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Figure 6. Bottom surface of the CFD model 

As can be seen, the model is very simple and resembles the model proposed by 

Feng and Xu [7] in Figure 3. As for the boundary conditions of the model, a newton 

cooling boundary (i.e., external thermal resistance) was applied to the top surface of the 

block object (opposite the surface of the heat source) while adiabatic edge conditions (i.e. 

heat flux is equal to zero) were applied to the remaining sides of the block. The external 

thermal resistance applied to the top surface of the plate can be thought of as the effective 

resistance that would be present if there was finned heat sink connected to the top surface 

of the plate. The ambient temperature and the thermal dissipation power (TDP) of the 

heat source were set equal to 0 C and 15 W, respectively. Recalling that thermal 

resistance is calculated as the difference in the maximum temperature and that of the 

ambient divided by the TDP, the ambient temperature as well as the TDP have no effect 

on the thermal resistance of thermal resistance of the heat sink as the value of the 

maximum temperature will simply fluctuate if these values are varied. 
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2.3.2.2 Mesh Setup and Analysis 

Due to the simple nature of the geometry of the developed model, a constant set 

of mesh controls was for the entirety of the model. Figure 7 shows the mesh control 

parameters that were used for the model. 

 

Figure 7: Mesh controls used for the model 

Figures 8-10 on the following pages show the resulting mesh that was generated 

using the meshing controls outlined in Figure 7. Figure 8 shows an isometric view of the 

mesh of the model. As can be seen, it is a very fine mesh that will result in a detailed 

temperature profile for the block element (heat spreader). Figures 9 and 10 show a z-x 

plane at the top surface of the model and a y-z cut plane through the model, respectively.  
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Figure 8. Isometric view of the mesh 

 

Figure 9. z-x plane view of the mesh 
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Figure 10. y-z cut plane view of the mesh 

In order to determine the appropriate element size that was chosen for the mesh 

controls (i.e. the maximum element size for the x, y, and z direction from Figure 7), a 

mesh analysis was conducted on the model. The model was run using different maximum 

element sizes in order to obtain the effect that a decrease in element size has on the 

desired output parameters. Table 1 shows the different element sizes that were chosen for 

the mesh analysis, as well as the resulting values for the number of elements, maximum 

temperature, and thermal resistance of the model. 

Table 1. Mesh analysis 

Max Element Size Number of Elements Max Temperature Thermal Resistance 
w/in Assembly (mm)  ⁰C ⁰C/W 

0.1 320000 23.68 1.579 
0.15 88445 23.75 1.583 
0.2 40000 23.79 1.586 
0.25 19200 23.82 1.588 
0.35 9747 23.71 1.581 
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Based on the data in Table 1, a max element size of 0.2 mm was chosen for the 

model as it significantly reduced the number elements as well as kept the minimum 

volume of the mesh elements at an acceptable value, with negligible loss in accuracy 

(ANSYS recommends a minimum element volume of 1e-13 m3; using a maximum 

element size of 0.2 mm resulted in a minimum volume of 8e-12 m3 [11]). Table 2 shows 

the percent difference in the calculated values for the maximum temperature and thermal 

resistance for a 0.2 mm maximum element size vs a 0.1 mm maximum element size, that 

is 

݁ݎݑݐܽݎ݁݌݉݁ܶ	݉ݑ݉݅ݔܽܯ	݊݅	݁ܿ݊݁ݎ݂݂݁݅ܦ	% ൌ ଴ܶ.ଶ	௠௠ െ ଴ܶ.ଵ	௠௠

଴ܶ.ଶ	௠௠
 

݁ܿ݊ܽݐݏ݅ݏܴ݁	݈ܽ݉ݎ݄݁ܶ	݊݅	݁ܿ݊݁ݎ݂݂݁݅ܦ	% ൌ
ܴ଴.ଶ	௠௠ െ ܴ଴.ଵ	௠௠

ܴ଴.ଶ	௠௠
 

Table 2. Solution results comparison of 0.2 mm vs. 0.1 mm max element size 

Using Max Element Size of 0.2 mm vs 0.1 mm  
Reduction in the Number of Elements 88% 

% Difference in Max Temperature 0.46% 
% Difference in Thermal Resistance 0.46% 

 

As can be seen from Table 2, the difference between using a 0.1 mm max element 

and 0.2 mm max element size is negligible (less than 0.5%). However, the reduction in 

the number of elements is significant, thereby reducing the runtime for each solution run. 

As a result of this analysis, it was concluded that using 0.2 mm as the maximum element 

size will provide sufficient accuracy for the developed CFD model. 
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In order to check the quality of the generated mesh, Icepak offers two quality 

check features: face alignment and skewness of the mesh. Face alignment is measured as 

the deviation from the perfect face alignment of 90 degrees of two adjacent planes [11]. 

Skewness determines how close to an ideal shape (equilateral or equiangular), a face or 

cell is [11]. In order to obtain convergence and accurate results, ANSYS recommends 

that the face alignment value be greater than 0.15 (a value of 1.0 is perfect) and the 

skewness value should be greater than 0.2 (a value of 1.0 is perfect) [11]. Figure 11 

shows the face alignment (left) and skewness (right) quality check for the generated mesh 

(the y-axis represents the number elements and the x-axis represents the face alignment 

value). As can be seen, due to the geometry of the model both the face alignment and 

skewness values are exactly 1.0 for all elements within the model, which is an excellent 

mesh and, therefore, will provide accurate results. 

 

Figure 11. Face alignment (left) and skewness of the mesh (right) 

Lastly, Icepak offers a built-in macro function called the automatic case check 

tool which searches the model for any possible errors that have the potential to cause 
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inaccuracies when solving the model. The automatic case check tool was run on the 

above model; and no errors were found. 

2.3.2.3 Solution Setup 

Figure 12 shows the solution setup parameters used for the model. The solution 

was run using a steady state analysis with the only solution variable being temperature, as 

solving for velocity was unnecessary as there was no fluid flow within the model. As a 

result of the cabinet being identical in size to the model, it was also unnecessary to solve 

for both natural convection and radiation.  

 

Figure 12. Solution controls used for the model 
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Figure 13 shows the convergence criteria used for the model. Convergence 

criteria are used to determine acceptable solution residuals, which are an indication of the 

numerical error within a model, the lower the residual value the less error that exists 

within the model [12]. The only criteria that is of concern for the current model is energy 

(due to there being no flow within the model), which was set to 1e-7. It is generally 

accepted that solution residuals of 1e-4 are considered loosely converged, while solution 

residuals greater than 1e-6 are considered tightly converged [12].  Also, the maximum 

number of iteration was set to 100 for the model. 

 

Figure 13. Convergence criteria used for the model 

Based on the parameters outlined in Figures 12 and 13, Figure 14 shows the 

solution residuals for an individual solution run of the developed CFD model. Due to 

their being no fluid flow within the model the only solution residual present is energy 

which is represented by the red line. It can be seen from Figure 14 that using the 
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convergence criteria outlined in Figure 13 the model converged within six iterations out 

of an allowable 100. 

