMMERCIALLY AVAILABLE SOFTWARE 

 
by Mohammad Ebrahim Mohammadi 

 
Two nonlinear pushover analyses and three displacement-controlled time history 

analyses of two precast concrete panel assemblies were completed.  The analytical 

software used was SAP2000 (version 15.0.0).  The precast concrete panel modeled was a 

three-dimensional single panel connected to a one-story, one-bay, concrete-reinforced 

structural frame with four flexing rods and two bearing connections.  The results showed 

that static analysis is suitable to predict only dynamic analysis with a long input period of 

vibrations (low acceleration vibrations).  As the period of input vibration neared the 

fundamental period of vibration of the precast concrete panel, the maximum value of 

forces developed in connections increased.  The amplification ratio for both models 

decreased as the period of the input vibrations varied from 100 to 0.32 s, and the amount 

of time that each flexing rod experienced a local maximum of force changed for the 

periods of input vibrations of 100, 1, and 0.32 s.  
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1. Introduction 

1.1 Problem Statement 

The response of nonstructural building components such as architectural, 

electrical, mechanical, and façade systems can be important during earthquakes.  A 

building can lose its functionality due to nonstructural component damage.  Nonstructural 

components consist of a wide variety of elements, from mechanical and electrical 

equipment to architectural parts and exterior claddings.  Therefore, nonstructural 

components—particularly façade systems—are critical components related to improving 

building performance in the event of an earthquake.  Because of this, research has 

recently been conducted to study the behavior of nonstructural components for both static 

and dynamic loads to promote improved analysis and design methods, as nonstructural 

components make up a large portion of construction costs.  For the purpose of this study, 

exterior cladding and its connections with the structural frame was selected as the 

research subject. 

1.2 University of California, San Diego, Precast Concrete Cladding Subsystems—

Detailing for Regions of High Seismicity 

An experimental study of precast concrete cladding façade systems for seismic 

loading was recently conducted on the Large High Performance Outdoor Shake Table 

facility in San Diego (McMullin & Nagar, 2012).  The experimental study included a 

realistic assessment of precast concrete cladding with steel connections to resist dynamic 

loads.  As a supplement to that experimental study, the work for this thesis was 

completed using computer analytical software to analyze the façade system under two 
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loading protocols: an inelastic, nonlinear, monotonic pushover and an inelastic, nonlinear, 

displacement-controlled time history load with three input functions. 

1.3 Project Goals and Objectives 

The goal of this project was to extend the body of knowledge of seismic behavior 

of precast concrete panels and their supporting connections to the structural frame.  

Specific project objectives included the following: 

1. Developing a nonlinear analytical model of a one-story, one-bay precast concrete 

façade system with different combinations of flexural link elements. 

2. Establishing a suitable modeling technique to perform a nonlinear dynamic 

analysis of cladding without requiring a detailed model of the supporting 

structural frame. 

3. Performing inelastic, nonlinear, monotonic pushover and displacement-controlled 

time history analyses of the precast concrete façade system with different pairs of 

flexural link elements. 

4. Identifying suitable force-deformation relationships for each of the link elements 

in all three directions (U1, U2, and U3) for all analyses. 

5. Comparing the results of static pushover load with displacement-controlled 

dynamic load with three different periods of vibration. 

6. Studying the dynamic behavior of the precast concrete façade system. 
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2. Literature Review 

2.1 Analysis of the Panel Systems 

Cheung (2010) performed a nonlinear pushover analysis on a precast concrete 

cladding system.  The model represented the three-dimensional corner of the first floor of 

a nine-story building.  Thirty-one linear and nonlinear link elements were used to 

simulate the cladding connections.  The results of the study showed that the inelastic 

behavior of the nonlinear link elements controls the behavior of the overall cladding 

system.  Two coordinate systems were used to create the model: global and local.  A local 

coordinate system was defined for each link element.  For each link element, the origin is 

located at the first joint of the link on the structure.  The local U1 axis was in the 

horizontal, out-of-plane direction, which lies along the link element and is perpendicular 

to the face of the concrete panel.  The positive direction for U1 is toward the concrete 

panel.  The local U2 axis was in the vertical direction, and the upward direction was 

considered positive.  The local U3 axis was in the horizontal, in-plane direction, which is 

parallel to the face on the concrete panel, and the positive direction is determined by the 

cross-product of vectors U1 and U2. 

In another study, Nagar (2012) illustrated a nonlinear analysis to investigate the 

damage event of the precast concrete cladding specimen with a window opening.  A 

pushover analysis and user-defined displacement-controlled time history analysis were 

conducted on a one-bay, one-story, precast concrete cladding panel with a window 

opening using SAP2000 software.  The precast concrete cladding system was connected 

to the supporting frame via six link elements: two bearing connections and four push-pull 
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sliding connections.  The author concluded that inelastic behavior of connections is the 

governing factor in the overall behavior of the precast concrete panel for the pushover 

loads. 

McMullin and Nagar (2012) studied the seismic performance of precast concrete 

cladding with a combination of steel connections based on the full-scale test conducted in 

April 2012 at UC San Diego Large High Performance Outdoor Shake Table.  The top two 

stories of the five-story, two-bay by one-bay building were fully enclosed with precast 

concrete cladding.  The expected test data contained interstory drift, floor acceleration, 

panel accelerations, and photographic documentation of the connection behavior and 

panel movement.  The drift ratio of the cladding panels is defined in three ways.  

Interstory drift ratio is calculated as lateral deflection divided by the distance between the 

tops of the two floor slabs.  The connection drift ratio is defined as the lateral deflection 

divided by the vertical distance between the horizontal centerlines of the top and bottom 

connections on a panel.  Panel drift ratio is defined as the lateral deflection divided by the 

physical height of the panel. 

2.2 Modeling Software 

The CSI Analysis Reference Manual for SAP2000®, ETABS®, SAFE®, and 

CSiBridge® (2011) defines the linear support stiffness as the total elastic stiffness to be 

used for all linear analysis and nonlinear analysis that start from zero as the initial 

conditions.  A nonlinear link element is defined as an element composed of six separate 

springs, one for each of the six deformational degrees of freedom.  These springs have 

two sets of properties: linear effective stiffness and effective damping properties—used 
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for linear analysis—and the nonlinear force-deformation relationship—used for nonlinear 

time history analysis.  During the nonlinear time-history analysis, the nonlinear force-

deformation relationships are used at all degrees of freedom for which a nonlinear 

property is specified.  For all other degrees of freedom, the linear effective stiffness is 

used during the nonlinear analysis.  The type of nonlinear behavior of the link can be 

modeled with the nonlinear element for each of the six degrees of freedom.  These 

elements include the following: a nonlinear viscous damper; a gap; a hook; a multilinear 

elastic; a multilinear plastic, rubber isolator, and friction isolator or base isolator; plastic 

(Wen); and a T/C friction isolator.  A nonlinear viscous damper is suited for modeling 

viscous dampers that have a nonlinear force-velocity relationship.  The multilinear plastic 

elements can have three different loading and unloading behaviors: Kinematic, Takeda, 

and Pivot Hysteretic.   

The multilinear kinematic plasticity element is based on the kinematic hardening 

behavior that is observed in metals.  The first slope on either side of the origin is elastic; 

the remaining segment represents plastic deformation.  If the deformation reverses, it 

follows the two elastic segments before beginning plastic deformation in the reverse 

direction.   

The multilinear Takeda plasticity element has similar behavior to the kinematic 

element, but the degrading hysteretic loop is based on the Takeda model.  In particular, 

during the unloading phase, the curve follows a secant path to the backbone force-

deformation relationship for the opposite loading direction.  In the multilinear pivot 

hysteretic plasticity element, the behavior of the element is similar to the Takeda element, 
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but additional parameters control the degrading hysteretic loop.  The unloading phase and 

reverse loading phase tend to be directed to specific points named pivot points.  

The CSi Wiki knowledge base (2013) describes the procedure to input 

displacement time history load cases in SAP2000 software.  An earthquake load pattern is 

applied at the node point of application of time history.  The load pattern is a unit value 

of joint displacement, having a zero self-weight multiplier.  The node at which a time 

history load pattern is applied in SAP2000 is also required to be restrained in the 

direction of application of time history.  A time history load case is then defined, which 

describes the variation of displacement with time.  

The CSi Wiki knowledge base (2014) characterized the inelastic behavior by a 

force-deformation relationship.  The force-deformation curve measures strength against 

translation or rotational deformation. The general force-deformation graph indicates 

nonlinear behavior for a member in the structure.  It points out that once a member 

achieves its yield strength, additional loading will cause the response to deviate from the 

initial elastic behavior.  If loading increases, the nonlinear response may reach an 

ultimate point before degrading to a residual strength value. 
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3. Model Description 

3.1 Experimental Model 

The nonstructural precast concrete cladding panel evaluated for this study was 

mounted on a 5-story building constructed at full scale and furnished with several types 

of nonstructural components, including partition walls, cladding and glazing systems, 

piping, HVAC, ceiling, sprinklers, and passive and active fire systems at the University 

of California, San Diego (Nagar, 2012).  Eight different precast concrete façade systems 

were tested.  The precast concrete façade system selected to model in this study was a 

solid panel with a thickness of 5 inches attached to the structure with four flexing rod 

elements at the top and two bearing connections at the bottom.  The UCSD prototype 

structure contained eight different pairs of connection rods as top link elements, as shown 

in Table 1. 
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Table 1 
 
Experimental Testing Rod Placement 
 

 
Connecting Rod Length Location on the Panel 

 (inches) 
Panel 

Location 
Exterior Left Inner Left  Inner Right Exterior Right 

Flexing Rod     

4th Floor 
Northeast 

 

16 20 20 16 

4th Floor 
Southeast 

 

16 12 12 16 

5th Floor 
Northeast 

 

16 12 12 16 

5th Floor 
Southeast 

16 20 20 16 

Sliding Rod     

4th Floor 
Northwest 

 
0 7½ 7½ 0 

4th Floor 
Southwest 

 
0 7½ 7½ 0 

5th Floor 
Northwest 

 
0 4 4 0 

5th Floor 
Southwest 0 4 4 0 

 

The flexing rod connection can be built with varying lengths of coil rod.  For the 

testing conducted at UCSD, three different ranges of length were defined: a long rod, an 

intermediate rod, and a short rod.  Figure 1 shows one of the flexing rod connections used 

at the San Diego experiment site. 
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Figure 1. Photograph of the flexing rod connection at UCSD (personal communication, 
June 2013) (reprinted with permission from Kurt McMullin). 
 

