
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Spring 2016

Popularity Prediction of Reddit Texts Popularity Prediction of Reddit Texts

Tracy Rohlin
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Rohlin, Tracy, "Popularity Prediction of Reddit Texts" (2016). Master's Theses. 4704.
DOI: https://doi.org/10.31979/etd.d7nw-6gx7
https://scholarworks.sjsu.edu/etd_theses/4704

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/4704?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4704&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

POPULARITY PREDICITON OF REDDIT TEXTS

A Thesis

Presented to

The Faculty of the Department of Linguistics and Language Development

San José State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Arts

by

Tracy M. Rohlin

May 2016

© 2016

Tracy M. Rohlin

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

POPULARITY PREDICTION OF REDDIT TEXTS

by

Tracy M. Rohlin

APPROVED FOR THE DEPARTMENT OF LINGUISTICS AND LANGUAGE

DEVELOPMENT

SAN JOSÉ STATE UNIVERSITY

May 2016

 Dr. Hahn Koo Department of Linguistics and Language Development

 Dr. Roula Svorou Department of Linguistics and Language Development

Dr. Chris Pollett Department of Computer Science

Abstract

Popularity prediction is a useful technique for marketers to anticipate the success

of marketing campaigns, to build recommendation systems that suggest new products to

consumers, and to develop targeted advertising. Researchers likewise use popularity

prediction to measure how popularity changes within a community or within a given

timespan. In this paper, I explore ways to predict popularity of posts in reddit.com,

which is a blend of news aggregator and community forum. I frame popularity prediction

as a text classification problem and attempt to solve it by first identifying topics in the

text and then classifying whether the topics identified are more characteristic of popular

or unpopular texts. This classifier is then used to label unseen texts as popular or not

dependent on the topics found in these new posts. I explore the use of Latent Dirichlet

Allocation and term frequency-inverse document frequency for topic identification and

naïve Bayes classifiers and support vector machines for classification. The relation

between topics and popularity is dynamic -- topics in Reddit communities can wax and

wane in popularity. Despite the inherent variability, the methods explored in the paper

are effective, showing prediction accuracy between 60% and 75%. The study contributes

to the field in various ways. For example, it provides novel data for research and

development, not only for text classification but also for the study of relation between

topics and popularity in general. The study also helps us better understand different topic

identification and classification methods by illustrating their effectiveness on real-life

data from a fast-changing and multi-purpose website.

v

TABLE OF CONTENTS

List of Figures ... vi

List of Tables .. vii

Introduction ... 1

Chapter 1: Reddit ... 4
1.1 Description of reddit.com .. 4

Chapter 2: Popularity prediction ... 10

Chapter 3: Text categorization .. 13

Chapter 4: Predictive models and feature selection methods ... 16
4.1 Description of naïve bayes classifiers ... 16
4.3 Previous research using nbcs and svms ... 20
4.4 TF-IDF ... 21
4.5 Latent Dirichlet Allocation .. 24

Chapter 5: Experiments ... 30
5.1: Data .. 30
5.2: Models .. 32

Chapter 6: Conclusion ... 48
6.1 Summary and general discussion .. 48
6.2 Further research ... 49

References ... 51

vi

List of Figures

Figure 4.1: A simple Support Vector Machine. .. 18

Figure 4.2: An example of SVM with polynomial kernel. .. 19

Figure 4.3: An example of a probability distribution for four topics and
 three words using LDA. ... 26

Figure 5.1: Posts’ scores distribution from each subreddit. ... 32

Figure 5.2: The number of high F1 scores per amount of LDA topics modeled. 40

Figure 5.3: The number of high accuracy models per amount of LDA topics. 41

vii

List of Tables

Table 4.1: The top 10 TF-IDF scored words and their weights for each
 subreddit. ... 23

Table 4.2 : Each subreddit's top 10 words associated with the
 top 5 topics generated by the LDA model. .. 27

Table 5.1: Document and word counts per subreddit. ... 30

Table 5.2: Results from each subreddit, with the highest accuracy and F1 shaded. 35

Table 5.3: Results from r/learnpython, tuned for high F1 score. 39

Table 5.4: Results from r/xxfitness, tuned for accuracy. ... 39

Table 5.5: Results from r/learnprogramming with a very low alpha value. 41

Table 5.6: Results from r/learnprogramming with a very high alpha value. 42

Table 5.7: Results from the cross-domain popularity prediction
 experiment for each subreddit dataset. .. 45

1

Introduction

Since the advent of the Internet, researchers have been studying how communities

form online and how topics are distributed within each community. The popularity of

these topics can wax and wane or remain persistent over time, depending on how focused

or generalized that community may be. Along with the formation of these communities,

researchers and marketers have been trying to capture topic popularity in order to better

predict when a new topic (about a product, person, place, or concept) will be popular

given the community or platform used to display the message. In particular, this

knowledge provides valuable information to businesses in marketing products and

services to consumers. It also provides valuable insight to researchers on how topic

distributions and popularity dynamics change over time.

Previous research has treated popularity prediction as a simple binary

classification problem, where specific instances (such as tweets, posts, messages, etc.)

Are labeled “popular” or “not popular” based on some predefined metric. Researchers

have used this schema to study the popularity of social media texts like Twitter messages,

Facebook posts, and foursquare posts as well as news-aggregator websites like Digg.com.

To do so, researchers have used a variety of models including unsupervised and semi-

supervised methods like k-nearest neighbors algorithm and expectation-maximization

algorithm, as well as supervised methods like naïve Bayes classifiers (NBC) and support

vector machines (SVM). Very little research has been conducted on dual purpose

websites such as Reddit.com that serves as a news aggregator and community forum.

2

 Reddit, the self-proclaimed “front page of the Internet,” is a website where users

can submit links or write posts (called “self-posts”) about various topics. There are a

multitude of niche sub-communities (called “subreddits”) that a user can subscribe to and

each post in the community can garner points when other users vote up (“upvote”) or

vote down (“downvote”) a post. While the website has been around for over 10 years,

there has been minimal research on predicting popularity of Reddit posts.

In order to fill this gap in the research, I explore methods to predict the popularity

of a subreddit’s post. I examine the use of term frequency inverse document frequency

(TF-IDF) and Latent Dirichlet Allocation (LDA) to extract topics from the posts as well

as NBC and SVM to classify whether the posts are popular or unpopular based on their

topics. I not only assess if such prediction is feasible in the first place, but also which

combination of topic identification and classification methods is most effective. The

methods are evaluated on several datasets I have collected, including those from

subreddits that are similar in overall topic but vary by subtopic (such as the subreddits

r/xxfitness and r/fitness).

The rest of the thesis is organized as follows. Chapter 1 discusses the history and

dynamics of Reddit, as well as some of the nascent research that has been conducted

using the website’s data. Chapter 2 discusses research pertaining to popularity

prediction, whereas Chapter 3 explains the concept of text categorization and how it is

used in prediction. Chapter 4 reviews the use of NBC and SVM for classification and

TF-IDF and LDA for topic identification in previous research. Chapter 5 explains the

3

methodology and results of my constructed models. Finally, Chapter 6 provides a

summary and analysis of the prediction experiment.

4

Chapter 1: Reddit

1.1 Description of Reddit.com

Founded in 2005, Reddit.com is a popular website that has over 36 million user

accounts from over 215 different countries and has around 200 million unique monthly

visits [1]. The “front page” of Reddit serves as a news aggregator where popular user-

submitted links and posts are gathered from various subreddits [2]. In addition, each

subreddit serves as a community forum, where users can submit text posts hosted on

Reddit (“self-posts”) or external links and pictures, comment on other users’ posts, and

vote on others’ posts as well [3],[4]. Subreddit communities tend to be dominated by a

particular format, such that a subreddit will be mostly text, link or picture based [2].