 

Figure 14. Solution residuals 

2.3.2.4 Calculation of Thermal Spreading Resistance using the CFD Model 

Recall from Section 2.2 that Feng and Xu stated that the total thermal resistance 

of the heat sink can be calculated as  

ܴ௧ ൌ
௠ܶ௔௫

ܳ
ൌ ܴ௦ ൅ ܴ௠ ൅ ௙ܴ						 
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Where Tmax is the difference between the maximum temperature of the heat sink and the 

ambient temperature, Q is the total heating power from the heat source, Rm is the material 

thermal resistance, Rs is the thermal spreading resistance, and Rf  is the external thermal 

resistance. 

For each run of the CFD model, the thermal resistance was calculated as 

ܴ௧ ൌ
்೘ೌೣ,೓೐ೌ೟ೞ೔೙ೖ

ொ
						ሺ2.3.2.4.1ሻ	

Where the ambient temperature is set equal to zero. The ambient temperature has no 

effect on the resistance of heat sink as long as the external heat transfer coefficient 

remains constant. As a result the ambient temperature was set equal to zero simply out of 

convenience. Using Equation 2.3.2.4.1, the thermal spreading resistance was calculated 

by running two separate solutions for each desired combination of geometry. The first 

trial was used to calculate the resistance of the heat sink with the area of the heat source 

set equal to the heat sink base area (Figure 15, right on the following page), and the 

second trial was used to calculate the thermal resistance with the area of the heat source 

set equal to the desired area for the given trial (Figure 15, left on the following page). 
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Figure 15. Heat source not equal to baseplate area (left), heat source equal to 
baseplate area (right) 

Recalling that spreading resistance only occurs when the heat source is of 

dissimilar area than that of the heat sink base plate, this technique can be used to 

calculate the thermal spreading resistance for a given geometric setup by calculating the 

difference between the two trials, that is 

ܴ௦ ൌ ܴ௧,஺ೞஷ஺್ െ ܴ௧,஺ೞୀ஺್									ሺ2.3.2.4.2ሻ	

Where Ab is the area of the base plate and As is the area of the heat source. Since 

the only difference between the two trials is the area of the heat source, the increase in 

total thermal resistance between the two values can be attributed to spreading resistance. 

In order to generalize the results, Rs was then be non-dimensionalized using the equation 

presented by Feng and Xu, that is 

Ψ ൌ ݇ඥܣ௦ܴ௦							ሺ2.3.2.4.3ሻ 

Where k is the thermal conductivity of the material and As is the area of the heat source. 
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The above method eliminates the need to calculate individual values for the 

material and external thermal resistances as they will remain constant for a given 

parametric trial regardless of the area ratio of the heat source and baseplate. The method 

outlined in this section was used to calculate spreading resistance of all parametric trials.  

2.3.2.5 Benchmarking the CFD Model 

 
In order to assess the validity of the developed CFD model it was necessary to 

benchmark it against the results obtained by Feng and Xu [7]. In order to accomplish this, 

an algorithm was developed, using Python programming (Python is a programing 

language that is commonly used for mathematical operations), that solves the analytical 

solution outlined in Section 2.2 (Refer to Appendix A for the developed Python script.). 

Using the developed algorithm, a few benchmark cases were conducted, and the results 

were compared to those obtained via the CFD model. 

Figure 16 shows the results of both the developed CFD model and the solution 

derived by Feng and Xu (obtained via the Python algorithm) for a parametric analysis 

varying the heat source/heatsink side length ratio for multiple external resistance values 

(legend for Figure 16-18: CFD represents the results found using the CFD model; Feng 

represents the results obtained via Feng and Xu analytical solution). As can be seen, the 

results agree extremely well with the analytical closed form solution; in most cases the 

difference between the two values is within ± 1 %. 
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Figure 16. Analytical Results vs CFD results for varying side length ratios and Biot numbers 

 Similar to Figure 16, Figure 17 shows the results of a parametric analysis varying 

the non-dimensional base thickness for both the CFD model and the results obtained 

using the Python algorithm that models the analytical solution derived by Feng and Xu. 

Again, it can be seen that the results agree very well with the analytical model, in most 

cases the error is within ± 2 %. 
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Figure 17. Analytical Results vs CFD results for varying base thicknesses and Biot numbers 

Similar to the previous two Figures, Figure 18 shows the results of a parametric 

analysis varying the aspect ratio of the heat sink base plate for both the CFD model and 

the analytical solution derived by Feng and Xu. Once again, it can be seen that the results 

are in excellent agreement with the analytical model; in most cases the error is within ± 

0.5 %.  
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Figure 18. Analytical Results vs CFD results for varying aspect ratios and Biot numbers 

Based on the results from Figures 16-18, it was concluded that the developed 

CFD model accurately models the solution setup presented by Feng and Xu, as the results 

are shown to be in excellent agreement with the analytical solution. Therefore, the 

developed CFD model was used for the present study. 

2.4 Development of the Parametric Analysis  

In order to analyze the effect that certain heat sink parameters have on the thermal 

spreading resistance of the heat sink multiple parametric studies were conducted that 
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varied the heat sink base plate thickness, heat source/base plate side length ratio, heat 

sink material (i.e., thermal conductivity), external thermal resistance (Biot number), and 

heat sink base plate aspect ratio. Each parametric study varied one of the previously 

stated parameters, while all remaining parameters were held constant using a baseline set 

of parameters (refer to Table 3 for these baseline values). Also, each parametric study 

was conducted multiple times with varying external thermal resistance values in order to 

obtain a set of curves that show the effect that an individual parameter, as well as the 

external thermal resistance, has on the spreading resistance within a heat sink. The 

external thermal resistance was varied by changing the Biot number of the heat sink, 

namely the external heat transfer coefficient at the top surface of the plate (Refer back to 

Section 2.2 for the definition of the Biot number). 

Table 3: Baseline set of parameters 

Parameter Value 
Non-Dimensional Base Thickness (τ) 0.08 

Heat Source/Base Plate Side Length Ratio (γ) 0.2 
Aspect Ratio (α) 1.0 
Thermal Dissipation Power (W) 15 
Heat Sink Material (conductivity W/m-k) Al-2024-T6 (177) 
Ambient Temperature (⁰C) 0 

 

Referring to Figure 19 on the following page, the non-dimensional base thickness, 

τ, can be defined as twice the base thickness divided by the side length of the heat sink 

base plate or 

߬ ൌ
ݐ2
ܺ

 



 
 

34 
 

 

Figure 19. non-dimensional base thickness 

Referring to Figure 20, the aspect ratio can be defined as the ratio of the two side 

lengths of the heat sink, 

݋݅ݐܽݎ	ݐܿ݁݌ݏܽ ൌ ߙ ൌ
ܺ
ܻ

 

 

Figure 20. Aspect ratio of the heat spreader 

Referring again to Figure 20, the heat source/base plate side length ratio can be 

defined as the side length of the heat source divided by the side length of the base plate, 

ߝ ൌ ଵܺ

ܺ
ߛ	݀݊ܽ ൌ ଵܻ

ܻ
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For all the parametric studies, ε will equal γ, that is  

ଵܺ

ܺ
ൌ ଵܻ

ܻ
 

However, using the data gathered form the parametric studies where ε and γ are 

equal, a correlation will be developed that will allow for ε and γ to differ from one 

another. Also, for the parametric study varying the aspect ratio, only one side of the heat 

sink, X, will be varied in order to create a change in the aspect ratio of the heatsink while 

the remaining side, Y, is held at a constant value.  