The bearing connection was fabricated from steel, as shown in Figure 2.  During 

casting of the structural concrete beam, a steel plate is embedded in the top of the 

downturned beam of the supporting frame.  Similarly, during casting of the concrete 

panel, another steel plate is embedded in the panel, providing a cantilevered steel 

assembly to project from the panel.  A leveling bolt is inserted through the cantilevered 

plate and used to adjust the elevation of the panel on the building.  After the panel is 

positioned, vertical steel plates are welded between the cantilevered panel embed and the 

structural beam embed.  These plates provide the resistance for in-plane and out-of-plane 

loading (U3 or X direction, and U1 or Y direction).   
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Figure 2. Photograph of the bearing connection at UCSD (personal communication, June 
2013) (reprinted with permission from Kurt McMullin). 
 

3.2 Analytical Model 

This thesis discusses the three dimensional analytical cladding panel shown in 

Figure 3.  It covers a one-story and one-bay area of the structural frame.  The analytical 

model of the cladding panel represents a concrete cladding panel, the structural frame, 

and six link elements.  The precast concrete cladding panel was connected to the 

structural frame with flexing rod connections at the top and bearing connections at the 

bottom. 
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Figure 3. Three-dimensional geometry of the analytical model. 
 

3.2.1 Coordinate system.  Two coordinate systems were used for the analytical 

model in SAP2000: a local and a global coordinate system.  Table 2 shows the link 

elements’ sign convention for the local and global coordinate system.  The origin of the 

global coordinate system is 12 inches below the base of the panel along grid line B, as 

shown in Figure 4.  For the global coordinate system, the global X direction is parallel to 

the plane of the panel along its length, the global Y direction is perpendicular to the plane 

of panel, and the global Z is the vertical dimension.  
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Table 2 
 
Sign Convention for Model Developed in SAP2000 

 

System 
Origin 

location 
Orientation of Axis 

Positive Direction of Local 
Axis With Respect to 

Global Axis 

Global 12" below 
base of panel 
at grid line B 

X 

 

Y 

 

Z 

Length of panel 

 

Thickness of panel 

 

Vertical 

N/A 

Local 1st Joint of 
each Link 
element 

starting from 
structural 

frame 

U1 

 

U2 

 

U3 

Out-of-Plane 
Horizontal 

Vertical 

 

In-Plane Horizontal 

- Y 

 

+ Z 

 

- X 

 

A standardized definition for local coordinates of panel connections has been 

developed (Chueng, 2010).  To be consistent with this definition, the local coordinate 

system for the link element (which connects the precast concrete panel to the structural 

frame) was defined according to the first node defining the link element at the structural 

frame.  Figure 4 shows a typical link element representing a flexing rod connection in the 

local coordinate system.  The local U1 axis is parallel to the length of the link element 

with the positive direction pointing toward the exterior of the building; hence, the 

positive direction of the local U1 axis is in the negative Y direction.  The local U2 axis is 

in the vertical direction pointing up and therefore is in the positive Z direction, and the 

local U3 is the vector product of U1 and U2 and therefore is in the negative X direction.  
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Figure 4. Local axes sign convention for link. 
 

3.2.2 Precast concrete panel.  Twenty thin shell elements were used to model the 

precast concrete panel with an assigned thickness of 5 inches and a compressive strength 

of 4 ksi.  The concrete is assumed uncracked with a unit weight of 150 lb/ft3.  Figure 5 

shows the spatial arrangement of the shell elements.  The aspect ratio of the shell 

elements ranged from 1.3 to 3.  

 



 

14 
 

 

Figure 5. Precast concrete panel layout (all dimensions are presented in inches). 
 

3.2.3 Structural frame.  The structural frame, which supported the concrete 

panel, was modeled using rigid beam elements.  Two extra inner columns were provided 

in the analytical model to increase vertical strength of the structural frame, as shown in 

Figure 6.  All beam-column connections in the structural frame were modeled as fixed for 

torsion in the M11 direction of beam elements (MXX in the global coordinate system), 

fixed for out-of-plane rotation in the M22 direction of beam elements (MZZ in the global 

coordinate system), and released for in-plane rotation in the M33 direction of beam 

elements (MYY in the global coordinate system) in SAP2000.  Therefore, beam-column 

connections of the structural frame are assumed to be pin connections for in-plane 



 

15 
 

bending, thus providing the desired articulation of the frame.  The goal of making an 

articulated frame was to have an analytical model where only the link elements and 

precast concrete panel provide resistance to in-plane loading.  Short cantilevered beam 

elements (link supports) extend vertically from the frame beams at the location of link 

elements, as shown in Figures 6 and 7.  These cantilevered elements are rigidly connected 

to their supporting beam to resist translation and moment in all directions. 

 

Figure 6. Structural frame layout (all dimensions in inches). 
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Figure 7. Elements of the structural frame analytical model. 
 

All shell and beam elements were modeled as normal weight concrete with the 

modulus of the elasticity of 3600 ksi.  Tables 3 and 4 list the material properties and 

dimensions of the structural frame.  All columns were reinforced by eight no. 9 bars, 

beams were reinforced by eight no. 8 bars, and link supports were reinforced by eight no. 

9 bars.  For shear reinforcement, no. 4 bars were used.   
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Table 3 
 
Support Frame and Precast Concrete Panel Material 
 

Material Type 
Compressive 

Yield Strength 
(ksi) 

Weight per 
Unit Volume 

(lb/ft3) 

Modulus of 
Elasticity (ksi) 

Concrete 
Normal 
Weight 

Concrete 
fc' = 4 150 E = 3600 

Reinforcing 
Steel 

A615Gr60 Fy = 60 490 E = 29000 

 

Table 4 
 
Beam, Column, and Link Support Dimensions 
 

Member 
Dimensions of Cross 

Section (in. × in.) 
Material 

Longitudinal 
Reinforcement 

Beam 14 × 28 Concrete 8 - #8 

Column 18 × 28 Concrete 8 - #9 

Link support 10 × 10 Concrete 8 - #9 

 

Vertical loads on the structural frame were supported by pin reactions provided at 

the base of each column.  These pin supports are restrained from translation in all 

directions (X, Y, and Z) but are free to rotate about the X, Y, and Z axes.  All columns 

are restrained from out-of-plane (Y direction) translation at the top of the structural 

frame. 

3.2.4 Nonlinear link element.  In the model, the precast concrete panel was 

connected to the structural frame using two different types of connections: flexing rod 
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connections and bearing connections.  Three different link elements were used to model 

the link elements: Type 1, Type 2, and Type 3.  Table 5 shows the connection type and 

corresponding force-displacement relationship of each link element.  Table 6 shows the 

global position and location on the panel from a front view for each link element.  The 

starting node of each link is at the structural frame, and the end node connects to the 

panel.  The force-deformation relationship obtained from experimental tests was used 

along the local U2 and U3 direction for Links 1, 2, 3, and 4, based on Table 5.  

Table 5 
 
Connection Type and Force-Deformation Relationship for Connections 
 

Connection 
Type 

Connection 
Name 

Local Coordinate 
Force- 

Deformation 
Relationship 

 
Type 1 

 
Flexing rod connection 

 
U1 

 
U2 

 
U3 

 
Pin 

 
Figure 8 

 
Figure 8 

 
Type 2 

 
Bearing connection 1 

 
U1 

 
U2 

 
U3 

 
Pin 

 
Pin 

 
Pin 

 
Type 3 

 
Bearing connection 2 

 
U1 

 
U2 

 
U3 

 
Pin 

 
Pin 

 
Pin 
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Table 6 
 
SAP2000 Input Parameters and Location of Link Elements 
 

   
Global Coordinates of i-Node 

(inches) 

Location in 
Panel  

SAP2000 
Link Element 

Connection 
Type 

X Y Z 

Top Left 
Exterior 

Link 1 Type 1 30 11.5 156.5 

Top Left 
Interior 

Link 2 Type 1 78 11.5 156.5 

Top Right 
Interior 

Link 3 Type 1 126 11.5 156.5 

Top Right 
Exterior 

Link 4 Type 1 174 11.5 156.5 

Bottom Left Link 5 Type 2 30 11.5 28 

Bottom 
Right 

Link 6 Type 3 174 11.5 28 

 

Table 7 shows the placement of the flexing rod for two analytical models.  For 

each rod listed, the first number represents the length and the second number represents 

the diameter of each rod.  Both analytical models had the same structural frame, bearing 

connections, and precast concrete panel.  The only difference was between the top link 

elements.  
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Table 7 
 
Analytical Model Rod Placement 
 

  Top Link Elements (length in. × diameter in.) 