 There are over 10,000 active subreddit communities, with varying numbers of

subscribers; for example the r/funny subreddit has nearly 10.2 million subscribers

whereas r/sagaedition has a mere 551 [5]. While all subreddits must abide by Reddit’s

site-wide rules regarding content, each subreddit is run independently by a group of

volunteers who can design the look of the community’s home page, create community-

specific rules and posting guidelines, and ban users for violating the rules [1].

 In order to post to the community or read posts, users do not necessarily have to

subscribe to a particular subreddit, but are not allowed to vote or comment anonymously.

Many subreddits have readers that ultimately do not post or comment but may still vote

on posts. In fact, Singer et al. Found that online communities often have a large

discrepancy between the number of users posting content and the users who only

consume but do not post themselves [2]. These “lurkers” tend to outnumber users who

5

post. Regardless, users who post may suffer downvoting on Reddit if the post is off-

topic, does not abide by community rules, or is simply not liked by the majority of the

community’s readers.

Each reader has one vote to spend on each post and can upvote or downvote a

post as well as change his or her previously cast vote. Although expressly prohibited by

Reddit’s site-wide rules, users may also surreptitiously sign up for multitudes of accounts

in order to game the voting system. Users can likewise cheat the voting system by asking

friends to upvote or downvote a particular post, or by creating a voting bloc that votes for

each other’s posts [6], [7]. In addition, each vote must be made by humans, i.e., voting

by bot is prohibited [8]. Each post has a continuous tally of upvotes compared to

downvotes, which results in the post’s final score (i.e., the score is equal to upvotes –

downvotes) [4]. For each upvote that a post receives, the user who submitted the post

receives an equivalent number of “karma” points, which is effectively a representation of

the user’s reputation on Reddit. If the number of downvotes outweighs the number of

upvotes, the total score for a post is capped at 0. Each post automatically gets one upvote

when the user posts it, so it is possible for posts with a score of 0 to experience just one

downvote and no upvotes to turn it into a negative post.

 Negative posts are often pushed off the subreddit’s front page whereas popular

and newer posts linger on the front page, following Reddit’s “hot” algorithm. In order to

calculate a ranking, Reddit’s epoch time (December 8, 2005, 7:46:43 a.m.) Is subtracted

from the time of the post’s creation. Formally, where A is the post creation time and B is

Reddit’s epoch time:

6

 𝑡! = 𝐴 − 𝐵

And x is the score, or the difference between upvotes and downvotes, and y and z are

dependent on the score x:

𝑥 = 𝑈 − 𝐷

 𝑦 =
1 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 = 0
−1 𝑖𝑓 𝑥 < 0

 𝑧 = 𝑥 𝑖𝑓 𝑥 ≥ 1
1 𝑖𝑓 𝑥 < 1

Thus, the final ranking of a post on the subreddit’s home page as shown in [10]:

 𝑓 𝑡!,𝑦, 𝑧 = 𝑦𝑙𝑜𝑔!"𝑧 + !!
!"###

As a result, submission time has a strong influence on how the posts are ranked on the

homepage, and newer stories often get higher scores than older stories. Posts that have

minimal difference between upvotes and downvotes (that is, the number of upvotes

cancels the number of downvotes) still have a lower ranking than those that have mostly

upvotes. As explained in [9], voting is also locked on archived posts, where archiving

occurs six months after the post’s creation.

 Posts that prove to be extremely popular can be displayed on Reddit’s front page,

which garners even more attention, but most posts do not receive such attention [4], [11].

Submissions that achieve front-page status are more available to users who may have not

been readers of the original subreddit that the post came from, as mentioned in [11].

Many users may subscribe to few or no subreddits at all, instead choosing to view only

the top links of the day on the front page. This has the effect of amplifying upvotes, such

7

that popular posts that make it to the front page of Reddit, or remain on the subreddit’s

front page, often receive even more votes due to their visibility.

Reddit’s intricate voting system lends itself well to the problem of popularity

prediction, mainly because an easily available metric (the final score) is attached to each

post and can be used to delineate popular versus unpopular posts. In addition, its users

are highly active and the API (application program interface) and its data are publicly

available [4]. For this reason, researchers are beginning to utilize Reddit’s massive data

stores for various areas of study, as described in the next section.

1.2 Previous Research

Some of the previous research conducted on Reddit has looked at the distribution

of subreddits over time, predicting the popularity of the same post over several

subreddits, as well as underprovision in subreddit communities. For example, Singer et

al. Showed that there was an increasing diversification of subreddits (or topics) between

2008 and 2012 [2]. Simultaneously, they found that there was a concentration of types of

submissions, mainly self-posts and images (like those found in the most heavily

subscribed subreddits r/funny and r/pics). The research indicates that self-posts are the

primary driver of conversations as shown by the large number of comments attributed to

self-posts. Indeed, over 50% of the comments made on Reddit are attached to text self-

posts as opposed to link or picture based posts. Because of the high level of engagement

and the ease of capturing self-posts, I focus my later experiments entirely on self-posts, as

described later in Chapter 5.

8

Other research indicates that the majority of links are clicked on but not voted

upon in subreddit communities. In [13], Gilbert describes how up to 52% of link-based

posts were overlooked the first time they were submitted. According to the study, this

means that “if you submit a great link to Reddit, more than half the time someone else

will get the karma associated with the upvotes” [pp. 805]. The researchers also found

that posts already considered popular tend to have the most page views and in turn

receive even more votes, which then causes the majority of new submissions to be

ignored. This may cause issues in predicting popularity because users that like content

but ultimately do not vote on the content will not have their votes shown in the data.

Ultimately the total score is still a robust measure of popularity, however. The other

alternative, calculating number of clicks on a post, would only measure interest in a post,

not whether a user actually likes the content.

One study conducted by Lakkaraju, mcauley and Leskovec, looked into how a

post’s title can influence popularity, regardless of content [14]. The researchers studied

resubmissions, meaning posts that contain the same content but differ either in title, time

posted, or subreddit posted to. Popularity for a particular piece of content tends to wane

after multiple resubmissions, but the researchers found that choice of title can boost the

popularity of a post, even though it may have been seen in the same subreddit previously.

Again, this study hints at some of the inherent problems when predicting popularity of

online texts: if the topic is not new or fresh, users may downvote the post due to

saturation effects. Likewise, popularity of a post seems to be highly dependent on the

9

subreddit it is posted to. These issues are explored further in the next chapter, which

discusses popularity prediction.

10

Chapter 2: Popularity Prediction

Ability to predict popularity of a topic is beneficial in various ways. Companies

can formulate more effective marketing strategies, for example by using predicted

popularity to build recommender systems and provide targeted advertising as described in

[11], [15], and [16]. In addition, web services can achieve higher efficiency and provide

a better user experience based on prediction. The Internet service provider can better

anticipate the number of requests for contents based on their predicted popularity and

adjust infrastructure needs accordingly [12]. Contents predicted to be more popular can

be made more readily accessible to users as well [6].

But predicting topic popularity is a hard problem. Topics in general often have a

periodic effect, i.e. They peak and decline in popularity [20]. Due to sheer volume of

submissions, a vast majority simply fail to reach users and lose opportunities to be rated

despite their relevance. For example, in their research on Digg.com (a pre-cursor news

aggregator website similar to Reddit), Szabo and Huberman found that only 7.1% of

submissions gather enough votes to be promoted to the front page, with only 30% of

those receiving over 1000 votes [12]. A similar tendency is also found for social media

sites like Twitter, as described in [17].

In addition, topic popularity is affected by various extraneous factors other than

the topic itself. These include the nature of the community in which a topic is addressed,

the time at which the topic is addressed, and the interaction between the two. In [18], Hu,

et al. Discovered that within communities that have moderate interest in a topic,

popularity can fluctuate heavily through a given time span. Topics in communities that

11

have either low or high interest in the topic will maintain a steady popularity level. The

study also found that topic popularity will rise earlier in highly interested communities

compared to that of moderately interested communities. Another community-related

factor that influences popularity is how active the community is. That is, submissions

may receive more attention in active communities than in less active communities, as in

[18]. This is echoed in [12], where a story’s popularity was slower to grow when fewer

visitors were on the site (due to time effects) and increased more quickly as more users

were on the site.