A constant thermal dissipation power (TDP) was used to represent the heat source 

as opposed to a constant heat flux due to the fact that when conducting the parametric 

study for the heat source/heat sink area ratio, a heat flux value would need to have been 

varied along with the area ratio in order to keep a constant total power being supplied by 

the heat source. The ambient temperature was set as 0 ⁰C so that the thermal resistance 

can be easily calculated as the maximum temperature in the source plan divided by the 

TDP. It was observed that any change in the TDP or the ambient temperature had no 

effect on the thermal spreading resistance or the overall heat sink resistance and, 

therefore, these were set as constants. 

Table 4 on the following page shows the variation range that was developed for 

each of the parameters stated above that will be used to conduct the parametric trials 

using the CFD model. 
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Table 4. Variation of parameters 

Base Thickness Heat Source/Base Plate Material Aspect Ratio Biot Number 
τ Side length Ratio ε (conductivity) α ht/k 

0.04 0.05 Al-Diecast (100) 1 0.113 
0.06 0.1 Al-6061-T4 (154) 1.5 0.0565 
0.08 0.15 Al-6061-T6 (167) 2 0.0377 
0.1 0.2 Al-2024-T6 (177) 2.5 0.0282 
0.12 0.25 Al-Extruded (205) 3 0.0226 
0.15 0.3 Al-6063-T5 (209) 4 0.0188 
0.2 0.35 Al 1100 (218) 5 0.0161 
0.25 0.4 Al-Pure (240) 6 0.0141 
0.3 0.45 Cu-Pure (387.6) 7 0.0113 
0.35 0.5 Cu-Pure-ref (401) 8 0.0075 
0.4 0.55 - 9 0.00565 
0.5 0.6 - 10 0.00452 
0.6 0.7 - - 0.00377 
0.7 0.8 - - 0.00283 
0.8 0.9 - - 0.00226 
0.9 1 - - 0.00161 
1.0 - - - 0.00113 

 

The materials that were used for the parametric study were chosen based on two 

factors. One, all of the materials used for the parametric study can be found in the 

ANSYS Icepak material library, thereby, eliminating the need to create new material 

profiles; and secondly,, the materials offer a wide range of thermal conductivity (from 

100-401 W/m2-K), which is necessary to see the effects that thermal conductivity has on 

the thermal spreading resistance.  

2.5 Development of an Empirical Correlation for Spreading Resistance 

For each parametric study the output values for the total thermal resistance were 

inserted into Excel and, using the method outlined in Section 2.3.2.4, the non-
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dimensional thermal spreading resistance was calculated for all solution runs. The results 

were then graphed using Excel, and then, via extensive data analysis, a set of equations 

were developed that calculates the non-dimensional thermal spreading resistance of a 

heat sink as a function of the geometric and thermal characteristics of the heat sink. The 

results of all the parametric studies our presented in the following section 

3.0 RESULTS AND DISCUSSION 

3.1. CFD Results  

Figures 21-23 show temperature contour plots for an isometric view, the z-x plane 

at the bottom surface of the heat sink base plate (red hatched square represents the heat 

source), and a z-x cut plane, respectively, of the CFD model results for the base case set 

of parameters outlined in Table 3. As would be expected, it can be seen from these 

figures that the temperature decreases as the distance from centroid of the plate increases. 

Recalling the definition of spreading resistance from Section 1.1, this non-uniform 

temperature distribution is the result of spreading resistance. Due to this non-uniform 

temperature profile, the overall thermal resistance of the plate increases.  
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Figure 21. Isometric view of temperature contour plot (ε = 0.2) 

 

Figure 22. z-x-plane view of temperature contour plot (ε = 0.2) 
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Figure 23. x-y cut plane of temperature contour plot (ε = 0.2) 

 To demonstrate this increase in overall thermal resistance, the overall resistance 

as well as the spreading resistance was calculated for the base case scenario shown in 

Figures 21-23, using the method outlined in Section 2.3.2.4. Recalling from Section 

2.3.2.4, in order to calculate the spreading resistance, the CFD model needs to also be run 

with the heat source area equal to the base plate area. Figure 24 shows an isometric view 

of the temperature contour plot for such a case, using the baseline set of parameters. As 

would be expected, this situation produces a uniform temperature profile within the heat 

sink base plate, which results in a lower overall thermal resistance. 
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Figure 24. Isometric view of temperature contour plot (ε = 1.0) 

 Recalling Section 2.3.2.4, the thermal resistance of both cases can be calculated as 

ܴ௧ ൌ
௠ܶ௔௫,௛௘௔௧௦௜௡௞ െ ௔ܶ௠௕௜௘௡௧

ܳ
 

Where the ambient temperature in the above equation was set equal to zero 0C and the 

maximum temperature was located at the centroid of the heat source in the source plane. 

Therefore, 

ܴ௧@ఌୀ଴.ଶ ൌ
23.82	Ԩ െ 0Ԩ

15	ܹ
ൌ 1.59	

Ԩ
ܹ

 

And 

ܴ௧@ఌୀଵ.଴ ൌ
4.67	Ԩ െ 0Ԩ

15	ܹ
ൌ 0.31	

Ԩ
ܹ
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Recalling that the spreading resistance can be calculated as the difference of the 

two previously calculated values, the thermal spreading resistance for the base case 

scenario can be calculated as 

ܴ௦ ൌ ܴ௧@ఌୀଵ.଴ െ ܴ௧@ఌୀ଴.ଶ ൌ 1.59 െ 0.31 ൌ 1.28	
Ԩ
ܹ

 

In order to make these results more universal, the values for thermal spreading 

resistance can be non-dimensionalized, again using the method outlined in Section 

2.3.2.4, that is 

Ψ ൌ ݇ඥܣ௦ܴ௦ ൌ ൬177
ܹ
݉Ԩ

൰ቀඥ. 004ଶ	݉ቁ 1.28
Ԩ
ܹ

ൌ 0.906 

 The same calculation was performed for all solution runs of the CFD model, and 

the results in the following section have all been non-dimensionalized using this method. 

