
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2016

A Fully Automated Solver for Multiple Square Jigsaw Puzzles A Fully Automated Solver for Multiple Square Jigsaw Puzzles

Using Hierarchical Clustering Using Hierarchical Clustering

Zayd Hammoudeh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Hammoudeh, Zayd, "A Fully Automated Solver for Multiple Square Jigsaw Puzzles Using Hierarchical
Clustering" (2016). Master's Theses. 4756.
DOI: https://doi.org/10.31979/etd.3b5y-6ayg
https://scholarworks.sjsu.edu/etd_theses/4756

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/4756?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4756&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A FULLY AUTOMATED SOLVER FOR MULTIPLE SQUARE JIGSAW
PUZZLES USING HIERARCHICAL CLUSTERING

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Zayd Hammoudeh

December 2016

© 2016

Zayd Hammoudeh

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

A FULLY AUTOMATED SOLVER FOR MULTIPLE SQUARE JIGSAW
PUZZLES USING HIERARCHICAL CLUSTERING

by

Zayd Hammoudeh

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2016

Dr. Chris Pollett Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Dr. Teng Moh Department of Computer Science

ABSTRACT

A Fully Automated Solver for Multiple Square Jigsaw Puzzles Using Hierarchical
Clustering

by Zayd Hammoudeh

The square jigsaw puzzle is a variant of traditional jigsaw puzzles, wherein all

pieces are equal-sized squares; these pieces must be placed adjacent to one another to

reconstruct an original image. This thesis proposes an agglomerative hierarchical

clustering based solver that can simultaneously reconstruct multiple square jigsaw

puzzles. This solver requires no additional information beyond an input bag of puzzle

pieces and significantly outperforms the current state of the art in terms of both the

quality of the reconstructed outputs as well the number of input puzzles it supports.

In addition, this thesis defines Enhanced Direct Accuracy Score (EDAS), Shiftable

Enhanced Direct Accuracy Score (SEDAS), and Enhanced Neighbor Accuracy Score

(ENAS), which are the first quality metrics specifically tailored for multi-puzzle

solvers. This thesis also outlines the first standards for visualizing best buddies and

the quality of solver solutions.

DEDICATION

To my mother.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Previous Work . 3

3 Mixed-Bag Solver Overview . 7

3.1 Assembly . 7

3.1.1 Assembler Implementation 8

3.1.2 Assembler Time Complexity 8

3.2 Segmentation . 9

3.2.1 Overview of the Segmentation Procedure 9

3.2.2 Partitioning a Puzzle into Segments 11

3.2.3 Articulation Points . 12

3.3 Stitching . 12

3.3.1 Mini-Assemblies and Stitching Pieces 13

3.3.2 Stitching Piece Selection 13

3.3.3 Quantifying Inter-Segment Relationships 16

3.4 Hierarchical Clustering of Segments 16

3.4.1 Building the Initial Similarity Matrix 17

3.4.2 Updating the Similarity Matrix via Single Linking 17

3.4.3 Terminating Hierarchical Clustering 18

3.5 Final Seed Piece Selection . 18

3.6 Final Assembly . 19

vi

vii

4 Quantifying and Visualizing the Quality of a Mixed-Bag
Solver Output . 20

4.1 Direct Accuracy . 20

4.1.1 Enhanced Direct Accuracy Score 21

4.1.2 Shiftable Enhanced Direct Accuracy Score 22

4.1.3 Necessity of Using Both EDAS and SEDAS 23

4.2 Neighbor Accuracy . 23

4.2.1 Enhanced Neighbor Accuracy Score 24

4.3 Best Buddy Metrics . 24

4.3.1 Interior and Exterior Non-Adjacent Best Buddies 25

4.3.2 Best Buddy Density . 25

4.4 Visualizing the Quality of Solver Outputs 26

4.4.1 Visualizing EDAS and SEDAS 26

4.4.2 Visualizing ENAS . 28

4.5 Visualizing Best Buddies . 29

5 Experimental Results . 31

5.1 Accuracy Determining the Number of Input Puzzles 31

5.1.1 Single Puzzle Solving . 32

5.1.2 Multiple Puzzle Solving . 33

5.2 Comparison of Solver Output Quality 35

5.3 Ten Puzzle Solving . 36

6 Conclusions and Future Work . 39

LIST OF REFERENCES . 40

viii

APPENDIX

A Example Outputs of a Single Segmentation Round 43

B Incorrectly Classified Single Image Puzzles 46

C Ten Puzzle Results . 49

LIST OF TABLES

1 Color scheme for puzzles pieces in direct accuracy visualizations . 27

2 Color scheme for puzzles piece sides in neighbor accuracy
visualizations . 28

3 Color scheme for puzzles piece sides in best buddy visualizations . 30

4 Number of solver iterations for each puzzle input count 32

5 Comparison of the Mixed-Bag and Paikin & Tal Solvers’
performance on multiple input puzzles 35

6 Comparison of the image shifting, SEDAS, and ENAS results for
the 10 puzzle data set . 37

ix

LIST OF FIGURES

1 Jig swap puzzle example . 2

2 Relationship between the Mixed-Bag Solver’s components 7

3 Solver output where a single misplaced piece catastrophically
affects the direct accuracy . 22

4 Example solver output visualizations for EDAS and SEDAS . . . 27

5 Example solver output visualization for ENAS 29

6 Visualization of best buddies in an example image 30

7 Comparison of best buddy density and interior non-adjacent best
buddies for two images from the Pomeranz et al. 805 piece data set. 33

8 Mixed-Bag Solver’s input puzzle count error frequency 34

9 Performance of the Mixed-Bag and Paikin & Tal Solvers with
multiple input puzzles . 38

A.10 Ground-truth images used in the segmentation example 44

A.11 Assembler output of a single puzzle after the first segmentation round 44

A.12 Segmentation of the assembler output with marking of the
articulation points and the lightness of piece coloring dependent on
the distance to the nearest open location 45

A.13 Best buddy visualization of the assembler output 45

B.14 805 piece images that were incorrectly identified by the Mixed-Bag
Solver. Reproduced with permission from Pomeranz et. al. 47

B.15 Mixed-Bag Solver outputs for the incorrectly identified images . . 48

C.16 First set of six images in the 10 image test set 50

C.17 Second set of four images in the 10 image test set. Reproduced
with permission from Pomeranz et. al. 51

C.18 First set of six images output by the Mixed-Bag Solver for the
10 image test set . 52

x

xi

C.19 Second set of four images output by the Mixed-Bag Solver for the
10 image test set . 53

C.20 First set of six SEDAS visualizations for the 10 image test set . . 54

C.21 Second set of four SEDAS visualizations for the 10 image test set 55

CHAPTER 1

Introduction

Jigsaw puzzles were first introduced in the 1760s when they were made from

wood. The name ‘‘jigsaw’’ derives from the jigsaws that were used to carve the

wooden pieces. The 1930s saw the introduction of the modern jigsaw puzzle where an

image was printed on a cardboard sheet that was cut into a set of interlocking

pieces [1, 2]. Although jigsaw puzzles had been solved by children for more than two

centuries, it was not until 1964 that the first automated jigsaw puzzle solver was

proposed by Freeman & Gardner [3]. While an automated jigsaw puzzle solver may

seem trivial, the problem has been shown by Altman [4] and Demaine & Demaine [5]

to be strongly NP-complete when inter-piece compatibility is not a reliable metric for

determining adjacency.

In recent years, most research into automated jigsaw puzzle solving has focused

on jig swap puzzles, where all pieces are equal-sized, non-overlapping squares.1 An

example of a jig swap puzzle is shown in Figure 1. Since all pieces are squares, shape

cannot be considered when determining piece adjacency. Moreover, in this specific

variant of the problem, the original, also known as ‘‘ground-truth,’’ input is not

provided to the solver. These two factors significantly increase the problem’s

difficulty as the complete solution’s structure must be determined using only the

image information on the individual pieces.