 The activity of a particular community (and thus the popularity of its content) is

highly dependent on time effects. These effects tend to coincide with peak website use

among users. The study in [6] found popularity effects dependent on the year and in [15],

the hour of posting heavily influenced whether a post became popular. The researchers

in [15] found that posts may be more popular when posted during busier times of the day

although these posts also experience more competition for attention during peak times.

In particular, [13] found that the best time to post on Reddit to ensure popularity was in

the early morning hours. Posts made in the late afternoon and evening were often

ignored. This mirrors the study in [6] which found a higher rate of comments (the

researchers’ metric of popularity) on the French newspaper website 20Minutes between

the hours of 6am and 11am compared to other times. Lastly, saturation effects typically

occur after one day on the Yahoo news website [16], on Digg.com [12], and with Twitter

messages [21].

12

Popularity prediction has other issues, however, inherent to the problem of

categorization. As an example, according to [3], it can be easy to delineate strictly

popular or unpopular posts, but it is often difficult to categorize medium level popularity

posts. In addition, a predictive model may not be applied for each possible dataset, as the

predictive methods can be influenced heavily by the type and size of the data set, by the

site’s framework, and other external factors [6]. Nevertheless, Tatar et al. Have found

that in many cases a generic (or simple) prediction model was sufficient in predicting

popularity. These models are often constructed as binary classification systems, which

alleviate the problem described in [3]. Text categorization using classification models

are further explored in Chapter 3.

13

Chapter 3: Text Categorization

 Text classification systems categorize texts into different classes based on shared

characteristics. A popular example is that of the spam filter, which categorizes incoming

emails as spam or not spam, dependent on what words occur in the email and how often

those are associated with spam as a whole. It is framed as a classification problem that

maps endogenous characteristics of a given email to either one of two categories.

These classes need not be strictly binary, however. As explained in [23], the set

of categories are predefined and can be used to categorize by type (e.g., technical reports,

emails, or web pages) or by topic (e.g., sports, world news, or financial news).

According to Joachim [24], text categorization models have several uses including

classification of news stories, guiding searches through hypertext and finding information

on the web that a user may be interested in. Hence, text categorization is an inter-

disciplinary field that touches on information retrieval, machine learning, statistics,

computational linguistics, and data mining [25].

The study in [22] explains the process thoroughly: The document 𝑑! 𝑐! is an

element of 𝐷×𝐶 where 𝐷 is the domain of documents and C is the set of classes

𝐶 = {𝑐!, 𝑐!, . . 𝑐! }. Each document, 𝑑! is assigned to a class, 𝑐!, such that each document

𝑑! 𝑐! has a Boolean value for that particular class. If 𝑑! truly belongs to 𝑐! then 𝑑! 𝑐!

is labeled true, otherwise the label is false. The process begins by hand-labeling the

training set with a particular category and then training a classification model to assign a

category to a new, unseen document [23]. The classification model approximates the

14

unknown target function Φ:D×C → 𝑇,𝐹 , such that Φ and Φ (the approximation and

the real categorization) are as close as possible [22].

Since text categorization also uses machine learning techniques (similar to

popularity prediction), there are some issues that may occur when creating and testing the

classification model. Classification accuracy can be dependent on the data set and the

model used. Indeed, [24] describes how the models can have low accuracy rates,

especially when the amount of training data is small or the quality of training data is low.

Poor quality data includes situations where the sample of training documents is not

representative of the unseen testing data, leading to high variance. In other words, a

situation may occur where the model works well on the training data but not on the

testing data due to over-fitting. Sometimes this occurs due to the high dimensionality of

feature space (with many of these features (words) being redundant) [23]. According to

[26], to reduce the risk of over-fitting, the researcher should gather more data, reduce the

feature space and/or increase the regularization parameter (as discussed in Chapter 4

which discusses feature selection methods and classification models).

Regardless of its caveats, a two-class classification system often goes hand-in-

hand when popularity prediction methods are being used. In the training set, each

document will have the class of “popular” or “unpopular” attached to it. A validation set

is often used to tune the parameters of the model, and then the model is run on the test

data. Formally, the training set is 𝑇𝑟 = 𝑑!,𝑑!,… ,𝑑|!"|,) ⊂ 𝐷 and validation set (if

being used) is 𝑉𝑎 = 𝑑 !" !!,… ,𝑑 !" . Thus, the testing set is

𝑇𝑒 = 𝑑|!"!!|,𝑑|!"!|,… ,𝑑|!"!|, where |𝑇𝑉Ω| is the size of the testing and validation set

15

[22, pp. 10]. Several classifier systems exist, including two of the models I have chosen:

Naïve Bayes and Support Vector Machines. These models are discussed in Chapter 4

along with the feature selection methods.

16

Chapter 4: Predictive Models and Feature Selection Methods

4.1 Description of Naïve Bayes Classifiers

Bayesian classifiers look for the most likely class for a given data point. Applied

to text classification problems, the data points would be texts or documents to be

classified. The probability that a given document 𝑑! belongs to class 𝑐! is proportional to

the product of (i) the prior probability of choosing class 𝑐! and (ii) the likelihood of

generating document 𝑑! given the class. That is, 𝑃(𝑐!|𝑑! ,𝜃) ∝ 𝑃 𝑐! 𝜃 𝑃(𝑑!|𝑐! ,𝜃) where

𝜃 denotes parameters of the classifier. Typically, a document is represented as a vector

of features describing which words constitute the document. For example, one could first

assume a vocabulary of words expected to be found in documents and then characterize a

given document as a vector of zeros and ones with each binary value indicating whether a

word in the vocabulary is present in the document or not.

Naive Bayes classifiers (NBCs) assume that features (e.g. Words in the

document) are conditionally independent from each other given the class. So the

likelihood of a document for a given class is factored into a product of conditional

probabilities of words in the document given the class. For example, 𝑃 𝑑!|𝑐! =

 𝑃(𝑤!"|𝑐!)
|!|
!!! where |𝑇| is the vocabulary size and 𝑤!" denotes presence or absence of

some word 𝑤! in document 𝑑!. As [22] explains, the independence assumption may not

be theoretically justified but produces robust results in practice.

The parameters of such a NBC consists of the prior probabilities and the word

probabilities used for calculating the likelihood. They can be estimated by counting the

fraction of times a class or a co-occurrence of a word and a class is observed in data. For

17

example, 𝑃(𝑐!) would be the fraction of documents in data that are labeled 𝑐! and

𝑃(𝑤! = 1|𝑐!) would be the fraction of documents labeled 𝑐! that contain the word 𝑤!.

But relying exclusively on observed frequencies can pose a problem when words that did

not appear in the training data appear in the test data. The new word will have a zero

probability, i.e. 𝑃 𝑤!" = 1|𝑐! = 0 and result in a zero likelihood, i.e. 𝑃 𝑑!|𝑐! = 0.

This issue is addressed by smoothing methods such as additive smoothing [28], which

adds some value 𝛼 to observed frequencies, i.e.

 𝑃 𝑤! = 1|𝑐! = !"#$% !!,!! !!
!!!!!|!|

Where 𝑐𝑜𝑢𝑛𝑡 𝑤! , 𝑐! is the number of times 𝑤! appears in documents labeled 𝑐!, 𝐷 is the

total count of all the words in documents labeled 𝑐!, and |𝑉| is the vocabulary size.

NBCs built this way are often used to establish a baseline against which other methods

such as support vector machines (SVMs) or k-nearest neighbors (k-NN) are compared. It

is easy to train them and improve them by incorporating new training data. They can

perform well especially when the vocabulary is large [27] and perform at a level

comparable to SVMs when coupled with good smoothing methods [29]. But in general,

discriminative methods such as SVMs perform better than NBCs in terms of

classification accuracy.

