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ABSTRACT 

PHASE LOCKED LOOP (PLL) - BASED CLOCK AND DATA RECOVERY 

CIRCUIT (CDR) USING CALIBRATED DELAY FLIP FLOP (DFF) 

by 

Sagar Waghela 

A Delay Flip Flop (DFF) is used in the phase detector circuit of the clock and data 

recovery circuit.  A DFF consists of the three important timing parameters: setup time, 

hold time, and clock-to-output delay.  These timing parameters play a vital role in 

designing a system at the transistor level.  This thesis paper explains the impact of 

metastablity on the clock and data recovery (CDR) system and the importance of 

calibrating the DFF using a metastable circuit to improve a system’s lock time and peak-

to-peak jitter performance.  The DFF was modeled in MATLAB Simulink software and 

calibrated by adjusting timing parameters.  The CDR system was simulated in Simulink 

for three different cases: 1) equal setup and hold times, 2) setup time greater than the hold 

time, and 3) hold time greater than the setup time.  The Simulink results were then 

compared with the Cadence simulation results, and it was observed that the calibration of 

DFF using a metastable circuit improved the CDR system’s lock time and jitter tolerance 

performance.  The overall power dissipation of the designed CDR system was 2.4 mW 

from a 1 volt supply voltage. 
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Chapter 1. Introduction 

In wire-linked communication systems, when data flows over a single wire without 

any accompanying clock, the receiver of the system is required to process this data 

synchronously.  Therefore, the CDR circuits are used in the receiver of the system to 

recover the clock or timing information from these data.  Data bandwidth for wire-linked 

communication systems is also increasing at a high rate.  In 2007, according to the 

International Technology Roadmap for Semiconductors (ITRS), the non-return to zero 

(NRZ) data rate for high-performance differential pair point-to-point nets on the package 

would reach 100 Gbps by the year 2019 as shown in Figure 1.1 [1].  In such high-speed 

wire-linked communication systems, these data are corrupted both by internal and 

external noise during its passage from transmitter to receiver, resulting in jitter and skew 

in the data received at the receiver.  Here, the clock and data recovery circuit is necessary 

to extract the data transmitted by the transmitter from the corrupted received signal and 

also to recover the accompany clock timing information at the receiver side of the 

communication systems. 
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Figure 1.1: NRZ data rate for high performance differential pair point-to-point nets on 
a package, based on the ITRS 2007 roadmap prediction [1]. 

 

A block diagram of a high-speed wire-linked source asynchronous communication 

system is shown in Figure 1.2.  In a source asynchronous system, the transmitter and 

receiver use different clock sources of the same frequency.  As seen from Figure 1.2, the 

received data are first equalized in the receiver input buffer and then fed to the CDR 

circuit for retiming before proceeding into the deserializer module.  Hence, there exists a 

frequency offset between the transmitted data and the local clock on the receiver side due 

to natural device mismatches, which creates the challenges for CDR circuit designers.  

2 
 



 

Serializer

Transmitter 
Output Buffer

with
Pre-emphasis

Receiver 
Input Buffer

with Equalizer 

Clock and 
Data 

Recovery

Deserializer

Parallel 
Data Output

Parallel 
Data Input

Clock 
SynthesizerSerializer

Transmitter 
Output Buffer

with
Pre-emphasis

Clock and 
Data 

Recovery

Deserializer

Parallel 
Data Output

Receiver 
Input Buffer

with Equalizer 

Parallel 
Data Input

Clock 
Synthesizer

Reference 
Clock Input

Reference 
Clock Input

Transmission 
ChannelTransmission 

Channel

 

Figure 1.2: Block diagram of a generic high-speed wire-linked source asynchronous 
communication system. 
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1.1 CDR 

The basic building blocks of a CDR circuit include a clock recovery and data retiming 

blocks as shown in Figure 1.3.  The function of the clock recovery circuit is to detect the 

transitions in the received data and generate a periodic recovered clock.  This recovered 

clock must satisfy the following conditions: 

• The recovered clock’s frequency must be equal to the input data rate. 

• The recovered clock should have reasonable timing with respect to the input data 

(i.e., the rising edge of the recovered clock should sample at the center of the data 

bit, to provide maximum margin for jitter and other time uncertainties). 

• The recovered clock should exhibit a minimum jitter because the jitter of the 

clock contributes to the retimed data jitter. 

The data retiming circuit uses a Delay Flip Flop (DFF), which is triggered by the 

recovered clock to retime the received data.  The DFF samples the corrupted received 

data and regenerates the data with less jitter and skew [2]. 

Data 
Retiming 

Clock 
Recovery 

D Q
Input Noisy 

Data
Recovery 

Data

Recovery 
Clock

 

Figure 1.3: Basic block diagram of the clock and data recovery system. 
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1.2 Motivation and Agenda 

This thesis presents the effect of metastability on a CDR system and the importance 

of calibration of a DFF using a metastable circuit to improve CDR system’s lock time 

and jitter tolerance performance.  The metastability effect refers to a violation of setup 

and hold time requirements of a DFF.  A DFF samples input data on an active-edge of a 

clock and this sometimes occurs at a data transition point, providing an incorrect result at 

the DFF output.  Thus, there is a need to calibrate (i.e, delay or advance) the active edge 

of the clock using a metastable circuit to satisfy the setup and hold time requirements for 

the DFF.  Once calibrated, the input data gets sampled at the center of the data bit interval 

or bit transmission time, providing a correct result at the DFF output.   

Chapter 2 provides a general background on a CDR system and explains each block 

of the system in detail.  Chapter 3 explains the design of the CDR system using Simulink 

software.  The CDR system with and without the metastable DFF was simulated for four 

different cases.  Chapter 4 explains the CDR design at transistor level using 45 nm 

technology and modeling using Verilog A language in Cadence Virtuoso 6.1.5.  This 

chapter also explains the design of a DFF, an Alexander phase detector, and a metastable 

circuit at the transistor level.  The designed CDR system was simulated for three different 

cases and the results were compared with that obtained by using Simulink.  
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Chapter 2. Background 

In source asynchronous communication systems, data are transmitted by the 

transmitter without an accompanying clock and the receiver has to process these data at 

their end synchronously, recovering the clock from the data.  A phase lock loop (PLL) is 

used at the receiver to recover the clock from the data. 

2.1 PLL 

A PLL is a negative feedback system where a clock generated by the voltage control 

oscillator is phase and frequency locked to an input data.  The basic topology of PLL 

based CDR is shown in Figure 2.1. 

Figure 2.1 shows basic elements of the PLL based CDR. 

• Pre-Amplifier and Limiter 

• Phase Detector (PD) 

• Charge-Pump (CP) and Low Pass Filter (LPF) 

• Voltage Controlled Oscillator (VCO) 

The function of the Pre-Amplifier and Limiter is to generate a full voltage swing from 

the input data, required by the phase detector.  The functions of the PD, CP and LPF, and 

VCO are discussed in following sections. 
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Figure 2.1: PLL based CDR system. 

 

2.1.1 Phase Detector (PD) 

The function of the phase detector is to measure the phase difference between two 

incoming signals.  Examples are clock and data signals, data and data signals, and clock 

and pseudo random bit data (PRBS) signals.  Various topologies and designs for phase 

detectors already exist, such as the Alexander Phase Detector, the Hogge Phase Detector, 

the Quad-rate Phase Detector, the Octant-rate Phase Detector, etc. 

Phase detectors are broadly classified into two classes: linear and binary phase 

detectors.  Linear phase detectors (PD) are used in low to medium speed CDR 

applications, operating at few hundreds of megahertz (MHz) speed.  Binary phase 

detectors are used in high-speed CDR applications operating at hundreds of gigahertz 

(GHz) speed.  
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In the case of linear phase detectors, the output of the phase detector is linearly 

proportional to the phase difference between two input signals as shown in the 

characteristics of the linear phase detector in Figure 2.2. 

 

Figure 2.2: Characteristic of a linear PD. 

 

The slope of the line is called phase detector gain and is calculated by following 

equation. 

𝐾𝑝𝑑 =  𝑉𝑝𝑑
𝛥ɸ

 (2.1) 

 

In the above equation, phase detector gain is defined as Kpd, the average phase 

detector output is defined as Vpd, and the difference between two input signals is defined 
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as ∆𝜙.  As the phase difference between two input signals increases, the average phase 

detector output also increases.  Hence, the phase detector gain remains constant [2].  One 

DFF with an XOR gate is enough to satisfy the requirement of linear phase detector, but 

as the average value of the phase detector output is a function of the data transition 

density of the input, this design fails to uniquely represent the phase difference for 

various data patterns as shown in Figure 2.3, thus, this design is data pattern dependent 

[2].  