There are clear parallels between jig swap puzzle solving and other domains

where an unknown object must be reconstructed from a set of component pieces. As

such, strategies developed for use with jigsaw puzzles can often be generalized to

many practical problems. Some example applications where such techniques have
1Unless otherwise noted, the phrase ‘‘jigsaw puzzle’’ is used in this thesis to refer to specifically

jig swap puzzles.

1

(a) Ground-truth image (b) Randomized jig swap puzzle

Figure 1: Jig swap puzzle example

been applied include: reassembly of archaeological artifacts [6, 7], forensic analysis of

deleted files [8], image editing [9], shredded document reconstruction [10], DNA

fragment reassembly [11], and speech descrambling [12].

This thesis presents a fully automated solver for the simultaneous assembly of

multiple jigsaw puzzles, with an overview of the architecture provided in Chapter 3.

Chapter 4 introduces a set of new metrics specifically tailored for quantifying the

quality of outputs of multiple puzzle solvers; the chapter also outlines a set of

standards for visualizing the characteristics of solver outputs. Lastly, Chapter 5

compares the performance of this new solver with the current state of the art.

2

CHAPTER 2

Previous Work

Computational jigsaw puzzle solvers have been studied since the 1960s when

Freeman & Gardner [3] proposed an algorithm that could solve puzzles of up to nine

pieces using only piece shape. Since then, the focus of research has gradually shifted

from traditional jigsaw puzzles to jig swap puzzles.

In 2010, Cho et al. [13] proposed one of the first modern, computational jig

swap puzzle solvers; their approach relied on a graphical model built around a set of

one or more ‘‘anchor piece(s),’’ whose position is fixed in the correct location before

placement of other pieces begins. Future solvers would improve on Cho et al.’s

results while simultaneously reducing the amount of information (i.e., beyond the set

of pieces) passed to the solver.

A significant contribution of Cho et al. is that they were first to use the

LAB (Lightness and the A/B opponent color dimensions) colorspace to encode image

pixels. LAB was selected due to its property of normalizing the lightness and color

variation across all three pixel dimensions. Cho et al. also proposed a measure for

quantifying the pairwise distance between two puzzle pieces that became the basis of

most future work.

Pomeranz et al. [14] published an iterative, greedy, jig swap puzzle solver

in 2011. Their approach did not rely on anchor pieces, and the only information

passed to the solver were the pieces, their orientation, and the puzzle dimensions. In

addition, Pomeranz et al. introduced the concept of ‘‘best buddies,’’ which is any pair

of pieces that are more compatible with each other on their respective sides than they

are to any other piece. This is formally defined in Equation (1) for side 𝑠𝑥 (e.g., top,

left, right, bottom) of puzzle piece, 𝑝𝑖, and side, 𝑠𝑦, of piece 𝑝𝑗. 𝐶(𝑝𝑖, 𝑠𝑥, 𝑝𝑗, 𝑠𝑦)

represents the compatibility between the two pieces’ respective sides.

3

∀𝑝𝑘∀𝑠𝑧, 𝐶(𝑝𝑖, 𝑠𝑥, 𝑝𝑗, 𝑠𝑦) ≥ 𝐶(𝑝𝑖, 𝑠𝑥, 𝑝𝑘, 𝑠𝑧)

and

∀𝑝𝑘∀𝑠𝑧, 𝐶(𝑝𝑗, 𝑠𝑦, 𝑝𝑖, 𝑠𝑥) ≥ 𝐶(𝑝𝑗, 𝑠𝑦, 𝑝𝑘, 𝑠𝑧)

(1)

The best buddies relationship has served as both a metric for estimating the

quality of a solver output [15] as well as the foundation of some solvers’

assemblers [16]. Best buddies are discussed extensively in Sections 3.2.2, 4.3,

and 5.1.1 of this thesis.

An additional key contribution of Pomeranz et al. is the creation of three image

benchmarks. The first benchmark is comprised of twenty puzzles with 805 pieces each;

this benchmark is used as the test set for the experiments described in Chapter 5.

There are three images in each of the other two benchmarks, with images in the first

data set having 2,360 pieces while those in the other benchmark have 3,300 pieces.

In 2012, Gallagher [17] formally categorized jig swap puzzle problems into four

primary types. The following is Gallagher’s proposed terminology; his nomenclature

is used throughout this thesis.

• Type 1 Puzzle: The dimensions of the puzzle (i.e., the width and height of

the ground-truth image in number of pixels) are known. The

orientation/rotation of each piece is also known, which means that there are

exactly four pairwise relationships between any two pieces. In addition, the

solver may be provided with the correct location of one or more ‘‘anchor’’

pieces. This type of puzzle is the focus of [13, 14].

• Type 2 Puzzle: This is an extension of the Type 1 puzzle, where pieces may

be rotated in 90∘ increments (e.g., 0∘, 90∘, 180∘, or 270∘); in comparison to

Type 1, this change alone increases the number of possible solutions by a factor

of 4𝑛, where 𝑛 is the number of puzzle pieces. Additionally, all piece locations

4

are unknown, which means there are no anchor pieces. Lastly, the dimensions

of the ground-truth image may be unknown.

• Type 3 Puzzle: All puzzle piece locations are known, and only the rotation of

the pieces is unknown. This is the least computationally complex of the puzzle

variants and is generally considered the least interesting. Type 3 puzzles are

not explored as part of this thesis.

• Mixed-Bag Puzzle: The input set of pieces are from multiple puzzles. The

solver may output either a single, merged puzzle, or it may separate the puzzle

pieces into disjoint sets that ideally align with the set of ground-truth input

images. This type of puzzle is the primary focus of this thesis.

In 2013, Sholomon et al. [15] presented a genetic algorithm-based solver for

Type 1 puzzles. By moving away from the greedy paradigm used by Pomeranz et al.,

Sholomon et al.’s approach is more immune to suboptimal decisions early in the

placement process. Sholomon et al.’s algorithm is able to solve puzzles of significantly

larger size than other techniques (e.g., greater than 23,000 pieces). What is more,

Sholomon et al. defined three new large image benchmarks; the specific puzzle sizes

are 5,015, 10,375, and 22,834 pieces [18].

Paikin & Tal [16] introduced in 2015 a greedy solver that handles both Type 1

and Type 2 puzzles, even if those puzzles are missing pieces. What is more, their

algorithm is one of the first to support Mixed-Bag Puzzles. While Paikin & Tal’s

algorithm represents the current state of the art, it has serious limitations. For

example, similar to previous solvers, Paikin & Tal’s algorithm must be told the

number of input puzzles. In many practical applications, this information may not be

known.

Another limitation arises from the fact that Paikin & Tal’s algorithm places

5

pieces using a single-pass, kernel growing approach. As such, a single piece is used as

the seed of each output puzzle, and all subsequent pieces are placed around the

expanding kernel. If a seed is selected poorly, the quality of the solver output may be

catastrophically degraded. Despite this, their algorithm only requires that a seed

piece have best buddies on each of its sides and that the seed’s best buddies also have

best buddies on each of their sides. Therefore, the selection of the seed is based on

essentially 13 pieces. What is more, the selection of the seed is performed greedily at

run time. Through the combination of these two factors, it is common that the seeds

of multiple output puzzles come from the same ground-truth image.

The limitations of Paikin & Tal’s algorithm are addressed by this thesis’

Mixed-Bag Solver, which is described in Chapter 3. Since Paikin & Tal’s algorithm

represents the current state of the art, it is used as this thesis’ assembler. What is

more, their algorithm is used as the baseline for all performance comparisons.

