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ABSTRACT 
 

EFFECTS OF DEPTH, SITE, AND SEASON ON PHENOTYPIC VARIATION OF 
THE GENICULATE CORALLINE, CALLIARTHRON TUBERCULOSUM AROUND 

THE MONTEREY PENINSULA, CALIFORNIA 
 

by Jasmine E. Ruvalcaba 

Coralline algae are ubiquitous in near-shore marine environments.  In particular, 

geniculate corallines occur in intertidal and subtidal habitats with abundances typically 

higher at shallow depths.  Due to the high abundance of Calliarthron tuberculosum in 

Monterey kelp beds, this species was chosen to study effects of depth, site, and season on 

morphology and physiology.   

To further understand this pattern, populations from 3 and 10 m depth were 

sampled at two sites to examine morphometric variables including total length, total 

width, and number of branch tips as well as, physiological variables including respiration, 

photosynthetic, and calcification rates.  Growth rates were also quantified spatially and 

temporally.  The number of branch tips found on shallow individuals was double that of 

the individuals found at deeper depths while there were no apparent differences in total 

length and total width with depth.  Physiological variables differed but generally were 

higher in shallow individuals and greater during winter months.  There was a depth effect 

found for growth with shallow individuals generally growing faster than deep individuals.  

The density of branch tips may facilitate coralline dominance at shallower depths and 

have implications on the ecology of these near-shore environments. 
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Introduction 

Morphological variation in marine macroalgae is affected by environmental 

factors including light, temperature, salinity, water motion, and availability of nutrients 

(Lobban and Harrison 1997), as well as potential interactions amongst these factors.  

Such abiotic factors vary between intertidal and subtidal environments at the same site, 

latitudinally, and across broad temporal scales (e.g., days to decades).  Morphological 

form and physiological function are generally correlated (Littler 1980, Arnold and 

Murray 1980,  Hay 1986, Johansson and Snoeijs 2002).  For example, filamentous and 

sheet-like algal species typically have greater photosynthetic rates per gram of tissue 

compared to coarsely branched, thick and leathery, and calcified species (Littler and 

Littler 1980).  The latter species exibit higher environmental resistance (hardiness), with 

a higher ratio of structural components to photosynthetic components, resulting in lower 

mass-specific photosynthesis.   

Because seaweeds are autotrophs, light is a major factor influencing algal 

morphology and physiology and variable light conditions can directly influence their 

fitness (Kirk 2011).   The light environment within which subtidal seaweeds live is 

modified by three primary factors: water depth (excluding competitive shading), water 

transparency, and temporal variability in surface irradiance (Kirk 2011).  It is well 

established that light quantity decreases with depth as light is absorbed and scattered by 

particles in the water (Jerlov 1976), with generally negative effects on algal physiology 

(Johannson and Snoeijs 2002, Colombo-Pallotta et al. 2006, Edwards and Kim 2010).  

The subtidal light environment varies seasonally due to changes in day length, solar 
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incidence, turbidity, run-off, plankton blooms, and overlying vegetation, as well as on 

daily scales due to cloud cover (Lobban and Harrison 1997). 

Seaweeds can respond to changes in light quantity and quality by varying 

morphologically.  In Asparagopsis armata, branch size and shape (i.e., fewer branches 

with branch elongation) change under reduced irradiance (Monro and Poore 2005).  

Shifts in growth between branch elongation and meristem production were due to 

variation in spectral quality.  Halimeda tuna, a calcified green alga, exhibited natural 

plasticity in morphology relative to depth (light intensity) with deeper thalli growing at 6 

m having thinner segments, larger utricles, and thinner cell walls than shallow plants 

from 0.5 m (Colombo and Orsenigo 1977).  Studies of various Caluerpa spp. have shown 

morphological responses to reduced illumination (Calvert 1976), resulting in change of 

symmetry of ramular placement from radial to bilateral in low light.  Many studies have 

also shown changes in physiology with depth related light reduction (Ramus et al. 1976, 

Silva et al. 1998, Colombo-Pallotta et al. 2006), diurnal changes in irradiance (Lopez-

Figueroa 1992), and seasonal changes in irradiance  (Luder et al. 2001, Fairhead et al. 

2004).    

Hydrodynamic regimes vary with site and depth and have profound effects on 

both algal and invertebrate morphology and physiology (Wheeler 1988, Baeck 1993, 

Hurd et al. 1996, Hurd 2000, Wernberg et al. 2005, Koehl et al. 2008).  Coral branching 

morphology can vary with depth, where branch spacing increases along a depth gradient 

(Sebens et al. 1997, Helmuth et al. 1997).     
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 Algal species respond morphologically and physiologically to both light and 

water motion (Wing et al. 2007, Yniguez et al. 2010).  Steneck and Adey (1976) found 

that growth rates and branching in Lithophyllum congestum transplanted to areas of high 

water motion (shallow depths) increased relative to deeper transplants.  Steller and Foster 

(1995) suggested that the morphology of free living, branched crustose coralline algae 

(rhodoliths) was influenced by a suite of environmental factors (e.g., light, water motion, 

and sedimentation). Morphological variability has also been shown in corallites, where 

plasticity in coral species responds to multiple environmental factors (Foster 1979, Bruno 

and Edmunds 1997).  In Ascophyllum nodosum, phenotypic acclimation, in addition to 

genetic variation in thallus morphology, enables this species to occupy a wide zone in the 

intertidal and tolerate a variety of environmental factors (Stengel and Dring 1997).     

Light and water motion vary with depth creating a range of algal habitats and 

zones in nearshore environments.  Kelp forests are highly productive habitats that 

promote biodiversity among many trophic levels in nearshore environments (Foster 

1975a, Reed and Schiel 1985, Steneck et al. 2002, Estes et al. 2004, Graham 2004).  The 

distribution of algal species within a kelp forest is a result of interactions among various 

abiotic (e.g., light and temperature) and biotic (e.g., competition and grazing) factors 

(Foster 1975b, Reed and Schiel 1985, Schiel and Foster 1986).  Dayton et al. (1984) 

categorized kelp forest vegetative layers in California by morphological adaptations: 1) 

floating surface canopies like, Macrocystis pyrifera and Nereocystis luetkeana, 2) an 

understory of stipitate, erect kelp species such as Pterygophora califonica,  Eisenia 

arborea, and/or Laminaria setchellii, 3) a prostrate canopy (Laminaria farlowii, 
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Dictyoneurum californicum), 4) a turf of articulated coralline algae (e.g., Calliarthron 

spp.) and other foliose red algae, and 5) a basal encrusting coralline algal layer (e.g., 

Lithophyllum spp.).  In addition to dealing with variation in the light environment due to 

abiotic factors, subcanopy species must also respond to competition for light with canopy 

forming species above them (Reed and Foster 1984, Foster and Schiel 1986).   

Seasonal changes in oceanographic conditions can result in spatial and temporal 

variation in canopy-forming species.  In central California, Macrocystis pyrifera canopy 

cover is variable across the Monterey Peninsula along a wave-exposure gradient (Graham 

et al. 1997).  Canopy cover variability, canopy loss, and periods of low canopy cover are 

greatest at sites exposed to greater wave action relative to protected sites (Graham 1997).  

Benthic light irradiances vary with the presence or absence of kelp canopies, as well as 

beneath canopies of different kelp species, with reductions in irradiances under multiple 

canopies (Neushul 1971, Reed and Foster 1984, Clark et al. 2004).  Seasonally, along the 

Monterey Peninsula, surface canopy cover of M. pyrifera increases during spring due to 

higher growth under upwelling conditions. The resulting thick summer canopy is then 

exposed to subsequent large storm events and swell action during fall and winter months 

which removes canopy biomass (Harrold et al. 1988, Graham et al. 1997).  While large 

swells may remove entire Macrocystis sporophytes (Ebeling et al. 1985, Graham et al. 

1997, Arkema et al. 2009), stands of the understory kelp P. californica may remain and 

continue as competitors for space and light (i.e. inhibiting recruitment of other species; 

Dayton and Tegner 1984) influencing the recruitment, survival, and physiological 

performance of understory algal species (Pearse and Hines 1979, Reed and Foster 1984, 
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Watanabe et al. 1992).  The high cover of articulated coralline algae and increased wave 

heigth at shallower depths along the Monterey Peninsula (Cowen et al. 1982, Graham 

1997), may inhibit kelp recruitment by drastically reducing light availability, restricting 

canopies to deeper waters (Graham 1997).  