D QData

Clock

Output

A

FF1

Data

Clock

A

Output

Data

Clock

A

Output

tt

 

Figure 2.3: Basic linear phase detector and output waveforms. 
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One example of a linear phase detector is the Hogge Phase Detector.  The circuit 

implementation and output waveform is shown in Figure 2.4.  The Hogge Phase Detector 

consists of two DFFs and two Exclusive OR (XOR) gates.  The function of a DFF is to 

produce a delayed replica of the input signal at its output.  The first DFF, named FF1, 

produces a delayed replica of the input data at the rising edge of the clock and is then 

XORed with input data.  The output of the XOR gate, named X, gives the phase 

difference between two input signals.  To avoid the problem of data pattern dependency, 

the proportional pulses obtained at node X are accompanied by reference pulses at node 

Y, which are generated by using an additional DFF (FF2) and XOR gate.  The reference 

pulses appear on the data edge and have constant pulse width, thus avoiding the pattern 

dependency, as shown in Figure 2.4. 

D Q

Clock

A

FF1

Data D Q

FF2

A B

X

Y

Data

Clock

A

B

X

Y  

Figure 2.4: Hogge Phase Detector and its output waveform. 
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In binary phase detectors, the output is either logic one or zero.  One example of a 

binary phase detector is the Alexander Phase Detector.  The Alexander Phase Detector 

accepts two input signals (e.g. clock and data) and determines whether the clock is earlier 

or later than the data.  If the clock is earlier than the data, the early node goes to logic one 

and the late node goes to logic zero.  Otherwise, when the clock is later than the data, the 

late node goes to logic one and early node goes to logic zero.  A more detailed 

explanation of the Alexander Phase Detector is presented in Section 3.1.1. 

2.1.2 Charge Pump (CP) and Low Pass Filter (LPF) 

The function of the charge pump is to convert the output voltage of the phase detector 

to current.  This current is then fed to a low pass filter, where the capacitor is either 

charged or discharged depending on the phase detector output.  The circuit diagram of the 

charge pump with a Type-I LPF (capacitor) is shown in Figure 2.5 and a Type-II LPF is 

shown in Figure 2.6. 

 In this research, the Alexander Phase Detector is used, where the output is either 

early or late.  The early and late nodes are connected to respective switches of the charge 

pump circuit, as shown in Figure 2.5. When the early node is high, closing the early 

switch, the capacitor starts charging and continues to charge until the early node goes 

low, opening the early switch.  Similarly, when the late node goes high, the capacitor 

starts to discharge and will continue to discharge until the late node goes low.  

Designing a charge pump is not an easy task, because to achieve zero net voltage on 

the capacitor, the charging current should be equal to the discharging current.  Even if the 
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charging and discharging currents are designed to be close to equal, there will still be 

leakage current through the charge pump circuit, resulting in an offset voltage on the 

capacitor.  One way to minimize this offset voltage is to calibrate the charge pump circuit 

by using a feedback loop circuitry. 

Early

Late
C

Icp

Icp

 

Figure 2.5: Charge pump with a Type-I LPF. 

 

Ic = C dV
dt

 (2.2) 

 

Vc =  ∫ Ic
C

 dt (2.3) 

 

The function of the low pass filter (LPF) is to convert the charge pump current into 

control voltage.  The Type-I LPF is replaced by Type-II LPF due to trade-offs between 

the settling time, ripple on the control voltage, and the phase error and stability.  To 

minimize the ripples on the control voltage, the capacitor from Figure 2.5 is replaced by 
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the resistor (R) in series with the capacitor (C1), both in parallel with the capacitor (C2), 

as shown in Figure 2.6.  If the capacitor (C2) is five to ten times less then capacitor (C1), 

then the Type-II LPF will still approximately behave as a Type-I LPF [3]. 

R

C1

C2

 

Figure 2.6: Circuit diagram of the Type-II Low Pass Filter. 

 

2.1.3 Voltage Controlled Oscillator (VCO) 

The function of the voltage control oscillator is to generate the clock signal at its 

output, the frequency of which can be changed by varying the input control voltage [4].  

Oscillators have wide applications in communication system ranging from clock 

generation in microprocessors to carrier synthesis in cellular telephones [2].  

The circuit to oscillate at ω0, it must satisfy two conditions as shown by equation 

(2.4) and they are known as Barkhausen criteria. 

|H(jωo)| ≥ 1 and ∠|H(jωo)| = 180𝑜 (2.4) 
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Two types of CMOS oscillators used widely in today’s technology are ring oscillators 

and inductor - capacitor (LC) oscillators.  A ring oscillator consists of an odd number of 

gain stages in a loop as shown in Figure 2.8 and the bode plot of three stage ring 

oscillator is shown in Figure 2.7.   

0

20log | H(ω) |

-60dB/dec

ωp ω (log scale)

0

 ∠H(ω) 

ω (log scale)
-90o

-135o

-180o

 

Figure 2.7: Bode plot of three stage ring oscillator. 
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Figure 2.8: Three-stage ring voltage controlled oscillator. 

 

The LC oscillator consists of the cross-coupled common source stages loaded by the 

inductor (L) placed in parallel with the capacitor (C) as shown in Figure 2.9. 

Rp

M1

VDD

M2

Vout

Rp

VDD

CpLpCpLp

 

Figure 2.9: Cross coupled LC oscillator. 
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The cross-coupled LC voltage controlled oscillator is given by Figure 2.10 [5]. 

Rp

M1

VDD

M2

Vout

Rp

VDD

CpLpCpLp

Mv1 Mv2

Vcontrol

Iss

 

Figure 2.10: Cross coupled LC voltage controlled oscillator [5]. 

 

There are many oscillator specifications that one must be aware of.  The ring 

oscillators have a high frequency tuning range and small area consumption whereas the 

LC oscillator has a limited frequency tuning range and large area consumption 

comparatively.  LC oscillators produce less jitter on the recovered clock in CDR as 

compared to the ring oscillators.  Jitter, another oscillator specification, is described in 

more detail in the next section.  Ring oscillators are preferred over LC oscillators in 

implementing VCO due to their attractive features of frequency tuning range and area 

consumption.  But, the ring VCO provides low quality factor [6].  Thus, the choice of 

selecting either of the oscillators depends on the application.  
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2.2 Jitter in CDR Circuits 

Jitter is defined as the amount of variation in the waveform from their ideal position 

at zero crossing on the time axis.  The optical communication (OC) standards for the 

CDR circuits in terms of jitter are more stringent and difficult to achieve.  The jitter is 

expressed in terms of the bit period or unit interval (UI) by OC standards.  For example, a 

jitter of 0.0001 UI refers to 0.1% of the bit period.  Jitter in the CDR circuit is 

characterized in three terms: 

• Jitter transfer 

• Jitter generation 

• Jitter tolerance 

The jitter transfer function in CDR circuits is output jitter when the input jitter is 

changed at different rates.  If the input jitter varies slowly, then the output of the CDR 

circuits will track the input to ensure phase locking; however, if the input jitter varies at a 

fast rate, then the output will track the input to a lesser extent, (i.e., the CDR circuit must 

filter the input jitter).  Thus, the jitter transfer function has the same characteristic as that 

of a low pass filter as shown in Figure 2.11.  The OC standards have two specifications 

for jitter transfer: 

1. The bandwidth of CDR circuits should be approximately 120 kHz in OC-192, 

(i.e., CDR must suppress the jitter components above 120 kHz). 

2. The jitter peaking shown in Figure 2.11 must be less than 0.1dB. 
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Figure 2.11: Jitter transfer function. 

 

Multiple data regenerators are placed along a signal’s path to minimize the non-ideal 

effects of an optical fiber cable in communication networks.  Therefore, each data 

regenerator should have small jitter bandwidth, in order to minimize the accumulated 

jitter through the chain of data regenerators.  Furthermore, as the total jitter transfer 

function of the data regenerators connected in series is given by the product of the 

individual data regenerator’s jitter transfer function, it is important to have small jitter 

peaking per data regenerator [7].  

Jitter generation is defined as the jitter produced by CDR circuit elements when the 

input data signal itself does not have jitter.  The major sources of jitter generation are: 

• Phase noise error in the VCO caused by the noise generated by VCO. 
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• The ripples on the control voltage due to leakage current from the charge 

pump circuit. 

• The coupling of the input data transition to the VCO through a retiming circuit 

and phase detector. 

• Noise generated by the power supply and substrate. 

The jitter in the output of the VCO caused by the noise generated is shown in Figure 

2.12. 

t0

VCO Output

 

Figure 2.12: Noise in VCO output. 

 

Jitter tolerance is defined as the amount of jitter that the CDR circuit must tolerate on 

the input data without increasing the bit error rate (BER).  If the jitter on the input data 

varies slowly, the recovered clock will track the transition in the data and always sample 

the data in the middle of the bit period as shown in Figure 2.13.  This will guarantee a 

low BER.  Whereas, if the jitter on the input data varies fast, the recovered clock will not 

be able to track the transition in the data and will fail to sample the data in the middle of 

the bit period as shown in Figure 2.14.  This will result in a greater BER. 
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Figure 2.13: Slow jitter on data retiming. 
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Figure 2.14: Fast jitter on data retiming. 