6

CHAPTER 3

Mixed-Bag Solver Overview

When humans solve jigsaw puzzles, it is common that they first correctly

assemble small regions of the puzzle and then merge those smaller assemblies to form

larger ones. This strategy forms the basis of the Mixed-Bag Solver presented in this

thesis. There are five distinct solver stages, namely: segmentation, stitching,

hierarchical segment clustering, seed piece selection, and final assembly. The

relationship between each stage is shown in Figure 2. Pseudocode, including the

input(s) and output of each stage, is included in Algorithm 1.

The following subsections describe each of the Mixed-Bag Solver’s stages. An

additional associated component referred to as the ‘‘assembler’’ (not shown in

Figure 2) is also discussed.

...

Mixed Bag

Final

Assembly

Hierarchical

Segment

Clustering

Segmentation Stitching

Final

Seed Piece

Selection

Figure 2: Relationship between the Mixed-Bag Solver’s components

3.1 Assembly

The assembler places the individual pieces in the solved puzzle. The Mixed-Bag

Solver’s architecture is largely independent of the particular assembler used. Hence,

any improvements made to the assembler will also improve the Mixed-Bag Solver’s

performance. Likewise, assemblers can be interchanged if particular ones perform

better in specific applications.

This thesis uses the assembly algorithm proposed by Paikin & Tal [16] as it is

the current state of the art and because it is one of the few assemblers that natively

7

Algorithm 1 Pseudocode for the Mixed-Bag Solver
1: function MixedBagSolver(𝑝𝑢𝑧𝑧𝑙𝑒_𝑝𝑖𝑒𝑐𝑒𝑠)
2: 𝑠𝑎𝑣𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠← Segmentation(𝑝𝑢𝑧𝑧𝑙𝑒_𝑝𝑖𝑒𝑐𝑒𝑠)
3: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑚𝑎𝑡𝑟𝑖𝑥← Stitching(𝑠𝑎𝑣𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠, 𝑝𝑢𝑧𝑧𝑙𝑒_𝑝𝑖𝑒𝑐𝑒𝑠)
4: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠← HierarchicalClustering(𝑠𝑎𝑣𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑚𝑎𝑡𝑟𝑖𝑥)
5: 𝑠𝑒𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠← FindSeedPieces(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)
6: 𝑠𝑜𝑙𝑣𝑒𝑑_𝑝𝑢𝑧𝑧𝑙𝑒𝑠← RunFinalAssembly(𝑠𝑒𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠, 𝑝𝑢𝑧𝑧𝑙𝑒_𝑝𝑖𝑒𝑐𝑒𝑠)
7: return 𝑠𝑜𝑙𝑣𝑒𝑑_𝑝𝑢𝑧𝑧𝑙𝑒𝑠

supports Mixed-Bag puzzles. The following two subsections describe this thesis’

implementation of their assembler as well as the time complexity of assembly.

3.1.1 Assembler Implementation

Paikin & Tal wrote their algorithm in Java, and as of this publication, the

source code has not been released. Hence, their algorithm was fully reimplemented as

part of this thesis using the description in [16]. This thesis’ implementation is written

in the Python programming language and is fully open source. While the results

generated by the two algorithms should be very similar, it is expected that the

underlying software architecture is significantly different.

No execution time comparisons between Paikin & Tal’s algorithm and the

Mixed-Bag Solver are included with this thesis since Java is generally significantly

faster than Python [19]. Instead, the next subsection reviews the expected time

complexity of both their algorithm and the Mixed-Bag Solver.

3.1.2 Assembler Time Complexity

Paikin & Tal’s assembler relies on a set of inter-puzzle piece similarity metrics.

As with all other jig swap solvers, these distances are calculated between all pairs of

pieces, making the time required to calculate inter-piece similarity 𝑂(𝑛2), where 𝑛 is

the number of puzzle pieces. If an input image has sufficient inter-piece variation,

then the time complexity to place all pieces is Θ(𝑛lg(𝑛)), since a heap is used in this

8

thesis’ implementation to determine the piece placement order. However, if most

pieces are sufficiently similar that there are relatively few best buddies, then piece

placement can be as slow as 𝑂(𝑛3) since the inter-piece similarity may need to be

recalculated after each piece is placed.

During the segmentation stage, the Mixed-Bag Solver performs assembly at

least once, but usually more times. Placement is performed another time during the

final assembly stage. Hence, while the execution time for the Mixed-Bag solver is

necessarily longer than that of any assembler that may be used, they both generally

share the same time complexity since in most cases the number of times placement is

performed is not directly related to the number of puzzle pieces.

3.2 Segmentation

Segmentation provides basic structure to a bag of puzzle pieces by partitioning

them into disjoint sets, referred to here as segments. These segments are partial

puzzle assemblies where there is a high degree of confidence that the pieces are placed

correctly. As detailed in Algorithm 1, the only input to segmentation is a bag of

puzzle pieces; the solver takes no other inputs. It is expected that pieces from the

same ground-truth input may be assigned to multiple segments. Section 3.4 describes

how such segments are merged using hierarchical clustering.

Appendix A shows an example segmentation round with two input images. It is

included as a visual reference of the segmentation process.

3.2.1 Overview of the Segmentation Procedure

Algorithm 2 outlines the basic segmentation framework; the implementation is

iterative and will have one or more rounds. In each round, all pieces not yet assigned

to a saved segment are assembled as if they all belong to a single ground-truth image.

This strategy eliminates the need to make any assumptions at this early stage

9

Algorithm 2 Pseudocode for the complete segmentation algorithm
1: function Segmentation(𝑝𝑢𝑧𝑧𝑙𝑒_𝑝𝑖𝑒𝑐𝑒𝑠)
2: 𝑠𝑎𝑣𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠← {}
3: 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠← {𝑝𝑢𝑧𝑧𝑙𝑒_𝑝𝑖𝑒𝑐𝑒𝑠}
4: loop
5: 𝑠𝑜𝑙𝑣𝑒𝑑_𝑝𝑢𝑧𝑧𝑙𝑒← RunSinglePuzzleAssembly(𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠)
6: 𝑝𝑢𝑧𝑧𝑙𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠← SegmentPuzzle(𝑠𝑜𝑙𝑣𝑒𝑑_𝑝𝑢𝑧𝑧𝑙𝑒)
7: 𝑚𝑎𝑥_𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑖𝑧𝑒← maximum size of segment in 𝑝𝑢𝑧𝑧𝑙𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
8: if 𝑚𝑎𝑥_𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑖𝑧𝑒 < 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡_𝑎𝑙𝑙𝑜𝑤𝑒𝑑 then
9: return 𝑠𝑎𝑣𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

10: for each 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑝𝑢𝑧𝑧𝑙𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 do
11: if |𝑠𝑒𝑔𝑚𝑒𝑛𝑡| > max(𝛼·𝑚𝑎𝑥_𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑖𝑧𝑒, 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡_𝑎𝑙𝑙𝑜𝑤𝑒𝑑) then
12: add 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 to 𝑠𝑎𝑣𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
13: remove pieces in 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 from 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠

regarding the number of input puzzles.

Section 3.2.2 describes the procedure used to create the individual segments.

The largest segment in each round is passed to the Stitching stage described in

Section 3.3.1 Similarly, the multiplicative scalar term ‘‘𝛼’’ in Algorithm 2 dictates

which other segments are also passed to stitching. In this thesis, 𝛼 was set to 0.5,

meaning that all segments that were at least half the size of the largest one were also

saved. This approach provided sufficient balance between finding the largest possible

segments while limiting overall execution time.

Any piece that is assigned to a saved segment is removed from the set of

unassigned pieces. Hence, they will not be placed in future segmentation rounds.