Crustose (non-geniculate) and upright (geniculate) coralline algae are abundant 

from polar regions to the tropics (Johansen 1981, Steneck 1986).  Crustose species grow 

prostrate to the substrate, whereas upright species have individual fronds consisting of 

intergenicula (for light reception) and genicula (flexible joints allowing fronds to bend 

and reorient in high water motion).  Geniculate corallines are abundant intertidally and 

subtidally, especially within the understory community in kelp forests around the 

Monterey Peninsula (Johansen and Austin 1970, Devinny and Kirkwood 1974, Reed and 

Schiel 1985, Harrold et al. 1988, Clark et al. 2004, Martone 2006).  The abundance of 

geniculate corallines in kelp beds around the Monterey Peninsula decrease with depth and 

ranges from ~26% in shallow depths (4-6 m), ~16% in mid depths (10-14 m), to ~12% in 

deep regions (15-20 m) (PISCO unpublished 1999-2003).  However, in some shallow 

sites cover can be much greater.  For example, Graham (1997) found the abundance of 

upright corallines to be ~90% cover at a wave exposed site (~2.5 m) along the Monteey 

Peninsula.  Calliarthron spp. are upright corallines that are slow growing and long-lived.  

Yet they can be early colonizers on bare substratum, resulting in persistent coverage over 

many years (Johansen and Austin 1970, Foster 1975a, Reed and Schiel 1985, Edwards 

1998).  Due to the high abundance of this species in Monterey kelp beds and the 

documented changes in percent cover C. tuberculosum in relation to depth, this species 
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was chosen to study depth related phenotypic variation in morphology and physiology at 

two sites on the Monterey Peninsula.   

Algal growth rates can be used to assess productivity (Mann 1973, Vadas 2004).  

The morphological and physiological response of a species to its environment can differ 

seasonally and annually.  Johansen and Austin (1970) found that shallow water (~5 m) C. 

tuberculosum individuals were commonly around 8-12 cm in length, whereas individuals 

at greater depths (10-11 m) were more elongated growing up to (or more than) 20 cm.  

Seasonal growth for subtidal C. tuberculosum was slower (1.3 mm/month) during 

summer months (April-September) than winter months (October-March) (2.3 

mm/month).  The authors attributed the changes in growth to a metabolic effect in 

relation to winter conditions, with slightly lower temperatures and the change in quantity 

of light reaching the benthos due to loss and removal of Macrocystis.  Drastic changes in 

available light between the summer (low light) and winter (high light) months are 

primarily due to seasonal variability of the kelp canopy (Graham et al. 1997).  

Furthermore, thicker canopies are generally found in more protected habitats, while 

thinner canopies are found in higher exposed habitats relative to water motion.  Due to 

the limited data on morphological parameters, growth, and physiological variables in 

relation to depth at multiple sites, C. tuberculosum was chosen as a study species. 

 To examine factors influencing phenotypic variability of an important kelp forest 

species this study was conducted to investigate the morphology, growth, and physiology 

of C. tuberculosum at 3 m and 10 m depth at two sites along the Monterey Peninsula.  

The following questions were addressed: (1) Do variables of frond morphology (frond 
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length, width, number of tips, individual weight, and biomass) and intergenicula 

morphology (intergenicula length and width) of C. tuberculosum change with depth and 

site? (2) Do C. tuberculosum growth rates (change in apical growth and area) vary with 

depth, site, and season?  (3) Does C. tuberculosum physiology vary with depth, site, and 

season?  These questions will help characterize C. tuberculosum populations at 3 m and 

10 m at different sites along the Monterey Peninsula.   

 

Methods 

Site Selection 

Two sites along the Monterey Peninsula, central California, were chosen and 

identified from prior studies (Graham et al. 1997, Clark et al. 2004).  Otter Point (OTPT) 

is located on the east side of the Peninsula and is composed of granitic outcrops and sand 

channels with primary swell directions of N and NW.  Stillwater Cove (SWC) is a more 

protected location on the west side of the Peninsula, in Carmel Bay, and is comprised of 

granitic outcrops and sand channels, with primary swell directions of W, SW, and S.  

Within each site, two depths (3 m and 10 m), varying in light and kelp canopy cover, 

were selected to investigate differences in morphology and physiology of C. 

tuberculosum.    The two sites were used to assess whether morphology and physiology 

varied with depth and site.  
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Morphological variation 

Algal morphology was investigated by haphazardly placing twelve replicate 6-inch 

PolyVinyl Chloride (PVC) round quadrats (75.2 cm2) at each depth at each site during 

July 2011.  All biomass wihin the quadrat was removed by scraping along the benthos 

within the quadrat.  Total length and width (cm), number of growing branch tips, 

intergenicular wing expansion, intergenicular wing width, and intergenicula length (mm) 

were measured from all complete individual fronds within each sample.  Biomass (wet 

weight) was esimated by weighing all C. tuberculosum fronds within each quadrat.  The 

fifth intergeniculum from the apex of a random frond from a whole individual was used 

to measure wing expansion and length from shallow and deep individuals (adapted 

methods from Gabrielson et al. 2011).  

 

Growth rate                    

Seasonal growth rates of C. tuberculosum were studied at each depth at OTPT 

during August-September 2013 and November 2012-May 2013 and at SWC during July-

September 2012 and February-June 2013.  Individual C. tuberculosum fronds were 

stained in situ with Calcoflour white (ENG Scientific Calcofluor White Stain #6726) in 

order to determine growth rates and variation in morphology relative to depth during 

summer and winter months.  Staining methods were adapted from Martone (2010), where 

plastic bags (3.79 L) containing vials of Calcoflour stain solution (1.5 mL) were placed 

around six handful-sized bunches of individuals and secured as close to the basal crust as 

possible with a cable tie at each depth.  Frond bunches were exposed to the stain for three 
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days, after which bags were removed and fronds were tagged.  After the outplanted 

period stained individuals were collected by removing the basal holdfast and brought 

back to the lab for quantification of growth.  Calcofluor white is a non-specific 

fluorochrome that binds to the apical growing tips of C. tuberculosum and is detectable 

(fluoresces) by photographing branches under UV light.  Micrograph pictures were taken 

under UV light with a Leica dissecting scope with a mounted camera and Basic Spot©.  

Growth increments were analyzed in ProPlus© by measuring growth that occurred after 

the stain mark to the tip of the intergenicula and reported in mm. month for apical length 

and mm2 . month for area.  Multiple tips of single fronds were measured, averaged to 

provide growth of a single replicate.     

A manipulative experiment was used to examine if growth and morphology of C. 

tuberculosum were affected by transplantation from shallow to deep and vice versa.  Due 

to logisitics three transplant trials were conducted at different times and locations.  

Individual C. tuberculosum fronds were transplanted between December 8, 2012-March 

10, 2013 and November 1, 2012-May 31, 2013 at OTPT and January 30, 2013-June 17, 

2013 at SWC.  During each transplant trial individual C. tuberculosum fronds were 

deployed by installing eyebolts into the granitic outcrops.  During each trasplant trial two 

PVC quadrats were attached to bolts with cable ties at the two depths (3 m and 10 m). 

Before deployment, all fronds were stained with Calcoflour white in order to mark 

initiation of transplants.  Individual fronds were taken from each depth and brought back 

to the laboratory, where they were stained with Calcofluor in shallow tubs with aeration 

for three days.  Treatments consisted of fronds that (1) originated at 3 m and were 
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transplanted to 10 m and fronds that originated at 10 m and were transplanted to 3 m 

(transplant treatments: T), (2) fronds that originated at 3 m and were transplanted to 3 m 

and fronds that originated at 10 m and were transplanted to 10 m, (transplant controls; 

TC); and (3) individual fronds at each depth stained in situ, (control; C).   There were 6-8 

replicates of each treatments, resulting in 12 to 16 stained fronds that were individually 

attached to each quadrat.  After the growth period, samples were collected and apical 

growth and area of stained intergenicula were measured with microscopy as described 

above.  

  

Physiology  

Individual C. tuberculosum fronds varying in morphology were chosen for steady-

state primary production experiments to determine if there were physiological differences 

between depths within each site, between sites, and between seasons.  During August 

2012 and March 2013, individual fronds of C. tuberculosum were taken from 3 m and 10 

m at both Central California sites on a single day to assess physiological variables.  