 

 

The specification of the jitter tolerance is described by a mask, which is the function 

of the input jitter frequency, shown in Figure 2.15.  Jitter tolerances for the various 

OC/SONET standards are shown in Table 2.1 [8].  For example, the CDR circuit must 

tolerate a peak-to-peak jitter of 1.5UI, if the jitter on the input signal varies at the rate 

below 6 kHz. 
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Figure 2.15: Jitter tolerance mask. 

 

Table 2.1: SONET specifications [8]. 

Data Rate f0(Hz) f1(Hz) f2(Hz) f3(kHz) f4(kHz) 

OC-3          155Mb 10 30 300 6.5 65 

 OC-12     622Mb 10 30 300 25 250 

OC-48    2.48Gb 10 600 6000 100 1000 

OC-192       10Gb 10 2400 24000 400 4000 

 

2.3 Metastability Concept 

The concept of metastability is best understood after understanding the basics of 

delay flip flop (DFF) and its timing parameters.  This research has used the Alexander 

phase detector in the designed CDR circuit, which consists of four DFFs and two XOR 
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gates.  The phase detector is considered as the heart of the CDR circuit.  The function of 

the DFF is to produce the delayed replica of the input signal.  The DFF can be 

implemented using only static circuits, only dynamic circuits, or a combination of static 

and dynamic circuits.  

The static implementation stores the data in the form of a charge on parasitic 

capacitors associated with the MOSFET for an extended period of time, thus, causing an 

increase in the leakage current.  In contrast to the dynamic implementation that stores the 

data in a similar manner but for a short period of time in the range of milliseconds, 

resulting in the reduction of leakage current [10].  Due to this advantage, dynamic 

implementation is preferred over a static one.  Dynamic circuits result in significantly 

higher performance and lower power dissipation making them useful in designing high 

performance systems [11]. 

The type of DFF used in this research is the semi-dynamic DFF (SDFF), shown in 

Figure 2.16, which was first introduced by Klass [9].  The SDFF consists of both static 

and dynamic circuits.  The main reasons for choosing this type of DFF over the others are 

short latency, small clock load, small area, and a single-phase clock scheme [9]. An 

additional feature of the SDFF is that it can incorporate various logic functions with small 

penalties in delay and transistor count.   

22 
 



 

Data

Clock

Clock

Clock

Q Qbar

M 1

M 2

M 3

M 4

M 5

M 6

M 7

X

 

Figure 2.16: Schematic of Semi-dynamic DFF (SDFF). 

 

2.3.1 Features of SDFF 

• The SDFF has short latency because the SDFF is refreshed periodically by the 

clock signal, thus, keeping the SDFF in an idle state for very short period of 

time. 

• The SDFF implemented in this research has a small clock load of five 

transistors by using a clock CMOS (C2MOS) approach with the penalty of 

increasing overall transistor count.  The C2MOS approach provides the 

advantage of implementing logic functions.  The SDFF can also be 

implemented by using transmission gates to reduce the overall transistor 
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count, but the drawback with such implementation is a high clock load of 

about six transistors [10]. 

• The SDFF using transmission gates or C2MOS approach can be implemented 

by using either a true single-phase clocking scheme (TSPC) or a two-phase 

clocking scheme.  The drawback with a two-phase clocking scheme is the 

overlapping between clock and delayed clock, thus, providing a direct path 

between the input and output signal, destroying the state of the circuit [10].  

To avoid this, a TSPC scheme is used, which uses a single clock to drive the 

entire circuit.  

Thus by taking in account the above features, the SDFF is implemented using a 

C2MOS approach with a TSPC scheme. 

2.3.2 Timing Parameters 

There are three timing parameters associated with DFF as shown in Figure 2.17 and 

are explained below: 

• Setup Time (Ts): Defined as the minimum time interval between the rising 

edge of the clock and that of the input data signal, such that the input is 

reliably sampled. 

 

• Hold Time (Th): Defined as the minimum time interval between the falling 

edge of the input data signal and the rising edge of the clock such that the 

sampled data remains stable throughout that clock period. 
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• Clock to output delay (Tc-q): Defined as the time interval between the rising 

edge of the clock and the rising edge of the output signal when the input data 

is reliably sampled. 
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Figure 2.17: Timing parameters of the DFF. 

 

If a violation of the setup or hold time takes place, then the DFF output is not a 

guaranteed sample of the input data, possibly leading to the wrong logic level.  This 

happens due to the input data not having enough time to toggle between high and low 

signal logic levels.  Thus, the data goes into an idle state due to the setup and hold time 

violations and will hold the value obtained from previous successful sampling event.  

Figure 2.18 shows the sampling of the input data by the rising edge of the clock in 

two scenarios.  In the first scenario, DFF1 samples the input data by the rising edge of the 

clock during the data transition.  In this case, the setup and hold time requirements are 

violated; thus the result at the DFF1’s output will be an incorrect logic level.  In the 

second scenario, DFF2 samples the input data by the rising edge of the clock at the 
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middle of the data bit interval.  In this case, there is no violation of timing parameters, 

thus the result at the DFF2’s output will be a correct logic level. For the system to 

perform efficiently, the active edge of the clock should sample the input data at the 

middle of the data bit interval to allow maximum margin for setup and hold time(s).  This 

idea is referred to as a metastable concept in this research and results in increasing the 

system’s jitter and skew tolerance.  

D Q

D Q

Clock

Data

Clock

DFF1

DFF2

Clock

 

Figure 2.18: Sampling points for DFF1 and DFF2. 

 

In this research, the metastable circuit was designed and the clock delay cell from the 

metastable circuit was placed in the CDR system, such that the clock always samples the 

data at the middle of the input data bit interval.  The metastable circuit is explained in 

detail in section 4.5.  This circuit first converts the input data into glitch data, whose 

width or metastable window is equal to the sum of setup (Ts) and hold (Th) times, shown 

in Figure 2.19.  
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Figure 2.19: Glitch data generation from the input data. 

 

The metastable window’s rising edge (left leg) and falling edge (right leg) each can 

be varied or aligned using three digital bits, with a total of six digital bits to vary the 

width of metastable window as shown in Figure 2.20.  

Metastable window = 
Ts + Th

Glitch Data

Glitch Data

Glitch Data

In
pu

t B
in

ar
y 

V
ec

to
r

Input B
inary 

V
ector

 

Figure 2.20: Variation in metastable window of glitch data using six digital bits. 
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The rising edge of the clock is aligned at the center of the metastable window by 

using a five-bit variable clock delay cell as shown in Figure 2.21.  Thus, the clock delay 

cell from the metastable circuit is placed in the designed CDR system.  
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Figure 2.21: Variation of the clock using five digital bits. 
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Chapter 3. CDR MATLAB and Simulink Models 

The CDR system is modeled using MATLAB and Simulink software as shown in 

Figure 3.1.  The modeled CDR system has the input data rate of 3 Gbps and the voltage 

controlled oscillator is operating at 3 GHz.  Thus, the full-rate phase detector’s 

architecture is used in modeling the Alexander phase detector. 

The Simulink CDR system consists of the following models: 

• PRBS-7 data generator 

• Alexander phase detector 

• Alexander phase detector with metastable DFF 

• Charge pump 

• Low-pass filter 

• Voltage controlled oscillator 
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Figure 3.1: Implementation of the CDR system using Simulink. 

 

3.1 PRBS-7 Data Generator 

Pseudo random binary sequences (PRBSs) are widely used in communication 

systems.  A PRBS is a random bit sequence that repeats itself.  PRBSs are used in testing 

hardware circuits that are used in communication systems.  PRBSs are generated by 

shifting bits through the number (n) of cascaded shift registers.  Some of the shift 

register’s output are added with a modulo-2 function and fed to the input of the first shift 

register [12].  The PRBS-7 consists of seven shift registers as shown in Figure 3.2 and 

produces a data sequence of length 127 bits.  
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There are various types of PRBS data generators like PRBS-7, PRBS-9, PRBS-15, 

PRBS- 31, etc., and are used depending on application.  Table 3.1 presents the properties 

of various types of PRBS data generators. 
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Figure 3.2: Simulink model of PRBS data. 

 

Table 3.1: Properties of PRBS data generators. 

Shift Register 

Length (n) 

Characteristic 

Polynomial 

PRBS Length 

2n-1 

No. of 1’s 

2n-1 

No. of 0’s 

2n-1-1 

7 X7 + X6 + 1 127 64 63 

9 X9 + X5 + 1 511 256 255 

11 X11 + X9 + 1 2,047 1024 1023 

15 X15 + X14 + 1 32,767 16,384 16,383 

23 X23 + X18 + 1 8,388,607 4,194,304 4,194,303 

29 X29 + X27 + 1 536,870,911 268,435,456 268,435,455 

31 X31 + X28 + 1 2,147,483,647 1,073,741,824 1,073,741,823 

 

31 
 



 

3.1.1 Alexander phase detector (PD) 

The Alexander PD is a binary phase detector and provides the inherent data retiming 

for the CDR system [2].  The Alexander PD is used in the high-speed CDR circuits that 

operate at GHz speed.  The Alexander PD consists of four DFFs and two XOR gates as 

shown in Figure 3.3 and its characteristic is shown in Figure 3.4.  The Alexander PD uses 

three data samples S1-S3 that are sampled by the three consecutive clock edges.  The 

Alexander PD performs two functions: 1) Determines, whether there is any transition in 

the input data, and 2) Whether the clock is earlier or later than the input data.   