3.2. Parametric Analysis Results 

3.2.1. Base Thickness Variation 

Figure 24 shows the results of the parametric analysis varying the non-

dimensional base thickness of the heat sink base plate at varying Biot numbers (i.e. 

external thermal resistance at the top surface of the plate). For each individual curve in 

Figure 25, the heat transfer coefficient as well as the thermal conductivity of the material 

were held constant while the base thickness was varied. However, since the Biot number 

is also a function of the base thickness, the Biot number will vary as the non-dimensional 

base thickness changes (refer to Section 2.2. for the definition of the Biot number). As a 
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result, the values of the Biot number stated in the legend of Figure 24, were calculated 

with  

ݐ ൌ 0.04 ∗
ܺ
2

 

 

Figure 25. Parametric analysis results for the base thickness variation 

The most intriguing result of Figure 25 is that as the non-dimensional base 

thickness increases beyond approximately 0.4, the non-dimensional spreading resistance 

becomes independent of both the Biot number and the non-dimensional base thickness 

and solely becomes a function of the side length ratio of the heat source and heat sink as 
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well as the aspect ratio. This result will be helpful in correlating the data into a useful 

equation for the thermal spreading resistance. It can also be seen that as the Biot number 

decreases (i.e. external resistance increases), the non-dimensional spreading resistance 

increases.  

3.2.2. Side Length Ratio Variation 

Figure 26 shows the results of the parametric analysis varying the side length ratio 

of the heat source and the heat sink at varying Biot numbers.  

 

Figure 26. Parametric analysis results for the side length ratio variation  
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 As can be seen, for all values of the Biot number the non-dimensional spreading 

resistance collapses to zero when the side length ratio is equal to one. This result follows 

the definition for spreading resistance, as spreading resistance should only be present 

when the heat source and heat sink are of differing areas. Also, similar to Figure 25, the 

non-dimensional spreading resistance increases as the Biot number decreases. Figure 26 

also shows that, depending on the Biot number, the non-dimensional spreading resistance 

peaks between ε = 0.2 and ε =0.35. However, due to the dependence on the square root of 

the heat source area in the conversion from the non-dimensional spreading resistance to 

the actual spreading resistance (recall equation 2.3.2.4.3), the shape of the curves in 

Figure 26 change significantly when graphed for the dimensional values. Figure 27 

shows the dimensional spreading resistance as a function of the side length ratio of a 

specific solution run of the CFD model. 

 

Figure 27. Dimensional spreading resistance vs. side length ratio 
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As is evident, Figure 27 differs significantly from Figure 26 in that the 

dimensional spreading resistance continually decreases as the side length ratio increases, 

ultimately trending to zero as the side length ratio goes to 1.0. This is as expected due to 

the fact that as the difference in area between the heat source and heat sink base plate 

decreases, the change in heat flow direction within the heat sink base plate is less severe 

therefore, reducing the thermal spreading resistance of the heat sink. 

3.2.3. Aspect Ratio Variation 

Figure 28 shows the results of the parametric analysis varying the aspect ratio of 

the heat sink at varying Biot numbers.  

 

Figure 28. Parametric analysis results for the aspect ratio variation 
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 As Figure 28 shows, the shape of the curve for the non-dimensional spreading 

resistance changes as a function of the Biot number. At higher Biot number values the 

non-dimensional spreading resistance decreases with increasing aspect ratio. However, at 

lower Biot number values the non-dimensional spreading resistance increases with 

increasing aspect ratio. Due to the nature of how this particular parametric study was 

conducted, the surface area of the top surface of the heat spreading increased as the 

aspect ratio was increased, which in trun decreased the overall thermal resistance of the 

heat spreader. At higher Biot values, this decrease in heat sink resistance significantly 

increased the amount of heat the top surface of the heat sink could dissipate, therefore 

decreasing its spreading resistance. However, at lower Biot number values the external 

resistance is significantly higher, therefore reducing the amount of heat that can be 

dissipated to the environment which increase the amount of heat that must flow within 

the heat sink, as a result increasing its spreading resistance. To illustrate this Figure 29 on 

the following page shows the dimensional spreading resistance for a high and low Biot 

number. 
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Figure 29. Dimensional spreading resistance vs. aspect ratio 
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Figure 30. Parametric analysis result for the Biot number variation 
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2.3.2.4.3. However, a single parametric study was conducted in order to show the effect 

that thermal conductivity has on spreading resistance. Figure 31 shows the dimensional 

spreading resistance vs. the thermal conductivity of the material. 

 

Figure 31. Parametric analysis result for the material variation 
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equations were developed that can be used to more easily calculate the thermal spreading 

resistance within a heat sink. The following equations were developed using extensive 

curve fitting analysis in Excel. Equation 3.3.1, along with its coefficients in equations 

3.3.2 – 3.3.4, can be used to calculate the non-dimensional spreading resistance for the 

stated ranges of the side length ratio (ε), non-dimensional base thickness (τ), and the Biot 

number (Bi) stated under the various coefficients. 

Ψ ൌ kܴ௦ඥܣ௦ ൌ Θ ∗ ሺ1 െ Εሻ ∗ T											ሺ3.3.1ሻ 

Where 

Θ ൌ 0.7723 െ ∗݅ܤ129.4
ଷ ൅ ∗݅ܤ29.956

ଶ െ  ሺ3.3.2ሻ								∗݅ܤ2.996

0.032		݄ݐ݅ݓ ൑ ∗݅ܤ ൑ 0.00113 

and 

Ε ൌ ସߝ4.9006 െ ଷߝ14.482 ൅ ଶߝ16.385 െ ߝ6.015 ൅ 0.2575						ሺ3.3.3ሻ 

	0.05				݄ݐ݅ݓ ൑ ߝ ൑ 1.0 

and 

Τ ൌ 0.1536߬ି.଻ଶ଼൫ሺ5.6119݁ି଼.ଵଶଽఌሻ߬ ൅  ሺ3.3.4ሻ					ଵଷ଻଻൯.ߝ1.1214

0.1				݄ݐ݅ݓ ൑ ߬ ൏ 0.4 

Due to the nature of how equations 3.3.3 and 3.3.4 were developed, the variable 

 ,must be calculated as ∗݅ܤ

∗݅ܤ ൌ
݄ ∗ .04 ∗ ܺ

݇
								ሺ3.3.5ሻ 
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Where h is the external heat transfer coefficient of the heat sink, X is the side length of 

the heat sink, and k is the thermal conductivity of the heat sink (Note, the actual Biot 

number may vary from Equation 3.3.5). 

 In order to better understand the purpose of the different coefficients in Equations 

3.3.2 – 3.3.4 it would be beneficial to graph each coefficient as a function of its parameter 

(i.e. Θ is a function of the Biot number, E is a function of the side length ratio, and T is a 

function of the non-dimensional base thickness). The Purpose of Equation 3.3.2 is to 

account for the effects that the Biot number has on the thermal spreading resistance. 

Figure 32 shows the result of graphing Equation 3.3.2 over the valid range of the Biot 

Number.  