Segmentation continues until all pieces have been assigned to sufficiently large

segments or until no segment exceeds the minimum allowed size.
1All saved segments must exceed a minimum size. For this thesis, it was observed that a minimum

segment size of 7 provided the best balance between solution quality and algorithm execution time.

10

Algorithm 3 Pseudocode for segmenting a solved puzzle
1: function SegmentPuzzle(𝑠𝑜𝑙𝑣𝑒𝑑_𝑝𝑢𝑧𝑧𝑙𝑒)
2: 𝑝𝑢𝑧𝑧𝑙𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠← {}
3: 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠← {all pieces in 𝑠𝑜𝑙𝑣𝑒𝑑_𝑝𝑢𝑧𝑧𝑙𝑒}
4: while |𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠| > 0 do
5: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡← new empty segment
6: 𝑠𝑒𝑒𝑑_𝑝𝑖𝑒𝑐𝑒← next piece in 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠
7: 𝑞𝑢𝑒𝑢𝑒← [𝑠𝑒𝑒𝑑_𝑝𝑖𝑒𝑐𝑒]
8: while |𝑞𝑢𝑒𝑢𝑒| > 0 do
9: 𝑝𝑖𝑒𝑐𝑒← next piece in 𝑞𝑢𝑒𝑢𝑒

10: add 𝑝𝑖𝑒𝑐𝑒 to 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
11: for each 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 of 𝑝𝑖𝑒𝑐𝑒 do
12: if IsBestBuddies(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 𝑝𝑖𝑒𝑐𝑒) then
13: add 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 to 𝑞𝑢𝑒𝑢𝑒
14: remove 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑝𝑖𝑒𝑐𝑒 from 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠

15: 𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠← FindArticulationPoints(𝑠𝑒𝑔𝑚𝑒𝑛𝑡)
16: remove 𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠 from segment
17: 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠← FindDisconnectedPieces(𝑠𝑒𝑔𝑚𝑒𝑛𝑡)
18: remove 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑_𝑝𝑜𝑖𝑛𝑡𝑠 from 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
19: add articulation_points and disconnected_pieces to unassigned_pieces
20: add 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 to 𝑝𝑢𝑧𝑧𝑙𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

21: return 𝑝𝑢𝑧𝑧𝑙𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

3.2.2 Partitioning a Puzzle into Segments

The function ‘‘SegmentPuzzle’’ in Algorithm 3 partitions a solved puzzle

into disjoints segments; this procedure is adapted from the region growing

segmentation algorithm proposed by Pomeranz et al., where it was shown to have

greater than 99.7% accuracy identifying genuine neighbors [14].

Whenever a piece is added to a segment, the algorithm examines all of that

piece’s neighbors. Those adjacent pieces are also added to the segment if they are in

the unassigned pieces pool and if their neighbor inside the segment is a ‘‘best buddy’’

(as checked by the predicate ‘‘IsBestBuddies’’). Segment growth terminates once

there are no neighboring pieces that satisfy both of these two criteria.

In Pomeranz et al.’s segmentation algorithm, no changes were made to a

11

segment after it reached its maximum size. Their approach is sufficient when solving

only a single puzzle at a time. However, in Mixed-Bag puzzles, it is common that

correctly assembled regions from different ground-truth inputs are joined into a single

segment; this is usually through a very tenuous linking in the form of a narrow bridge

no wider than a single piece. Section 3.2.3 describes how the Mixed-Bag Solver

post-processes each segment to prevent this erroneous segment merging.

3.2.3 Articulation Points

A segment can be modeled as a graph with a single connected component. The

individual puzzle pieces represent vertices while edges are the best buddy

relationships between adjacent pieces. An articulation point is any vertex (i.e., puzzle

piece) whose removal increases the number of connected components. The Mixed-Bag

Solver identifies the articulation points using the algorithm proposed by [20]; any

articulation pieces are then removed from the segment and returned to the set of

unassigned pieces. This step necessarily causes other piece(s) to become disconnected

from the segment’s seed. Those pieces are also removed from the segment and

marked as unassigned. Once this has been completed, the segment is in its final form.

3.3 Stitching

As discussed previously, a segment represents an ordering of pieces where there

is a particularly high degree of confidence that placement is correct. A single

ground-truth image is commonly partitioned into multiple segments. Since the

Mixed-Bag Solver is not supplied with the number of input images, it must quantify

the extent to which any pairs of segments are related to ensure it can accurately

estimate the number of ground-truth inputs.

If two segments are adjacent in a ground-truth image, it is expected that they

would eventually merge if one segment were allowed to expand. Since it is not known

12

in which relative direction (if any) an adjacent segment may be located, a segment

should be allowed to grow in all directions; however, it should not be forced to

expand in a certain direction as this may lead to the formation of erroneous

inter-segment coupling. This strategy forms the foundation of segment stitching,

which is described in the following subsections.

3.3.1 Mini-Assemblies and Stitching Pieces

As mentioned previously, a segment should be allowed, but not forced, to

expand in all directions to identify related segments. To achieve this, the Mixed-Bag

Solver introduces the concept of a ‘‘mini-assembly,’’ which is similar to the standard

assembly process described in Section 3.1, with the expectation that only a limited

number of pieces are placed.2 The seeds for each of these mini-assemblies is referred

to as a ‘‘stitching piece’’ since they serve the role of ‘‘stitching’’ together associated

segments.

3.3.2 Stitching Piece Selection

If stitching pieces are poorly selected, two divergent, yet deleterious outcomes

may occur. First, placing the stitching pieces too close to one another can add

significant overhead without creating much tangible value. In contrast, if stitching

pieces are too far apart, the solver may not be able to detect subtle inter-segment

relationships. Algorithm 4 details the procedure used by the Mixed-Bag Solver to

select stitching pieces that balances these two concerns. The implementation of this

algorithm is described in detail in the following two subsections.

3.3.2.1 Spacing Stitching Pieces from Open Locations

It is not sufficient for stitching pieces to be placed solely around the external

perimeter of a segment as it is common for segments to have internal voids, where no

pieces are present. As such, stitching pieces are placed near ‘‘open locations,’’ which
2In this thesis, a mini-assembly places exactly 100 pieces.

13

Algorithm 4 Pseudocode for selecting a segment’s stitching pieces
1: procedure FindStitchingPieces(𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑝𝑖𝑒𝑐𝑒𝑠)
2: FindPieceDistanceToOpen(𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑝𝑖𝑒𝑐𝑒𝑠)
3: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑡𝑖𝑡𝑐ℎ𝑖𝑛𝑔_𝑝𝑖𝑒𝑐𝑒𝑠← {}
4: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑔𝑟𝑖𝑑_𝑐𝑒𝑙𝑙𝑠← PartitionIntoGrid(𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑝𝑖𝑒𝑐𝑒𝑠)
5: for each 𝑔𝑟𝑖𝑑_𝑐𝑒𝑙𝑙 ∈ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑔𝑟𝑖𝑑_𝑐𝑒𝑙𝑙𝑠 do
6: if HasPieceAdjacentToOpen(𝑔𝑟𝑖𝑑_𝑐𝑒𝑙𝑙) then
7: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← {𝑝𝑖𝑒𝑐𝑒𝑠} ∈ 𝑔𝑟𝑖𝑑_𝑐𝑒𝑙𝑙 closest to 𝑡𝑎𝑟𝑔𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜_𝑜𝑝𝑒𝑛
8: 𝑠𝑡𝑖𝑡𝑐ℎ𝑖𝑛𝑔_𝑝𝑖𝑒𝑐𝑒← 𝑝𝑖𝑒𝑐𝑒 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 closest to center of 𝑔𝑟𝑖𝑑_𝑐𝑒𝑙𝑙
9: add 𝑠𝑡𝑖𝑡𝑐ℎ𝑖𝑛𝑔_𝑝𝑖𝑒𝑐𝑒 to 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑡𝑖𝑡𝑐ℎ𝑖𝑛𝑔_𝑝𝑖𝑒𝑐𝑒𝑠

10: return 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑡𝑖𝑡𝑐ℎ𝑖𝑛𝑔_𝑝𝑖𝑒𝑐𝑒𝑠

have either a piece from a different segment or no piece at all. If a stitching piece is

too close to one of these open locations, erroneous coupling between unrelated

segments may occur. Algorithm 4 invokes the function

FindPieceDistanceToOpen to determine the distance of each segment piece to

the nearest open location; the implementation of this function is shown in

Algorithm 5.