When there is no transition in the input data, all the three samples will have equal 

values and no action is taken by the Alexander PD.  If the falling edge of the clock leads 

(is “early”) then the first two samples S1 and S2 will have equal values and the last 

sample S3 will have a value, unequal to that of first two samples.  Conversely, if the 

falling edge of the clock lags (is “late”) then the last two samples S2 and S3 will have 

equal values and the first sample S1 will have a value, unequal to that of last two samples.  

The decisions of the Alexander PD depend on the values of the three samples (S1, S2, and 

S3) and are presented in Table 3.2.  

In Figure 3.3, the first flip flop (FF1) samples the input data at S1 and S3 on the rising 

edge of the clock and the second flip flop (FF2) delays the output of the first flip flop 

(FF1) by one clock cycle.  The third flip flop (FF3) samples the input data at S3 on the 

falling edge of the clock and the fourth flip flop (FF4) delays the output of the third flip 

flop (FF3) by half a clock cycle.   
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As seen from the waveform of Figure 3.3, for the early case, the FF1 samples the high 

data level (logic one) at the first rising edge of the clock.  At the second rising edge of the 

clock, the FF2 performs two functions: 1) Produces the replica of the first sample (S1) 

delayed by one clock cycle, at the output of the FF2, and 2) Samples the low data level 

(logic zero).   

The FF3 samples the high data level (logic one) at the first falling edge of the clock.  

At the next rising edge of the clock, the FF4 produces the replica of the second sample 

(S2) delayed by half a clock cycle, at its output.  The clock phases of all the four DFFs 

should be such that, the three samples S1, S2, and S3 reaches a valid logic level for 

comparison at t = T1 and remains constant for one clock period.  Once the three samples 

S1, S2, and S3 reaches valid logic level and remain constant for one clock period, the 

XOR gate produces a valid logic level at the output.  The same process is vice versed for 

the late case and shown in Figure 3.3.   
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Figure 3.3: Alexander phase detector 
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Figure 3.4: Ideal characteristic of Alexander PD. 

 

Table 3.2: Decisions of the Alexander PD. 

S1 S2 S3 Decision 

0 0 0 Cannot determine whether the clock is earlier or later than the data. 

0 0 1 Clock is earlier than the data. 

0 1 0 CDR is in the lock mode. 

0 1 1 Clock is later than the data. 

1 0 0 Clock is later than the data. 

1 0 1 CDR is in lock mode. 

1 1 0 Clock is earlier than the data. 

1 1 1 Cannot determine whether the clock is earlier or later than the data. 
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3.1.2 Charge pump (CP) 

The function of the charge pump is to convert the phase difference between the two 

input signals into the electrical parameter such as voltage, which controls the oscillating 

frequency of the VCO [13].  The charge pump circuit is modeled in the Simulink by 

using a gain block and an adder block as shown in Figure 3.5.  A gain block holds the 

value of the charge pump current Icp that charges or discharges the capacitor, when early 

or late pulses of the Alexander PD are at logic level one respectively.   

The Icp value is set to 800 µA and is divided by 2π to cancel the radians unit of the 

Kvco (gain) value of VCO.  When the early signal is at logic level one, the capacitor is 

charged to 127.32 µV (800 µA /2π) and when the late signal is at logic level one, the 

capacitor is discharged to -127.32µV, but in reality the capacitor discharges to zero volts.  

The charging and discharging currents of charge pump circuit are easily cancelled in the 

Simulink model, but in reality leakage current flows through the circuit, thereby creating 

an offset voltage on the capacitor. 
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Figure 3.5: Simulink model for the charge pump. 

 

3.1.3 Low pass filter (LPF) 

The low pass filter is modeled in the Simulink as per the Figure 2.6 (The resistor (R) 

is in series with capacitor (C1) and both are in parallel with capacitor (C2)) by using a 

transfer function block.  The transfer function of LPF circuit is derived as follows and is 

given by equation (3.4). 

 

H(s) = � R +  1
C1s
�││ 1

C2s
 (3.1) 

 

H(s) =  
�1 + R C1s

C1s
�.� 1

C2s
�

�1 + R C1s
C1s

� + � 1
C2s

�
 (3.2) 
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H(s) =  
1 + R C1s
s2 C1 C2

C1s + R C1 C2s2 + C2s
s2C1 C2

 (3.3) 

 

H(s) =  1 + R C1s
R C1C2s2 + (C1+ C2)s

 (3.4) 

 

3.1.4 Voltage controlled oscillator (VCO) 

The VCO is modeled in the Simulink by using an adder, a constant, and a math 

function blocks as shown in Figure 3.6.  The VCO model consists of the two variables 

named Kvco and fo.  The Kvco is the gain of the VCO in rads/Volts and fo is the oscillating 

frequency of the VCO in Hz.  The frequency of the clock generated by the VCO varies 

linearly with the input terminal Vcontrol.  When the input terminal Vcontrol is zero, the VCO 

produces the waveform that oscillates at frequency fo and on increase in the input 

terminal Vcontrol, the oscillating frequency of the waveform generated by VCO increases 

linearly. 
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Figure 3.6: Simulink model for the VCO. 
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3.2 Phase lock loop (PLL) dynamics 

The PLL is known as a second order system because it consists of the two dominant 

poles.  The first pole is contributed by a combination of the charge pump and a low pass 

filter and the second pole is contributed by the VCO.  The PLL in terms of the control 

systems is shown in Figure 3.7 [14]. 
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Figure 3.7: Dynamic of the PLL [14]. 

 

HLPF(s) =  KP + KI
s

 (3.5) 

 

KI =  1
C

  ,    KP = R (3.6) 

 

Kɸ = ICP
2π

 (3.7) 
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The open and closed loop transfer functions of the PLL are given by equations (3.8) 

and (3.9) respectively. 

G(s) =  KVCO Kɸ (KI + KPs)
s2

 (3.8) 

 

H(s) =  
K (1+ sz)

s2+ K sz+ K
 (3.9) 

 

 K = KVCO Kɸ KI and z =  KI
KP

 (3.10) 

 

The open and closed loop functions of the PLL in terms of the cut-off frequency of 

the PLL loop ωn and the damping factor ξ are given by equations (3.11) and (3.12). 

G(s) =  2 ξ ωns+ ωn
2

s2
 (3.11) 

    

𝐻(𝑠) =  2 𝜉 ωn𝑠+ ωn
2

s2+2 𝜉 ωn𝑠+ ωn2
 (3.12) 

 

The cut-off frequency of the PLL loop ωn and the damping factor ξ can be formulated 

as follows: 
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ωn =  �KV Kɸ KI =  �ICP KV
2π C

 (3.13) 

 

ξ =  ωn
2

 KP
KI

=  R
2

 �ICP KV C
2π

 (3.14) 

 

From the dynamics and formulations mentioned above, the loop bandwidth and the 

phase margin can be plotted in order to determine the stability and the allowable 

bandwidth of the PLL. 

3.3 CDR Simulink model simulation results 

The variables of the designed CDR model are initialized as shown in the Table 3.3.  

To test the stability of the designed CDR model, a frequency step in the input data is 

performed, i.e., the input data frequency is changed from 3 Gbps to 2.5 Gbps at 1 µs and 

the appropriate change in the value of the control voltage (Vcontrol) of the VCO is 

observed. 

The equation (3.15) is used to manually calculate the value of the Vcontrol of the VCO 

during the frequency step. 

𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =  𝑓𝑣𝑐𝑜 − 𝑓𝑂
Kvco

 (3.15) 
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Where the fo is the oscillating frequency of the VCO, the fvco is the frequency of the 

clock generated by the VCO, and the Kvco is the gain of the VCO. 

Table 3.3: Initialization of variables of the designed CDR system. 

Variables Value 

Input Data 1 3 Gbps 

Input Data 2 2.5 Gbps 

Icp 800 µA 

R 1 kΩ 

C1 1 pF 

C2 C1/10 

KVCO 500 MHz/V 

 

The designed CDR model is simulated for four different cases as follows: 

• Case 1: The designed CDR model is simulated using an ideal DFF from the 

Simulink library in the Alexander PD model for 4 µs.  The Vcontrol of the VCO 

during the frequency step in the input data from 3 Gbps to 2.5 Gbps is plotted 

in the Figure 3.8.  The lock time is defined as the time taken by the Vcontrol of 

the VCO to settle to a constant value, when the frequency step in the input 

data is performed.  The lock time of the designed CDR model was 0.110 µs. 