 

Figure 32. Equation 3.3.2 vs. Biot Number 
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It can be clearly seen that the resulting graph is very similar in shape to Figure 30 

which showed the results of the parametric study varying the Biot number. This similarity 

between the two graphs is the result of Equation 3.3.2 being developed in order to 

compensate for the effects that the Biot number has on the spreading resistance. Figure 

30 shows that as the Biot number increases the non-dimensional spreading resistance 

decreases. Similarly, Figure 32 shows that as the Biot number increases the resulting 

value of Equation 3.3.2 decreases and therefore, via Equation 3.3.1, the non-dimensional 

spreading resistance decreases. 

Similar to Figure 32, Figure 33 shows the results of graphing Equation 3.3.4 over 

the valid range of the side length ratio. 

 

Figure 33. Equation 3.3.2 vs. Side Length Ratio 
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Once again, Equation 3.3.3 follows the same trend as the results of the parametric 

trial varying the side length ratio (Figure 26). As one might expect, the similarity between 

Figures 26 and 33 is a result of Equation 3.3.3 being developed in order to compensate 

for the effects that the side length ratio has on the spreading resistance. 

 Lastly, Equation 3.3.4 is a function of the non-dimensional base thickness and the 

side length ratio and its main function is to account for the effects that the non-

dimensional base thickness has on the thermal spreading resistance. Figure 34 shows the 

results of graphing Equation 3.3.4 over the valid range of the non-dimensional base 

thickness (Note: although Equation 3.3.4 depends on the side length ratio as well, a 

constant value for the side length ratio was used in order to illustrate what Equation 3.3.4 

accomplishes). 

 

Figure 34. Equation 3.3.2 vs. Non-dimensional Base Thickness 
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As can be seen, Equation 3.3.4 follows the same trend as the results of the 

parametric trial varying the non-dimensional base thickness (Figure 25). Again, this 

similarity arises out of the fact that Equation 3.3.4 is used to compensate for the effects 

that the non-dimensional base thickness has on the thermal spreading resistance. 

Recalling Figure 25, it was shown that as the non-dimensional base thickness 

increases beyond about 0.4, the non-dimensional spreading resistance became 

independent of both the Biot number and the non-dimensional base thickness. As a result, 

the spreading resistance becomes only a function of the side length ratio of the heat 

source and heat sink, as well as the aspect ratio. Using this insight, Equation 3.3.6 was 

developed which calculates the non-dimensional spreading resistance solely as a function 

of the side length ratio for non-dimensional base thickness values greater than or equal to 

0.4 and with an aspect ratio of 1.0. 

Ψ ൌ kܴ௦ඥܣ௦ ൌ ଶߝ0.0362 െ ߝ0.6045 ൅ 0.5655								߬ ൒ 0.4												ሺ3.3.6ሻ 

 Noting from Equations 3.3.3 - 3.3.4 as well as 3.3.6, the side length ratio is held 

constant for both side of the heat source (i.e. ε = γ from Section 2.4). However, this 

situation may not always be the case and, as a result, it is necessary to be able to calculate 

the spreading resistance when these two variables differ from one another. It was found 

that the spreading resistance of a heat sink with differing ε and γ values can be easily 

calculated using the following relationship 

Ψக,ஓ ൌ
Ψக ൅ Ψஓ

2
														ሺ3.3.7ሻ 
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Where Ψக is the non-dimensional spreading resistance calculated via either Equation 

3.3.1 or 3.3.6 (depending on the geometric characteristics of the heat sink) with the ε 

variable in those equations set to the desired ε value. Similarly, Ψஓ is the non-

dimensional spreading resistance calculated via either Equation 3.3.1 or 3.3.6 with the ε 

variable in those equations changed to the desired γ value.  

 Equations 3.3.1 and 3.3.6 present a significant reduction in complexity when 

compared to the analytical solution developed by Feng and Xu. The current solution 

employs only polynomial, power, and exponential functions in order to calculate the 

spreading resistance whereas the solution proposed by Feng and Xu contains infinite and 

double infinite sums with very complex coefficients. The current solution can be easily 

solved by anyone with a working knowledge of Excel, whereas the solution by Feng and 

Xu takes significantly more effort to solve.  

 As can be seen, equations 3.3.1 – 3.3.6 do not take into account the aspect ratio of 

the heat sink (i.e. β). Unfortunately, a discernable correlation for the aspect ratio was 

unable to be found. Further analysis of the data is suggested in order to find this 

correlation and further increases the usability of the developed equations. The following 

Section shows a comparison between the developed empirical equation and the analytical 

solution proposed by Feng and Xu. 

3.4. Comparison of Developed Empirical Equation with the Analytical Solution 

In order to verify that Equations 3.3.1 – 3.3.6 will accurately calculate the non-

dimensional spreading resistance, it is necessary to compare the developed empirical 



 
 

56 
 

equations with the analytical solution proposed by Feng and Xu. As a result, Figures 35-

41 on the following pages show multiple comparisons of the analytical solution and 

Equation 3.3.1 at various combination of the Biot number, non-dimensional base 

thickness, and the side length ratio (the analytical solution was again solved using the 

Python script outlined in Appendix A). Figures 35-39 show a variation in the side length 

ratio of the heat source and heat sink for various combinations of the non-dimensional 

base thickness and the Biot number, while Figures 40 and 41 show a variation in the non-

dimensional base thickness at different side length ratios and Biot numbers.  For each 

Figure below, the stated Biot number is calculated via Equation 3.3.5 (the actual Biot 

number of the heat sink may vary when using the equations).  

 

Figure 35. Comparison of Equation 3.3.1 for τ = 0.1 and Bi = 0.025 
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Figure 36. Comparison of Equation 3.3.1 for τ = 0.15 and Bi = 0.0158 

 

Figure 37. Comparison of Equation 3.3.1 for τ = 0.2 and Bi = 0.009 
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Figure 38. Comparison of Equation 3.3.1 for τ = 0.3 and Bi = 0.0036 

 

Figure 39. Comparison of Equation 3.3.1 for τ = 0.35 and Bi =0.00113 
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Figure 40. Comparison of Equation 3.3.1 for ε = 0.2 and Bi = 0.025 

 

Figure 41. Comparison of Equation 3.3.1 for ε = 0.7 and Bi = 0.009 
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As can be seen from the previous figures, Equation 3.3.1 agrees extremely well 

with the stated analytical solution over the range of acceptable values. In most cases, the 

error between Equation 3.3.1 and the analytical solution are within ± 5%, with a 

maximum error of around 10 – 12% when the values for the non-dimensional spreading 

resistance approach zero. However, as the non-dimensional spreading resistance 

approaches zero, its effect on the overall thermal performance of a heat sink are greatly 

reduced and, therefore, these larger errors will not have a significant effect on the 

analysis of a heat sink as the spreading resistance will become negligible at these lower 

values. As a result of the above analysis, it was concluded that Equation 3.3.1, along with 

its coefficients in Equations 3.3.2 – 3.3.4, accurately calculates the non-dimensional 

spreading resistance over the stated range of parameters. 