Model 
No. 

Model 
ID 

Exterior Left 
(Link 1) 

Interior Left 
(Link 2) 

Interior Right 
(Link 3) 

Exterior Right 
(Link 4) 

Model 1 MD1 16 × 3/4 12 × 3/4 12 × 3/4 16 × 3/4 

Model 2 MD2 16 × 1 12 × 3/4 12 × 3/4 16 × 1 

 

3.2.4.1 Flexing rod elements.  For analytical modeling, the flexing rod 

connections were modeled as nonlinear links, defined as multilinear plastic elements with 

kinematic hysteretic behavior.  To quantify the force and displacement of a rod due to 

bending, experiments of flexing rod connection were conducted at San José State 

University in December 2011.  However, the results of the experiment could not be 

directly inputted to the element in SAP2000 because the program cannot accept two 

inputs with different y values and same x values.  Therefore, the revised force-

displacement graph for the three different experimental specimens used for modeling 

with SAP2000 were used, as shown in Figure 8. 
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Figure 8. Force-deformation graphs input for flexing rods. 
 

3.2.4.2 Bearing connection.  Two bearing connections were included in the 

model.  Both bearing connections were considered pin connections, implying that the 

connection resists movement in all three directions.  The primary role of the connections 

was to support the vertical gravity load of the panel while also providing in-plane and 

out-of-plane resistance for gravity, wind, and seismic loads.  These connections were 

assumed not to provide rotational resistance about any axis. 

For the analytical model, Link 5 was assigned as a linear link element with a 

stiffness of 10,000 kip/in all three translational directions to simulate the high level of 

stiffness that the connection provides.  Link 6 was assigned as a linear element with a 

stiffness of 10,000 kip/in for both U1 and U2 (Y and Z directions) and a linear stiffness 
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of 1,000 kip/in for U3 (X direction) to prevent the analytical model from artificially 

stiffening the structure due to second-order effects along the direction of the bottom 

connections.  

3.3 Loading Protocol 

The two analytical models were used to analyze three different load cases: static 

dead load analysis, static nonlinear pushover analysis, and displacement-controlled time 

history analysis.   

3.3.1 Static dead load.  The dead load of the model consists of the self-weight of 

all members, including beams, link supports, panel, and columns of the structural frame.  

The software calculates the self-weight based on the defined density of materials as 

presented in Table 3 and the volume of the members. 

3.3.2 Static pushover load.  A nonlinear, inelastic, monotonic, displacement-

controlled pushover analysis was conducted by applying a displacement in the X 

direction at midspan of the upper beam (node No. 39) in the structural frame, as shown in 

Figure 9.  
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Figure 9. Point of input for displacement-controlled time history analysis and pushover 
analysis. 
 

Two pushover analyses were conducted on each model.  The first analysis was 

conducted with a maximum monotonic displacement of 3.2 inches in the positive X 

direction (P1).  The second analysis for the negative direction used a displacement of 3.2 

inches in the negative X direction (P2).  An incremental increase of a 0.032-inch 

displacement was used for both analyses for a total of 100 steps to reach the peak 

displacement.  Figure 10 shows input displacement for the pushover analysis, and Table 8 

shows the summary of the static pushover loads.  Both pushover load cases started from 

the deformed state after completion of the dead load analysis. 
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Figure 10. Protocol for control displacement for static pushover analysis. 
 

Table 8 
 
Pushover Load Cases Summary 
 

Pushover Load ID 
Direction of 

Displacement 
Number of Steps to 
Reach Peak Value 

Peak Value 
(inches) 

P1 Positive X Direction 100 3.2 

P2 Negative X Direction 100 -3.2 

 

3.3.3 Displacement-controlled time history load.  A total of three displacement-

controlled time history analyses were completed for each model.  A static load case with 

a magnitude of 1 kip in the positive X direction was assigned to node No. 39, which is 

located at midspan of the upper beam of the structural frame, as shown in Figure 10.  A 
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time history function for displacement was then defined.  All displacement-controlled 

time history analyses started from the deformed state after completion of the dead load 

analysis. 

Three one-cycle sine functions were used to define the control-displacement time 

history.  All functions had a maximum amplitude of 3.2 inches.  The three functions had 

different periods and duration of analysis, as shown in Table 9 and Figure 11.  

Table 9 
 
Sine Wave Function Periods and Duration of Analysis 
 

Function Period, T (sec.) Duration of Analysis, t (sec.) 

F 1 100 100 

F 2 1 1 

F 3 0.32 0.32 
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Figure 11. Sine wave function for analytical model. 
 

The choice of the three periods for loading was made to capture specific dynamic 

behaviors of the system.  The sine function for a period of 100 s was used to represent a 

slow displacement of the structural frame, thus developing very low accelerations of the 

model mass.  This was done with the expectation that low acceleration could be 

compared with the static pushover analysis.  The sine function for a period of 0.32 s was 

selected because this time period corresponds to the mode with the largest mass 

participation ratio of the model.  The period of 1 s was selected to capture the dynamic 

corresponding with the fundamental period of vibration of a midrise structure.  

The two models were developed to carry out dead load analysis, pushover 

analysis, modal analysis, and displacement-controlled time history analysis. The results 

of each analysis are shown in Table 10.   
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Table 10 
 
Thesis Section for Load Case Result of Each Model 
 

 
Load Cases Results Sections 

Model ID 
Dead 
Load 

Pushover 
Loads 

Modal 
Analysis 

Displacement-controlled 
Time History Loads 

MD 1 4.2 4.3.1 to 4.3.5 5.1 5.2 

MD 2 4.2 4.3.6 to 4.3.10 5.1 5.3 
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4. Static Analysis Results 

4.1 Overview of Analyses 

The static dead load analysis was conducted to evaluate the accuracy of both 

models.  To determine the nonlinear force-deformation relationship of individual 

components of Models MD 1 and MD 2, pushover analyses were conducted. 

4.2 Verification of Models 

The static dead load analysis was conducted on both models.  The accuracy of the 

two models of the precast concrete facade panel was then verified by comparing the sum 

of the models’ vertical reaction of all link elements to a value manually calculated as the 

self-weight of the precast concrete panel.  Table 11 shows the summary of verification 

for both models.  For additional verification, analytical output showed deflection values 

on the order of 0.01inches, a small value as expected for both Models MD 1 and MD 2.  

Moreover, as expected, the larger flexing rod of Model MD 2 resists more gravity load 

than the smaller rod of Model MD 1.  Figures 12 and 13 show the free body diagram of 

Models MD 1 and MD 2 for dead load analysis, respectively.  Note that the panel 

geometry is slightly nonsymmetric about the vertical axis.  The effect of this 

nonsymmetry can be seen in the distribution of forces in the U3 direction.  
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Table 11 
 
Forces Developed in the Vertical Direction in Both Models and Links 
 

Model 
ID 

Link 1 Link 2 Link 3 Link 4 Link 5 Link 6  

Link Force 
Summation 
in Vertical 
Direction 

Weight of 
the Panel 
Manually 
Calculated 

 (pounds) 

MD 1 8 1 1 10 6968 9344 16333 16333 

MD 2 16 1 1 17 6962 9335 16333 16333 

 
Figure 12. Free body diagram of the precast concrete panel and links for the dead load 
analysis for Model MD 1. 
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Figure 13. Free body diagram of the precast concrete panel and links for the dead load 
analysis for Model MD 2. 
 

4.3 Static Pushover Analysis 

The global force-deformation relationships for the in-plane direction (X direction) 

of the flexing rods are the primary interest of the analytical modeling.  The out-of-plane 

and the vertical (Y and Z direction) deformation for the flexing rods is significantly small 

for static pushover analyses of both Models MD 1 and MD 2; hence, these force-
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deformation relationships are not reported.  The bearing connection force-deformation 

relations are presented for both the in-plane and the vertical directions.  The out-of-plane 

direction deformations of the bearing connections were small, and therefore their force-

deformations are not discussed. 

4.3.1 Top links in-plane direction analysis result for Model MD 1.  The 

pushover analysis of Model MD 1 was conducted.  As the structural frame moves in the 

X direction, the precast concrete panel deforms in the same direction as the structural 

frame, but the displacements of the panel are about 15% of the structural frame 

displacement.  Therefore, the panel is essentially undeformed.  Meanwhile, the links 

actually deform in the opposite direction to accommodate the relative displacement 

between the two ends. 

Figure 14 defines the global pushover curve for both the positive and negative 

displacement of the structural frame (loads P1 and P2).  Figure 15 shows the relationship 

between the absolute value of the summation of the horizontal shear forces developed in 

the four flexing rod links and the absolute value of the control displacement of the 

structural frame.  The behavior is essentially linear until the displacement nears a 

magnitude of 0.5 inches.  As the control displacement exceeds the magnitude of 0.5 

inches, the relationship remains linear but with a different slope.  As shown in Figure 4.3, 

both positive and negatives curves lie on each other. 
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Figure 14. Total force developed in all flexing rod links for loading protocols P1 and P2. 
 

Figure 15 shows the results for Link 1 and Link 4 for both the positive and 

negative global displacement of the structural frame.  It shows the relationship between 

the force developed in the exterior flexing rod link in the X direction and the link 

displacement in the X direction as the structural frame moves.  A linear relationship 

exists until the displacement nears a magnitude of 1 inch.  As the control displacement 

exceeds the magnitude of 1 inch, the relationship remains linear but with a different 

slope.  As shown, both the positive and negatives curves lie on each other.  The force 

developed in the flexing rod link for the negative displacement of the structural frame 

was in the opposite direction but with the same magnitude of force developed in the link 

for the positive displacement of the structural frame. 
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Figure 15. Force developed in the exterior flexing rod in the X direction versus the link 
displacement in the X direction for loading protocols P1 and P2. 
 