FindPieceDistanceToOpen follows an iterative boundary tracing technique;

hence, during each iteration of the while loop on line 5, the algorithm explores all

segment pieces whose distance to the nearest open location is equal to

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜_𝑜𝑝𝑒𝑛. Therefore, any pieces explored in the first iteration of the while

loop have a distance of 1 to the nearest open while those explored in the second

iteration have distance 2, etc. This approach is robust enough to handle internal

voids as well as potential segment necking, where two larger segment components are

joined by a narrower bridge. In addition, since each piece is explored only once, the

execution time of this algorithm is 𝑂(𝑛), where 𝑛 is the number of pieces in the

segment.

14

Algorithm 5 Pseudocode for determining the Manhattan distance between each
segment piece and the nearest open location
1: procedure FindPieceDistanceToOpen(𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑝𝑖𝑒𝑐𝑒𝑠)
2: 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠← {}
3: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠_𝑎𝑡_𝑝𝑟𝑒𝑣_𝑑𝑖𝑠𝑡← {open locations adjacent to 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑝𝑖𝑒𝑐𝑒𝑠}
4: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜_𝑜𝑝𝑒𝑛← 1
5: while |𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠| > 0 do
6: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠_𝑎𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑖𝑠𝑡← {}
7: for each 𝑝𝑟𝑒𝑣_𝑑𝑖𝑠𝑡_𝑙𝑜𝑐 ∈ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠_𝑎𝑡_𝑝𝑟𝑒𝑣_𝑑𝑖𝑠𝑡 do
8: for each 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡_𝑙𝑜𝑐 of 𝑝𝑟𝑒𝑣_𝑑𝑖𝑠𝑡_𝑙𝑜𝑐 do
9: if ∃ 𝑝𝑖𝑒𝑐𝑒 at 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡_𝑙𝑜𝑐 and 𝑝𝑖𝑒𝑐𝑒 /∈ 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠 then

10: set 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜_𝑜𝑝𝑒𝑛 for 𝑝𝑖𝑒𝑐𝑒
11: add 𝑝𝑖𝑒𝑐𝑒 to 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑_𝑝𝑖𝑒𝑐𝑒𝑠
12: add 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡_𝑙𝑜𝑐 to 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠_𝑎𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑖𝑠𝑡

13: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠_𝑎𝑡_𝑝𝑟𝑒𝑣_𝑑𝑖𝑠𝑡← 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠_𝑎𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑖𝑠𝑡
14: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜_𝑜𝑝𝑒𝑛← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜_𝑜𝑝𝑒𝑛 + 1

3.3.2.2 Inter-Stitching Piece Spacing

If stitching pieces are too close together, the outputs from several

mini-assemblies will be almost identical, which means that the additional stitching

pieces contribute little value. To address inter-stitching piece spacing, Algorithm 4

sub-partitions each segment into a grid of adjacent cells; this allows the algorithm to

easily space out the stitching pieces at some maximum spacing. The grid spans the

entire segment starting from upper left corner. For this thesis, the grid cell width was

set to 10 pieces.3

Stitching pieces will only be selected from those grid cells that have at least one

puzzle piece adjacent to an open location. For such grid cells, the algorithm finds the

set of pieces (if any) whose distance to the nearest open location equals a predefined

target.4 If no pieces satisfy that criteria, then the target value is decremented until at

least one piece is identified. From among the set of candidates that satisfy the
3If the segment dimensions are not evenly divisible by the target grid cell width, those cells along

the bottom and right boundaries of the segment will be narrower than the specified target.
4For this thesis, the target distance to the nearest open location was set to 3.

15

distance-to-the-nearest-open-location criteria, the piece closest to the grid cell center

is selected for stitching.

3.3.3 Quantifying Inter-Segment Relationships

As mentioned previously, a mini-assembly is performed for each stitching piece

𝜁𝑥 in segment Φ𝑖, where 𝜁𝑥 ∈ Φ𝑖. If the mini-assembly output, 𝑀𝐴𝜁𝑥 , includes pieces

from multiple segments, there is a significantly increased likelihood that the segments

came from the same ground-truth input.

Equation (2) defines the overlap coefficients between segment, Φ𝑖, and any

other segment, Φ𝑗. The intersection between mini-assembly output, 𝑀𝐴𝜁𝑥 and

segment, Φ𝑗 is normalized with respect to the mini-assembly’s size as well as

potentially the size of segment Φ𝑗, since the latter will dictate the maximum overlap

if |Φ𝑗| < |𝑀𝐴𝜁𝑥|.

𝑂𝑣𝑒𝑟𝑙𝑎𝑝Φ𝑖,Φ𝑗
= max

𝜁𝑥∈Φ𝑖

|𝑀𝐴𝜁𝑥

⋂︀
Φ𝑗|

min(|𝑀𝐴𝜁𝑥|, |Φ𝑗|)
(2)

The outputs of the mini-assemblies will vary between segments based on their

respective stitching pieces as well as potentially the segment sizes. Hence, in most

cases, the overlap coefficient is asymmetric, meaning: 𝑂𝑣𝑒𝑟𝑙𝑎𝑝Φ𝑖,Φ𝑗
̸= 𝑂𝑣𝑒𝑟𝑙𝑎𝑝Φ𝑗 ,Φ𝑖

.

All of these asymmetric, inter-segment, overlap coefficients are combined into an 𝑚

by 𝑚 matrix, where 𝑚 is the number of saved segments. Section 3.4.1 defines how

this ‘‘Segment Overlap Matrix’’ is normalized to quantify inter-segment similarity.

3.4 Hierarchical Clustering of Segments

Agglomerative hierarchical clustering is a bottom-up clustering algorithm where

in each round, two clusters are merged. Algorithm 6 shows the basic hierarchical

clustering procedure used by the Mixed-Bag Solver; it is adapted from [21]. The only

inputs are the saved segments and the overlap matrix calculated during stitching.

16

Algorithm 6 Pseudocode for hierarchical segment clustering
1: function HierarchicalClustering(𝑠𝑎𝑣𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑚𝑎𝑡𝑟𝑖𝑥)
2: segment_clusters = {}
3: for each segment Φ𝑖 ∈ saved_segments do
4: add new segment cluster Σ𝑖 containing Φ𝑖 to 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

5: Compute the similarity matrix Γ from 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑚𝑎𝑡𝑟𝑖𝑥
6: while maximum similarity in Γ > min_cluster_similarity do
7: Merge the two most similar clusters Σ𝑖 and Σ𝑗 in segment_clusters
8: Update the similarity matrix Γ for the merged clusters
9: return cluster_segments

3.4.1 Building the Initial Similarity Matrix

All elements in the Segment Overlap Matrix, except those along the diagonal,

are populated with meaningful values. In contrast, hierarchical clustering requires a

triangular, similarity matrix. Equation (3) defines how the inter-segment similarity,

𝜔𝑖,𝑗, for segments Φ𝑖 and Φ𝑗 is calculated from their respective asymmetric, overlap

coefficients.