Samples were transported in a cooler with aeration from Moss Landing Marine 

Laboritories (MLML) to Coastal and Marine Institute and Laboratory (CMIL) at San 

Diego State University and held in a dark cold room (10oC) until experiments were 

started.   Eighty-four (500 mL) B.O.D. incubation bottles were filled with filtered (Prime 

xUp sediment filter) seawater (from MLML) at the same time and held at 10oC in the 

dark for subsequent incubations.  For each site and depth, single fronds (~ 3 g) were 

cleaned of epiphytes and epifauna and placed in incubation bottles.  Bottles with no 
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fronds were used as reference controls.  Incubations were held in a waterbath within a 

cold room (10o C for 2.5 hours) under light treatments of 0, 15, 30, 75, 100, and 200 µmol 

photons .  m-2 . s-1.  All light treatments had three replicates and three reference bottles with 

no material.  Carbon assimilation (μmol carbon . kg-1 of seawater) was determined by 

potentiometric titration with a Metrohm 765 Dosimat titrator and Orion 920A pH meter 

connected to a PC by RS232 communication cable.   Samples were measured in a 

jacketed beaker with recirculating water held at 25oC, which sat on a Metrohm 728 

magnetic stirrer.  The RS232 cable relayed the amount of acid titrated and resulting 

electromotive force (EMF) to titration custom software (Q-basic) to determine total 

inorganic carbon and total alkalinity.  Data were standardized with reference bottles by 

subtracting total inorganic carbon (TIC) in reference bottels from TIC in sample bottles 

to account for any carbon activity occuring in the sample water during each incubation.  

Then data were standardized with dry weight (g) of each sample.  Replicates for each 

irradiance were averaged and plotted in Grapher to obtain physiological parameters: Pmax, 

as maximum photosynthetic rate and α, as photosynthetic efficiency with the equation 

from Webb et al. (1974).  To calculate saturation irriadiance (Ik), x was solved for with 

Pmax = α (x) + respiration.  For compensation irradiance (Ic), x was solved for with 0 = α 

(x) + respiration.  Calcification rates were estimated using the alkalinity anomaly 

technique (Smith and Key 1975), using the equation, calcification  

= ((Δ total alkalinity � volume incubated)/(2 � incubation time))/dry weight 
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Pigment anaylsis 

To assess variability in pigment concentrations relative to depth, site, and season 

for phycoerythrin, phycocyanin, allophycocyanin, and chlorophyll a, ten individual 

fronds from each depth and site were taken during Septemeber 2012 and March 2013.  

Each frond was pulverized with a ball mill and one gram of tissue was used to extract 

chlorophyll and phycobilins.  Phycobilins were extracted first using 10 mL of potassium 

phosphate buffer (0.1M, pH 6.8) for 24 hours at 4o C in the dark.  The supernatant was 

drawn off the pellet and 90% acetone was then used to extract chlorophyll a for 24 hours 

at 4o C in the dark.  Chlorophyll was extracted twice from all samples.  All samples were 

vortexed and centrifuged (5 min at 6,000 rpm).  The supernatant for phycobilins and 

chlorophyll a was analyzed on a Jasco V530 spectrophotometer with Spectra Manager.  

Trichromatic equations were used to calculate chlorophyll (Arnon 1949) and phycobilin 

(Luder et al. 2001) concentrations. 

Statistical Analysis 

Two-way ANOVAs were used to examine differences in morphological variables  

between sites and depths.  Additionally, when season was a factor (for growth and 

physiological variables), a three-way ANOVA was used with Tukey’s post-hoc 

comparisons to identify specific differences.  All values are reported as averages with 

standard errors. 
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Results  

Total Biomass 

Biomass was greater at shallow depths relative to deep at both sites (Fig 2A).  

However, an interaction was found between site and depth on biomass indicating the 

depth effect was site-specific.  OTPT shallow biomass was significantly greater than 

shallow biomass from SWC (Table 1).  At OTPT, total biomass (kg . m-2) was 6-fold 

greater at 3 m with roughly 13 kg of corallines compared to about 2 kg at 10 m (Figure 

2A).  At SWC, biomass (kg .  m-2) was significantly greater at 3 m with an average of 7 kg  

compared to 10 m with an average of 4 kg (Table 2A). 

      

Branch Tips 

Photographs of representative C. tuberculosum fronds from OTPT shallow and 

deep exhibiting differences in number of branch tips are shown in Figure 1. 

  A general depth effect was found between shallow and deep populations where the 

number of branch tips found on a shallow individual frond was significantly greater than 

a deep frond (Table 1A, Figure 2B). However, there was no interaction found between 

site and depth.  At OTPT, shallow fronds (𝑥 = 158 ± 34, n = 13) had significantly greater 

number of branch tips per frond compared to deep fronds (𝑥  = 72 ± 14, n=15; Figure 2B).  

SWC shallow fronds (𝑥  = 163 ± 30, n =15) also had significantly greater number of tips 

than deep fronds (𝑥 = 58 ± 7, n = 14; Figure 2B).  
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Frond weight 

No effects were found between site, depth, or the interaction for frond weight 

(Table 1C), although frond weight (g) was generally greater in shallow individuals than 

individuals from the deep at both sites (Figure 2C).  Frond weight (wet weight in g) in 

shallow indivuduals (𝑥  = 9.1 ± 2.45, n=29) was greater than deep individuals (𝑥  = 3.6 ± 

0.76; Figure 1C) at OTPT.  At SWC individuals weighed more than those at OTPT, 

though insignificant and shallow individuals (𝑥   = 23.72 ± 12.24, n= 15) were greater 

than deep individuals (𝑥 = 3.45 ± 0.63, n = 14); Figure 2C). 

 

Frond Length    

  Frond length did not vary with either site or depth for shallow individuals 

compared to deep individuals (Table 1D).  The average total length (cm) of shallow 

fronds at OTPT (𝑥  = 11.3 ± 0.5, n = 29) was greater than deep fronds (𝑥  = 9.2 ± 0.7, n = 

29) but average total length at SWC of shallow fronds (𝑥 =  11.1 ± 0.7, n= 15) was 

similar to deep fronds (𝑥 =  11.1 ± 0.5, n= 15)  at SWC (Figure 2D).  

Frond Width-  

There was no effect of site or depth on total frond width (Table 1E).  Total width 

(cm) at OTPT in shallow (𝑥   =12.2 ± 1.3 cm , n = 13) and deep (𝑥 = 9.8 ± 1.0 cm, n = 29) 

fronds was similar (Figure 2D), as well as, total width of shallow (𝑥 = 1.3 ± 1.0, n=15) 

and deep (𝑥 = 11.7 ± 0.7, n = 14; Figure 2D) fronds at SWC. 
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A     B                                                    
 
Figure 1. Representative C. tuberculosum fronds from OTPT (A) shallow and (B) deep 
exhibiting differences in number of tips.  
 
Table 1. Three-way analysis of variance for (A) coralline mat biomass (kg � m-2), (B) 
number of tips (per frond), (C) frond weight (g), (D) frond length (cm), and (E) frond 
width (cm) for sites (OTPT and SWC) and depth (3m and 10 m).  
 