Figure 16 shows the results for Link 2 and Link 3 for the both positive and 

negative global displacement of the structural frame.  It shows the relationship between 

the force developed in the interior flexing rod link in the X direction and the link 

displacement in the X direction as the structural frame moves.  A linear relationship 

exists until the displacement nears a magnitude of 0.5 inches.  As the link displacement 

exceeds the magnitude of 0.5 inches, the relationship remains linear but with a different 

slope.  As shown, both positive and negatives curves lie on each other.  Similar to the 

previous graphs, the force developed in the flexing rod link for the negative displacement 
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of the structural frame was in the opposite direction but with the same magnitude of force 

developed in the link for the positive displacement of the structural frame.  

 

Figure 16. Force developed in the interior flexing rod in the X direction versus the link 
displacement in the X direction for loading protocols P1 and P2. 
 

4.3.2 Bottom links in-plane direction analysis result for Model MD 1 .  The 

bottom link graphs do not start from the origin because both Link 5 and Link 6 (left and 

right bottom links) carry part of the weight of the panel. 

Figure 17 shows the results for Link 5 (left side, bottom link) for the positive 

global displacement of the structural frame.  It shows the relationship between the force 

developed in the left bottom link in the X direction and the link displacement in the X 

direction as the structural frame moves.  The graph does not start at the origin because 
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Link 5 carries part of the weight of the precast concrete panel due to eccentricity.  The 

relationship is linear throughout the loading, as shown in Figure 17.   

 

Figure 17. Force developed in Link 5 in the X direction versus the link displacement in 
the X direction for loading protocol P1. 
 

A similar behavior was observed for the negative global displacement of the 

structural frame for the Link 5.  The relationship is linear throughout the loading, as 

shown in Figure 18.  
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Figure 18. Force developed in Link 5 in the X direction versus the link displacement in 
the X direction for loading protocol P2. 
 

Figure 19 shows the results for Link 6 (right side, bottom link) for the positive 

global displacement of the structural frame.  It shows the relationship between the force 

developed in the right bottom link in the X direction and the link displacement in the X 

direction as the structural frame moves.  The graph does not start at origin because Link 6 

carries part of the weight of the precast concrete panel due to eccentricity.  A linear 

relationship exists throughout the loading, as shown in the Figure 19.   
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Figure 19. Force developed in Link 6 in the X direction versus the link displacement in 
the X direction for loading protocol P1. 
 

Similar behavior was observed for the negative global displacement of the 

structural frame for the Link 6.  The relationship is linear throughout the loading, as 

shown in Figure 20.   
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Figure 20. Force developed in Link 6 in the X direction versus the link displacement in 
the X direction for loading protocol P2. 
 

4.3.3 Bottom links vertical direction analysis result for Model MD 1 .  In the 

following plots, the origins of the drawings do not start at the origin due to links carrying 

the main portion of the weight of the precast concrete panel. 

Figure 21 shows the results of Link 5 (left side, bottom link) for the positive and 

negative global displacements of the structural frame.  It shows the relationship between 

the force developed in the left bottom link in the Z direction and the link displacement in 

the Z direction for loading protocols P1 and P2.  The relationship is linear throughout the 

loading, as shown in the Figure 21. 
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Figure 21. Force developed in Link 5 in the Z direction versus the link displacement in 
the Z direction for loading protocols P1 and P2. 
 

Figure 22 shows the results for Link 6 (right side, bottom link) for the positive 

and negative global displacements of the structural frame.  It shows the relationship 

between the force developed in the right bottom link in the Z direction and the link 

displacement in the Z direction for loading protocols P1 and P2.  The relationship is 

linear throughout the loading, as shown in the Figure 22. 
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Figure 22. Force developed in Link 6 in the Z direction versus the link displacement in 
the Z direction for loading protocols P1 and P2. 
 

4.3.4 Drift ratio for Model MD 1 .  Panel shear strain is a critical value related to 

panel design.  Panel shear strain (γ) is the lateral deflection divided by the total height of 

the panel (equivalent to the panel drift ratio defined in section 2.1).  The structural frame 

drift ratio (αFrame) is the lateral deflection of the structural frame divided by the vertical 

distance between floor levels (equivalent to the interstory drift ratio of section 2.1).  

Sample calculations for both αFrame and γ are provided here for the last step of the positive 

displacement of the structural frame in the X direction (P1 loading protocol). 
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Figure 23 shows the shear strain developed in the precast concrete panel versus 

the drift ratio of the structural frame graph for the positive global displacements of the 

structural frame.  A linear relationship exists until the structural frame drift ratio is 

0.0005.  As the drift ratio of the structural frame exceeds the 0.005, the relationship 

remains linear but with a different slope.  The same results were observed for the 

negative displacement of the structural frame.  

 

Figure 23. Shear strain of the precast concrete panel versus drift ratio of the structural 
frame. 
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4.3.5 Summary of analysis for Model MD 1.  Table 12 shows the summary of 

the maximum displacement recorded for each link in the X direction divided by the 

maximum control displacement of the structural frame. 

�7 �  
8�9.  �����������
 7��
�:�: 
� 
1� ���;

8�9.  <
�
�
� �����������

             Equation 3 

Table 12 shows that the displacements do not vary based on their locations along 

the length of the panel. 

Table 12 
 
Summary Table of Displacement Ratios With Respect to Control Displacement of the 
Structural Frame for Model MD 1 in the X Direction 
 

Pushover Analysis Link 1 Link 2 Link 3 Link 4 

Positive X Direction, 
Displacement 3.2 in. 

0.837 0.837 0.837 0.837 

Negative X Direction, 
Displacement 3.2 in. 

0.837 0.837 0.837 0.837 

 

Figure 24 shows the free body diagram of the precast concrete panel at the final 

point of analysis for the P1 loading protocol.  The same magnitudes of forces were 

observed in the links for the P2 loading protocol, but the forces were in the opposite 

directions.  The forces in the flexing rods of the same size are equal, and the bearing 

connections resist much higher horizontal forces compared to the flexing rod links, as 

shown in Figure 24.  Table 13 shows horizontal forces developed in the last step of the P1 

loading protocol. 
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Figure 24. Free body diagram of the precast concrete panel at final step of analysis for 
loading protocol P1. 
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Table 13 
 
Summary of Horizontal Forces for P1 and P2 Loading Protocols 
 

 Horizontal Force (pounds) 

Loading Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 

P1 989 1195 1195 989 -2886 -1481 

P2 -989 -1195 -1195 -989 2886 1481 

 

4.3.6 Top links in-plane direction analysis result for Model MD 2.  The 

pushover analysis of Model MD 2 was conducted.  As the structural frame moves in the 

X direction, the precast concrete panel deforms in the same direction as the structural 

frame, but the displacements of the panel are about 16% of the structural frame 

displacement.  Therefore, the panel is essentially undeformed.  Meanwhile, the links 

actually deform in the opposite direction to accommodate the relative displacement 

between the two ends. 

Figure 25 defines the global pushover curve for both the positive and negative 

displacement of the structural frame.  It shows the relationship between the absolute 

value of the summation of the horizontal shear forces developed in the four flexing rod 

links and the absolute value of the control displacement of the structural frame.  The 

behavior is essentially linear until the displacement nears a magnitude of 1 inch.  As the 

control displacement exceeds the magnitude of 1 inch, the relationship remains linear but 

with a different slope.  As shown in Figure 25, the positive and negative curves lie on 

each other. 
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Figure 25. Total force developed in all flexing rod links for loading protocols P1 and P2. 
 

Figure 26 shows the results for Link 1 and Link 4 for both the positive and 

negative global displacements of the structural frame.  It shows the relationship between 

the force developed in the exterior flexing rod link in the X direction and the link 

displacement in the X direction as the structural frame moves.  A linear relationship 

exists until the displacement nears a magnitude of 1 inch.  As the control displacement 

exceeds the magnitude of 1 inch, the relationship remains linear but with a different 

slope.  As shown, the positive and negatives curves lie on each other.  The force 

developed in the flexing rod link for the negative displacement of the structural frame 

was in the opposite direction but with the same magnitude of force developed in the link 

for the positive displacement of the structural frame.  
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Figure 26. Force developed in the exterior flexing rod in the X direction versus the link 
displacement in the X direction for loading protocols P1 and P2. 
 

Figure 27 shows the results for Link 2 and Link 3 for both the positive and 

negative global displacements of the structural frame.  It shows the relationship between 

the force developed in the interior flexing rod link in the X direction and the link 

displacement in the X direction as the structural frame moves.  A linear relationship 

exists until the displacement nears a magnitude of 0.5 inches.  As the link displacement 

exceeds the magnitude of 0.5 inches, the relationship remains linear but with a different 

slope.  As shown, the positive and negatives curves lie on each other.  Similar to the 

previous graphs, the force developed in the flexing rod link for the negative displacement 

of the structural frame was in the opposite direction but with the same magnitude of force 

developed in the link for the positive displacement of the structural frame.  
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Figure 27. Force developed in the interior flexing rod in the X direction versus the link 
displacement in the X direction for loading protocols P1 and P2. 
 

4.3.7 Bottom links in-plane direction analysis result for Model MD 2.   The 

bottom link graphs do not start from the origin because both Link 5 and Link 6 (left and 

right bottom links) carry part of the weight of the panel. 