4.2 Support Vector Machine

 The support vector machine (SVM) is a linear classifier that projects data points

represented as vectors into some space and is trained to find the maximum margin

hyperplane that separates the vectors into two classes according to which sides of the

hyperplane they are on [31]. This is illustrated in Figure 4.1 where the hyperplane is a

18

line dividing the vectors into circles and squares. The hyperplane is determined from a

small set of training examples called support vectors, which determine the margins of the

hyperplane and are orthogonal to the hyperplane itself [22, 31]. Applied to text

classification, documents in the training set are first represented as vectors 𝑥!, 𝑥!,… 𝑥!

in some space 𝑋 ⊆ ℝ! and tagged with a set of labels 𝑦!, 𝑦!,… 𝑦! where 𝑦! ∈

{−1, 1}. The model then finds the best hyperplane that separates the data by a maximal

margin which label documents on one side of the hyperplane 1 and those on the other

side -1.

Figure 4.1: A simple Support Vector Machine. The hyperplane separates the two classes.
Instances on the hyperplane’s margins are called support vectors.

In addition to the original document space 𝑋, it is possible to project the original

training data into a higher dimensional feature space 𝐹 by way of a kernel operator [31].

This includes projecting the data into polynomial space or transforming the data using a

radial basis function (RBF). Thus data that may not be linearly separable in the original

space may still be separable in a higher dimension. This is illustrated in Figure 4.2 where

19

the vectors in the original two-dimensional space cannot be separated by any straight line

but can be separated by a plane after they are projected into a three-dimensional space

using the polynomial kernel.

 Figure 4.2: An example of SVM with polynomial kernel.

 SVMs have many advantages over other classification models. They reduce the

amount of work required for feature engineering because one can use kernel functions to

efficiently transform the vectors into corresponding vectors in a higher-dimensional space

in which they are linearly separable. This makes the model a good fit for text data,

whose vector representations may consist of thousands of features. Working in higher

dimensional spaces makes the model more robust and resistant to noise such as spelling

and grammatical errors, which are prevalent in text data [17, 24]. It also helps the model

generalize well to categorizing new instances and reduce the risk of over-fitting since

20

SVMs tend to favor discriminative features that have broad coverage [3]. For example,

the top 1% most discriminative features that the SVM identifies usually work as well as

or even better than the original set of features. Unfortunately, SVMs do not work well

with a small data set (as shown in [32]) and require that the data be separable in the first

place (as shown in [24]).

4.3 Previous research using NBCs and SVMs

Both Naïve Bayes classifiers and SVMs have been used extensively in popularity

prediction and text categorization research ([3], [21], [24], [29-35]). They are often

compared to each other, as well as to other models. Results show that SVMs usually

outperform NBCs as well as other methods such as k-nearest neighbors algorithm (knn)

and decision trees. For example, [3] used both SVM and NBC to predict the message

popularity by way of Facebook “likes”. The study in [21] used and compared both

models as well as knn and decision trees to predict how many users will adopt a hashtag

on Twitter. The researchers achieved an F1-score of 39.7% using the NBC, but 58.2%

using the SVM. In [24] Joachims used the polynomial and RBF kernel SVMs to

categorize 50,000 medical abstracts by disease in the Ohsumed corpus, and compared

their performance to a decision tree model and a NBC. The SVM with a RBF kernel had

the best accuracy with over 86.4% of texts being correctly categorized compared to the

polynomial kernel (86%), C4.5 decision tree (79.4%), and NBC (72%).

However, studies suggest NBCs can sometimes outperform SVMs. In [29] both NBC

and SVM were used to categorize data from the Yahoo! Webscope website. In the study,

NBC was shown to have better results than SVM when the training data set was small.

21

The researchers in the study concluded that NBC with smoothing techniques applied

would be a good model for short text classification. Because SVMs and NBC are robust,

computationally efficient and have relatively high accuracy, I have chosen to use them in

designing my popularity prediction models. These models are paired with the feature

extraction methods TF-IDF and LDA, described in the following chapters.

4.4 TF-IDF

The intuition behind TF-IDF is that topic words are likely to satisfy the following

two properties: (i) they appear often in a given document and (ii) they are not words that

are easily found in just any document. Formally, the TF-IDF score of a word 𝑤! in a

document 𝑑! among a collection of documents 𝐷 is calculated as follows [35]:

𝑡𝑓𝑖𝑑𝑓 𝑤! ,𝑑! = 𝑐𝑜𝑢𝑛𝑡 𝑤!,𝑑! × log(
|!|

!"#$%(! !!)
)

Where 𝑐𝑜𝑢𝑛𝑡 𝑤!,𝑑! is the number of times 𝑤! occurs in 𝑑!, |𝐷| is the total number of

documents in the collection, and 𝑐𝑜𝑢𝑛𝑡(𝐷 𝑤!) is the number of documents in the

collection that contain 𝑤!. Often the scores are transformed to fall in the range [0, 1] via

cosine normalization. That is, the normalized TF-IDF score of 𝑤! in 𝑑! denoted 𝑤!"is

calculated as follows:

𝑤!" =
𝑡𝑓𝑖𝑑𝑓 𝑤!,𝑑!

(𝑡𝑓𝑖𝑑𝑓 𝑤!,𝑑!)!
|!|
!!!

Where |𝑇| is the total number of words in the document.

In sum, a word is more likely to be a topic word if it appears often in a given

document (term frequency) and there are only a few documents in which the word

22

appears (inverse document frequency). Incorporating the inverse document frequency

allows one to build a model with a smaller feature space and a higher classification

accuracy than when using the term frequency alone. But the approach does have some

caveats. According to [35], it can be a poor choice for certain domain-specific datasets

because the inverse document frequency prefers rare features. If all the documents in the

collection were in the same topic domain, some topic words would be ubiquitous and

have the worst inverse document frequency. The study in [28] also states that TF-IDF

only offers a small amount of description length reduction. More importantly, the feature

set dimensionality for TF-IDF is the entire vocabulary of the corpus, which results in a

huge computation when determining the weight of each term in a document [23]. This

ultimately results in a computation of O(nm) where n is the number of tokens and m is

the number of documents.

Despite its weaknesses, TF-IDF remains a popular method in text categorization,

information retrieval and popularity prediction research when determining the topic

distribution of a set of documents. For example, [33] used TF-IDF when trying to extract

keywords from Japanese abstracts. Studies show that TF-IDF can be effective when

coupled with SVMs. For example, the researchers in [23] used TF-IDF with the SVM

model to categorize texts from Chinese academic journals and texts from the Reuters

corpus. They found that TF-IDF performed better than other methods such as Latent

Semantic Indexing (LSI) when categorizing English texts as Reuters although the

opposite was true when categorizing Chinese texts. Studies also show that TF-IDF can

23

be effective with NBCs too. For example, the researchers in [40] used TF-IDF with

NBCs to determine ambivalently punctuated Chinese texts and achieved 91% accuracy.

As an illustration of effectiveness of the approach, Table 4.1 shows the top ten

words with the highest TF-IDF scores identified in posts from six subreddits. Each

subreddit is named after the broad topic discussed in the community (e.g.

“learnprogramming” in r/learnprogramming). Note the relevance of words in the list to

the community topic (e.g. “float” to “learnprogramming”, “chinup” to “xxfitness”).

Table 4.1 (continued below): The top 10 TF-IDF scored words and their weights for a whole subreddit
corpus.

24

4.5 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a method based on a generative three-level

Bayesian probability model. In LDA, each document is modeled as a finite mixture of

probabilities over an underlying set of topics based on which words are commonly

associated with said topics [28]. In other words, the model finds the probability

distributions of different topics given a set of documents and discovers the word

distributions for each topic, as explained in [41]. Each topic is itself modeled as an

infinite mixture over an underlying set of topic probabilities [28]. Other topic models,

especially unsupervised clustering models, often restrict a document as being associated

with a single topic. LDA, on the other hand, allows a document to be represented by a

mixture of topics, each represented as a point on the word probability distribution. In a

sense, each document shares the same set of topics but exhibit those topics to differing

25

degrees. The document can then be categorized based on its finite mixture using a

classifier that has learned the distribution of topics for a particular class.