Dependent Variable Source DF MS F P 

(A) Biomass 

Site 1 8058.305 6.627 0.014 
Depth 1 95386.653 78.446 < 0.001 

Site * Depth 1 22604.316 18.59 < 0.001 
Error 42 1215.958   

(B) Tips 

Site 1 339.053 0.041 0.840 
Depth 1 131821.959 15.934 < 0.001 

Site * Depth 1 1254.908 0.152 0.698 
Error 54 8272.776   

(C) Frond weight 

Site 1 750.659 1.093 0.301 
Depth 1 2400.169 3.494 0.067 

Site * Depth 1 782.896 1.14 0.291 
Error 54 687.036   

(D) Frond length 

Site 1 10.109 1.873 0.177 
Depth 1 15.465 2.866 0.096 

Site * Depth 1 14.832 2.749 0.103 
Error 54 5.396   

(E) Frond width 

Site 1 3.731 0.249 0.620 
Depth 1 15.069 1.004 0.321 

Site * Depth 
Error 

1 
54 

27.045 
687.036 

1.803 
 

0.185 
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Figure 2. Mean ± SE morphological variables of C. tuberculosum (A) biomass (kg . m -2), 
(B) number of branch tips, (C) frond weight (g), and (D) length and width (cm) measured 
from shallow (3m; black bars) and deep (10m; hashed bars) from Otter Point (OTPT) and 
Stillwater Cove (SWC).  Letters denote significant differences at the 0.05 level for depth.  
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Intergenicula Morphology  
 

Intergenicula Length 

Intergenicula length ranged from 1.44 to 5.13 mm.  An interaction effect between 

site and depth was significant for intergenicula length, but the only ecologically 

significant difference was found at SWC where longer intergenicula were found in 

shallow indivduals than shallow indivduals at OTPT.  Within site specifically, OTPT 

deep individuals (𝑥  = 3.35 ± 0.32, n= 20) have significantly longer intergenicula 

compared to shallow individuals (𝑥  = 1.79 ± 0.25, n = 32).  At SWC, no differences were 

found in length of intergenicula between shallow (𝑥  = 3.13 ± 0.11, n = 25) and deep (𝑥  = 

3.16 ± 0.18, n = 28) individuals (Table 2). 

 

Intergenicula Width    

Intergenicula width ranged from 0.56 to 6.56 mm and did not vary by site or 

depth in this study (Table 2).  OTPT shallow intergeniculum width (mm) (𝑥  = 2.83 ± 

0.31, n = 32) was similar to deep individuals (𝑥 = 2.47 ± 0.38, n = 20).  At SWC, no 

differences were found in shallow intergeniculum width (𝑥   = 2.37 ± 0.27 mm, n = 25) 

and deep intergeniculum width (𝑥   = 1.82 ± 0.20, n = 28). 
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Table 2.  Two-way analysis of variance of intergenicula (A) width and (B) length 
for C. tuberculosum for site (OTPT and SWC) and Depth (3m and 10m).  
 
Dependent Variable Source DF MS F P 

(A) Width 

Site 1 7.841 3.499 0.064 
Depth 1 5.206 2.323 0.131 

Site * Depth 1 0.2 0.089 0.766 
Error 101 2.241   

(B) Length 

Site 1 8.529 6.638 0.011 
Depth 1 15.819 12.312 0.001 

Site * Depth 1 14.78 11.503 0.001 
Error 101 1.285   

 

 

C. tuburculosum Frond Growth 

Length 

Growth rates ranged from 0.92 to 2.63 mm .  month-1 in length (Table 3, Figure 3).  

The effect of depth on changes (growth) in length was site-specific (site and depth 

interaction, Table 3, Figure 3).  There was no effect of season or site on growth in length 

(Table 3).  A depth effect was also found for growth in length (Table 3).   
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Table 3. Monthly growth rates (average ± SE) for C. tuberculosum in length (mm .  month 
-1) and area (mm2 . month -1) for season (summer and winter) at Otter Point (OTPT) and 
Stillwater Cove (SWC). 
 

Season Site Depth Length Area  

Summer 
OTPT Shallow 2.41 ± 0.11 3.05 ± 0.42 n=5 

Deep 1.36 ± 0.09 1.17 ± 0.15 n=4 

SWC Shallow 1.54 ± 0.24 1.56  ± 0.34 n=5 
Deep 1.47 ± 0.08 2.06 ± 0.36 n=5 

Winter 
OTPT Shallow 2.63 ± 0.36 6.55 ± 1.89 n=4 

Deep 1.38 1.66 n=1 

SWC Shallow 1.54 ± 0.24 1.56 ± 0.34 n=5 
Deep 2.03 ± 0.10 4.09 ± 0.33 n=6 

 
  
  

 Average apical growth, during summer months (Jul-Sept 2013) at OTPT was 

significantly greater for shallow (𝑥   = 2.41 ± 0.11 mm . month -1, n = 5) compared to deep 

(𝑥   = 1.36 ± 0.09 mm . month -1, n = 4) individuals (Table 4).  During summer months 

(Jul-Sept 2012) at SWC, shallow individuals (𝑥 = 1.54 ± 0.24 mm . month -1, n = 5) were 

not significantly different in apical growth compared to deep individuals (𝑥   = 1.47 ± 0.08 

mm . month -1, n = 5; Figure 3). 

Growth in length between shallow (𝑥  = 2.63 ± 0.36 mm . month -1)  and deep (1.38 

mm . month -1)  individuals was significantly different at OTPT during winter months 

(November 2012- May 2013) (Table 4, Figure 3A).  During winter months at SWC (Feb-

May 2013), shallow individuals (𝑥   = 1.54 ± 0.24 mm . month -1, n = 2) grew significantly 

less compared to deep individuals, (𝑥   = 2.03 ± 0.10 mm . month -1, n = 3) in length (Table 

4, Figure 3B).  
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Table 4.  Three-way analysis of variance on C. tuberculosum with season, site, and depth 
for growth measured as (A) length (mm . month -1) and (B) area (mm2 . month -1).  
 

Dependent Variable Source DF MS F P 

(A) Length 

Season 1 0.264 1.462 0.237 
Site 1 0.595 3.298 0.080 

Depth 1 1.45 8.039 0.009 
Season * Site 1 0.043 0.237 0.630 

Season * Depth 1 0.054 0.299 0.589 
Site * Depth 1 3.014 16.709 0.000 

Season * Site * Depth 1 0.238 1.321 0.260 
Error 27 0.18   

(B) Area 

Season 1 14.7 6.954 0.014 
Site 1 4.064 1.923 0.177 

Depth 1 5.72 2.706 0.112 
Season * Site 1 1.558 0.737 0.398 

Season * Depth 1 0.382 0.181 0.674 
Site * Depth 1 38.948 18.425 < 0.001 

Season * Site * Depth 1 10.264 4.855 0.036 
Error 27 2.114   

 
 
 
 

Area 

The effect of depth and site on changes in area (growth) was season-specific 

(season and site and depth interaction, Table 3B, Table 4, Figure 3).  A season effect was 

found for areal growth (Table 3B).  Growth in area ranged from 0.76 to 6.55 mm2 . month-

1 and varied between seasons, season and site, season and depth, and site and depth 

(Table 4).   

Areal growth during summer months (Jul-Sept 2013) at OTPT was similar in 

shallow individuals (𝑥   = 3.05 ± 0.42 mm2 . month -  -1, n = 5) and deep (𝑥   = 1.17 ± 0.15 
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mm2 . month -1, n = 4; Figure 3). During summer months (Jul-Sept 2012) at SWC, areal 

growth was not significantly different when shallow individuals (𝑥    = 1.56 ± 0.34 mm2 . 

month -1, n = 5) were compared to deep (𝑥    = 2.06 ± 0.36 mm2 . month -1, n = 5). 

At OTPT, areal growth during winter months (November 2012- May 2013) was 

significantly greater in shallow (𝑥  = 6.55 ± 1.89 mm2 . month -1, n = 4) than deep (1.66 

mm2 . month -1, n = 1) individuals (Table 4, Figure 3A).  Growth in area at SWC 

(February 2013-June 2013) was significantly less in shallow (𝑥  = 1.56 ± 0.34 mm2 . 

month -1, n = 2) than deep (𝑥   = 4.09 ± 0.33 mm2 . month -1, n = 3) individuals (Table 4, 

Figure 3B).  Overall, growth in length was generally higher at OTPT than SWC (Table 4. 

Figure 3).   Areal growth at OTPT was higher in shallow individuals than deep, while the 

opposite pattern occurred at SWC during winter months (Figure 3). 
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Figure 3. Average growth rates ± SE of C. tuberculosum (length; mm . month-1 and area; 
mm2 . month-1) for (A) Otter Point (OTPT) and (B) Stillwater Cove (SWC).  Error bars 
are not represented for OTPT for Nov 2012-May 2013 deep growth due to loss of 
replicates.  Letters denote significant differences at the 0.05 level with Tukey’s post-hoc 
tests. 
 

Transplant Experiments 

  In the transplant experiments, changes in length and area both varied significantly 

as a function of the interaction between transplant date, depth, and treatment.  This 

interaction was due to differences in growth among specific treatment combinations that 

were not ecologically relevant (e.g., transplant 1 OTPT shallow control vs. transplant 3 

SWC deep transplant control).  The focus of multiple transplant experiments was to look 
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at temporal variability at OTPT and spatial variability (OTPT and SWC) within the same 

time frame.     