The eyediagram of the recovered clock shows the peak-to-peak jitter present 

in the recovered clock and for the designed CDR model is shown in Figure 
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3.9.  The peak-to-peak jitter observed in the recovered clock of the designed 

CDR system was 0.03 UI for the 3 Gbps input data and 0.033 UI when the 

input data frequency was changed to 2.5 Gbps at 1 µs. 

 

Figure 3.8: Control voltage of the VCO for Case 1. 

 

 

Figure 3.9: Eyediagram of the designed CDR system. 
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• Case 2: The designed CDR system is simulated using the metastable DFF, 

modeled in Simulink, for 4 µs.  The SDFF designed in the transistor level 

using 45 nm technology in the Cadence Virtuoso has the setup time (Ts (actual)) 

equal to -11.57 ps, the hold time (Th (actual)) equal to 54.16 ps, and the clock-to-

output delay (Tc-q) equal to 84.64 ps (explained in detail in section 4.1 and 

shown in Table 4.1).  The pulse width of the metastable window of the input 

data is set to 42.59 ps (Ts (actual) + Th (actual)) by initializing the timing 

parameters of the modeled metastable DFF as follows: 

 

Ts = Th = Ts (actual)+ Th (actual)

2
= 21.29 ps (3.16) 

 

The designed CDR model is simulated and the Vcontrol of the VCO is plotted in 

Figure 3.10.  The lock time of the CDR model was 1.7 µs.  The peak-to-peak 

jitter observed in the recovered clock was 0.04 UI for the 3 Gbps input data 

and 0.037 UI when the input data frequency was changed to 2.5 Gbps at 1 µs. 
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Figure 3.10: Control voltage of the VCO for Case 2. 

 

• Case 3: The designed CDR system is simulated using the metastable DFF, 

modeled in Simulink, for 4 µs. The setup time (Ts)  is initialized to a greater 

value than the hold time (Th) in the modeled metastable DFF as follows: 

 

Ts = 34.07 ps and Th = 8.51 ps (3.17) 

 

The designed CDR model is simulated and the Vcontrol of the VCO is plotted in 

Figure 3.11.  This figure shows that the designed CDR model does not lock 

when the input frequency is changed from 3 Gbps to 2.5 Gbps at 1 µs.  The 

peak-to-peak jitter observed in the recovered clock was 0.0612 UI for the 3 

Gbps input data. 
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Figure 3.11: Control voltage of the VCO for Case 3. 

 

• Case 4: The designed CDR system is simulated using the metastable DFF, 

modeled in Simulink, for 4 µs. The hold time (Th) is initialized to a greater 

value than the setup time (Ts) in the modeled metastable DFF as follows: 

 

Ts = 8.51 ps and Th = 34.07 ps (3.18) 

 

The designed CDR model is simulated and the Vcontrol of the VCO is plotted in 

Figure 3.12.  This figure shows that the designed CDR model does not lock 

when the input frequency is changed from 3 Gbps to 2.5 Gbps at 1 µs.  The 

46 
 



 

peak-to-peak jitter observed in the recovered clock was 0.05 UI for the 3 Gbps 

input data. 

 

Figure 3.12: Control voltage for case 4. 

 

The results of the four different cases are tabulated in Table 3.4: 

Table 3.4: Simulation results of the designed CDR system. 

Case 

No. 

Type of DFF used 

in CDR system 

Lock Time 

(µs) 

Peak-to-Peak Jitter 

3 Gbps (UI) 

Peak-to-Peak Jitter 

2.5 Gbps (UI) 

1 Ideal DFF 0.11 0.03 0.033 

2 Metastable DFF 1.7 0.04 0.037 

3 Metastable DFF - 0.06 - 

4 Metastable DFF - 0.05 - 
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In summary, as seen from the Table 3.4, Case 1 is the best case as the designed CDR 

system has the minimum lock time and peak-to-peak jitter as compared to Case 2, 3, and 

4.  In Case 1, the ideal DFF from Simulink library was used in the Alexander phase 

detector.  The timing parameters of the ideal DFF from Simulink library are the setup 

time (Ts), the hold time (Th), and the clock-to-output delay (Tc-q) are equal to zero.  But, 

when the DFF is designed at transistor level, these timing parameters are no longer zero. 

Thus, Case 1 is not the possible practically.  The timing parameters of the DFF are taken 

into consideration in the Case 2, 3, and 4.  The Table 3.4 shows that the Case 2 is the best 

case among Case 2, 3, and 4 in terms of minimum lock time and minimum peak-to-peak 

jitter in the recovered clock of the designed CDR system. 
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Chapter 4. CDR modeling using Cadence 

This chapter presents the paper’s work in transistor level design using 45 nm 

technology and modeling of the CDR system using the Verilog-A language in the 

Cadence Virtuoso 6.1.5.  The designed CDR system is operated at the input data rate of 3 

Gbps as shown in Figure 4.1.  The two PRBS blocks used at the input of the designed 

CDR system consists of the two input data in the PRBS pattern.  The block named 

“PRBS7-1” consists of the input data, having frequency of 3 Gbps and the other block 

named “PRBS7-2” consists of the input data, having frequency of 2.9 Gbps.   

The phase detector block is the Alexander PD consisting of the four DFFs and two 

XOR gates designed at the transistor level using 45 nm technology.  The transistor level 

designing of the Alexander PD is explained in detail in section 4.1, 4.2, and 4.3.  The 

charge pump (CP) block is modeled using the Verilog-A language and consist of one 

input variable named Icp (charge pump current).  The low pass filter (LPF) block consists 

of the resistor (R) connected in series with the capacitor (C1) and both are placed in 

parallel to the capacitor (C2).  The VCO is also modeled using the Verilog-A language 

and has two input variables named fo (oscillating frequency of the VCO) and Kvco (gain 

of the VCO).  The slicer block is used to convert the sinusoidal output of the VCO into 

the square wave and is modeled using the Verilog-A language.  

Finally, the data delay circuit is designed at the transistor level using 45 nm 

technology and is explained in detail in section 4.4.  The Verilog-A codes and the 
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transistor sizes of the circuits of the designed CDR system are provided in the sections 

A.1 and A.2 of the Appendix respectively. 

 

PDMUX

PRBS
7-1

PRBS
7 -2

CP VCO Slicer

Variable clock delay cell

Alexander 
Phase Detector

Charge Pump Voltage Controlled 
Oscillator

Input data @ 2.9Gbps

Input data @ 3Gbps

Step Input 
changed at 1µs Multiplexer R

C1

C2

Input Binary Vector  

Figure 4.1: Schematic of the designed CDR system. 

 

4.1 SDFF 

The Semi-dynamic D flip flop (SDFF) is used in the designed CDR system due to the 

benefits discussed in section 2.3.1.  The SDFF circuit is divided into four parts named A, 

B, C, and D as shown in Figure 4.2 and explained as follows: 
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• Part A is a dynamic inverter-I consisting of one PMOS transistor (M1) in the 

pull up network and three NMOS transistors (M2, M3, and M4) connected in 

series in the pull down network.  The function of the dynamic inverter-I is to 

sample the inverted input data (D) on the node X when the clock is in the 

evaluation phase. 

 

• Part B is a dynamic inverter-II consisting of one PMOS transistor (M5) in the 

pull up network and two NMOS transistors (M6 and M7) connected in series in 

the pull down network.  The function of the dynamic inverter-II is to sample 

the inverted value present at node X on the output (Q) when the clock is either 

in the precharge or the evaluation phase. 

 

 

• Part C is a static keeper circuit consisting of two inverters connected in back 

to back configuration.  The function of the static keeper is to hold the voltage 

of the node X and the output (Q) to the appropriate logic level.  Due to the 

presence of the two static keepers at node X and output (Q) and the two 

dynamic inverters, the DFF is called as the Semi dynamic D flip flop (SDFF). 

 

• Part D is a NAND gate driven by clock signal, which is delayed by the series 

combination of the two inverters.  A NAND gate along with the series 

combination of the two inverters forms the glitch generator circuit.  The glitch 

51 
 



 

generator circuit generates the narrow clock pulse around the rising edge of 

the clock signal.  The period of which corresponds to the total sum of a 

NAND gate and the two inverter delays.  The purpose of the glitch generator 

circuit is to lower the possibility of the race-through problem and sensitivity to 

the noise. 

 

 

Data

Clock

Clock

Clock

Q Qbar

M 1

M 2

M 3

M 4

M 5

M  6

M 7

X

Part A

Part B

Part C

Part D

 

Figure 4.2: Cadence schematic of the SDFF circuit. 
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The working of the SDFF is divided into two phases: the Precharge phase and the 

Evaluation phase, as follows: 

 

• In the Precharge phase, the clock is at the logic zero; turning on the PMOS 

transistor (M1) and turning off the NMOS transistors (M4 and M6).  The node 

X is charged to VDD (logic one) through the PMOS transistor (M1).  As node 

X is one of the inputs of the NAND gate, whose other input is zero from the 

clock, the NAND gate’s output is set to the logic one and turns on the NMOS 

transistor (M2).  In precharge phase, the output (Q) is cut off from the first 

stage and is held to either a previous or the random value, causing the 

dynamic inverter-II to be at a high impedance stage.   