 A similar analysis was done in order to compare Equation 3.3.6 with the solution 

proposed by Feng and Xu. Figure 42 shows the comparison of analytical solution with 

Equation 3.3.6 for non-dimensional base thickness values at opposite ends of the 

acceptable range (i.e. τ = 0.4 and τ = 0.9). 
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Figure 42. Comparison of Equation 3.3.6 for τ = 0.4 and 0.9  

 As can be seen, the change in values from τ = 0.4 and τ = 0.9 using the analytical 

solution is negligible, and Equation 3.3.6 is sufficiently accurate in calculating the non-
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 Lastly, in order to verify the relationship stated in Equation 3.3.7, an analysis was 

conducted that compared Equation 3.3.7 with the analytical solution at various 

combinations of ε, γ, τ, and Biot number (both Equations 3.3.1 and 3.3.6 were used in 

this analysis). Table 5 shows the results of this analysis. 

Table 5. Empirical Equation vs. Feng and Xu analytical solution for various 
combinations of when ε ≠ γ 

ε γ τ Bi ψ Feng % Difference 
0.1 0.9 0.1 0.0294 0.4419 0.4444 -1% 
0.15 0.85 0.12 0.0225 0.4629 0.4651 0% 
0.2 0.8 0.15 0.0181 0.4459 0.4431 1% 
0.25 0.75 0.18 0.0158 0.4226 0.4219 0% 
0.3 0.7 0.21 0.011 0.4027 0.4000 1% 
0.35 0.65 0.25 0.0081 0.3705 0.3688 0% 
0.4 0.6 0.28 0.00542 0.3465 0.3508 -1% 
0.45 0.55 0.32 0.00407 0.3185 0.3289 -3% 
0.5 0.5 0.35 0.00316 0.3195 0.3156 1% 
0.2 0.8 0.6 0.0181 0.276 0.2581 6% 
0.3 0.7 0.9 0.009 0.274 0.2576 6% 

 

As can be seen, the relationship in Equation 3.3.7 in conjunction with either 

Equation 3.3.1 or 3.3.6 (depending on the chosen parameters) agrees extremely well with 

the analytical solution with a maximum error for the tested values of about 6%. Based on 

this analysis, it was concluded that the relationship in Equation 3.3.7 can accurately 

calculate the non-dimensional spreading resistance for heat sources with dissimilar side 

length ratios, ε and γ.  

 Based on the above analysis it was concluded that Equations 3.3.1 – 3.3.7 can be 

used to accurately calculate the non-dimensional spreading resistance over the stated 

range of parameters. The developed equations provide a significant reduction in 
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complexity when compared to the analytical solution, and can be easily used to calculate 

the spreading resistance in a heat sink when conducting a thermal analysis. Similar to the 

code developed to solve the analytical solution, a Python script was written that will take 

a set of input parameters (i.e., ε, γ, τ, h, k, and the side length of the heat sink) and 

calculate the non-dimensional spreading resistance based on Equations 3.1.3 – 3.3.7 (see 

Appendix B for the developed Python script). 
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4.0   CONCLUSION 

A CFD model was developed that was shown to be in excellent agreement with 

the analytical solution proposed by Feng and Xu (with an error of ± 2% for most cases). 

Using this model, a set a parametric studies was conducted that varied the base thickness, 

side length ratio, aspect ratio, thermal conductivity of the material, and the external 

thermal resistance (i.e., Biot number variation) in order to obtain the effect they have on 

the thermal spreading resistance. Based on the data collected from these parametric 

studies, a set of empirical equations was developed that can be used to accurately 

calculate the non-dimensional spreading resistance within a heat sink. The equations were 

shown to be accurate to within ± 5% in most cases and provide a significant reduction in 

complexity over previously derived analytical solutions. However, further study is 

suggested in order to develop a correlation for the aspect ratio in order to make the 

developed solution applicable for heat sinks aspect ratios other than one. 
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APPENDIX A. Python Script for Feng and Xu Analytical Solution 

def Feng(paramValues, parameter): 
    results_nd = [] 
    results_d = [] 
    print('\n\nEnter values for the constant parameters: ') 
    while True:  
        try: 
             print('\n!!Enter negative one (-1) for %s!!' 
%parameter) 
             t = float(input('\t Please enter a value for 
Tau: ')) 
             g = float(input('\t Please enter a value for 
gamma: ')) 
             e = float(input('\t Please enter a value for 
epsilon: ')) 
             bi = float(input('\t Please enter a value for 
the Biot Number: ')) 
             As = float(input('\t Please enter the surface 
area of the heat source (m^2): ')) 
             k = float(input('\t Please enter the thermal 
conductivity of the heat sink material (W/m-k): ')) 
        except ValueError: 
            print('\n') 
            print("Last entry was invalid") 
            continue 
        else: 
            break 
            
    for i in range(0,15): 
        if parameter.lower() == '1': 
            t = paramValues[i] 
        elif parameter.lower() == '2': 
            b = paramValues[i] 
        elif parameter.lower() == '3': 
            g = paramValues[i] 
        elif parameter.lower() == '8': 
            e = paramValues[i] 
        elif parameter.lower() == '4': 
            bi = paramValues[i] 
        elif parameter.lower() == '5': 
            As = paramValues[i] 
        elif parameter.lower() == '6': 
            k = paramValues[i] 
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        b = 1 
        Cm0 = 0 
        for m in range(1,101): 
            import math 
            w = (t * m * math.pi + bi) * math.exp(t * m * 
math.pi) 
            x = (t * m * math.pi - bi) * math.exp(-t * m * 
math.pi) 
            y = math.sin(g * m * math.pi) 
            z =(m * math.pi)**2 
            Cm = (g * (w + x) * y) / (z * (w - x)) 
            Cm0 += Cm 
          
        C0n = 0 
        for n in range(1,101): 
            import math 
            w = (t * n * math.pi + b * bi) * math.exp((t * 
n * math.pi) / b) 
            x = (t * n * math.pi - b * bi) * math.exp((-t * 
n * math.pi) / b) 
            y = math.sin(g * n * math.pi) 
            z = (n * math.pi)**2 
            Cn = (b * g * (w + x) * y)/(z * (w - x)) 
            C0n += Cn 
         
        Cmna = 0     
        for m in range(1,101): 
            for n in range (1,101): 
                import math 
                p = math.sqrt(m**2 +(n/b)**2) 
                w = (t * p * math.pi + bi) * math.exp(t * p 
* math.pi) 
                x = (t * p * math.pi - bi) * math.exp(-t * 
p * math.pi) 
                y = math.sin(g * m * math.pi) * math.sin(g 
* n * math.pi) 
                z = m * n * p * (math.pi)**3 
                Cmn = (2 * (w + x) * y) / (z * (w - x)) 
                Cmna += Cmn 
                 
        import math 
        nd_s_resistance = math.sqrt((g * g) / b) * (Cm0 + 
C0n + Cmna) 
        s_resistance = (((nd_s_resistance / k)**2) / As) 
        results_nd.append(nd_s_resistance) 
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        results_d.append(s_resistance) 
    return results_nd, results_d 
  
print('\n') 
print('This program can be used as a spreading resistance 
calculator \nor it can be used to conduct a parametric 
study \n\nSolutions are based on Feng and Xu') 
choice = input('Run prgram as: \n  a) A Spreading Reistance 
Calculator \n  b) Spreading Resistance Parametric Analysis 
\n \nChoose a or b: ') 
 
if choice == 'a': 
        while True: 
            try: 
                 t = float(input('\tPlease enter a value 
for Tau: ')) 
                 b = float(input('\tPlease enter a value 
for Beta: ')) 
                 g = float(input('\tPlease enter a value 
for gamma: ')) 
                 e = float(input('\tPlease enter a value 
for epsilon: ')) 
                 bi = float(input('\tPlease enter a value 
for the Biot Number: ')) 
                 As = float(input('\tPlease enter the 
surface area of the heat source (m^2): ')) 
                 k = float(input('\tPlease enter the 
thermal conductivity of the heat sink material (W/m-k): ')) 
            except ValueError: 
                print('\n') 
                print("Last entry was invalid") 
                continue 
            else: 
                break 
        