 

    
Table 5. Three-way analysis of variance results for C. tuberculosum transplant 
experiments with transplant, depth, and treatment for (A) length (mm .  month -1) and (B) 
area (mm2 .  month  -1). 
      

Dependent
Variable Source DF MS F P 

(A) Length 

Transplant 2 5.891 44.717 < 0.001 
Depth 1 0.541 4.103 0.046 

Treatment 2 0.273 2.075 0.132 
Transplant * Depth 2 1.457 11.057 < 0.001 

Transplant * Treatment 4 0.397 3.014 0.022 
Depth * Treatment 2 0.152 1.153 0.320 

Transplant * Depth * Treatment 4 0.303 2.298 0.065 
Error 89 0.132   

(B) Area 

Transplant 2 27.577 21.432 < 0.001 
Depth 1 8.179 6.356 0.013 

Treatment 2 2.235 1.737 0.182 
Transplant * Depth 2 18.792 14.604 < 0.001 

Transplant * Treatment 4 2.228 1.732 0.150 
Depth * Treatment 2 0.741 0.576 0.564 

Transplant * Depth * Treatment 4 3.652 2.838 0.029 
Error 89 1.287   

 
 
 
Length 

Transplant 1 was conducted at OTPT during Decemeber 18, 2011-March 10, 

2012 (95 days).  Growth rates ranged from 0.92 to 1.06 mm . month -1 in length (Figure 

4A, Table 6A).  No significant differences were found in length (growth) in transplant 1 

between depths or within depths between treatments.  Transplant 2 was conducted at 

OTPT during November 1, 2012-May 31, 2013 (229 days).  Growth rates ranged from 
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1.50 to 2.63 mm . month -1 in length (Figure 4A, Table 6B).  The reported deep control  

growth rate was from only one replicate.  In order to determine if the deep control value 

was different than other treatments, confidence intervals (CI) of treatments were used to 

detect if the deep control length value (1.38) fell within the intervals.  The deep control 

value fell outside of the CI interval of the transplant controls, where the controls grew 

more than the transplant controls (individuals removed from 10m, stained in the lab, and 

put back at 10m) (Figure 4A).  Transplant 3 was conducted at SWC during January 30, 

2013-June 17, 2013 (119 days).  Growth rates ranged from 1.41 to 2.12 mm . month-1 in 

length (Figure 4A, Table 6C).  No significant differences were found between growth in 

length in regards to depth or treatment. 

Area 

Growth in transplant 1 ranged between 0.76 to 1.46 mm2 . month -1 in area (Table 

6A).  No significant differences were found in apical growth or area between any 

treatment groups within the experiment (Figure 4B).  Growth in area, during transplant 2 

ranged between 1.61 to 6.55 mm2 . month -1 (Table 6B).  Deep control individuals resulted 

in only one successful replicate out of six.  Again, 95% confidence intervals were used to 

detect if the deep control area value (1.66) fell with the other treatments.  All treatment 

confidence intervals included the 1.66 value, therefore, no differences were found among 

treatments in area (growth) (Figure 4B).  Growth in area during transplant 3 ranged from 

1.04 to 4.09 mm2 . month-2 (Table 6C).  Significant differences were found between deep 

controls and deep transplants, where control individuals (from deep) grew more than the 

transplanted individuals from shallow in area (Figure 4B, Table 6C).
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Table 6.  Monthly growth rates for C. tuberculosum during (A) transplant 1 at Otter 
Point, (B) transplant 2 at Otter Point, and (C) Transplant 3 at Stillwater Cove. Treatments 
are represented by C; control, TC; transplant control, and T; transplant.   
 

Experiment Depth Treatment Length Area  

(A) Transplant 1 

Shallow 
C 1.06 ± 0.09 0.90 ± 0.18 n=7 

TC 1.07 ± 0.08 1.40 ± 0.51 n=4 
T 0.98 ± 0.14 1.46 ± 0.60 n=7 

Deep 
C 0.93 ± 0.10 0.76 ± 0.14 n=8 

TC 1.04 ± 0.07 0.76 ± 0.13 n=5 
T 0.92 ± 0.03 0.77 ± 0.06 n=7 

(B) Transplant 2 

Shallow 
C 2.63 ± 0.39 6.55 ± 1.89 n=4 

TC 1.88 ± 0.08 3.27 ± 1.40 n=3 
T 2.30 ± 0.10 3.53 ± 0.90 n=2 

Deep 
C 1.38 ± 0.10 1.66 ± 0.44 n=1 

TC 1.65 ± 0.07 1.49 ± 0.15 n=8 
T 1.50 ±0.12 1.61 ± 0.21 n=12 

(C) Transplant 3 

Shallow 
C 1.24 ± 0.28 1.04 ± 0.20 n=2 

TC 1.93 ± 0.73 2.11 ± 0.43 n=7 
T 1.45 ± 0.11 2.09 ± 0.70 n=3 

Deep 
C 2.03 ± 0.09 4.09  ± 0.39 n=6 

TC 2.12 ± 0.12 2.83 ± 0.27 n=11 
T 1.41 ± 0.11 1.60 ± 0.16 n=10 

 

 

Differences were found between transplant 1 and transplant 2 at OTPT, where 

transplant 2 shallow controls grew more than shallow controls in transplant 1 in apical 

growth and area (Figure 4).  Differences were also found in shallow and deep controls 

from transplant 2 and shallow and deep controls in transplant 3, indicating a site 
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difference in apical growth and area, where OTPT grew more in length and area than 

SWC (Figure 4). 

 

 
 
Figure 4. Monthly growth rates from transplant experiments (average ± SE) for (A) 
length (mm . month -1) and (B) area (mm2 . month -1), where (C) controls, (TC) transplant 
controls, and (T) transplants.  In Transplant 2 deep control, lack of error bars are due to 
one replicate.  Letters denote significantly different growth rates at 0.05 level within 
transplant treatments and between transplant experiments from Tukey’s post-hoc tests. 
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Pigmentation 

Pigment concentration values were generally similar among shallow and deep 

individuals (Table 7).  Changes in pigment concentrations of PE varied significantly as a 

function of the interaction between season and depth, as well as, season, site and depth.  

These interactions were due to differences in PE concentrations among specific 

combinations that were not ecologically interesting (e.g., OTPT deep summer and SWC 

shallow winter; Table 8).  Significant differences were detected between season (PC and 

APC), site (APC), and depth (APC) (Table 8).   The only biologically relevant 

differences among groups were PC, which differed seasonally, where PC concentrations 

in SWC shallow individuals were significantly greater during the winter 2013 than 

summer 2012 (Table 7).   

 
 
Table 7. Pigment concentrations (average μg . gDW -1 ± SE,  Chl a; chlorophyll  a, PE; 
phycoerythrin, PC; phycocyanin, and APC; allophycocyanin) for season (summer and 
winter), site (OTPT; Otter Point and SWC; Stillwater Cove), and depth (shallow and 
deep). 
 

Season Site Depth Chl a PE PC APC 

Summer 
OTPT Shallow 133.2  ± 4.9 246.3 ± 16.5 5.7 ±0.3 6.5 ± 0.7 

Deep 138.7  ± 13.4 232.4 ± 15.4 4.5 ± 0.4 4.4 ± 0.7 

SWC Shallow 128.0  ± 6.7 269.1 ± 16.4 6.5 ± 0.5 9.0 ± 1.0 
Deep 141.5  ± 16.5 192.1 ± 12.1 4.8 ± 0.2 7.0 ± 0.7 

Winter 
OTPT Shallow 152.3  ± 8.3 211.8 ± 34.7 12.1 ± 2.2 8.0 ± 0.9 

Deep 134.1  ± 3.5 194.5 ± 14.9 13.2 ± 3.4 6.7 ± 0.8 

SWC Shallow 155.7  ± 13.1 223.3  ± 30.3 26.6  ± 9.2 13.9  ± 4.9 
Deep 162.7  ± 5.7 276.3 ± 21.4 17.5 ± 5.2 9.6 ± 2.1 
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Table 8.  Multi-factor analysis of variance with season, site, and depth for pigment 
concentrations (Chl a; chlorophyll  a, PE; phycoerythrin, PC; phycocyanin, and APC; 
allophycocyanin) for season (summer and winter), site (OTPT; Otter Point and SWC; 
Stillwater Cove), and depth (shallow and deep). 
 