 Since the drain terminal of the NMOS transistor (M2) is connected to the 

node X, the voltage at node X is pulled below the VDD.  As the node X drives 

the dynamic inverter-II, the load capacitor present at the output (Q) will not 

get charged to the VDD and will result in low noise margin.  To avoid the 

problem of the low noise margin, the static keepers are used at node X and 

output (Q) to achieve the rail to rail full supply voltage swing. 

 

• In the Evaluation phase, the clock makes the transition from logic zero to 

logic one and turns on the NMOS transistors (M4 and M6) and turns off the 

PMOS transistor (M1).  As soon as the clock reaches the switching threshold 

of the dynamic inverter-II, the NMOS transistor (M6) turns on and the output 
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(Q) will get discharged all the way to GND (logic zero).  In evaluation phase, 

the circuit behaves as a transparent circuit and the output of the NAND gate 

remains at logic one for a short interval of time (corresponding to the total 

sum of a NAND gate and the two inverters delays). 

 

 Transparency of the SDFF in Evaluation phase: 

1) Latching a logic zero: When the input data is at a logic zero, the 

NMOS transistor (M3) is turned off and as the clock is high, the output 

(Q) is held to the previous stage, which is a logic zero.  

 

2) Latching a logic one: When the input data is at logic one, the 

NMOS transistor (M3) is turned on.  Due to the existence of the direct 

path between the node X and the GND,  the node X is discharged all 

the way to the GND, thus, turning on the PMOS transistor (M5) and 

charging output(Q) to VDD. 

 

The output waveform of the designed SDFF circuit is shown in Figure 4.3 and the 

transistor sizes of the designed SDFF circuit are mentioned in section A.2.1 of the 

Appendix.  The timing parameters of designed SDFF circuit are presented in Table 4.1. 
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Figure 4.3: Output waveform of the designed SDFF. 

 

Table 4.1: Timing parameters of the designed SDFF. 

Timing Parameters Time (ps) 

Setup time (Ts) -11.57 

Hold time (Th) 54.16 

Clock to output delay (Tc-q) 85.64 

 

4.2 Exclusive OR (XOR) gate 

The XOR gate accepts two input signals and gives the output as logic one, when both 

the inputs have unequal value otherwise it gives output as logic zero.  The XOR circuit is 

designed at transistor level using 45 nm technology as shown in Figure 4.4.  
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Figure 4.4: Cadence schematic of the XOR gate. 

 

The output waveform of the XOR circuit is shown in Figure 4.5 and the transistor 

sizes are mentioned in section A.2.2 of the Appendix. 

 

Figure 4.5: Output waveform of the designed gate. 
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4.3 Alexander PD 

The Alexander PD consists of the above designed four DFFs and two XOR gates as 

shown in Figure 3.3.  The main function of an Alexander PD is to determine whether the 

clock is earlier or later than the input data signal as explained in section 3.1.3. 

4.4 Inverter 

The function of the inverter is to invert the incoming data signal.  The inverters are 

also used as buffers in various analog and digital circuits.  The inverter consists of one 

NMOS (M1) and one PMOS (M2) transistor as sown in Figure 4.6 and the output 

waveform is shown in Figure 4.7.  

 

Input Signal Output Signal

M1

M2

 

Figure 4.6: Cadence schematic of the Inverter. 
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Figure 4.7: Output waveform of the designed inverter. 

 

When the input data switches from the low logic level to the high logic level, the time 

interval between the input data and the output of the inverter is called low-high 

propagation delay and is given by tplh.  On the other side, When the input data switches 

from the high logic level to the low logic level, the time interval between the input data 

and the output of the inverter is called high-low propagation delay and is given by tphl.  

To have equal propagation delays (tplh = tphl) and the switching threshold of 0.5 V, the 

width of the PMOS transistor (M2) is sized to 1.44 times the width of the NMOS 

transistor (M1) as shown in Figure 4.8.  The transistor sizes of the inverter are mentioned 

in section A.2.3 of the Appendix. 
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Figure 4.8: Propagation delay waveform of the designed inverter. 

 

4.5 Metastable circuit 

The metastable concept is best explained in the section 2.3.  This section presents the 

design of the metastable circuit at the transistor level using 45nm technology.  The 

metastable circuit consists of a glitch generator circuit and a variable clock delay cell.  

The glitch generator circuit consists of a variable data delay cell, the chain of inverters, 

and a NAND gate as shown in Figure 4.9. 
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Figure 4.9: Cadence schematic of the glitch generator circuit. 

 

The variable delay cells are widely used in the integrated circuits to delay the active 

edge of the clock or of any random signals [15].  The variable data delay cell is designed 

using the current starved circuit as shown in Figure 4.10.  The figure shows the 

controlling transistors (Mn0, Mn1, Mn2, & Mn3, and Mp0, Mp1, Mp2, & Mp3) are turned on at 

the source node of the transistors (M1) and (M2) by applying the binary vector to its input 

terminal [15].  To achieve a binary incremental delay of 2 ps in the input data, the 

controlling transistors are sized in the binary fashion.  The pulse width of the data pulse 

(metastable window) generated by the glitch generator circuit is varied by six digital bits 

(the left and right leg each are varied using three digital bits) as shown in Figures 4.11 

and 4.12.  The total pulse width obtained due to each binary vector is tabulated in the 

Tables 4.2 and 4.3.  The transistor sizes of the designed data delay cell are mentioned in 

section A.2.4 of the Appendix. 
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Figure 4.10: Cadence schematic of the data delay cell [15]. 

 

 

Figure 4.11: Variation in the left leg of the metastable window. 
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Table 4.2: Binary vectors to vary the left leg of the metastable window. 

A1 A2 A3 Delay time (ps) 

0 0 0 38.27 

0 0 1 40.37 

0 1 0 42.54 

0 1 1 44.64 

1 0 0 46.25 

1 0 1 48.35 

1 1 0 44.55 

1 1 1 52.62 

 

 

 

Figure 4.12: Variation in the right leg of the metastable window. 
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Table 4.3: Binary vectors to vary the right leg of the metastable window. 

B1 B2 B3 Delay time (ps) 

1 1 1 38.27 

1 1 0 40.37 

1 0 1 42.54 

1 0 0 44.64 

0 1 1 46.25 

0 1 0 48.35 

0 0 1 44.55 

0 0 0 52.62 

 

 

The clock delay cell is designed by using the two inverters connected in back to back 

configuration and each inverter contains the PMOS transistor, connected in parallel 

configuration as shown in Figure 4.13.  The clock delay cell, delays the clock in the 

precision of 2 ps by using the five digital bits as shown in Figure 4.14.  The total delay in 

the clock caused by each binary vector is tabulated in Table 4.4.  The transistor sizes of 

the clock delay cell are mentioned in section A.2.5 of the Appendix. 
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Figure 4.13: Cadence schematic of the clock delay cell. 

 

 

Figure 4.14: Variable delay in the clock. 
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Table 4.4: Binary vectors to vary the clock. 

C1 C2 C3 C4 C5 Delay time (ps) 

1 1 1 1 1 42.15 

1 1 1 1 0 17.88 

1 1 1 0 1 25.91 

1 1 1 0 0 3.17 

1 1 0 1 1 33.85 

1 1 0 1 0 11.41 

1 1 0 0 1 17.61 

1 1 0 0 0 17.88 

1 0 1 1 1 37.63 

1 0 1 1 0 14.89 

1 0 1 0 1 21.39 

1 0 1 0 0 17.88 

1 0 0 1 1 29.33 

1 0 0 1 0 6.59 

1 0 0 0 1 13.09 

1 0 0 0 0 17.88 

0 1 1 1 1 39.54 

0 1 1 1 0 18.8 

0 1 1 0 1 23.3 
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0 1 1 0 0 17.88 

0 1 0 1 1 31.24 

0 1 0 1 0 8.5 

0 1 0 0 1 15 

0 1 0 0 0 17.88 

0 0 1 1 1 35.02 

0 0 1 1 0 12.28 

0 0 1 0 1 18.78 

0 0 1 0 0 17.88 

0 0 0 1 1 26.72 

0 0 0 1 0 17.88 

0 0 0 0 1 17.88 

0 0 0 0 0 54.41 

 

4.6 CDR simulation results 

The designed CDR system without the clock delay cell was simulated for 3 µs with 

the frequency step in the input signal from 3 Gbps to 2.9 Gbps at 1 µs.  The variables 

present in the designed CDR system are initialized as shown in Table 4.5.  During the 

change in the frequency of the input data from 3 Gbps to 2.9 Gbps, the control voltage 

(Vcontrol) of the VCO makes the transition from 500 mV to 300 mV respectively (by 

equations 4.1, 4.2, and4.3).  The transition of the Vcontrol of the VCO is shown in Figure 

4.15 and the eyediagram is shown in Figure 4.16.  The lock time observed was 0.32 µs 
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and the peak-to-peak jitter observed in the recovery clock of the designed CDR system 

was 0.022 UI. 