Figure 28 shows the results for Link 5 (left side, bottom link) for the positive 

global displacement of the structural frame.  It shows the relationship between the force 

developed in the left bottom link in the X direction and the link displacement in the X 

direction as the structural frame moves.  The graph does not start at the origin because 

Link 5 carries part of the weight of the precast concrete panel due to eccentricity.  The 

relationship is linear throughout the loading, as shown in Figure 28. 
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Figure 28. Force developed in Link 5 in the X direction versus the link displacement in 
the X direction for loading protocol P1. 
 

A similar behavior was observed for the negative global displacement of the 

structural frame for Link 5.  The relationship is linear throughout the loading, as shown in 

Figure 29. 
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Figure 29. Force developed in Link 5 in the X direction versus the link displacement in 
the X direction for loading protocol P2. 
 

Figure 30 shows the result for Link 6 (right bottom link) for the positive global 

displacement of the structural frame.  It shows the relationship between the force 

developed in the right bottom link in the X direction and the link displacement in the X 

direction as the structural frame moves.  The graph does not start at the origin because 

Link 6 carries part of the weight of the precast concrete panel due to eccentricity.  A 

linear relationship exists throughout the loading, as shown in Figure 30. 
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Figure 30. Force developed in Link 6 in the X direction versus the link displacement in 
the X direction for loading protocol P1. 
 

Similar behavior was observed for the negative global displacement of the 

structural frame for Link 6.  The relationship is linear throughout the loading, as shown in 

Figure 31. 
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Figure 31. Force developed in Link 6 in the X direction versus the link displacement in 
the X direction for loading protocol P2. 
 

4.3.8 Bottom link vertical direction analysis result for Model MD 2 .  In the 

following plots, the origins of the drawings do not start at the zero axes due to the links 

carrying the main portion of the weight of the precast concrete panel. 

Figure 32 shows the results of Link 5 (left side, bottom link) for the positive and 

negative global displacements of the structural frame.  It shows the relationship between 

the force developed in the left bottom link in the Z direction and the link displacement in 

the Z direction for loading protocols P1 and P2.  The relationship is linear throughout the 

loading, as shown in Figure 32. 
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Figure 32. Force developed in Link 5 in the Z direction versus the link displacement in 
the Z direction for loading protocols P1 and P2. 
 

Figure 33 shows the results for Link 6 (right bottom link) for the positive and 

negative global displacements of the structural frame.  It shows the relationship between 

the force developed in the right bottom link in the Z direction and the link displacement 

in the Z direction for loading protocols P1 and P2.  The relationship is linear throughout 

the loading, as shown in Figure 33. 
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Figure 33. Force developed in Link 6 in the Z direction versus the link displacement in 
the Z direction for loading protocols P1 and P2. 
 

4.3.9 Drift ratio for Model MD 2 .  Panel shear strain and a structural frame drift 

ratio were calculated.  Sample calculations for Model MD 2 are provided here using 

equations 1 and 2, respectively, for the last step of the positive displacement of the 

structural frame in the Z direction (P1 loading protocol). 
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As the drift ratio of the structural frame exceeds 0.005, the relationship remains linear but 

with a different slope.  The same results were observed for the negative displacement of 

the structural frame. 

 
Figure 34. Shear strain of the precast concrete panel versus drift ratio of the structural 
frame. 
 

4.3.10 Summary of analysis for Model MD 2.  Table 14 shows the summary of 

the maximum displacement recorded for each link in the X direction divided by 

maximum control displacement of the structural frame as described previously in 

Equation 3. 
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Table 14 
 
Summary Table of Displacement Ratios With Respect to Control Displacement of the 
Structural Frame for Model MD 2 in the X Direction 
 

Pushover Analysis Link 1 Link 2 Link 3 Link 4 

Positive X Direction, 
Displacement 3.2 in. 

0.835 0.835 0.835 0.835 

Negative X Direction, 
Displacement 3.2 in. 

0.835 0.835 0.0.835 0.835 

 

Figure 35 shows the free body diagram of the precast concrete panel at the final 

point of analysis for the P1 loading protocol.  The same magnitudes of forces were 

observed in the links for the P2 loading protocol, but the forces were in the opposite 

direction.  The forces in the flexing rods with the same size are equal, and bearing 

connections resist much higher horizontal forces compared to the flexing rod links, as 

shown in Figure 35.  Table 15 shows horizontal forces developed in the last step of P1 

and P2 loading protocols. 
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Figure 35. Free body diagram of the precast concrete panel at final step of analysis for 
loading protocol P1. 
 

Table 15 
 
Summary of Horizontal Forces for P1 and P2 Loading Protocols 
 

 Horizontal Force (pounds) 

Loading Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 

P1 1943 1194 1194 1944 -4166 -2109 

P2 -1943 -1194 -1194 -1944 -4165 -2110 
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5. Displacement-Controlled Time History Analysis Results 

5.1 Modal Analysis 

Modal analysis was conducted to identify the dynamic characteristics of the 

precast concrete panel system, including the mass participation ratios.  Two separate 

conditions for the structural frame were studied and compared for each of the two models 

to determine the mass participation ratio of the precast concrete panel and the structural 

frame.  First, the mass of the structural frame was set to zero; and mode shapes, periods 

of vibration, and mass participations ratios were determined.  Second, the mode shapes, 

periods of vibration, and mass participation ratios for both models, including the mass of 

the structural frame, were determined.  Based on the results, the discrepancy between the 

two conditions for the mass of the structural frame was negligible and did not make a 

difference in mode shapes, periods of vibration, or mass participation.  It was also 

concluded that the significant vibration characteristics of the precast concrete facade 

occurred in the first five modes of vibration.  

The results of the analysis for both Models MD1 and MD2 are presented in 

Tables 16 and 17 for the first five modes of vibration.  As shown in the following tables, 

significant coupling of translation and rotation occurs in most modes. 
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Table 16 
 
Modal Participation Mass Ratio for Model MD 1 
 

 
Period 

Translation 
in X 

Translation 
in Y 

Translation 
in Z 

Rotation 
in X 

Rotation 
in Y 

Rotation 
in Z 

 
No. of 
Modes 

(Sec.) (Unitless) (Unitless) (Unitless) (Unitless) (Unitless) (Unitless) 

1 0.5989 0.3853 0.0000 0.0000 0.0000 0.2911 0.0031 

2 0.3231 0.0006 0.7530 0.0048 0.8924 0.0003 0.5491 

3 0.2742 0.2659 0.0009 0.0006 0.0013 0.2413 0.0497 

4 0.2383 0.0596 0.0057 0.0000 0.0050 0.0478 0.0934 

5 0.2173 0.0013 0.0823 0.0053 0.0623 0.0001 0.1068 

 

Table 17 
 
Modal Participation Mass Ratio for Model MD 2 
 

 Period 
Translation 

in X 
Translation 

in Y 
Translation 

in Z 
Rotation 

in X 
Rotation 

in Y 
Rotation 

in Z 
No. of 
Modes 

(Sec.) (Unitless) (Unitless) (Unitless) (Unitless) (Unitless) (Unitless) 

1 0.598 0.5543 0.0000 0.0000 0.0000 0.3599 0.0035 

2 0.3231 0.0006 0.7527 0.0048 0.8921 0.0004 0.5488 

3 0.2814 0.2328 0.0013 0.0005 0.0019 0.1914 0.0349 

4 0.2399 0.0335 0.0049 0.0000 0.0041 0.0215 0.1093 

5 0.2174 0.0007 0.0829 0.0051 0.0629 0.0004 0.1058 

 



 

59 
 

5.2 Analysis Result for Model MD 1  

5.2.1 Top links force-time relationship for Model MD 1.  Three nonlinear 

dynamic analyses using displacement-controlled time history were used to evaluate the 

dynamic characteristics of the flexing rod links, the bottom links, and the precast concrete 

panel.  Figures 36 and 37 show the relationship between forces developed in each of the 

flexural links with respect to the time for loading for a period of 100 s.  Figures 38 and 39 

show the same relationship for loading for a period of 1 s.  Figures 40 and 41 show the 

same relationship for loading for a period of 0.32 s.  In all cases, Link 3 has a graph 

identical to that of Link 2, and Link 4 has a graph identical to that of Link 1. 

Figure 36. Force developed in the exterior flexing rod versus time for T = 100 seconds.  
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Figure 37. Force developed in the interior flexing rod versus time for T = 100 seconds. 
 

 

Figure 38. Force developed in the exterior flexing rod versus time for T = 1 second. 
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Figure 39. Force developed in the interior flexing rod versus time for T = 1 second. 
 

Figure 40. Force developed in the exterior flexing rod versus time for T = 0.32 seconds. 
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Figure 41. Force developed in the exterior flexing rod versus time for T = 0.32 seconds. 
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Figure 42. Forces developed in all flexing rod links versus the structural frame 
displacement. 
 

Figures 43 and 44 show the force-deformation relationship for the top links.  

Figure 43 is for Link 1, and Figure 44 is for Link 2.  In both graphs, a hysteretic behavior 

exists as the structural frame undergoes one cycle of displacement loading.  Link 4 has a 

graph identical to that of Link 1, and Link 3 has a graph identical to that of Link 2. 
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Figure 43. Force developed in the exterior flexing rod versus the exterior link 
displacement. 

 

Figure 44. Force developed in the interior flexing rod versus the interior link 
displacement. 
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The force-deformation relationship for the two bottom links is linear.  Table 18 

shows the relationship type and its domain for each of the bottom links.   