Dependent 
Variable Source DF MS F P 

(A) Chl a 

Season 1 1948.640 2.071 0.155 
Site 1 1268.277 1.348 0.250 

Depth 1 1438.871 1.529 0.221 
Season * Site 1 1530.809 1.627 0.207 

Season * Depth 1 495.549 0.527 0.471 
Site * Depth 1 2654.700 2.821 0.098 

Season * Site * Depth 1 66.709 0.071 0.791 
Error 64 941.047   

(B) PE 

Season 1 1289.129 0.293 0.590 
Site 1 6369.684 1.448 0.233 

Depth 1 3387.176 0.770 0.384 
Season * Site 1 13616.866 3.095 0.083 

Season * Depth 1 17782.235 4.042 0.049 
Site * Depth 1 54.888 0.012 0.911 

Season * Site * Depth 1 19705.338 4.479 0.038 
Error 64 4399.721   

(C) PC 

Season 1 2481.913 18.289 0.000 
Site 1 418.465 3.084 0.084 

Depth 1 145.438 1.072 0.304 
Season * Site 1 326.605 2.407 0.126 

Season * Depth 1 33.541 0.247 0.621 
Site * Depth 1 140.214 1.033 0.313 

Season * Site * Depth 1 115.725 0.853 0.359 
Error 64 135.702   

(D) APC 

Season 1 139.419 5.580 0.021 
Site 1 217.434 8.702 0.004 

Depth 1 107.725 4.311 0.042 
Season * Site 1 15.581 0.624 0.433 

Season * Depth 1 2.671 0.107 0.745 
Site * Depth 1 9.649 0.386 0.537 

Season * Site * Depth 1 10.479 0.419 0.520 
Error 64 24.987   

 



 29 

Pigment ratios were calculated to examine changes in concentrations relative to 

season (Table 9).  The effect of season was significantly greater for PE:PC and PE:Chl a 

ratios during the summer and PC:APC ratios during the winter (Table 10).  

 
Table 9. Pigment ratios (PE; phycoerythrin, PC; phycocyanin, APC; allophycocyanin, 
and Chl a; chlorophyll a) for season (summer and winter), site (OTPT; Otter Point and 
SWC; Stillwater Cove), and depth (shallow and deep).  
 
Season Site Depth PE:PC PC:APC PE:Chl a  

Summer 
OTPT Shallow 43.04 ± 1.69 0.92 ± 0.06 1.67 ± 0.14 n=9 

Deep 55.44 ± 7.69 1.11 ± 0.11 1.74 ± 0.11 n=7 

SWC Shallow 41.92 ± 2.45 0.78 ± 0.07 1.90 ± 0.07 n=10 
Deep 40.30 ± 2.30 0.73 ± 0.06 1.32 ± 0.10 n=10 

Winter 
OTPT Shallow 27.60 ± 5.87 1.93 ± 0.40 1.25 ± 0.20 n=10 

Deep 25.94 ± 4.78 1.97 ± 0.35 1.27 ± 0.11 n=10 

SWC Shallow 16.24 ± 4.84 1.97 ± 0.23 1.54 ± 0.21 n=9 
Deep 26.54 ± 5.82 1.99 ± 0.34 1.53 ± 0.11 n=10 
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Table 10.  Multi-factor analysis of variance of season, site, and depth for pigment ratios 
(PE:PC; phycoerthyrin:phycocyanin, PC:APC; phycocyanin:allophycocyanin, and 
PE:Chl a; phycoerythrin:chlorophyll a). 
 

Dependent 
Variable Source DF MS F P 

(A) PE:PC 

Season 1 7601.082 36.766 < 0.001 
Site 1 650.189 3.145 0.081 
Depth 1 396.433 1.918 0.171 

Season*Site 1 37.61 0.182 0.671 
Season * Depth 1 24.845 0.12 0.730 

Site * Depth 1 10.199 0.049 0.825 
Season * Site * Depth 1 627.303 3.034 0.086 

Error 63 206.741   

(B) PC:APC 

Season 1 21.018 33.17 < 0.001 
Site 1 0.252 0.397 0.531 
Depth 1 0.045 0.07 0.792 

Season*Site 1 0.366 0.578 0.450 
Season*Depth 1 0.003 0.005 0.943 
Site*Depth 1 0.111 0.175 0.677 

Season*Site*Depth 1 0.114 0.18 0.673 
Error 63 0.634   

(C) PE:Chl a 

Season 1 1.382 7.79 0.007 
Site 1 0.115 0.65 0.423 
Depth 1 0.288 1.621 0.208 

Season*Site 1 0.657 3.701 0.059 
Season*Depth 1 0.32 1.802 0.184 
Site*Depth 1 0.372 2.096 0.153 

Season*Site*Depth 1 0.34 1.918 0.171 
Error 63 0.177   
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Physiological Parameters 

Irradiance data taken from both sites at 3 m ranged from 200-800 µmol photons .  

m -2 . s -1 and 10-100 µmol photons .  m -2 . s -1 at 10m.  Maximum photosynthetic rates 

(Pmax), alpha (α) and respiration rates were generally higher in shallow individuals than 

deep individuals (Figure 5).  Compensation irradiances ranged between 4-6 µmol photons 

. m -2 .  s -1 and saturation irradiances between 13-28 µmol photons . m -2 .  s -1 .  Although 

significance was detected in multiple effects as well as, their interactions (Table 10), the 

only biologically relevant comparison was for Pmax with shallow individuals at SWC 

during the summer having lower maximum photosynthetic rates than shallow individuals 

at SWC during winter (Table 11).  

A  B  
     
Figure 5: P-I curves for (A) Summer (August) and (B) Winter (March). Otter Point is 
represented with black circles for 3m (black line) and gray squares 10m (gray line).  
Stillwater Cove is represented with black triangles for 3m (black line) and gray diamonds 
for 10m (gray line). 
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Maximum photosynthetic rate (Pmax) 

A one-way ANOVA with season, site, and depth groups was used to determine if 

photosynthetic maximum rates were significantly different (P < 0.001).  At OTPT, 

shallow individuals (𝑥 =  9.41 ± 1.05 µmol C . gDW -1 . h -1, n =3) had a maximum 

photosynthetic rate that was not significantly different compared to deep individuals (𝑥 = 

6.76 ± 0.56 μmol C . gDW -1 . h -1, n =3; Table 10).  Pmax values for SWC  were not 

significantly different between shallow individuals (𝑥 =  9.63 ± 1.20 μmol C . gDW -1 . h -

1, n = 3) and deep individuals (𝑥 =  9.50 ± 0.66 μmol C . gDW -1 . h -1, n = 3; Table 10).  

During the winter, shallow individuals (𝑥 =  13.49 ± 1.28 μmol C . gDW -1 . h -1, n = 3) at 

OTPT were significantly greater in Pmax than deep individuals (𝑥 =  9.75 ± 0.65 μmol C . 

gDW -1 . h -1, n = 3; P = 0.013; Table 11).  No significant differences were found at SWC 

during the winter, where Pmax for shallow individuals (𝑥 =  16.14 ± 1.05 μmol C . gDW -1 . 

h -1, n = 3) were similar to deep individuals (𝑥 =  13.92 ± 0.54 μmol C . gDW -1 . h -1, n = 

3, Table 11).  Comparing sites, during winter, SWC deep individuals had significnatly 

greater Pmax values than OTPT (P = 0.006; Table 12).  Seasonally, shallow individuals at 

OTPT during the winter had significantly greater Pmax values than shallow individuals 

during the summer (P = 0.007; Table 12).  This was a consistent pattern at SWC as well, 

where shallow individuals during the winter had sigificantly greater Pmax values compared 

to shallow individuals during the summer (P > 0.001; Table 12).   

        

 

 



 33 

Photosynthetic efficiency (alpha) 

A one-way ANOVA with season, site, and depth groups was used to determine if 

alpha values were significantly different (P = 0.078).  Photosynthetic efficiency (alpha) at 

OTPT during the summer was not significantly different between shallow individuals (𝑥   

= 0.38 ± 0.02, n=3) and deep individuals (𝑥  = 0.30 ± 0.13, n =3; Table 11).  At SWC, 

alpha also showed no difference between shallow (𝑥   = 0.34 ± .04, n = 3) and deep (𝑥   = 

0.39 ± 0.01, n = 3) individuals during the summer (Table 11).  During the winter at 

OTPT, alpha was not significantly different in shallow individuals (𝑥 =  0.57 ± 0.07, n = 

3) than deep individuals (𝑥 =  0.31 ± 0.07, n = 3; Table 11).  At SWC, alpha showed no 

significant differences between shallow individuals (𝑥 =  0.28 ± 0.07, n = 3) and deep 

individuals (𝑥  = 0.41 ± 0.03, n = 3; Table 11).  