Vcontrol = fVCO−fO
KVCO

 4.1 

 

Vcontrol = 3 GHz−2.75 GHz
500 MHz/V

=  500 mV 4.2 

 

 

Vcontrol = 2.9 GHz−2.75 GHz
500 MHz/V

=  300 mV  4.3 

 

 

Table 4.5: Initialization of the variables of the designed CDR system 

Variables Value 

Input Data 1 3 Gbps 

Input Data 2 2.9 Gbps 

Icp 800 µA 

R 1 kΩ 

C1 20 pF 

C2 C1/40 

KVCO 500 MHz/V 
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Figure 4.16: Eyediagram of the designed CDR system. 

 

  

Figure 4.15: Simulation result of the designed CDR system. 
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The designed CDR system is simulated with the variable clock delay cell in the 

feedback loop as shown in Figure 4.1.  The designed CDR system was simulation for 2 

µs with the input data rate of 3 Gbps.   

The width of the data pulse generated by the glitch generator circuit should be equal 

to 44.52 ps (sum of the setup time (Ts) and the hold time (TH), mentioned in Table. 4.1). 

From the Tables 4.2 and 4.3, the data pulse with the width of 44.52 ps is achieved by 

using the [0 1 0 1 1 1] binary vector.  The rising edge of the clock is delayed or aligned 

with the data pulse by using a five bit variable clock delay cell as explained in the 

following cases: 

• Case1: In this case, the designed CDR system was simulated by making the 

setup time (Ts) equal to the hold time (Th) of the SDFF.  The setup time (Ts) is 

made equal to the hold time (Th) by delaying or aligning the rising edge of the 

clock to the center of the metastable window as shown in Figure 4.17.  Thus, 

the rising edge of the clock is delayed by 22.26 ps (half of the data pulse 

width of 44.52 ps) by using the [0 0 0 1 1] binary vector as shown in Table 

4.4.  Note, this binary vector provides the delay of approximately 25.43 ps, 

thus, there exists an offset of approximately 3 ps due to noise in the circuit.  

The peak-to-peak jitter observed in the recovery clock of the designed CDR 

system was 0.016 UI. 
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Figure 4.17: Alignment of the clock edge for Case 1. 

 

• Case2: In this case, the designed CDR circuit was simulated by making the 

setup time (Ts) greater than the hold time (Th) of the SDFF.  The setup time 

(Ts) is made greater than the hold time (Th) by delaying or aligning the rising 

edge of the clock as shown in Figure 4.18.  Hence, the rising edge of the clock 

is delayed by 36.53 ps by using the [1 0 0 1 1] binary vector as shown in 

Table 4.4. The peak-to-peak jitter observed in the recovery clock of the 

designed CDR system was 0.089 UI. 

Ts > Th

Data

Clock
Ts Th

 

Figure 4.18: Alignment of the clock edge for Case 2. 

 

• Case3: In this case, the designed CDR system was simulated by making the 

hold time (Th) greater than the setup time (Ts) of the SDFF.  The hold time 

(Th) is made greater than the setup time (Ts) by aligning or delaying the clock 

as shown in the Figure 4.19.  Hence, the rising edge of the clock is delayed by 
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14.98 ps by using the [1 1 1 1 1] binary vector as shown in Table 4.4.  The 

peak-to-peak jitter observed in the recovery clock of the designed CDR 

system was 0.095 UI. 

Ts < Th

Data

Clock
Ts Th

 

Figure 4.19: Alignment of the clock edge for Case 3. 
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Chapter 5. Conclusion 

The CDR system was first modeled using the Simulink software and simulated for 

three different cases: the equal setup and hold time, the setup time greater than the hold 

time, and the hold time greater than the setup time.  The results in Table 3.4 show that 

when setup time is equal to hold time, the designed CDR system performs best in terms 

of minimum lock time and peak-to-peak jitter.  The lock time reported in this case was 

1.7 µs.  The peak-to-peak jitter observed in the recovered clock was 0.04 UI for the 3 

Gbps input data and 0.037 UI for the 2.5 Gbps input data.  

To validate the observations in Simulink, the CDR system was designed at transistor 

level using 45 nm technology and modeled using Verilog A language in Cadence 

Virtuoso 6.1.5.  The results obtained from Cadence simulations show that when the setup 

time is equal to the hold time, the peak-to-peak jitter observed in the recovered clock was 

0.016 UI, which is less as compared to that observed in other two cases (when the setup 

time is greater than hold time and hold time is greater than setup time).  Thus, the 

calibration of the DFF using a metastable circuit improves the lock time and peak-to-peak 

jitter performance of the designed CDR system.   

Future work involves designing a charge pump and a voltage controlled oscillator at 

transistor level using 45 nm technology as per the Verilog A model in Cadence Virtuoso.  

Final work will be the fabrication of the designed CDR system onto a chip. 

 

72 
 



 

References 

[1] ITRS, "International Technology Roadmap for Semiconductors 2007 Edition:   
Assembly and Packaging,"International Technology Roadmap for 
Semiconductors (ITRS), http://www.itrs.net, 2007. 
 

[2] B. Razavi, Design of Integrated Circuits for Optical Communication, 1st Ed., New 
York: McGraw-Hill, 2003, Ch. 7-9, pp. 213-329. 

 

[3] B. Razavi, Design of Analog CMOS Integrated Circuits, Int. Ed., Bejing, P.R. 
China: Tsinghua University Press, 2001. 

 

[4] David J. Rennie, "Analysis and Design of Robust Multi-Gb/s Clock and Data 
Recovery Circuits," Ph.D. dissertation, Dept. Elect. and Comp. Eng., Univ. 
Waterloo, ON, 2007. 

 

[5] B. Razavi, Phase-Locking in High-Performance Systems: From Devices to 
Architectures, Piscataway, New Jersey: Wiley-IEEE Press, pp. 294-300, 2003. 

 

[6] Liang Dai and R. Harjani, "Design of low-phase-noise CMOS ring oscillator," 
Circuits and Systems II: Analog and Digital Signal Processing, IEEE 
Transactions on, vol. 49, no. 5, pp. 328-338, May 2002. 

 

[7] P. Trischitta and E. Varma, Jitter in Digital Transmission Systems, Norwood, 
MA: Artech House, 1989. 

 

[8] Bellcore TA-NMT-000253 “Synchronous Optical (SONET) Transport Systems: 
Common Generic Criteria,” Issue 6. Sept. 1990. 

 

[9] F.Klass, C.Amir, A.Das, K. Aingaran, C.Truong, R.Wang, A.Mehta, R.Healdand 
G. Yee, "A New Family of Semi Dynamic and Dynamic Flip-Flops with 
Embedded Logic for High-Performance Processors," IEEE Journal of Solid 
Circuits, vol.34, no.5, pp.712 – 716, 1999. 

 

73 
 



 

[10] M.Rabey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits,2nd Ed., 
New Jersey, Prentice Hall, pp.332-336, 2003. 

 

[11] H.Patrovi, R.Burd, U.Salim, F.Weber, L.DiGregorio, and D. Draper, "Flow-
through latch and edge-triggered flip-flop Hybrid elements,"in ISSCC Dig. Tech. 
Papers, pp. 138-139, Feb. 1996. 

 

[12] A. B. Christian Hansen, "Test and Signaling of a 40Gbps Transmitter/Reciever 
Prototype," M.S. Thesis, Dept. of IMM., Tech. Univ. Denmark, KongensLyngby, 
Denmark, 2003. 

 

[13] T. C. Weigandt, "Low-Phase-Noise, Low-Timing-Jitter Design Techniques for 
Delay Cell Based VCOs and Frequency Synthesizers," Ph.D. dissertation, EECS 
Department, Univ. California, Berkeley, 1998. 

 

[14] Kundert, K.S. Jri Lee, and B Razavi, "Designing Bang-Bang PLLs for Clock and 
Data Recovery in Serial Data Transmission Systems," Solid-State Circuits, IEEE 
Journal of, vol. 39, no. 9, pp. 1571-1580, Sept. 2004. 

 

[15] M. M. Nejad and M. Sachdev,"A Digitally Programmable Delay Element: 
Design and Analysis,"Very Large Scale Integration (VLSI) Systems, IEEE 
Transactions on, vol.11, no. 5, pp. 871-878, Oct. 2003. 