        Cm0 = 0 
        for m in range(1,101): 
            import math 
            w = (t * m * math.pi + bi) * math.exp(t * m * 
math.pi) 
            x = (t * m * math.pi - bi) * math.exp(-t * m * 
math.pi) 
            y = math.sin(e * m * math.pi) 
            z =(m * math.pi)**2 
            Cm = (g * (w + x) * y) / (z * (w - x)) 



 
 

69 
 

            Cm0 += Cm 
          
        C0n = 0 
        for n in range(1,101): 
            import math 
            w = (t * n * math.pi + b * bi) * math.exp((t * 
n * math.pi) / b) 
            x = (t * n * math.pi - b * bi) * math.exp((-t * 
n * math.pi) / b) 
            y = math.sin(g * n * math.pi) 
            z = (n * math.pi)**2 
            Cn = (b * e * (w + x) * y)/(z * (w - x)) 
            C0n += Cn 
         
        Cmna = 0     
        for m in range(1,101): 
            for n in range (1,101): 
                import math 
                p = math.sqrt(m**2 +(n/b)**2) 
                w = (t * p * math.pi + bi) * math.exp(t * p 
* math.pi) 
                x = (t * p * math.pi - bi) * math.exp(-t * 
p * math.pi) 
                y = math.sin(e * m * math.pi) * math.sin(g 
* n * math.pi) 
                z = m * n * p * (math.pi)**3 
                Cmn = (2 * (w + x) * y) / (z * (w - x)) 
                Cmna += Cmn 
         
        import math 
        nd_s_resistance = math.sqrt((e * g) / b) * (Cm0 + 
C0n + Cmna) 
        s_resistance = nd_s_resistance / (k * 
math.sqrt(As)) 
         
        print('\n') 
        A = 'Non-dimensional Rs = ' + 
str('{:.2e}'.format(float(nd_s_resistance))) 
        B = 'Dimensional Rs = ' + 
str('{:.2e}'.format(float(s_resistance))) + '  C/W' 
        print(A) 
        print('\n') 
        print(B) 
             
if choice == 'b': 
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    print('\nWhich parameter would you like to vary?') 
    print('\n\tEnter (1) for Tau') 
    print('\n\tEnter (2) for Beta') 
    print('\n\tEnter (3) for gamma/epsilon') 
    print('\n\tEnter (4) for Biot Number') 
    print('\n\tEnter (5) for Heat Source Area (m^2)') 
    print('\n\tEnter (6) for Thermal Conductivity (W/m-k)') 
    parameter = input('Input one of the above numbers and 
hit ENTER\n\n\t')  
    print('\nPlease enter 10 data points for the parametric 
study: ') 
    i = 0 
    paramValues = [] 
    for i in range(15): 
        paramValues.append(float(input('\t'))) 
     
    results_nd = [] 
    results_d =[] 
    results_nd, results_d = Feng(paramValues, parameter) 
    print('\nNon-Dimensional Spreading Resistance: \n') 
    print(results_nd) 
    print('\nSpreading Resistance: \n') 
    print(results_d) 
    print('\n\n') 
      
    import matplotlib.pyplot as plt 
    X = [paramValues] 
    Y = [results_nd] 
    plt.scatter(X,Y, s=100, marker = '+', color = 'red') 
    plt.ylabel('Non-Dimensional Spreading Resistacne') 
    plt.xlabel('%s' %parameter) 
    plt.grid(b = True, which = 'major') 
    plt.yscale('log') 
    plt.savefig('spreading_resistance_output.jpg', dpi=400) 
    plt.show() 
 
    file = open("spreading_resistance_output.csv", "w") 
    file.write("Non-Dimensional Values: \n") 
    for j in range (0,15): 
        rnd = str(results_nd[j]) 
        file.write('%s \n' %rnd) 
    file.write("\n") 
    file.write("\n") 
    file.write("Dimensional Values: \n") 
    for j in range (0,15): 
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        rd = str(results_d[j]) 
        file.write('%s \n' %rd) 
    file.close() 
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Appendix B. Python Script for the Developed Emperical Equation 
 
def empirical_equation(paramValues, parameter): 
    results_nd = [] 
    results_d = [] 
    print('\n\nEnter values for the constant parameters: ') 
    while True: 
        try: 
             print('\n!!Enter negative one (-1) for %s!!' 
%parameter) 
             t = float(input('\tPlease enter a value for 
Tau: ')) 
             e = float(input('\tPlease enter a value for 
the side length ratio: ')) 
             sl = float(input('\tPlease enter a value for 
the side length of the heat sink (m): ')) 
             h = float(input('\tPlease enter a value for 
the heat transfer coefficient (W/m^2-K): ')) 
             k = float(input('\tPlease enter the thermal 
conductivity of the heat sink material (W/m-K): ')) 
        except ValueError: 
            print('\n') 
            print("Last entry was invalid") 
            continue 
        else: 
            break 
            
    for i in range(0,10): 
        if parameter.lower() == '1': 
            t = paramValues[i] 
        elif parameter.lower() == '2': 
            e = paramValues[i] 
        elif parameter.lower() == '3': 
            h = paramValues[i] 
        elif parameter.lower() == '4': 
            As = paramValues[i] 
        elif parameter.lower() == '5': 
            k = paramValues[i] 
             
        if t >= 0.4: 
            import math 
            nd_s_resistance = .0362 * e**2 - .6045 * e + 
.5655 
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            s_resistance = nd_s_resistance / (k * 
math.sqrt(As)) 
                     
            print('\n') 
            nd_value = 'Non-dimensional Rs = ' + 
str('{:.2e}'.format(float(nd_s_resistance))) 
            d_value = 'Dimensional Rs = ' + 
str('{:.2e}'.format(float(s_resistance))) + '  C/W' 
            print(nd_value) 
            print('\n') 
            print(d_Value) 
         