 

Respiration 

A one-way ANOVA with season, site, and depth groups was used to determine if 

respiration rates were significantly different (P = 0.181).  Respiration rates did not differ 

between shallow (𝑥  = -2.33 μmol ± 1.01 μmol C . gDW -1 . h -1, n =3) and deep (𝑥   = -1.98 

± 0.65 μmol C . gDW -1 . h -1, n =3; Table 11) at OTPT during the summer.  At SWC, 

average respiration rates did not significantly differ between shallow individuals (𝑥  = -

1.47 ± 0.35 μmol C . gDW -1 . h -1, n = 3) and deep individuals (𝑥 = -2.43 ± 0.40 μmol C . 

gDW -1 . h -1, n = 3; Table 11).  Occasionally, during winter incubations at OTPT 

respiration data was positive and those data were removed from the analysis.  Respiration 

rates at SWC for shallow individuals (𝑥  = -2.97 ± 0.07 μmol C . gDW -1 . h -1, n = 3) were 
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not significantly different than deep individuals (𝑥 = -1.84 ± 0.20 μmol C . gDW -1 . h -1, n 

= 3; Table 11). 

 

  
Table 11.  Average ± SE for respiration rates, maximum photosynthetic rates (Pmax), alpha 
(α) for season (summer and winter), site (OTPT; Otter Point and SWC; Stillwater Cove), 
and depth (shallow and deep).  
 

Season Site Depth Respiration Pmax α 

Summer 
OTPT Shallow -2.33 ± 1.01 9.41 ± 1.28 0.38 ± 0.02 

Deep -1.98 ± 0.65 6.76 ± 0.56 0.30 ± 0.13 

SWC Shallow -1.47 ± 0.35 9.63 ± 1.20 0.33 ± 0.04 
Deep -2.43 ± 0.40 9.50 ± 0.66 0.39 ± 0.01 

Winter 
OTPT Shallow ND 13.49 ± 1.28 0.57 ± 0.07 

Deep -1.50 ± 0.05 9.75 ± 0.65 0.31 ± 0.07 

SWC Shallow -2.97 ± 0.07 16.14 ± 1.05 0.29 ± 0.07 
Deep -1.84 ± 0.20 13.92 ±0.54 0.41 ± 0.03 

 
  
 
Calcification 

Calcification rates ranged from 1.45 to 4.23 μmol CaCO3 . gDW -1 . h (Table 12).  

The effect of the interaction of season and depth was significantly greater for 

calcification rates in shallow individuals than deep individuals and the difference 

increased during the winter (Table 13).  In addition, the site effect showed SWC 

calcification rates were significantly greater than OTPT (Table 13).  Average 

calcification rates at OTPT during the summer were not significantly different for 

shallow individuals (𝑥  = 1.97 ± 0.19 μmol CaCO3 . gDW -1 . h -1, n=3) compared to deep 

(𝑥  = 1.45 ± 0.12 μmol CaCO3 . gDW -1 . h -1, n=3; Figure 6, Table 12).  The same was 

found at SWC, where calcification rates of shallow individuals (𝑥 =  2.84 ± 0.13 μmol 
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CaCO3 . gDW -1 . h -1, n=3) were similar to deep individuals (𝑥 =  2.30 ± 0.07 μmol CaCO3 

. gDW -1 . h -1, n =3; Figure 6, Table 12). 

 
 
 
Table 12. Calcification rates (average ± SE) for season (summer and winter), site (OTPT; 
Otter Point and SWC; Stillwater Cove), and depth (shallow and deep).  

                                                                                           
Season Site Depth μmol CaCO

3
 
.
 gDW

-1
 
.
 h

-1
 

Summer 
OTPT Shallow 1.97 ± 0.19 

Deep 1.45 ± 0.12 

SWC Shallow 2.84 ± 0.13 
Deep 2.30 ± 0.07 

Winter 
OTPT Shallow 4.23 ± 0.39 

Deep 2.34 ± 0.19 

SWC Shallow 4.11 ± 0.06 
Deep 3.06 ± 0.24 

 
 
 

During the winter, OTPT calcification rates were significantly greater in shallow 

individuals (𝑥  = 4.23 ± 0.39 μmol CaCO3 . gDW -1 . h -1, n =3) compared to deep 

individuals (𝑥  = 2.34 ± 0.19 μmol CaCO3 . gDW -1 . h -1, n=3; Figure 6, Table 13).  The 

same pattern was found at SWC where shallow individuals (𝑥  = 4.11 ± 0.06 μmol CaCO3 

. gDW -1 . h -1, n=3) had significantly higher calcification rates than deep individuals (𝑥  = 

3.06 ± 0.24 μmol CaCO3 . gDW -1 . h . -1, n=3; Figure 6, Table 13).  Additionally, during 

the winter, OTPT and SWC shallow individuals had significantly higher calcification 

rates than deep individuals their respectivtive sites (Figure 6).  There was no siginficant 

differences found among depths during summer.  
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Table 13.  Analysis of variance with season, site, and depth for calcification rate. 

Source DF MS F P 
Season 1 9.44 80.313 < 0.001 
Site 1 1.881 16.002 0.001 
Depth 1 5.596 47.61 < 0.001 

Season * Site 1 0.435 3.698 0.074 
Season * Depth 1 1.24 10.553 0.005 

Site * Depth 1 0.238 2.023 0.175 
Season * Site * Depth 1 0.259 2.208 0.158 

Error 15 0.118   
Total 23    

 
 
 
 

 
Figure 6: August 2012 and March 2013 calcification rates (μmol CaCO3 . gDW -1 . h -1) at 
200 μmol photons . m -2 . s -1 for shallow and deep individuals at Otter Point (OTPT) and 
Stillwater Cove (SWC). Letters denote significance between growth in length and area at 
the 0.05 level from Tukey’s post-hoc tests. 
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The most prominent pattern found between shallow and deep individuals was the 

number of branch tips, where shallow individuals had a greater average number of branch 

tips than deep individuals at both sites.  This resulted in higher frond weights and total 

biomass . m-2 when comparing shallow to deep individuals.  The average total length and 

total width of individuals were similar between the two popluations (shallow and deep) 

and may imply that at a certain length, shallow individuals allocate additional energy 

(from greater irradiances) into forming branch tips.  Shallow individuals are likely to 

experience saturating irradiances for longer periods during the day compared to their 

deep counterparts.  Ultimately, this may give shallow individuals a competitive 

advantage to occupy shallow water (Harrold et al. 1988).   The consistent removal of kelp 

recruits in shallow water by water motion (Graham 1997) may allow them to dominate 

shallow wave-exposed habitats, while at deeper depths, light availability is diminished 

and competition pressure is higher.   

Intergenicula morphology is variable and has the abiliity to grow in adaptable 

shapes and sizes.  SWC shallow individuals had longer intergenicula compared to 

shallow individuals at SWC. Within site differences in intergenicula length were only 

found at OTPT where deep individual intergenicula were longer than shallow individuals.  

This pattern was expected for both sites but was not observed at SWC.  Due to 

difficulites in post processing analysis, length and width of a single intergenicula was not 

taken.  For future studies, these parameters should be taken from the same intergenicula 

for length:width ratio to further look at intergenicula morphology.  In studies on a 

calcified green alga, Halimeda tuna, depth-dependent changes in morphology occurred 
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with an increase in the number of branches and number of segments in shallow 

individuals (Mariani Colombo et al. 1976), as well as thinner segments, larger utricles, 

and thinner cell walls than shallow plants (Colombo and Orsenigo 1977).  In this study, 

intergenicula were highly variable in shape and size, and on a single individual, different 

branches exhibited drastically different intergenicula morphology. 

Each growth experiment was conducted on varying time scales (weeks-months) 

because of logistical restraints.  In situ growth studies ranged from 20 days to 229 days.  