 The model assumes the following generative process for each document: First,

decide the number of words (𝑁) the document will contain according to a Poisson

distribution (𝜉). Second, choose a topic mixture (𝜃) – how the topics will be distributed

in the document – according to a Dirichlet distribution (𝛼). Third, choose a topic (𝑧!) for

each word position according to the topic mixture. Finally, choose a word (𝑤!) for each

position according to the topic of the position (𝑧!) and its multinomial distribution (𝛽).

The topic structure of a given document can be identified by computing the

following posterior probability:

𝑃 𝜃, 𝑧 𝑤,𝛼,𝛽 =
𝑃(𝜃, 𝑧,𝑤|𝛼,𝛽)
𝑃(𝑤|𝛼,𝛽)

 Where 𝑤 denotes the set of 𝑛 words in the document and 𝑧 denotes the corresponding 𝑛

topics [28, 38]. The posterior probability is computed using approximate inference

algorithms such as Laplace approximation, variational approximation, and Markov chain

Monte Carlo. Figure 4.3 shows an example of a probability distribution using three

words and four topics. Each corner of the triangle represents a probability of 1 for a

particular word, whereas the midpoint on an edge between two peaks represents a

probability of 0.5. The middle peak represents the uniform distribution between all three

words. A point on each peak represents a particular probability for the word given the

topic, i.e., 𝑃 𝑤 𝑧 .

26

Unfortunately, LDA can be computationally expensive because each document is

required to model the topic distribution and the word distributions must also be calculated

for each topic. It can require O((N+1)k) time, where k is the number of topics in 𝛽. In

addition, [18] states that LDA may not be an appropriate choice for short texts such as

forum posts and microblogs (like Twitter) because those tend to be focused on a single

topic.

Figure 4.3: An example of a probability distribution for four topics and three words using LDA. [28, pp.
999]

 Despite such issues, LDA, similar to TF-IDF, is a popular method in information

retrieval, text summarization and text categorization. For example, the researchers in [4]

used LDA to determine the point in which a discussion among a comment thread on

Reddit began to diversify, i.e. When the discussion began to deviate from the original

comment or post. To do this, the researchers used a hierarchal version of LDA to cluster

words into a hierarchy of topics such that general words occurred at the top of the

27

hierarchy and more domain specific words were towards the leaves of the hierarchy. As

a result, the study found that Reddit comments typically have one or two sub-threads that

receive the most votes and comments, and that this attention in sub-threads occurs

quickly. Another study used LDA when trying to predict popularity of posts coming

from restaurants and businesses on Facebook and youtube [3]. The researchers used

LDA to identify 10 main topics relating to the businesses’ posts to determine the

relationship between content, media type, and popularity. The study in [16] similarly

used LDA to model topics using youtube video tags to determine popularity. LDA was

also used in [15] to predict user choices for pay-per-view movies purchased by users of

two European internet protocol television (IPTV) providers. Lastly, LDA was used for

popularity prediction in [27] to determine topic distributions for hashtags on Twitter.

As an illustration of the effectiveness of the approach, Table 4.2 shows top ten

words associated with top five topics identified via LDA for the six subreddits.

Table 4.2 (continued below): The top 10 words associated with the top 5 topics generated by the LDA model
per subreddit.

28

29

30

Chapter 5: Experiments

5.1: Data

The data for the study are a corpus of 12,847 Reddit posts that I collected from six

subreddits: two on relatively general topics (r/askwomen and r/askmen) and four on more

niche topics (r/xxfitness, r/fitness, r/learnprogramming and r/learnpython). Each

subreddit added about 2,000-2,500 documents to the corpus (see Table 5.1 for details).

Roughly half of the documents from each subreddit were labeled popular and the other

half unpopular. Each subreddit dataset was split into three subsets -- training (60%),

validation (20%), and test (20%) -- with each split containing equal amounts of popular

and unpopular posts. Below I describe in detail the data collection process, inclusion-

exclusion criteria, and labeling criteria.

Table 5.1 (continued below): Document and word counts per subreddit.

1.1 Number of documents

In corpus

Number of words

 In corpus

 r/xxfitness 2,335 5,276

 r/fitness 1,926 4,570

 r/askmen 2,011 4,013

 r/askwomen 1,893 3,483

 r/learnpython 2,251 4,146

r/learnprogramming 2,431 4,407

31

The six subreddits were chosen because they contained many posts that have been

available to the users long enough and for which voting had closed (typically six months

after creation). This was to reduce the recency effect and to alleviate the complication

experienced by [12] in which the researchers found that content with a longer life cycle in

which users were still voting on posts tended to have a large statistical error during

prediction.

Posts within each subreddit were chosen only if (i) they had at least two voting

points associated with it and (ii) contained at least 20 words. Reddit automatically

assigns a score of 1 to every new post, so the first condition was imposed to ensure that

each post had in fact been voted on. The second condition was imposed to ensure that

each post contained enough information for topic identification and ultimately popularity

prediction.

Each post in a subreddit was labeled popular or unpopular by comparing its

voting score to a threshold, which I defined as the 75th percentile score among the first

1,000 posts collected from the subreddit. More posts were gathered from the subreddit

with preference given to those with higher scores than the threshold so that the dataset for

each subreddit had roughly equal amounts of popular and unpopular posts. Note,

however, that the distribution of scores for each subreddit is rather skewed to the right,

with very few posts achieving a score above 50 as illustrated in Figure 5.1.

32

Figure 5.1 (continued below): The distribution of posts’ scores from each subreddit.

5.2: Models

The classifiers were trained to tag a feature vector representation of a given post

as either popular or unpopular. Each post was first preprocessed and represented as a

feature vector using the bag of words (BOW) model, term frequency – inverse document

33

frequency (TF-IDF), or Linear Dirichlet Allocation (LDA). The resulting feature vector

was fed into either a Naïve Bayes classifier (NBC) or a support vector machine (SVM). I

describe the details of preprocessing, feature representation, and classifiers below.

Each post was preprocessed by removing stop words – articles, prepositions,

conjunctions and contractions as well as non-alphanumeric characters – and low

frequency words that appeared in no more than two documents in the corpus. The idea to

remove low frequency words is in line with previous studies such as [3] and [24]. The

aim is to reduce the dimensionality of feature space as well as classification errors by

removing spelling errors, which often appear in the corpus as low frequency words [29].

No stemming or lemmatization was performed on the documents as [22] indicated that

doing so could hurt classifier performance.

The BOW model essentially represents the preprocessed document as a mere set

of words in it. Words in the bag are not associated with any scores that denote the extent

to which a given word captures the document topic. On the other hand, TF-IDF and LDA

further assign such scores to the words in the bag. When using a NBC, the LDA or TF-

IDF scores replace the word counts (where the instance of a each word is equal to 1).

The score for a given word is then divided by the summed scores for the entire corpus to

produce a probability similar to the base BOW model. Each word probability is then

used with the class’s prior probability to classify the given document.

Parameters of the NBC were smoothed by the additive method explained

previously with 𝛼 = 1. I chose the linear kernel function for the SVM rather than

polynomial or RBF kernels due to its popularity attested in [39] and its performance in a

34

preliminary analysis. The linear SVM was trained using stochastic gradient descent,

which essentially finds the hyperplane ℎ 𝜃 that minimizes a cost function through an

iterative process [42]. So given a hypothesis hyperplane ℎ 𝜃 = 𝜃!𝑥! + 𝜃!𝑥!+

𝜃!𝑥! +⋯+ 𝜃!𝑥! and a cost function of 𝐽 𝜃 = !
!!

(ℎ! 𝑥! − 𝑦! !!
!!! , the best

hyperplane is found by replacing the weights 𝜃 with 𝜃! = 𝜃! − 𝛼
!
!"!