Table 18 
 
Force-Deformation Relationships for Bottom Links in the X Direction 
 

Link No. 
Relationship 
Type 

Displacement Domain  
(inches) 

Slope 
(kips/in) 

 

Link 5 Linear [-0.0128, 0.0.128] 10000 
 

Link 6 Linear [-0.124, 0.123] 1000  

 

5.2.3 Bottom links analysis result for Model MD 1 under dynamic load for a 

period of 100 seconds in the vertical direction.  A force-deformation relationship in the 

Z direction for the two bottom links is also linear.  Table 19 shows the relationship type 

and its domain for each of the bottom links. 

Table 19 
 
Force-Deformation Relationships for Bottom Links in the Z Direction 
 

Link No. 
Relationship 
Type 

Displacement Domain  

(inches) 

Slope 
(kip/in) 

 

Link 5 Linear [-0.00054, 0.00054] 10000  

Link 6 Linear [-0.0004, 0.0004] 10000  

 

5.2.4 Acceleration and displacement result for Model MD 1 under dynamic 

load for a period of 100 seconds.  To determine the acceleration in the X direction of the 

precast concrete panel, four points were selected at the middle of each edge of the precast 

concrete panel, and the absolute value of the average of the accelerations was then 
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calculated.  The maximum value of the average was then normalized with respect to the 

acceleration of gravity.  The maximum acceleration of the panel in the X direction was 

0.81 in/sec2, or 0.002g.  For the structural frame, the maximum acceleration recorded was 

0.0039 in/sec2.  Based on Equation 4, the amplification ratio was calculated.  Figure 45 

shows the precast concrete panel acceleration time history. 

L- �
M�-����N8�9

M������N8�9
        Equation 4 

OP �
F.QG DE./SATU

F.FFBK
� 207   

 

 

Figure 45. Precast concrete panel acceleration in the X direction versus time. 
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direction is sinusoidal with an amplitude of 0.56 inches, whereas the displacement in the 

Z direction is sinusoidal with two distinctive vibration components: steady-state response 

and transient response. 

 
Figure 46. Precast concrete panel displacement in the X direction versus time. 
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Figure 47. Precast concrete panel displacement in the Z direction versus time. 
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cycle of the flexing rod link exists at six separate displacements for Links 1 and 4.  A 

separate unloading and reloading cycle exists for Link 2. 
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Figure 48.  Force developed in the exterior flexing rod versus the exterior link 
displacement. 

 

Figure 49. Force developed in the interior flexing rod versus the interior link 
displacement. 
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The force-deformation relationship for the two bottom links is linear.  Table 20 

shows the relationship type and domain for each of the bottom links. 

Table 20 
 
Force-Deformation Relationships for Bottom Links in the X Direction 
 

Link No. 
Relationship 
Type 

Displacement Domain  

(inches) 

Slope 
(kip/in) 

 

Link 5 Linear [-0.02679, 0.02357] 10000 
 

Link 6 Linear [-0.07661, 0.06442] 1000 
 

 

5.2.6 Bottom links analysis result for Model MD 1 under dynamic load for a 

period of 1 second in the vertical direction.  The force deformation relationship in the 

Z direction for the two bottom links is linear.  Table 21 shows the relationship type and 

the domain for each of the bottom links. 

Table 21 
 
Force-Deformation Relationships for Bottom Links in the Z Direction 
 

Link No. 
Relationship 
Type 

Displacement Domain  

(inches) 

Slope 
(kip/in) 

 

Link 5 Linear [-0.02128, 0.01875] 10000 
 

Link 6 Linear [-0.022471, 0.02709] 10000 
 

 

5.2.7 Acceleration and displacement result for Model MD1 under dynamic 

load for a period of 1 second.  To determine the acceleration in the X direction for the 

precast concrete panel, four points were selected on the middle of each edge of the 
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precast concrete panel, and an average of absolute values of acceleration was then 

calculated.  The maximum value of the average was then normalized with respect to the 

acceleration of gravity.  The maximum acceleration of the panel in the X direction was 

106.5 in/sec2, or 0.27g.  For the structural frame, the maximum acceleration recorded was 

39.4 in/sec2.  Therefore, the amplification ratio was 2.7.  Figure 50 shows the acceleration 

time history for the precast concrete panel time history. 

 

Figure 50. Acceleration of the precast concrete panel in the X direction versus time. 
 

Figures 51 and 52 show the displacement of the precast concrete panel with 

respect to the time of analysis.  The displacement of the precast concrete panel in the X 

direction is sinusoidal with two distinct vibration components: steady-state response and 

transient response.  The transient response had a period of 0.32 seconds, which is the 

-150

-100

-50

0

50

100

150

0 0.2 0.4 0.6 0.8 1

P
a

n
e

l 
A

cc
e

le
ra

ti
o

n
, 

a
 (

in
/s

e
c.

2
)

Time, t (seconds)



 

72 
 

period of the maximum mass participation ratio of the precast concrete panel.  The 

displacement in the Z direction is sinusoidal with two distinct vibration components: 

steady-state response and transient response. 

 

Figure 51. Precast concrete panel displacement in the X direction versus time.  
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Figure 52. Precast concrete panel displacement in the Z direction versus time. 
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Figure 53. Force developed in the exterior flexing rod versus the exterior link 
displacement. 

 

Figure 54. Force developed in the interior flexing rod versus the interior link 
displacement. 
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The force-deformation relationship for the left bottom link and right bottom link 

is linear as the structural frame undergoes one cycle of displacement.  Table 22 shows the 

relationship type and domain for each of the bottom links.   

Table 22 
 
Force-Deformation Relationships for Bottom Links in the X Direction 
 

 

5.2.9 Bottom links analysis result for Model MD 1 under dynamic load for a 

period of 0.32 seconds in the in-plane direction.  The force-deformation relationship in 

the Z direction for the two bottom links is linear.  Table 23 shows the relationship type 

and domain for each of the bottom links. 

Table 23 
 
Force-Deformation Relationships for Bottom Links in the Z Direction 
 

Link No. 
Relationship 
Type 

Displacement Domain  
(inches) 

Slope 
(kip/in) 

 

Link 5 Linear [-0.17339, 0.11015] 10000 
 

Link 6 Linear [-0.09702, 0.16017] 10000 
 

 

5.2.10 Acceleration and displacement result for Model MD 1 under dynamic 

load for a period of 0.32 seconds.  To determine the acceleration in the X direction for 

Link No. 
Relationship 
Type 

Displacement Domain  
(inches) 

Slope 
(kip/in) 

 

Link 5 Linear [-0.08630, 0.14618] 10000 
 

Link 6 Linear [-0.23264, 0.37131] 1000 
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the precast concrete panel, four points were selected on the middle of each edge of the 

precast concrete panel, and an average of absolute values of acceleration was then 

calculated.  The maximum value of the average was then normalized with respect to the 

acceleration of gravity.  The maximum acceleration of the panel in the X direction was 

723.5 in/sec2, or 1.8g.  For the structural frame the maximum acceleration recorded was 

385.15 in/sec2.  Therefore, the amplification ratio was 1.87.  Figure 55 shows the 

acceleration time history for the precast concrete panel time history. 

 

Figure 55. Acceleration of the precast concrete panel in the X direction versus time. 
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increment.  The displacement in the Z direction is sinusoidal with two distinct vibration 

components with similar frequency: steady-state response and transient response. 

 

Figure 56. Precast concrete panel displacement in the X direction versus time. 
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Figure 57. Precast concrete panel displacement in the X direction versus time. 
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5.3 Analysis Result for Model MD 2 

5.3.1 Top links force-time relationship for Model MD 2.  Three nonlinear 

dynamic analyses using displacement-controlled time history were used to evaluate the 

dynamic characteristics of the flexing rod links, the bottom links, and the precast concrete 

panel.  Figures 58 and 59 show the relationship between forces developed in the each of 

the flexural links with respect to the time of loading for a period of 100 seconds.  Figures 

60 and 61 show the same relationship for loading for a period of 1 second.  Figures 62 

and 63 show the same relationship for loading for a period of 0.32 seconds.  In all cases 

Link 3 has an identical graph to that of Link 2, and Link 4 has an identical graph to that 

of Link 1. 

 

Figure 58. Force developed in the exterior flexing rod versus time for T = 100 seconds. 
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Figure 59. Force developed in the interior flexing rod versus time for T = 100 seconds. 

 
 
Figure 60. Force developed in the exterior flexing rod versus time for T = 1 second. 
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Figure 61. Force developed in the interior flexing rod for T = 1 second. 
 

 

Figure 62. Force developed in the exterior flexing rod versus time for T = 0.32 seconds. 
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Figure 63. Force developed in the interior flexing rod versus time for T = 0.32 seconds. 
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Figure 64. Forces developed in all flexing rod links versus the structural frame 
displacement. 
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Figure 65. Force developed in the exterior flexing rod versus the exterior link 
displacement.  

 

Figure 66. Force developed in the interior flexing rod versus the interior link 
displacement. 
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The force-deformation relationship for the two bottom links is linear.  Table 24 

shows the relationship type and domain for each of the bottom links. 

Table 24 
 
Force-Deformation Relationships for Bottom Links in the X Direction 
 

Link No. 
Relationship 
Type 

Displacement Domain 
 (inches) 

Slope 
(kips/in) 

 

Link 5 Linear [-0.0011, 0.0014] 10000  

Link 6 Linear [-0.0029, 0.0034] 1000  

 

5.3.3 Bottom links analysis result for Model MD 2 under dynamic load for a 

period of 100 seconds in the vertical direction.  The force-deformation relationship in 

the Z direction for the two bottom links is also linear.  Table 25 shows the relationship 

type and domain for each of the bottom links. 