Overall, growth was highly variable with differences detected between depth in apical 

length and area.  OTPT shallow individuals grew faster than deep individuals during both 

seasons.  This is likely due to greater light availablity at shallower depths.  SWC had the 

opposite pattern where deep individuals grew faster than shallow.  This was surprising 

due to the presence of P. californica at deeper depths.  All average apical growth rates 

were within the range found by Johansen and Austin (1970) at a similar site on the central 

coast.  

Transplant experiments were used to detect differences between apical growth 

and area with individuals transplanted from shallow to deep and deep to shallow on 

varying time scales between November and June during multiple years. Overall, 

differences were found in growth between shallow and deep individuals in 2 out of 3 

transplant experiments.  The pattern was not consistent in one direction, where at OTPT, 

shallow individuals grew more than deep and at SWC, deep individuals grew more than 

shallow indivduals.  In terms of treatment effects, deep treatments varied in growth for 

length with transplant controls growing more than controls at OTPT and growth in area, 
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where controls grew more than transplants at SWC.  There were no consistent patterns in 

treatment effects during each experiment.  Growth in length and area is highly variable 

with depth effects detected.        

 Differences in growth between transplant 1 and 2   indicate annual variability, 

where conditions may have been more favorable in the winter and spring months during 

November 2012 through May 2013 than December 2011 through March 2012.  Winter 

months between 2012 and 2013 were unusually dry and the absence of rainfall may have 

contributed to less turbid waters (more available light) during that time compared to the 

winter of 2011 and 2012.  Differences between transplant 2 and 3 indicate site variability 

where OTPT shallow individuals had higher growth rates compared to SWC shallow 

individuals.   

During transplant experiments in this current study, 80% of individual fronds had 

re-grew new branches at their basal intergeniculum (where they had been plucked from 

their basal crust in preparation for transplants).  This suggests that disturbance may create 

more branches.  Shallow individuals experience higher water motion (Graham 1997) 

(more disturbance) than deep populations and the combination of water motion and 

saturating irradiances may give these shallow populations the competitive edge by 

growing more branches and being highly reproductive.  Moreover, Graham (1997) 

indicated the water motion in shallow areas (≤ 2.5 m)  limits the continuous 

establishment of kelp canopies and allows persistence and dominance of algal turf in 

these areas. 
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Pigment concentrations were highly variable but did not differ significantly 

among depths, sites, and seasons in Chl a, PE, and APC.  Seasonally, PC was greater in 

the winter than summer at SWC, suggesting that synthesis of photosynthetic pigments 

was generally equal between shallow and deep individuals, from OTPT and SWC, and 

during summer and winter.  Chlorophyll a was generally higher during winter months as 

reflected in PE:Chl a ratios.  Changes in light quantity and quality can directly affect the 

size and shape of phycobilisomes (Lobban and Harrison 1997).  The decrease in PE:PC 

during the winter may suggest a reduction in rod length while an increase in PC:APC 

suggests an increase in rod number (Luder et al. 2001).  In other studies of red algae, 

seasonal changes in PE:Chl were found with increasing ratios in winter compared to 

summer (Kirk 2011).  PE:Chl ratios found in this study were the opposite with higher 

ratios during the summer.  Accessory pigments can increase when light availability 

decreases, more so than chlorophyll a (Dring 1990).  In addition, as light intensity 

decreases (with spectral quanlity unaltered), biliprotein/chl ratios tend to increase (Kirk 

2011).  During the summer along the Monterey Peninsula, light availablity can decrease 

drastically with growth of canopy-forming species in shallow and deep water (Clark et al. 

2004).  In shallow water, neighboring fronds (of individuals located at a deeper depth) 

can extend over a wide area to shade out light (pers. obs).  

Quantifying the physiological performances of these two populations provides 

baseline data on C. tuberculosum along the Monterey Peninsula.  Respiration was not 

significantly different betweeen depths at a site, between sites, nor seasons.  No 

respiration rates were calculated for shallow individuals at OTPT during the winter.  
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Those replicates resulted in a drawdown of TCO2, which was likely explained by “leaky” 

light infiltration to those samples.  Given that corallines have a low compensation 

irradiance (found in this study), the amount of light required for photosynthesis (~10 

μmol/m2/s) was likely available.  

Seasonally, both OTPT and SWC had significantly higher maximum 

photosynthetic rates during the winter for shallow individuals compared to shallow 

individuals during the summer.  A similar pattern was found in a free-living coralline 

species, Lithothamnion corallioides, where primary production rates were twice as high 

in January and February compared to August (Martin et al. 2006).  This physiological 

difference could partially explain the increase in growth during these months when light 

availability was greater due to the absence of other canopy forming algae.  Alpha did not 

significantly differ suggesting that the rate at which light energy was being converted to 

chemical energy was generally the same within populations at a site, between sites, and 

seasonally.  Compensation irradiances were similar, indicating individuals at shallow 

depths “turn on” at the same light level as indivduals in deeper waters.  Saturation 

irriadiances were also similar suggesting that shallow and deep individuals reached their 

respective maximum photosynthetic rates at the same light level.   

There was a general pattern of higher calcification rates in shallow individuals 

compared to deep individuals at both sites during the winter.  This was likely due to the 

greater availability of light at shallower depths.  Additionally, individuals exhibited 

significant seasonal differences with a higher calcification rate occuring during winter 

months in shallow individuals but not deep individuals.  Calcification had a positive 
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correlation to photosynthetic rates in Corallina officinalis (Pentecost 1978, Lobban and 

Harrison 1997).  The increase of the calcification rates in shallow individuals during the 

winter may be explained by the higher maximum photosynthetic rates found in these 

individuals.  

Using the biomass (kg .  m -2)  and calcification rate data from this study, 

extrapolations were made for kg of CaCO3  accretion per year at those sites along the 

Monterey Peninsula.  An estimated 21 kg of CaCO3 . m2 . year can be produced from C. 

tuberculosum, along the Monterey Peninsula at shallow depths during the summer.  

Because calcification rates generally doubled in winter, at shallow depths, 42 kg of 

CaCO3  . m2 . year can be accumulated.  Shallow populations of corallines in wave 

exposed areas have been described as “thickets”  where multiple frond, branch tip, or 

thalli have reattached to either itself, another individual, and or any other substrate to 

create a tangled web of corallines.  These “thickets” create refuge for an assortment of 

young invertebrates including molluscs (chitons and scallops), echinoderms (urchins; 

(Kenner 1987) and brittle stars), and arthropods (crabs and barnacles) (Dearn 1987, pers. 

obs.).  

Seasonal, temporal, and depth variability in morphology and physiology of C. 

tuberculosum populations was studied to provide insight on how these populations persist 

along the Monterey Peninsula.  Overall, the data suggest that populations from 3 m and 

10 m at both sites differ in morphological aspects (number of branch tips and biomass .  

m-2) and physiological aspects (seasonal changes in productivity, growth, and 

calcification).  Shallow coralline populations experienced higher irriadiances throughout 
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the day compared to deep populations.  Given that both populations have similar 

physiological parameters (Pmax, α, Ic, and Ik), it may be the availability of higher 

irradiances at shallower depths that allow shallow populations to be more productive 

(growth and reproduction). To explain the higher number of branch tips in shallow 

populations, it is most likely due to the greater amount of light available at shallower 

depths allowing photosynthetic rates to be saturated during more hours of the day, 

therefore providing more light energy for investment into branch tips.  Similar results for 

Pmax, α, and calcification were found in sudtidal C. tuberculsom from southern California 

(Bulach 2012).  In contrast, a study conducted with C. tuberculosum from a tidepool in 

British Colombia (Guenther 2011) showed productivity to be 7-fold higher, pigment 

concentrations were 10 fold higher, while, photosynthetic efficiency was 10 fold lower in 

those individuals compared to this study.  Individuals in this study were much more 

efficient in converting light energy into chemical energy and this may be explain the 

detected low pigment concentrations relative to other studies.     

The site to site extent of these shallow coralline populations is unknown but is 

likely greater in coverage in wave exposed habitats along the Monterey Peninsula.  These 

coralline thickets could serve as a carbon sink due to the longevity of species.  This study 

reports their contribution on a small scale along the Monterey Peninsula.  In these wave 

exposed areas, corralines may be the highest calcium accreting organism present in kelp 

forest habitats and should be monitored to understand the effects of climate change.
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