𝜔𝑖,𝑗 =
𝑂𝑣𝑒𝑟𝑙𝑎𝑝Φ𝑖,Φ𝑗

+ 𝑂𝑣𝑒𝑟𝑙𝑎𝑝Φ𝑗 ,Φ𝑖

2
(3)

Like the overlap matrix, the initial segment similarity matrix, Γ, is size 𝑚 by

𝑚, where 𝑚 is the number of saved segments. Each element in Γ is defined by

Equation (4). Both 𝑖 and 𝑗 are integers bounded between 1 and 𝑚 (inclusive). What

is more, all elements in Γ are bounded between 0 and 1, also inclusive.

Γ =

⎧⎪⎪⎨⎪⎪⎩
0 𝑗 ≥ 𝑖

𝜔𝑖,𝑗 𝑖 < 𝑗

(4)

3.4.2 Updating the Similarity Matrix via Single Linking

Whenever two clusters merge, the similarity matrix is updated using the Single

Link paradigm, which means that the similarity between any pair of clusters is equal

to the similarity of the two most similar segments from each cluster. This approach is

17

required because two segment clusters may only be adjacent along the border of two

of the composite segments.

If segment clusters Σ𝑥 and Σ𝑦 are merged, then Equation (5) defines the

similarity between this new merged cluster and any other segment cluster Σ𝑧. Note

that segment, Φ𝑖, is a member of the union of segment clusters Σ𝑥 and Σ𝑦, while

segment, Φ𝑗, is a member of segment cluster Σ𝑧.

𝜔𝑥∪𝑦,𝑧 = max
Φ𝑖∈(Σ𝑥∪Σ𝑦)

(︂
max
Φ𝑗∈Σ𝑧

𝜔𝑖,𝑗

)︂
(5)

3.4.3 Terminating Hierarchical Clustering

Unlike traditional hierarchical clustering, the Mixed-Bag Solver does not

necessarily continue merging the segment clusters until only a single cluster remains.

Rather, the solver continues clustering until the maximum similarity between any of

the remaining clusters drops below a predefined threshold. In this thesis, a minimum

inter-cluster similarity of 0.1 provided sufficient clustering accuracy, without merging

unrelated segments.

The number of segment clusters remaining at the end of hierarchical clustering

represents the Mixed-Bag Solver’s estimate of the number of ground-truth inputs.

The segment clusters are passed to the next stage to determine the seed pieces for the

final output puzzles.

3.5 Final Seed Piece Selection

Most modern jigsaw puzzle solvers [14, 15, 16] rely on a kernel growing model,

where a kernel is a partial assembly of one or more pieces. In Chapter 2, it was

explained that Paikin & Tal select the puzzle seeds using a greedy condition at run

time. Hence, their algorithm often picks suboptimal seeds (e.g., pieces from the same

input puzzle are selected as seeds for multiple output puzzles).

In contrast, through the combination of segmentation and hierarchical

18

clustering, the Mixed-Bag Solver partitions the input pieces into disjoint segment

clusters, with each one roughly approximating a single input puzzle. As such, the

Mixed-Bag Solver selects a single piece from each segment cluster to be used as the

seed of a puzzle during final segment. Within a given segment cluster, the Mixed-Bag

Solver uses the same approach proposed by Paikin & Tal wherein the selected seed

must have best buddies on each of its sides and each of its best buddies must also

best buddies on each of their sides. This approach of selecting seeds using segment

clusters provides vastly superior results as shown in Section 5.2.

3.6 Final Assembly

Once the seed pieces have been selected from the segment clusters, they are

used as the initial kernels for the solver outputs. Assembly then proceeds

simultaneously across all boards normally. The fully-assembled boards, with all pieces

placed, are the Mixed-Bag Solver’s final output.

19

CHAPTER 4

Quantifying and Visualizing the Quality of a Mixed-Bag Solver Output

Modern jig swap puzzle solvers are not able to perfectly reconstruct the

ground-truth input(s) in many cases. As such, quantifiable metrics are required to

objectively compare the quality of outputs from different solvers. Cho et al. [13]

defined two such metrics, namely direct accuracy and neighbor accuracy. These

metrics have been used by others including [15, 14, 16, 22, 17]. This chapter discusses

the existing quality metrics and outlines a set of enhancements to make these metrics

more applicable to Mixed-Bag puzzles. This thesis also proposes advanced metrics for

quantifying the best buddy attributes of an image. The final two sections of this

chapter outline new standards to visualize the quality of solver accuracy as well as

the best buddy profile of images.

4.1 Direct Accuracy

Direct accuracy is a relatively naïve quality metric; it is defined as the fraction

of pieces placed in the same location in both the ground-truth (i.e., original) and

solved images with respect to the total number of pieces. Equation (6) shows the

formal definition of direct accuracy (DA), where 𝑛 is the number of pieces and 𝑐 is the

number of pieces in the solved image that are placed in their original (i.e., correct)

location. A solved image is referred to as ‘‘perfectly reconstructed’’ if the location

(and rotation, if applicable) of all pieces match the original image (i.e., 𝐷𝐴 = 1).

𝐷𝐴 =
𝑐

𝑛
(6)

This thesis proposes two new direct accuracy metrics, Enhanced Direct

Accuracy Score (EDAS) and Shiftable Enhanced Direct Accuracy Score (SEDAS),

which are specifically tailored to address Mixed-Bag puzzles. The metrics are

described in the following two subsections; the complementary relationship between

20

EDAS and SEDAS is described in the third subsection.

4.1.1 Enhanced Direct Accuracy Score

The standard direct accuracy metric does not account for the possibility that

there may be pieces from multiple input puzzles in the same solver output image. For

a given puzzle, 𝑃𝑖, in the set of input puzzles 𝑃 (i.e., 𝑃𝑖 ∈ 𝑃) and a set of solved

puzzles 𝑆 where 𝑆𝑗 ∈ 𝑆, EDAS is defined as shown in Equation (7). 𝑐𝑖,𝑗 is the

number of pieces from input puzzle 𝑃𝑖 correctly placed (with no rotation for Type 2

puzzles) in solved puzzle 𝑆𝑗 while 𝑛𝑖 is the number of pieces in puzzle 𝑃𝑖. 𝑚𝑘,𝑗 is the

number of pieces from an input puzzle 𝑃𝑘 (where 𝑘 ̸= 𝑖) that are also in 𝑆𝑗.

𝐸𝐷𝐴𝑆𝑃𝑖
= max

𝑆𝑗∈𝑆

𝑐𝑖,𝑗
𝑛𝑖 +

∑︀
𝑘 ̸=𝑖(𝑚𝑘,𝑗)

(7)

Standard direct accuracy (see Equation (6)) and EDAS are equivalent when

solving a single puzzle. Moreover, like standard direct accuracy, a perfectly

reconstructed puzzle will always have an EDAS of 1.

For Mixed-Bag puzzles, EDAS marks as incorrect any pieces from 𝑃𝑖 that are

not in 𝑆𝑗 by dividing by 𝑛𝑖. Moreover, since pieces from 𝑃𝑖 may have been placed in

more than one output puzzle, EDAS is calculated as the maximum value across all

solved puzzles, 𝑆. In addition, the summation of term 𝑚𝑘,𝑗 penalizes for any puzzle

pieces in 𝑆𝑗 that are not from 𝑃𝑖. It is through the combination of these three

techniques that EDAS takes into account both extra and missing pieces in the solver

output.

It is important to note that EDAS is a score and not a measure of accuracy.

While its value is bounded between 0 and 1 (inclusive), it is not specifically defined as

the number of correct placements divided by the total number of placements since

the denominator of Equation (7) is greater than or equal to the number of pieces in

both 𝑃𝑖 and 𝑆𝑗.