Table 25 
 
Force-Deformation Relationships for Bottom Links in the Z Direction 
 

Link No. 
Relationship 
Type 

Displacement Domain  
(inches) 

Slope 
(kips/in) 

 

Link 5 Linear [-0.0023, 0.00065] 10000  

Link 6 Linear [-0.0022, 0.00067] 10000  

 

5.3.4 Acceleration and displacement result for Model MD 2 under dynamic 

load for a period of 100 seconds.  To determine the acceleration in the X direction for 

the precast concrete panel, a similar procedure for Model MD 1 was conducted.  The 
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maximum acceleration of the panel in the X direction is 0.33 in/sec2, or g.  For the 

structural frame, the maximum acceleration recorded was 0.0039 in/sec2.  Based on 

Equation 4 presented in section 5.2.4, the AP was calculated.  Figure 67 shows precast 

concrete panel acceleration time history in the X direction. 

 

OP �  
0.33

0.0039
� 84.61 

 
Figure 67. Acceleration of the precast concrete panel in the X direction versus time. 
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Figure 68. Precast concrete panel displacement in the X direction versus time. 
 

 

Figure 69. Precast concrete panel displacement in the Z direction versus time. 
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5.3.5 Top links analysis result for Model MD 2 under dynamic load for a 

period of 1 second in the in-plane direction.  Figures 70 and 71 show the force-

deformation relationship for the top links.  Figure 70 is for Link 1, and Figure 71 is for 

Link 2.  In both graphs, a hysteretic behavior exists as the structural frame undergoes one 

cycle of displacement loading.  Link 4 has an identical graph to that of Link 1, and Link 3 

has an identical graph to that of Link 2.  An unloading and reloading cycle of the flexing 

rod link exists at six separate displacements for Links 1 and 4.  A separate unloading and 

reloading cycle exists for Link 2. 

 

Figure 70. Force developed in the exterior flexing rod versus the exterior link 
displacement. 
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Figure 71. Force developed in the interior flexing rod versus the interior link 
displacement. 
 

The force-deformation relationship for the two bottom links is linear.  Table 26 

shows the relationship type and domain for each link. 

Table 26 
 
Force-Deformation Relationships for Bottom Links in the X Direction 
 

Link No. 
Relationship 
Type 

Displacement Domain  
(inches) 

Slope 
(kips/in) 

 

Link 5 Linear [-0.00126, 0.00127] 10000  

Link 6 Linear [-0.0031, 0.00309] 1000  
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5.3.6 Bottom links analysis result for Model MD 2 under dynamic load for a 

period of 1 second in the vertical direction.  The force-deformation relationship in the 

Z direction for the two bottom links is linear.  Table 27 shows the relationship type and 

domain for each of bottom links. 

Table 27 
 
Force-Deformation Relationships for Bottom Links in the Z Direction 
 

Link No. 
Relationship 
Type 

Displacement Domain 
 (inches) 

Slope 
(kips/in) 

 

Link 5 Linear [-0.00215, 0.0007] 10000  

Link 6 Linear [-0.00239, 0.0005] 10000  

 

5.3.7 Acceleration and displacement result for Model MD 2 under dynamic 

load for a period of 1 second.  To determine the acceleration in the X direction for the 

precast concrete panel, a similar procedure for Model MD 1 was conducted.  The 

maximum acceleration of the panel in the X direction was 35.85 in/sec2, or 0.1g.  For the 

structural frame, the maximum acceleration recorded was 39.4 in/sec2.  Based on 

Equation 4 presented in section 5.2.4, the amplification ratio was calculated.  Figure 72 

shows the precast concrete panel acceleration time history in the X direction.   

OP �  
35.85

39.4
� 0.909 
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Figure 72. Acceleration of the precast concrete panel in the X direction versus time. 
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Figure 73. Precast concrete panel displacement in the X direction versus time. 

 

Figure 74. Precast concrete panel displacement in the Z direction versus time. 
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5.3.8 Top links analysis result for Model MD 2 under dynamic load for a 

period of 0.32 seconds in the in-plane direction.  Figures 75 and 76 show the force-

deformation relationship for the top links.  Figure 75 is for Link 1, and Figure 76 is for 

Link 2.  In both graphs, a hysteretic behavior exists as the structural frame undergoes one 

cycle of displacement loading.  Link 4 has an identical graph to that of Link 1, and Link 3 

has an identical graph to that of Link 2.  As shown in Figure 75, the displacement passes 

the maximum input value for Links 1 and 4.  Therefore Link 1 loses its strength, as 

shown by the graph. 

 

Figure 75. Force developed in the exterior flexing rod versus the exterior link 
displacement. 
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Figure 76. Force developed in the interior flexing rod versus the interior link 
displacement. 
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type and domain for each link. 
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Force-Deformation Relationships for Bottom Links in the X Direction 
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Relationship 
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5.3.9 Bottom links analysis result for Model MD 2 under dynamic load for a 

period of 0.32 seconds in the vertical direction.  The force-deformation relationship in 

the Z direction for the two bottom links is linear.  Table 29 shows the relationship type 

and domain for each bottom link. 

Table 29 
 
Force-Deformation Relationships for Bottom Links in the Z Direction 
 

Link No. 
Relationship 
Type 

Displacement Domain 
(inches) 

Slope 
(kips/in) 

 

Link 5 Linear [-0.0021, 0.0007] 10000  

Link 6 Linear [-0.0023, 0.0005] 10000  

 

5.3.10 Acceleration and displacement for Model MD 2 under dynamic load 

for a period of 0.32 seconds.  To determine the acceleration in the X direction for the 

precast concrete panel, a similar procedure for Model MD 2 was conducted.  The 

maximum acceleration of the panel in the X direction was 194.9 in/sec2, or 0.5g.  For the 

structural frame, the maximum acceleration recorded was 385.15 in/sec2.  Based on 

Equation 4 presented in section 5.2.4, the amplification ratio was calculated.  Figure 77 

shows the precast concrete panel acceleration time history in the X direction.  

OP �  
194.9

385.15
� 0.506 
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Figure 77. Acceleration of the precast concrete panel in the X direction. 
 

Figures 78 and 79 show the displacement of the precast concrete panel with 

respect to time.  The displacement of the precast concrete in the X direction is sinusoidal, 

and the amplitude of the displacement increases for each time increment.  The 

displacement in the Z direction is sinusoidal with two distinct vibration components with 

similar frequency: steady-state response and transient response. 
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Figure 78. Precast concrete panel displacement in the X direction versus time. 
 

 

Figure 79. Precast concrete panel displacement in the Z direction versus time. 
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6. Conclusions and Recommendations 

The inelastic behavior of a one-story, one-bay precast concrete cladding façade 

system of a solid panel for in-plane loading was successfully evaluated in this project.  

Drift ratios for a static analysis and the amplification factor were defined and quantified 

for both models.  The research achievements were as follows: 

1. Development of a nonlinear analytical model representing a one-story, one-bay 

precast concrete façade system with different combinations of flexural link 

elements. 

2. Definition of force-deformation relationships for flexing rods for in-plane 

direction (X direction).  

3. Comparison of the results of a static pushover analysis with a displacement-

controlled time history analysis. 

4. Review of the dynamic behavior of the precast concrete panel for three periods of 

vibration.  

6.1 Research Findings 

1. The behavior of both models for the positive and negative static analyses was 

similar for the in-plane direction for all of the flexing rod elements, even though 

the system was asymmetrical.  

2. The summation of the link forces in the static pushover analyses was close to the 

values of the dynamic analyses when the period of input vibration was 100 

seconds.  
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3. Based on the results of the dynamic analysis, as the period of input vibration nears 

the fundamental period of vibration of the panel, the acceleration of the panel in 

the in-plane direction increases.  The maximum value of the link forces also 

increases as acceleration increases.  With further study it may be found that the 

bottom links have the potential to fail as periods of input vibrations near the 

fundamental period of vibration of the panel.   

4. The amplification ratio is defined in Chapter 5.  For Models MD 1 and MD 2, the 

amplification ratios were recorded, as shown in Table 30.  For periods of input 

vibration of 100 seconds, both the structural frame and precast concrete frame 

accelerations were small, and the division of two small number results in a high 

value for the amplification ratio.  For the period of input vibrations 1 and 0.32 

seconds, the amplification the ratios’ value starts to decrease for both models.  It 

can be seen that as the period of input vibration of the structural frame nears the 

fundamental period of vibration of the panel, the value of the amplification ratio 

decreases.  

Table 30 
 
Amplification Ratios With Respect to Periods of Input Vibrations 
 

 

Model ID 

Amplification Ratio 

T = 100 (sec.) T = 1 (sec.) T = 0.32 (sec.) 

MD 1 207 2.70 1.87 
MD 2 84.61 0.909 0.506 
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5. Models MD 1 and MD 2 show that as the period of input vibration of the 

structural frame nears the fundamental period of vibration of the panel or for 

periods of vibration 100, 1, and 0.32 seconds, the flexing rods have 2, 6, and 3 

local maximums for their force values, respectively.  

6. Static analysis results are comparable only with a dynamic analysis with a slow 

input period of vibration, i.e., a period of 100 seconds.  

6.2 Recommendations for Future Work 

Upon reflection of the work conducted, I propose the following list of 

recommendations, which will help predict the characteristics of the precast concrete 

façade system more accurately: 

1. Perform more displacement time history analysis for the analytical models with 

varying periods of input vibration for sinusoidal displacement input to more 

accurately capture the real effect of the interaction of the supporting frame 

displacement with the precast concrete panel.  