𝐽(𝜃!,… ,𝜃!). In

this formula, 𝛼 represents the “size” of the step, or the degree to which the weights are

adjusted. The SVM and NBC results are discussed in the next section.

5.3: Results and Discussion

 I evaluate and report performance in terms of classification accuracy and F1 score

on the test data. Classification accuracy is essentially the fraction of documents classified

correctly, i.e. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"!!"
!"!!"!!"!!"

 where TP, TN, FP, FN denote true positives,

true negatives, false positives, and false negatives, respectively. F1 score is an average of

two scores called precision and recall [35]. Recall is the fraction of documents correctly

classified as popular out of all documents that should have been classified as popular, i.e.

𝑅𝑒𝑐𝑎𝑙𝑙 = !"
!"!!"

. Precision, on the other hand, is the number of documents correctly

classified as popular out of all documents that the classifier categorized as popular, i.e.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"!!"

. F1 score is the harmonic mean of the two, i.e.

𝐹1 = !∗!"#$%&%'(∗!"#$%%
!"#$%&%'(!!"#$%%

. The results are shown in Table 5.2.

35

Table 5.2 (continued below): Results from each subreddit, with the highest accuracy and F1 shaded. ‘t’
indicates the number of topics used to obtain the LDA models.

36

37

Table 5.2 shows classification performance on six subreddit data sets. In sum,

classification accuracy is above chance level (~50%) for all six data sets. With only one

exception (F1 for r/xxfitness), performance is better when the classifiers use topic

features derived via TF-IDF or LDA than when they simply rely on BOW.

Previous research indicates that NBCs often performs worse than SVMs but this

appeared to be only partly true for predicting popularity of Reddit texts. Four of the six

datasets achieved higher F1 when using an SVM classifier. Surprisingly, the NBC model

still had better accuracy, out-performing the SVM in four of the six data sets. For

example, two data sets, r/learnprogramming and r/learnpython, achieved a higher F1

score from the SVM but ultimately had the highest accuracy when using the NBC model

paired with LDA. Two other datasets, r/fitness and r/xxfitness, had higher accuracy and

F1 scores using NBC models. This leaves both r/askwomen and r/askmen as the only

two datasets that achieved better performance with an SVM, both in terms of F1 and

accuracy.

Even though the most accurate model was often NBC, the second best model in

terms of accuracy was often the SVM. Only r/askwomen and r/xxfitness achieved second

38

best accuracy with an NBC. The second best F1 scores were split evenly between SVM

and NBC, however. It is clear that an overlap in theme can cause two separate datasets to

have similar performance when using the same classifier, as is the case for r/askwomen

and r/xxfitness, two subreddits related to women’s issues. This was seen as well in

r/fitness and r/xxfitness, relating to health and exercise, when they both performed better

using the NBC.

 In terms of feature selection methods, LDA often achieved equal accuracy to TF-

IDF but had higher F1 scores than TF-IDF or a BOW model. When using LDA the SVM

had the highest F1 score compared to BOW and TF-IDF for four of the six datasets. On

the other hand, highest accuracy for each dataset was split evenly between TF-IDF and

LDA. Only one dataset achieved its highest F1 score using TF-IDF, another using the

BOW model and no dataset achieved highest accuracy using a BOW. Still, for each

dataset TF-IDF often obtained better performance than BOW and LDA better

performance than both.

 The NBC model had somewhat similar performance, with both LDA and TF-IDF

performing better than BOW for most of the datasets. Only one dataset, r/xxfitness, had a

higher F1 score as a BOW, but most other datasets had the highest F1 scores using TF-

IDF. Highest accuracy for all six datasets using NBC was split evenly between LDA and

TF-IDF. Ultimately, however, a high accuracy score for a feature selection method for

one classifier may have been beaten out by another classifier using a different feature

selection method, leading to the even split for accuracy between LDA and TF-IDF.

39

Datasets that achieved high accuracy and F1 scores using different models and

feature selection methods are likely due to high instances of false positives or false

negatives skewing the F1 score. As the recall or precision score approaches 1 because of

low amounts of falsely labeled instances, the F1 score begins to lower, but accuracy will

begin to rise. Take, for example, the results from r/learnpython using an LDA model of

10 topics and the SVM classifier, as shown in Table 5.3:

Table 5.3: Results from r/learnpython, tuned for high F1 score.

‘

In this case the recall is 0.9884 and precision is 0.5753, primarily because there is

a large number of true positives and low number of false negatives, making recall

especially high. This means that the F1 score will be !.!"#"
!.!"#$

 resulting in an F1 score of

0.7273. But because the classifier has labeled most of the instances as positives, which

results in a large number of false positives, the accuracy remains much lower: 0.5733.

Compare this to the NBC LDA results modeling 90 topics, as in Table 5.4:

 Table 5.4: Results from r/xxfitness, tuned for accuracy.

R/learnpython Predicted positive Predicted negative

True positive 256 3

True negative 189 2

R/xxfitness Predicted positive Predicted negative

True positive 144 86

True negative 70 167

40

As seen in the confusion matrix, this model has more correctly labeled true positives and

true negatives. The recall at 0.6261 and precision at 0.6729 create an F1 score of 0.6486

that is less than the accuracy of 0.6660 (and smaller than the F1 ratio from r/learnpython).

Unfortunately, tuning for accuracy often creates a situation where one model may have

higher accuracy, but another a higher F1 score. Such is the case for 10 of the 36 models

paired with feature selection methods tested on the datasets.

 Other factors seen to be affecting the accuracy and F1 scores included the amount

of topics modeled during LDA and the alpha regularization parameter used in the SVM

model. How the number of LDA topics modeled affects the classifier models is slightly

unpredictable, however. Most of the highest performing models (for both accuracy, as in

Figure 5.2, and F1, as in Figure 5.4) had between 40 and 80 topics modeled.

Figure 5.2: The number of high F1 scores per amount of LDA topics modeled.

0	

1	

2	

3	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

N
um

be
r

of
 H

ig
h

Sc
or

es

Number of LDA topics modeled

41

Figure 5.3: The number of high accuracy models per amount of LDA topics for 12 models. The majority of
high accuracy models had either 40 or 80 LDA topics. Only one model had a high accuracy score out of
either SVM or Naïve Bayes for 10 or 100 topics.

 The alpha value applied to the regularization parameter in the SVM also has an

effect on the accuracy of the classifier. If the value of alpha is too small or too large then

the classifier will start classifying all documents as positives. For example, the dataset

from r/learnprogramming in Table 5.5 uses the simple BOW produces a confusion matrix

with mostly positive examples when 𝛼 = 1.0 𝑥 10!!":

Table 5.5: Results from r/learnprogramming with a very low alpha value.

This effect is shown further in Table 5.6, in which case the alpha is too large, in this case

𝛼 = 10:

0	

1	

2	

3	

4	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

N
um

be
r

of
 H

ig
h

Sc
or

es

Number of LDA topics modeled

R/learnprogramming Predicted positive Predicted negative

True positive 185 97

True negative 121 84

42

Table 5.6: Results from r/learnprogramming with a very high alpha value.

It is entirely possible, then, to erroneously obtain a high or low accuracy and F1 score due

to an inappropriate alpha value. This effect was alleviated by tuning the alpha parameter

for each dataset and for each feature selection method. In addition, a number of LDA

topics were tested during the validation stage, typically at 10 topic intervals for both NBC

and SVM models, with the alpha parameter also tuned when using the SVM.