 

 

 

 

 

 

 

 

 

74 
 



 

Appendix 

A.1     Verilog A Codes   

 A.1.1  PRBS-7 Data Generator 

// VerilogA for Thesis, PRbs7, veriloga 
 
`include "constants.vams" 
`include "disciplines.vams" 
 
module PRbs7(clkp, clkn, outx, outb); 
 
inputclkp, clkn;  
outputoutx, outb;  
voltageclkp, clkn, outx, outb;  
parameter integer bit_num = 8 from [2:32];  
parameter integer seed = 1 from [1:inf];  
 
integer x, a1, a2, a3, a4, b, mask;  
 
analog begin 
@(initial_step) begin 
case (1) 
          (bit_num ==  2): begin a1=0; a2= 1; a3= 0; a4= 0; end 
// 2 [0,1] 
            (bit_num ==  3): begin a1=0; a2= 2; a3= 0; a4= 0; end 
// 3 [0,2] 
            (bit_num ==  4): begin a1=0; a2= 3; a3= 0; a4= 0; end 
// 4 [0,3] 
            (bit_num ==  5): begin a1=1; a2= 4; a3= 0; a4= 0; end 
// 5 [1,4] 
          (bit_num ==  6): begin a1=0; a2= 5; a3= 0; a4= 0; end 
// 6 [0,5] 
            (bit_num ==  7): begin a1=0; a2= 6; a3= 0; a4= 0; end 
// 7 [0,6] 
            (bit_num ==  8): begin a1=1; a2= 2; a3= 3; a4= 7; end 
// 8 [1,2,3,7] 
            (bit_num ==  9): begin a1=3; a2= 8; a3= 0; a4= 0; end 
// 9 [3,8] 
            (bit_num == 10): begin a1=2; a2= 9; a3= 0; a4= 0; end 
//10 [2,9] 
            (bit_num == 11): begin a1=1; a2=10; a3= 0; a4= 0; end 
//11 [1,10] 

75 
 



 

          (bit_num == 12): begin a1=0; a2= 3; a3= 5; a4=11; end 
//12 [0,3,5,11] 
            (bit_num == 13): begin a1=0; a2= 2; a3= 3; a4=12; end 
//13 [0,2,3,12] 
            (bit_num == 14): begin a1=0; a2= 2; a3= 4; a4=13; end 
//14 [0,2,4,13] 
            (bit_num == 15): begin a1=0; a2=14; a3= 0; a4= 0; end 
//15 [0,14] 
          (bit_num == 16): begin a1=1; a2= 2; a3= 4; a4=15; end 
//16 [1,2,4,15] 
            (bit_num == 17): begin a1=2; a2=16; a3= 0; a4= 0; end 
//17 [2,16] 
            (bit_num == 18): begin a1=6; a2=17; a3= 0; a4= 0; end 
//18 [6,17] 
            (bit_num == 19): begin a1=0; a2= 1; a3= 4; a4=18; end 
//19 [0,1,4,18] 
          (bit_num == 20): begin a1=2; a2=19; a3= 0; a4= 0; end 
//20 [2,19] 
            (bit_num == 21): begin a1=1; a2=20; a3= 0; a4= 0; end 
//21 [1,20] 
            (bit_num == 22): begin a1=0; a2=21; a3= 0; a4= 0; end 
//22 [0,21] 
          (bit_num == 23): begin a1=4; a2=22; a3= 0; a4= 0; end 
//23 [4,22] 
          (bit_num == 24): begin a1=0; a2= 2; a3= 3; a4=23; end 
//24 [0,2,3,23] 
          (bit_num == 25): begin a1=7; a2=25; a3= 0; a4= 0; end 
//25 [7,25] 
            (bit_num == 26): begin a1=0; a2= 1; a3= 5; a4=25; end 
//26 [0,1,5,25] 
          (bit_num == 27): begin a1=0; a2= 1; a3= 4; a4=26; end 
//27 [0,1,4,26] 
            (bit_num == 28): begin a1=2; a2=27; a3= 0; a4= 0; end 
//28 [2,27] 
            (bit_num == 29): begin a1=1; a2=28; a3= 0; a4= 0; end 
//29 [1,28] 
            (bit_num == 30): begin a1=0; a2= 3; a3= 5; a4=29; end 
//30 [0,3,5,29] 
          (bit_num == 31): begin a1=2; a2=30; a3= 0; a4= 0; end 
//31 [2,30] 
            (bit_num == 32): begin a1=1; a2= 5; a3= 6; a4=31; end 
//32 [1,5,6,31] 
default $strobe("Error. Should never get here.");            
endcase 
mask = pow(2, bit_num) -1;  
x = seed;  
x = x & mask; //mask the unavailable bit;  
 
end 
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@(cross(V(clkp, clkn), +1, 1p)) begin 
b = ((x>>a1)^(x>>a2)^(x>>a3)^(x>>a4))%2;  
x = ((x<<1) & (mask-1)) + b;  
end 
 
V(outx) <+ x;  
V(outb) <+ b;  
 
end 
 
endmodule 
 

 A.1.2  Multiplexer 

// VerilogA for Thesis, Mux, veriloga 
 
`include "constants.vams" 
`include "disciplines.vams" 
module Mux(Va, Vb, S, Vo); 
inputVa,Vb,S; electrical Va,Vb,S; 
output Vo; electrical Vo; 
realoutv; 
analog begin 
if (V(S) > 0.5) 
outv = V(Va); 
else 
outv = V(Vb); 
V(Vo) <+ transition(outv,0,1f,1f); 
end 
endmodule 
 

 A.1.3  Charge Pump 

// VerilogA for Thesis, CP, veriloga 
 
`include "constants.vams" 
`include "disciplines.vams" 
 
module CP (Up,Dn,Icp, Vdd, Vss); 
 
outputIcp; electrical Icp;     // current output 
inputUp,Dn; electrical Up,Dn; 
inoutVss, Vdd; electrical Vss,Vdd; 
electricalrst; 
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//electrical subb; 
 
 
parameter real icpn=1u;       // maximum sinking current 
parameter real vth = 0.5; 
parameter real icp= 800e-6/2/3.14; 
realsubb, iout; 
 
analog begin 
 
subb = V(Up)-V(Dn); 
iout = icp*subb; 
 
I(Icp)<+ transition(iout); 
 
end 
endmodule 
 
 

A.1.4  Voltage Controlled Oscillator 

// VerilogA for Thesis, VCO, veriloga 
 
`include "constants.vams" 
`include "disciplines.vams"  
 
module VCO(Vc,Out, Vss, Vdd);  
 
inputVc; electrical Vc;  
output Out; electrical Out;  
inoutVss, Vdd; electrical Vss,Vdd;  
parameter real f0 = 2.75e9;  
parameter real Kvco = 500e6;  
real f, amp, offset;  
 
analog begin  
 
f = f0 + Kvco*V(Vc);  
amp = (V(Vdd)-V(Vss))/2;  
offset = V(Vss)+amp;  
V(Out) <+ amp*sin(2*`M_PI*idtmod(f,0,1))+offset;  
 
end 
 
endmodule 
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A.1.5  Slicer 

// VerilogA for Thesis, SLICER, veriloga 
 
`include "constants.vams" 
`include "disciplines.vams" 
 
module SLICER(in, out,out_b); 
 
input in; electrical in; 
outputout,out_b; electrical out,out_b; 
 
parameter real vth = 0.5; 
realoutv, outvb; 
 
analog begin 
 
if (V(in) > 0.5)  
begin 
outv = 1; 
outvb = 0; 
end 
else 
begin 
outv = 0; 
outvb = 1; 
end 
 
V(out) <+ transition(outv,0,1p,1p); 
V(out_b) <+ transition(outvb,0,1p,1p); 
 
end 
endmodule 
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A.2  Transistor Sizes 

 A.2.1  Semi dynamic DFF (SDFF) 

Table 0.1: Transistor sizes of the designed SDFF . 

Transistor Width (µm) Length (nm) 

M1 4 45 

M2 10 45 

M3 10 45 

M4 10 45 

M5 15 45 

M6 2 45 

M7 2 45 

 

 A.2.2  Exclusive OR gate (XOR) 

Table 0.2: Transistor sizes of the designed XOR gate. 

Transistor Width (µm) Length (nm) 

M1 12 45 

M2 12 45 

M3 12 45 

M4 12 45 

M5 11 45 

M6 11 45 
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M7 11 45 

M8 11 45 

 

 A.2.3  Inverter 

Table 0.3: Transistor sizes of the designed inverter. 

Transistor Width (nm) Length (nm) 

M1 120 45 

M2 180 45 

 

 A.2.4  Data delay cell 

Table 0.4: Transistor sizes of the designed data delay cell. 

Transistor Width (µm) Length (nm) 

M1 2 45 

M2 2.5 45 

Mn0 0.18 45 

Mn1 0.6 45 

Mn2 1.2 45 

Mn3 0.6 45 

Mp0 0.25 45 

Mp1 0.86 45 
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Mp2 1.72 45 

Mp3 0.86 45 

 

 A.2.5  Clock delay cell 

Table 0.5: Transistor sizes of the clock delay cell. 

Transistor Width (µm) Length (nm) 

M1& M1’ 0.12 400 

M2& M2’ 0.12 180 

M3& M3’ 0.18 45 

M4& M4’ 0.6 45 

M5& M5’ 2 45 

M6& M6’ 0.6 45 

M7& M7’ 6 45 
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