2. Experimental testing of the bearing connections or bottom links to quantify the 

force-deformation relationship to increase the accuracy of the analysis. 

3. The precast concrete panels in a building will interact not only with the structural 

frame but with other nonstructural components as well, i.e., adjacent precast 

concrete panels.  Therefore, this panel-to-panel interaction may change the 

dynamic response of the precast concrete panel.  Future studies could try to model 

this situation. 
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4. Validation of the analytical results provided by SAP2000 software with actual 

experimental results were found at UCSD. 
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Appendix A 

Force-Deformation Experimental Data for Flexing Rods 

Flexing Rod 

16 × 1 16 × 3/4 12 × 3/4 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

0.000 0 0 0 0.000 0 

0.002 16 0.06 63 0.203 320 

0.035 81 0.08 80 0.227 352 

0.073 123 0.09 86 0.256 389 

0.101 160 0.11 97 0.290 422 

0.161 225 0.13 103 0.302 445 

0.201 280 0.14 143 0.359 496 

0.220 331 0.19 171 0.379 542 

0.276 452 0.20 188 0.397 556 

0.282 503 0.24 205 0.408 561 

0.300 568 0.28 222 0.454 603 

0.365 670 0.29 245 0.515 635 

0.371 698 0.33 257 0.522 640 

0.431 809 0.34 274 0.587 677 

0.478 892 0.37 280 0.624 686 

0.484 892 0.39 302 0.641 695 

0.530 953 0.41 319 0.713 728 

0.607 1045 0.44 325 0.743 737 

0.646 1101 0.45 359 0.823 751 

0.649 1096 0.49 365 0.908 783 

0.650 1092 0.50 399 0.965 797 

0.692 1161 0.54 405 1.016 802 

0.798 1245 0.55 422 1.024 811 

0.840 1263 0.58 439 1.093 830 

0.841 1249 0.61 434 1.166 862 

0.850 1259 0.63 439 1.270 890 

0.941 1328 0.66 468 1.346 918 

1.014 1337 0.66 479 1.375 927 

1.209 1435 0.67 491 1.431 946 

1.224 1435 0.71 519 1.459 950 



 

104 
 

Flexing Rod 

16 × 1 16 × 3/4 12 × 3/4 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

1.230 1435 0.72 531 1.517 955 

1.318 1495 0.74 548 1.548 978 

1.425 1509 0.80 559 1.588 983 

1.432 1495 0.81 588 1.628 1011 

1.446 1500 0.86 599 1.730 1038 

1.522 1569 0.88 610 1.832 1052 

1.623 1616 0.93 616 1.946 1075 

1.626 1602 0.98 628 2.065 1080 

1.630 1592 1.01 650 2.173 1103 

1.671 1639 1.04 645 2.271 1122 

1.779 1676 1.09 662 2.379 1136 

1.816 1662 1.15 685 2.477 1159 

1.821 1639 1.16 690 2.535 1164 

1.823 1620 1.21 696 2.682 1196 

1.839 1676 1.25 713 2.792 1210 

1.894 1722 1.30 725 2.911 1233 

1.923 1694 1.36 742 3.135 1256 

1.925 1676 1.41 753 3.206 1270 

1.912 1676 1.46 770 3.293 1275 

1.916 1676 1.50 776   
1.924 1699 1.57 787   
1.958 1736 1.63 816   
1.979 1713 1.66 827   
1.983 1704 1.71 861   
1.986 1694 1.76 873   
1.989 1704 2.05 879   
1.992 1699 2.11 890   
2.032 1745 2.24 907   
2.131 1778 2.30 924   
2.188 1778 2.36 941   
2.189 1727 2.51 958   
2.229 1806 2.57 970   
2.337 1875 2.70 993   
2.363 1833 2.91 1010   
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Flexing Rod 

16 × 1 16 × 3/4 12 × 3/4 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

2.372 1819 3.10 1015   
2.428 1889 3.14 1033   
2.529 1921 3.26 1044   
2.536 1884 3.40 1067   
2.538 1857 3.46 1073   
2.544 1884 3.58 1084   
2.626 1949 3.77 1107   
2.677 1921 3.86 1118   
2.715 1982 3.99 1141   
2.793 1982 4.14 1147   
2.833 1972 4.19 1152   
2.886 2010 4.33 1164   
2.898 1959 4.39 1181   
2.899 1940 4.55 1192   
2.917 2000 4.61 1198   
3.005 2051 4.74 1209   
3.026 1963 4.90 1227   
3.054 2037 4.96 1232   
3.129 2065 5.14 1209   
3.138 2000 5.27 1227   
3.159 2037 5.33 1232   
3.187 2042 

    
3.242 2084 

    
3.243 1968 

    
3.252 2033 

    
3.330 2144 

    
3.345 2088 

    
3.346 2042 

    
3.358 2112 

    
3.408 2186 

    
3.418 2112 

    
3.424 2093 

    
3.453 2186 

    
3.484 2195 
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Flexing Rod 

16 × 1 16 × 3/4 12 × 3/4 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

Deflection 
(in.) 

Load in 
Actuator 
(pounds) 

3.516 2167 
    

3.581 2200 
    

3.618 2162 
    

3.632 2144 
    

3.702 2218 
    

3.780 2218 
    

3.844 2172 
    

3.845 2084 
    

3.859 2125 
    

3.912 2190 
    

3.990 2218 
    

4.057 2195 
    

4.069 2121 
    

4.074 2061 
    

4.078 2051         
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Appendix B 

Summary of Figures for Analyses 

Table B1 

Summary of Figures for Pushover Analysis 

Model ID Figure Number(s) Type Member 

MD 1  14 Force-
Deformation  
(X Direction) 

 
 
 
 

All Top Links 

15 Exterior Top Link 

16 Interior Top Link 

17 and 18 Left Bottom Link 

19 and 20 Right Bottom Link 

21 Force- 
Deformation  
(Z Direction) 

Left Bottom Link 

22 Right Bottom Link 

23 Drift Ratio Shear Strain of Panel vs. 
Drift Ratio of Structural 

Frame 

MD 2 25 Force-
Deformation  
(X Direction) 

 
 
 
 

All Top Links 

26 Exterior Top Link 

27 Interior Top Link 

28 and 29 Left Bottom Link 

30 and 31 Right Bottom Link 

 

32 

33 

Force- 
Deformation  
(Z Direction) 

Left Bottom Link 

Right Bottom Link 

 

34 Drift Ratio Shear Strain of Panel vs. 
Drift Ratio of Structural 

Frame 
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Table B2 

Summary of Figures for Dynamic Analysis for a Period of T = 100 Seconds 

Model ID Figure Number Type Member 

MD 1 36 Force-Time 
(X Direction) 

Exterior Top Link 

37 Interior Top Link 

42 Force-Deformation  
(X Direction) 

All Top Links 

43 Exterior Top Link 

44 
 

Interior Top Link 

45 Acceleration-Time  
(X Direction) 

Panel Acceleration 

46 Displacement-Time 
(X Direction) 

Panel Displacement 

47 Displacement-Time 
(Z Direction) 

Panel Displacement 

MD 2 58 Force-Time 
(X Direction) 

Exterior Top Link 

59 Interior Top Link 

64 Force-Deformation  
(X Direction) 

All Top Links 

65 Exterior Top Link 

66 
 

Interior Top Link 

67 Acceleration-Time  
(X Direction) 

Panel Acceleration 

68 Displacement-Time 
(X Direction) 

Panel Displacement 

69 Displacement-Time 
(Z Direction) 

Panel Displacement 
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Table B3 

Summary of Figures for Dynamic Analysis for a Period of T = 1 Second 

Model ID Figure Number Type Member 

MD 1 38 Force-Time 
(X Direction) 

Exterior Top Link 
39 Interior Top Link 

48 Force-Deformation  
(X Direction) 

Exterior Top Link 
49 Interior Top Link 

50 Acceleration-Time  
(X Direction) 

Panel Acceleration 

51 Displacement-Time 
(X Direction) 

Panel Displacement 

52 Displacement-Time 
(Z Direction) 

Panel Displacement 

MD 2 60 Force-Time 
(X Direction) 

Exterior Top Link 
61 Interior Top Link 

70 Force-Deformation  
(X Direction) 

Exterior Top Link 
71 Interior Top Link 

72 Acceleration-Time  
(X Direction) 

Panel Acceleration 

73 Displacement-Time 
(X Direction) 

Panel Displacement 

74 Displacement-Time 
(Z Direction) 

Panel Displacement 
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Table B4 

Summary of Figures for Dynamic Analysis for a Period of T = 0.32 Seconds 

Model ID Figure Number Type Member 

MD 1 40 Force-Time 
(X Direction) 

Exterior Top Link 
41 Interior Top Link 

53 Force-Deformation  
(X Direction) 

Exterior Top Link 
54 Interior Top Link 

55 Acceleration-Time  
(X Direction) 

Panel Acceleration 

56 Displacement-Time 
(X Direction) 

Panel Displacement 

57 Displacement-Time 
(Z Direction) 

Panel Displacement 

MD 2 62 Force-Time 
(X Direction) 

Exterior Top Link 
63 Interior Top Link 

75 Force-Deformation  
(X Direction) 

Exterior Top Link 
76 Interior Top Link 

77 Acceleration-Time  
(X Direction) 

Panel Acceleration 

78 Displacement-Time 
(X Direction) 

Panel Displacement 

79 Displacement-Time 
(Z Direction) 

Panel Displacement 
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