 In regards to the datasets themselves, the classifiers mostly performed the best

with those from “niche” communities such as r/xxfitness and r/learnprogramming. The

exception to this was r/learnpython, which had a high F1 score (0.7306 using the SVM

with 10 LDA topics) but low accuracy (ranging between 0.5144 to 0.5965). Datasets

from more general subreddits (r/askmen and r/askwomen) where users can ask questions

on a variety of topics suffered lower accuracy and F1 scores. For example, r/askwomen’s

accuracy ranged from 0.5226 to 0.6032 and an F1 score of 0.5380 to 0.6154. This can be

compared to the accuracy range of the niche community r/xxfitness, which had an

accuracy range of 0.6210 to 0.7323 and an F1 range of 0.6380 to 0.7181. In this case the

low end of both accuracy and F1 ranges are still several points higher for the more niche

community than for the more general dataset. With wide variety of topics inundating the

R/learnprogramming Predicted positive Predicted negative

True positive 282 0

True negative 204 1

43

community, it may be hard for the classifier to separate topics that are that are popular

versus unpopular, thus resulting in lower classification accuracy.

In order to determine the feasibility of cross-domain application of these classifier

systems, two subreddits were paired together based on similarity of general theme (e.g.

R/xxfitness and r/fitness). The dataset from one subreddit was split evenly at random

into testing and validation subsets and the other paired subreddit used as the training

dataset. The goal of this process was to determine if there were enough shared topics

among both subreddits such that a popular post in one subreddit could likely be popular

in another subreddit. In this experiment the popularity cutoff of the original training set

was used to label popular texts from the validation and testing sets. While most models

suffered decreases in accuracy upwards of four or five points, most models still had

accuracy that was better than chance. In half the datasets the F1 scores suffered

significantly; for example, when predicting the popularity of a r/xxfitness post if it were

to be posted in r/fitness, the F1 score dropped to a measly 0.5250, as compared to the

original model which had an F1 of 0.7181.

In terms of the classification models themselves, SVM performed slightly better

among the mixed datasets in terms of accuracy such that the highest accuracy models

were split evenly between NBC and SVM. There was a reversal in F1 scores, however,

meaning that NBC often had higher F1 scores than the SVM. In terms of feature

selection, LDA still performed better than TF-IDF for both F1 and accuracy, but TF-IDF

only had slightly higher accuracy and slightly lower F1 scores than BOW. Among each

data set no discernible pattern was found such that one method had improved

44

performance compared to another. In a sense, sometimes the BOW had higher accuracy

than TF-IDF and LDA, but other times TF-IDF or LDA was better than BOW.

Ultimately it appears that the performance of each feature selection method was

dependent on the dataset.

In addition to changes in model performance, another interesting result occurred

when using two separate domains for testing and training: A dataset from subreddit A

was likelier to be more accurate when using the subreddit B as testing, than if the other

subreddit B was used to train the model to test subreddit A’s data. Such was the case for

r/learnpython, which had much better F1 scores and accuracy when tested on

r/learnprogramming’s dataset than when r/learnprogramming was used to create the

model to test r/learnpython. This may be in part due to how the validation and testing set

were randomly divided but also partly due to the quality of data in then testing set. The

cross-domain models that performed better on one subreddit usually had similar high

performance in the single-domain model from the test set. For example, r/learnpython

had better performance when predicting the r/learnprogramming test set, but this may

because r/learnprogramming itself had similar high accuracy during the single domain

experiment. The subreddits r/askwomen and r/askmen had similar performance to each

other during cross-domain prediction but also similar performance during single-domain

prediction. Other factors such as the popularity cut-off score do not seem to have much

influence: r/learnpython and r/learnprogramming had had a smaller difference in cutoff

scores at 7.0 and 9.0, respectively, than r/askmen (37.0) and r/askwomen (33.5) which

did not experience similar differences in cross-domain prediction accuracy. Thus the

45

dataset itself is likelier to be a factor in cross-domain popularity prediction. The results

are portrayed in Table 5.7.

Table 5.7 (continued below): Results from the cross-domain popularity prediction experiment for each
subreddit dataset. From A to B in the top left corner indicates that subreddit A was used as the training set
and B was used as the test set. The shaded boxes indicate highest accuracy and F1 scores. The t variable
under LDA indicates how many topics were modeled during feature selection.

46

47

48

Chapter 6: Conclusion

6.1 Summary and General Discussion

The results show that it is possible to predict the popularity of a subreddit’s post

to some extent based on the words it contains. Judging from the improvement when a

simple bag of words representation was augmented with scores from TF-IDF or LDA, the

topic of a document appears to be useful in predicting its popularity. Performance was

better for posts in more niche communities than those in general communities. One

could argue that topic identification is harder in more general communities since they

entertain more diverse topics. So again the result, at least indirectly, suggests that

document topic is a useful feature for popularity prediction.

Interestingly, comparison between different topic identification methods and

different classification methods showed unexpected results. LDA, which is a more

sophisticated frequency-based topic identification model than TF-IDF, did not always

lead to better performance. Similarly, SVMs, which are often claimed to outperform

NBCs, did not necessarily predict popularity better. The reasons for the atypical results

are not clear at this point: Perhaps the data set was not large enough. Perhaps popularity

prediction, especially for a platform like Reddit, is a difficult problem to begin with.

 It is worth noting several factors to consider for better data collection and

understanding the difficulty of the problem. As discussed earlier, important factors that

influence prediction and classification include time effects and the length of the posts

themselves. During data collection, only posts with more than 20 words were collected.

If data collection had included concise posts that contained 10 or 15 words, the results

49

May have changed. For example, lowering the text length cutoff would have increased

the dataset size and possibly increased model accuracy. Alternatively, lowering the text

length may cause certain posts that have fewer topics to begin with to be inaccurately

labeled. In addition, it may be true that topics that were once previously popular are no

longer popular within a particular subreddit. If an older text is used to build the set of

topics relating to popular posts, a newer text in a subreddit that has experienced a shift in

topic popularities may be inaccurately labeled.

Lastly, the human component must never be forgotten when conducting

popularity prediction research. Although explicitly prohibited by Reddit, it is possible

that cliques have formed within a subreddit to upvote each other’s posts or to downvote

those of people they do not like. Another issue is that users who are generally disliked by

the community (due to trolling behavior, consistent off-topic posts, or other factors) may

see their post downvoted quickly, regardless of the topics contained in the post. These

issues may have had a part in decreasing the accuracy of the classification models.

6.2 Further research

 Future research could try to reduce some of the limitations previously mentioned.

For example, future study could indicate how much of an effect a particular Redditor has

on the popularity of their own post. In addition, the comments of popular users in a

particular subreddit could be used to determine if a post is likely to be popular. This

research would expand on the study in [11] where the researchers looked at the role of

“mavericks” and “conformers” in swaying the popularity of online content. For example,

if a user has a consistent amount of upvoted comments for a subreddit, does his comment

50

on a particular post from a different user contribute to the post’s rise or downfall? If

commenters or posters can influence popularity of content, further study could determine

the degree to which it does.

 Another area of research could examine to what effect topics wax and wane in

popularity over time. That is, classification models could try to determine when a topic

begins to wane in popularity by tracking the scores associated with posts that contain that

topic. These models could also determine how much a reduction in topic popularity

correlates with a reduction in model accuracy.

 One last area of research could look at the effect of text on image-based posts or

“memes,” similar to the study conducted in [14] that examined how titles could influence

popularity on Reddit. While such a study would require more machine learning

processes in order to extract the text from the image or meme, pursuing such an endeavor

could be valuable considering that the subreddits with the most subscribers tend to be

image-based. One caveat is that memes and images tend to have a minimal number of

words, which may make prediction difficult. Such a study would be interesting in its

own right but could also be used for commercial endeavors in building recommender

systems and developing targeted advertising.

51

References

[1] Reddit.com, "reddit.com: about reddit", 2012. [Online]. Available:
https://www.reddit.com/about/. [Accessed: 20- Dec- 2015].

[2] P. Singer, F. Flock, C. Meinhart, E. Zeitfogel and M. Strohmaier, “Evolution of
Reddit: from the front page of the internet to a self-referential community?”, in 23rd
International "on World Wide Web, Seoul, South Korea, 2014, pp. 517-522.

[3] B. Yu, M. Chen and L. Kwok, “Toward predicting popularity of social marketing
messages.”, in 4th International Conference, SBP 2011, College Park, MD, 2011,
pp. 317-324.