21

(a) Ground-truth image (b) Solver output

Figure 3: Solver output where a single misplaced piece catastrophically affects the
direct accuracy

4.1.2 Shiftable Enhanced Direct Accuracy Score

Standard direct accuracy is vulnerable to shifts in the solved image where even

very minor placement errors can cause the reported accuracy to drop to 0. Figure 3

shows a ground-truth image and an actual solver output when the puzzle boundaries

were not fixed. Note that only a single piece is misplaced; this shifted all other pieces

to the right one location causing the direct accuracy to drop to zero. Had this same

piece been misplaced along either the right or bottom side of the image, the direct

accuracy would have been largely unaffected. The fact that direct accuracy can give

such vastly differing results for essentially the same error shows that direct accuracy

has a significant flaw. This thesis proposes SEDAS to address the often misleadingly

punitive nature of standard direct accuracy.

Equation (8) is the formal definition of SEDAS. 𝑑𝑚𝑖𝑛 represents the Manhattan

distance between the upper left corner of the solved image and the nearest puzzle

piece. Similarly, 𝐿 is the set of all puzzle locations within radius 𝑑𝑚𝑖𝑛 (inclusive) of

the upper left corner of the image. Given that 𝑙 is a location in 𝐿, the term 𝑐𝑖,𝑗 from

Equation (7) has been changed to 𝑐𝑖,𝑗,𝑙 to denote that 𝑙 is used as a custom reference

point when determining the number of pieces correctly placed in the solved puzzle.

22

𝑆𝐸𝐷𝐴𝑆𝑃𝑖
= max

𝑙∈𝐿

(︂
max
𝑆𝑗∈𝑆

𝑐𝑖,𝑗,𝑙
𝑛𝑖 +

∑︀
𝑘 ̸=𝑖(𝑚𝑘,𝑗)

)︂
(8)

In the standard definition of direct accuracy proposed by Cho et al., 𝑙 is fixed

at the upper left corner of the image. In contrast, SEDAS shifts this reference point

within a radius of the upper left corner of the image in order to find a more

meaningful value for direct accuracy.

Rather than defining SEDAS based on the distance 𝑑𝑚𝑖𝑛, an alternative

approach is to use the location anywhere in the solved image, 𝑆𝑗, that maximizes

Equation (8). However, that approach can take significantly longer to compute in

particular when the solved puzzle has several thousand pieces. SEDAS balances the

need for a meaningful direct accuracy score against computational efficiency.

4.1.3 Necessity of Using Both EDAS and SEDAS

While EDAS can be misleadingly punitive, it cannot be wholly replaced by

SEDAS. Rather, EDAS and SEDAS serve complementary roles. First, EDAS must

necessarily be calculated as part of SEDAS since the upper left corner location is

inherently a member of the set 𝐿. (When the solved puzzle is not shifted, it is the

only location in 𝐿.) Hence, there is no additional time required to calculate EDAS.

What is more, by using EDAS along with SEDAS, some shifts in the solved image

may be quantified (such as the one in Figure 3); this is not possible if only SEDAS is

used.

4.2 Neighbor Accuracy

Cho et al. [13] defined neighbor accuracy as the ratio of puzzle pieces sides that

are adjacent in both the original and solved images versus the total number of puzzle

piece sides. Formally, let 𝑞 be the number of sides each piece has (i.e., four in a jig

swap puzzle) and 𝑛 be the number of pieces. If 𝑎 is the number of puzzle piece sides

adjacent in both the ground-truth and solved images, then the neighbor accuracy,

23

𝑁𝐴, is defined as shown in Equation (9).

𝑁𝐴 =
𝑎

𝑛 · 𝑞
(9)

Unlike direct accuracy, neighbor accuracy is largely unaffected by shifts in the

solved image since it considers only a piece’s neighbors and not its absolute location.

However, the standard definition of neighbor accuracy does not encompass cases

where pieces from multiple inputs may be present in the same solver output.

4.2.1 Enhanced Neighbor Accuracy Score

Enhanced Neighbor Accuracy Score (ENAS) improves the neighbor accuracy

metric by providing a framework to quantify the quality of Mixed-Bag puzzle outputs.

Let 𝑛𝑖 be the number of puzzle pieces in input puzzle 𝑃𝑖 and 𝑎𝑖,𝑗 be the number of

puzzle piece sides that are adjacent in both 𝑃𝑖 and solved output, 𝑆𝑗. If 𝑚𝑘,𝑗 is the

number of puzzle pieces in 𝑆𝑗 from an input puzzle 𝑃𝑘 (where 𝑘 ̸= 𝑖), then the ENAS

for 𝑃𝑖 is defined as shown in Equation (10).

𝐸𝑁𝐴𝑆𝑃𝑖
= max

𝑆𝑗∈𝑆

𝑎𝑖,𝑗
𝑞(𝑛𝑖 +

∑︀
𝑘 ̸=𝑖(𝑚𝑘,𝑗))

(10)

Similar to the technique described for EDAS in Section 4.1.1, ENAS divides by

the number of pieces 𝑛𝑖 in input puzzle 𝑃𝑖. By doing so, it effectively marks as

incorrect any pieces from 𝑃𝑖 that are not in 𝑆𝑗. What is more, by including in the

denominator of Equation (10) a summation of all 𝑚𝑘,𝑗, ENAS marks as incorrect any

pieces not from 𝑃𝑖 that are in 𝑆𝑗. The combination of these two factors allows ENAS

to account for both extra and missing pieces.

4.3 Best Buddy Metrics

Chapter 2 explains that two puzzle pieces are best buddies on their respective

sides if they are both more similar to each other than they are to any other piece.

This thesis refers to a best buddy relationship as ‘‘adjacent’’ if the two pieces are

24

neighbors on their respective sides. In contrast, ‘‘non-adjacent’’ best buddies are not

neighbors. Note that it is also possible that a piece has no best buddy at all on one or

more sides.

Best buddy relationships have been used for segmentation [14], placement [16],

and as an estimation metric [15]. The following subsections propose the first

advanced best buddy metrics for both input and solved puzzles.

4.3.1 Interior and Exterior Non-Adjacent Best Buddies

If an image has fewer non-adjacent best buddies, then the best buddy

relationships are a more accurate determiner of puzzle piece adjacency. It is expected

that a pair of best buddies are more likely to be non-adjacent if they have no

neighbor at all (i.e., the piece(s) is next to an open location). This is because those

puzzle piece sides have no true neighbor, leaving them more inclined to couple with

an unrelated piece, which is often another piece’s side with no neighbor. This is

illustrated by the example in Section 4.5.

This thesis subcategorizes non-adjacent best buddies depending on whether

they are interior (i.e., the puzzle piece’s side has an actual neighbor) or exterior (i.e.,

the puzzle piece’s side has no neighbor). Interior non-adjacent best buddies are

generally more deleterious since they are more likely to affect both placement and

segmentation.

4.3.2 Best Buddy Density

As mentioned previously, some puzzle pieces may not have a best buddy;

however, no metric exists that quantifies an image’s best buddy profile. As such, this

thesis proposes Best Buddy Density (BBD) as defined by Equation (11), where 𝑏 is

the number of puzzle piece sides that have a best buddy. By dividing by the number

of puzzle pieces, 𝑛, each of which has 𝑞 sides,1 BBD normalizes for the size of the
1In a jig swap puzzle, 𝑞 is equal to 4.

25

input images. This bounds BBD between 0 and 1 (inclusive), with a higher best

buddy density indicating that the puzzle pieces are more differentiated from one

another. This equation can be adjusted to a more localized metric by considering only

a subset of the pieces.