        As = (e * sl) * (e * sl) 
        bi = (h * ((.04 * sl) / 1000)) / k 
         
        if bi  >= .034: 
            print("\nCalculated Biot number not in the 
valid range, please try again with a different set of 
parameters") 
             
        if bi <= .00113:  
            print("\nCalculated Biot number not in the 
valid range, please try again with a different set of 
parameters") 
             
        if t < 0.4: 
            if bi  <= .034: 
                if bi >= .00113:  
                    import math 
                    theta = .7723 - 129.4 * bi**3 + 29.956 
* bi**2 -2.996 * bi 
                    E = 4.9006 * e**4 - 14.482 * e**3 + 
16.385 * e**2 - 6.015 * e + .2575 
                    T = (.1536 * t**(-.728)) * ((5.6119 * 
math.exp(-8.129 * e)) * t + 1.1214 * e**(.1377)) 
                     
                    nd_s_resistance = theta * (1 - E) * T 
                    s_resistance = nd_s_resistance / (k * 
math.sqrt(As)) 
                    results_nd.append(nd_s_resistance) 
                    results_d.append(s_resistance) 
    return results_nd, results_d 
             
print('\n') 
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print('This program can be used as a spreading resistance 
calculator \nor it can be used to conduct a parametric 
study \n') 
choice = input('Run program as: \n  a) A Spreading 
Resistance Calculator \n  b) Spreading Resistance 
Parametric Analysis \n \nChoose a or b: ') 
 
if choice == 'a': 
        while True: 
            try: 
                 t = float(input('\tPlease enter a value 
for Tau: ')) 
                 g = float(input('\tPlease enter a value 
for gamma: ')) 
                 e = float(input('\tPlease enter a value 
for epsilon: ')) 
                 sl = float(input('\tPlease enter a value 
for the side length of the heat sink (m): ')) 
                 h = float(input('\tPlease enter a value 
for the heat transfer coefficient (W/m^2-K): ')) 
                 k = float(input('\tPlease enter the 
thermal conductivity of the heat sink material (W/m-K): ')) 
            except ValueError: 
                print('\n') 
                print("Last entry was invalid") 
                continue 
            else: 
                break 
         
        if t >= 0.4: 
            import math 
            nd_s_resistance = .0362 * e**2 - .6045 * e + 
.5655 
            s_resistance = nd_s_resistance / (k * 
math.sqrt(As)) 
                     
            print('\n') 
            A = 'Non-dimensional Rs = ' + 
str('{:.2e}'.format(float(nd_s_resistance))) 
            B = 'Dimensional Rs = ' + 
str('{:.2e}'.format(float(s_resistance))) + '  C/W' 
            print(A) 
            print('\n') 
            print(B) 
         



 
 

75 
 

        As = (e * sl) * (g * sl) 
        bi = (h * ((.04 * sl) / 1000)) / k 
         
        if bi  >= .034: 
            print("\nCalculated Biot number not in the 
valid range, please try agian wih a different set of 
parameters") 
             
        if bi <= .00113:  
            print("\nCalculated Biot number not in the 
valid range, please try agian wih a different set of 
parameters") 
             
        if t < 0.4: 
            if bi  <= .034: 
                if bi >= .00113:  
                    if e == g: 
                        import math 
                        theta = .7723 - 129.4 * bi**3 + 
29.956 * bi**2 -2.996 * bi 
                        E = 4.9006 * e**4 - 14.482 * e**3 + 
16.385 * e**2 - 6.015 * e + .2575 
                        T = (.1536 * t**(-.728)) * ((5.6119 
* math.exp(-8.129 * e)) * t + 1.1214 * e**(.1377)) 
                        nd_s_resistance = theta * (1 - E) * 
T 
                        s_resistance = nd_s_resistance / (k 
* math.sqrt(As)) 
                                 
                        print('\n') 
                        A = 'Non-dimensional Rs = ' + 
str('{:.2e}'.format(float(nd_s_resistance))) 
                        B = 'Dimensional Rs = ' + 
str('{:.2e}'.format(float(s_resistance))) + '  C/W' 
                        print(A) 
                        print('\n') 
                        print(B) 
                                 
                    if e != g: 
                        import math 
                        theta_a = .7723 - 129.4 * bi**3 + 
29.956 * bi**2 -2.996 * bi 
                        E_a = 4.9006 * e**4 - 14.482 * e**3 
+ 16.385 * e**2 - 6.015 * e + .2575 
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                        T_a = (.1536 * t**(-.728)) * 
((5.6119 * math.exp(-8.129 * e)) * t + 1.1214 * e**(.1377)) 
                        nd_s_resistancea = theta_a * (1 - 
E_a) * T_a 
                         
                        theta_b = .7723 - 129.4 * bi**3 + 
29.956 * bi**2 -2.996 * bi 
                        E_b = 4.9006 * g**4 - 14.482 * g**3 
+ 16.385 * g**2 - 6.015 * g + .2575 
                        T_b = (.1536 * t**(-.728)) * 
((5.6119 * math.exp(-8.129 * g)) * t + 1.1214 * g**(.1377)) 
                        nd_s_resistanceb = theta_b * (1 - 
E_b) * T_b 
                         
                        nd_s_resistance  = 
(nd_s_resistance_a + nd_s_resistance_b) / 2 
                        s_resistance = nd_s_resistance / (k 
* math.sqrt(As)) 
                                 
                        print('\n') 
                        nd_value = 'Non-dimensional Rs = ' 
+ str('{:.2e}'.format(float(nd_s_resistance))) 
                        d_value = 'Dimensional Rs = ' + 
str('{:.2e}'.format(float(s_resistance))) + '  C/W' 
                        print(nd_value) 
                        print('\n') 
                        print(d_value) 
                     
if choice == 'b': 
    print('\nWhich parameter would you like to vary?') 
    print('\n\tEnter (1) for Tau') 
    print('\n\tEnter (2) for gamma/epsilon') 
    print('\n\tEnter (3) for Heat Transfer Coefficient') 
    print('\n\tEnter (4) for Heat Source Area (m^2)') 
    print('\n\tEnter (5) for Thermal Conductivity (W/m-k)') 
    parameter = input('Input one of the above numbers and 
hit ENTER\n\n\t')  
    print('\nPlease enter 10 data points for the parametric 
study: ') 
    i = 0 
    paramValues = [] 
    for i in range(10): 
        paramValues.append(float(input('\t'))) 
     
    results_nd = [] 
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    results_d =[] 
    results_nd, results_d = emperical_equation(paramValues, 
parameter) 
    print('\nNon-Dimensional Spreading Resistance: \n') 
    print(results_nd) 
    print('\nSpreading Resistance: \n') 
    print(results_d) 
    print('\n\n') 
     
    file = open("spreading_resistance_results.csv", "w") 
    file.write("Non-Dimensional Values: \n") 
    for j in range (0,10): 
        rnd = str(results_nd[j]) 
        file.write('%s \n' %rnd) 
    file.write("\n") 
    file.write("\n") 
    file.write("Dimensional Values: \n") 
    for j in range (0,10): 
        rd = str(results_d[j]) 
        file.write('%s \n' %rd) 
    file.close() 
 