[4] T. Weninger, X. Zhu and J. Han, “An exploration of discussion threads in social
news sites: a case study of the Reddit community.”, in 2013 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining,
Niagara Falls, ON, Canada, 2013, pp. 579-583.

[5] T. Misera, "metareddit - all about reddit", Metareddit.com, 2015. [Online]. Available:
http://metareddit.com. [Accessed: 20- Dec- 2015].

[6] A. Tatar, J. Leguay, P. Antoniadis, A. Limbourg, M. De Amorim and S. Fdida,

“Predicting the popularity of online articles based on user comments”, Proceedings
of the International Conference on Web Intelligence, Mining and Semantics - WIMS
'11, 2011.

[7] Reddit Help, "What constitutes vote cheating or vote manipulation?". [Online].
Available: https://reddit.zendesk.com/hc/en-us/articles/205192985. [Accessed:
20- Dec- 2015].

[8] Reddit.com, "reddit.com: api documentation", 2015. [Online]. Available:

https://www.reddit.com/dev/api#POST_api_vote. [Accessed: 20- Dec- 2015].

[9] Deimorz, "[reddit change] The logic for archiving posts has been changed slightly •

/r/changelog", reddit, 2014. [Online]. Available:
https://www.reddit.com/r/changelog/comments/25kvjo/reddit_change_the_logic_f
or_archiving_posts_has/. [Accessed: 20- Dec- 2015].

[10] A. Salihefendic, "How Reddit ranking algorithms work — Hacking and Gonzo",

Medium. [Online]. Available: https://medium.com/hacking-and-gonzo/how-
reddit-ranking-algorithms-work-ef111e33d0d9. [Accessed: 20- Dec- 2015].

[11] P. Yin, P. Luo, M. Wang and W. Lee, “A straw shows which way the wind

blows”, Proceedings of the fifth ACM international conference on Web search and
data mining - WSDM '12, 2012.

52

[12] G. Szabo and B. Huberman, 'Predicting the popularity of online content',
Communications of the ACM, vol. 53, no. 8, p. 80, 2010.

[13] E. Gilbert, “Widespread underprovision on Reddit”, Proceedings of the 2013
conference on Computer supported cooperative work - CSCW '13, 2013.

[14] H. Lakkaraju, J. J. Mcauley, J. Leskovec “What's in a name? Understanding the
interplay between titles, content, and communities in social media”. ICWSM, 2013.

[15] N. Barbieri, G. Manco, E. Ritacco, M. Carnuccio and A. Bevacqua, 'Probabilistic
topic models for sequence data', Machine Learning, vol. 93, no. 1, pp. 5-29, 2013.

[16] S. Siersdorfer, S. Chelaru, J. Pedro, I. Altingovde and W. Nejdl, 'Analyzing and
Mining Comments and Comment Ratings on the Social Web', ACM Trans. Web,
vol. 8, no. 3, pp. 1-39, 2014.

[17] J. Martineau, T. Finin, A. Joshi and S. Patel, “Improving binary classification on
text problems using differential word features”, Proceeding of the 18th ACM
conference on Information and knowledge management - CIKM '09, 2009.

[18] Z. Hu, J. Yao, B. Cui and E. Xing, “Community Level Diffusion Extraction”, in
2015 ACM SIGMOD International Conference on Management of Data,
Melbourne, AU, 2015, pp. 1555-1569.

[19] Redditmetrics.com, "New subreddits by date - reddit history", 2015. [Online].
Available: http://redditmetrics.com/history. [Accessed: 21- Dec- 2015].

[20] C. Claridge, 'Constructing a corpus from the web: message boards', in Corpus
Linguistics and the Web, 1st ed., M. Hundt, N. Nesselhauf and C. Biewer, Ed.
Amsterdam: Rodopi, 2006, pp. 87-108.

[21] Z. Ma, A. Sun and G. Cong, “Will this #hashtag be popular tomorrow?”,
Proceedings of the 35th international ACM SIGIR conference on Research and
development in information retrieval - SIGIR '12, 2012.

[22] F. Sebastiani, 'Machine learning in automated text categorization', CSUR, vol. 34,
no. 1, pp. 1-47, 2002.

[23] W. Zhang, T. Yoshida and X. Tang, 'A comparative study of TF*IDF, LSI and
multi-words for text classification', Expert Systems with Applications, vol. 38, no. 3,
pp. 2758-2765, 2011.

[24] T. Joachims, Text categorization with support vector machines. Dortmund: Dekanat
Informatik, Univ, 1997.]

[25] B. Trstenjak, S. Mikac and D. Donko, 'KNN with TF-IDF based Framework for
Text Categorization', Procedia Engineering, vol. 69, pp. 1356-1364, 2014.

53

[26] A. Ng, "Bias vs. Variance", https://www.coursera.org, 2011.

[27] A. Mccallum and K. Nigam, “A comparison of event models for naive Bayes text
classification” in AAAI-98 workshop on learning for text categorization, Madison,
WI, 1998.

[28] D. Blei, A. Ng and M. Jordan, “Latent Dirichlet Allocation”, in NIPS 2001,
Vancouver, British Columbia, CA, 2001.

[29] Q. Yuan, G. Cong and N. Thalmann, “Enhancing naive bayes with various
smoothing methods for short text classification”, Proceedings of the 21st
international conference companion on World Wide Web - WWW '12 Companion,
2012.

[30] N. Dewdney, C. Vaness-Dykema and R. Macmillan, “The form is the substance”,
Proceedings of the workshop on Human Language Technology and Knowledge
Management, 2001.

[31] S. Tong and D. Koller, 'Support vector machine active learning with applications to
text classification', Journal of Machine Learning Research, vol. 2, no. 2002, pp. 45-
66, 2002.

[32] K. Somasundaram and G. Murphy, “Automatic categorization of bug reports using
Latent Dirichlet Allocation”, Proceedings of the 5th India Software Engineering
Conference on - ISEC '12, 2012.

[33] S. Zeilikovitz, 'Using background knowledge to improve text classification', Ph.D,
Rutgers University, 2015.

[34] S. Jamali, 'Comment Mining, Popularity Prediction, and Social Network Analysis',
Master's of Science, George Mason University, 2006.

[35] P. Soucy and G. Mineau, “Beyond TFIDF weighting for text categorization in the
vector space model”, in Proceedings of the 19th international joint conference on
Artificial intelligence, Edinburgh, Scotland, 2005, pp. 1130-1135.

[36] M. Hundt, N. Nesselhauf and C. Biewer, Corpus linguistics and the web.
Amsterdam: Rodopi, 2007.

[37] H. Li and K. Yamanishi, 'Topic analysis using a finite mixture model', Information
Processing & Management, vol. 39, no. 4, pp. 521-541, 2003.

[38] D. Blei, “Probabilistic topic models”, Communications of the ACM, vol. 55, no. 4,
p. 77, 2012.

[39] A. Sun, E. Lim and Y. Liu, 'On strategies for imbalanced text classification using
SVM: A comparative study', Decision Support Systems, vol. 48, no. 1, pp. 191-201,

54

2009.

[40] S. Lu, D. Chiang, H. Keh and H. Huang, 'Chinese text classification by the Naïve
Bayes Classifier and the associative classifier with multiple confidence threshold
values', Knowledge-Based Systems, vol. 23, no. 6, pp. 598-604, 2010.

[41] M. Danilevsky, C. Wang, N. Desai, X. Ren, J. Guo and J. Han, “Automatic
Construction and Ranking of Topical Keyphrases on Collections of Short
Documents”, in SIAM International Conference on Data Mining, Philadelphia, PA,
2014, pp. 1-9.

[42] A. Ng, "Gradient Descent for Multiple Variables", https://www.coursera.org, 2011.

	Popularity Prediction of Reddit Texts
	Recommended Citation

	Microsoft Word - rohlin_tracy_thesis.docx