𝐵𝐵𝐷 =
𝑏

𝑛 · 𝑞
(11)

Ideally, all adjacent puzzle piece sides would be best buddies, and there would

be no exterior best buddies. In such cases, the best buddy density would actually be

less than 1; the extent to which it would be below 1 is dependent on the puzzle

dimensions.

4.4 Visualizing the Quality of Solver Outputs

In images with thousands of pieces, it is often difficult to visually determine the

location of individual pieces that are incorrectly placed. The following two

subsections describe the standards developed as part of this thesis for visualizing

direct and neighbor accuracy.

4.4.1 Visualizing EDAS and SEDAS

In standard direct accuracy, EDAS, and SEDAS, each puzzle piece is assigned a

single value (i.e., correctly or incorrectly placed). As such, the direct accuracy

visualization represents each puzzle by a square filled with one solid color. A

refinement used in this thesis is to subdivide the ‘‘incorrect’’ placements into a set of

subcategories, namely in order of precedence: wrong puzzle, wrong location, and

wrong rotation. Note that the ‘‘wrong puzzle’’ classification applies only to

Mixed-Bag puzzles and occurs when a piece in the solver output is not from the

puzzle of interest, 𝑃𝑖. Table 1 shows the colors assigned to puzzle pieces depending

on their direct accuracy classification. Assuming no missing pieces in the

ground-truth image, the ideal EDAS and SEDAS visualizations would have the same

26

Table 1: Color scheme for puzzles pieces in direct accuracy visualizations

Wrong
Puzzle

Wrong
Location

Wrong
Rotation

Correct
Location

No Piece
Present

dimensions as the ground-truth input and only green squares.

Figure 4 shows a Type 2 solver output as well as its associated EDAS and

SEDAS visualizations. Since four puzzle pieces were erroneously placed on the left of

the image, almost all pieces had the wrong location according to EDAS; the only

exception is a single piece that had the right location but wrong rotation. In contrast,

almost all pieces have the correct location in the SEDAS representation; note that

the piece in the correct location but wrong rotation in EDAS has the wrong location

(a) Ground-truth image (b) Type 2 solver output

(c) EDAS visualization (d) SEDAS visualization

Figure 4: Example solver output visualizations for EDAS and SEDAS

27

Table 2: Color scheme for puzzles piece sides in neighbor accuracy visualizations

Wrong
Puzzle

Wrong
Neighbor

Correct
Neighbor

No Piece
Present

in SEDAS since the reference is shifted.

4.4.2 Visualizing ENAS

Jig swap puzzle pieces have four sides. As such, each piece in the ENAS

visualization is divided into four isosceles triangles; the base of each triangle is along

the puzzle piece’s side whose neighbor accuracy is represented. The four isosceles

triangles all share a common, non-base vertex at the piece’s center. Table 2 defines

the color assigned to each triangle depending on whether a piece’s neighbors match in

the ground-truth input and the solver output.

Figure 5 shows an actual output when solving a Mixed-Bag puzzle with two

images. In this example, the puzzle of interest, 𝑃𝑖, is the glass and stone building

while the other puzzle, 𝑃𝑘, is the rainforest house. All pieces that came from the

rainforest house image are blue, despite being assembled correctly; this is because

they are not from the puzzle of interest. In contrast, all pieces from the glass and

stone building image that are placed next to their original neighbor are represented

by green triangles while all incorrect neighbors, such as those bordering the rainforest

house image, are represented by red triangles.

28

(a) Input image # 1 –
rainforest house [23]

Reproduced with permission

(b) Input image # 2 –
building exterior [25]

(c) Solver output (d) ENAS visualization

Figure 5: Example solver output visualization for ENAS

4.5 Visualizing Best Buddies

The visualization for best buddies is similar to that of neighbor accuracy where

each piece is divided into four isosceles triangles with each triangle representing the

piece’s best buddy relationship with its neighbor. Table 3 defines the color scheme

used to denote the three best buddy relationships outlined in Section 4.3.

Figure 6 shows an example image and its associated best buddy visualization.

Despite having 16 times as many interior sides, the image in this figure still has

3 times more exterior, non-adjacent best buddies than interior ones.

29

Table 3: Color scheme for puzzles piece sides in best buddy visualizations

No Best
Buddy

Non-Adjacent
Best Buddy

Adjacent Best
Buddy

No Piece
Present

(a) Original image [24] (b) Best buddy visualization

Figure 6: Visualization of best buddies in an example image

30

CHAPTER 5

Experimental Results

A set of experiments were performed to compare the performance of the

Mixed-Bag Solver and Paikin & Tal’s algorithm. These experiments followed the

standard test conditions collectively used by [13, 14, 17, 15, 16]. For example, each

square puzzle piece was 28 pixels wide. Likewise, all image information was

represented using the LAB colorspace. What is more, only the more challenging

Type 2 puzzles were investigated, meaning that piece location and rotation were

unknown. Furthermore, the solvers were not provided any information concerning

the dimensions of the ground-truth input(s).

The only difference in the two solvers’ test conditions arises from the fact that

Paikin & Tal’s algorithm requires that the number of input puzzles be specified. In

contrast, the Mixed-Bag Solver is not supplied any additional information beyond the

puzzle pieces. This gives Paikin & Tal’s algorithm a clear advantage.

To compare the performance of the Mixed-Bag Solver and Paikin & Tal’s

algorithm when provided multiple ground-truth inputs, this thesis used Pomeranz et

al.’s benchmark containing twenty, 805-piece images [23]. In each test, a specified

number of images (ranging from two to five) were randomly selected, without

replacement, from the image pool. The two solvers’ outputs were then compared.

Table 4 shows the number of times each solver was run for a specific input puzzle

count. As explained in Section 3.1.2, the execution time of Paikin & Tal’s assembler

can grow cubicly, especially if the best buddy density is low. As such, the solvers

were run fewer times as the number of input puzzles increased.

5.1 Accuracy Determining the Number of Input Puzzles

For the Mixed-Bag Solver to provide meaningful outputs, it must be able to

identify the number of ground-truth inputs. The first subsection discusses the solver’s

31

Table 4: Number of solver iterations for each puzzle input count

Puzzles 2 3 4 5
Iterations 55 25 8 5

accuracy when provided only a single image. This is separated from the more general

discussion as the algorithm’s performance on a single image represents its accuracy

ceiling. The algorithm’s performance when solving two to five puzzles is discussed in

a separate subsection.

5.1.1 Single Puzzle Solving

The Mixed-Bag Solver was able to correctly identify the single ground-truth

input for 17 out of the 20 images (i.e., 85% accuracy) in the Pomeranz et al.’s data

set. For the remaining three images, the Mixed-Bag Solver incorrectly found that the

pieces came from two images, meaning that the error was at most only a single

output puzzle.

Appendix B shows the three misclassified images and the associated Mixed-Bag

Solver outputs. The figures in the appendix show that the solver struggles to

correctly identify the number of input puzzles when an image has large areas with

little variation (e.g., a clear sky, smooth water, etc.). Two example images from the

Pomeranz et al. dataset are shown in Figure 7. The Mixed-Bag Solver was able to

perfectly reconstruct image (a); in contrast, the Mixed-Bag Solver incorrectly

determined that the pieces from image (b) came from two separate puzzles. The best

buddy visualizations in Figure 7 shows that image (a) has a significantly higher best

buddy density than image (b) as well as fewer interior, non-adjacent best buddies. It

is these two factors that most contributed to the Mixed-Bag Solver being unable to

determine the number of ground-truth inputs for the three misclassified images.

It is important to note that the Mixed-Bag Solver’s difficulty reconstructing

32

Ground-truth image (a) [23]
Reproduced with permission Best buddy visualization of image (a)

Ground-truth image (b) [23]
Reproduced with permission Best buddy visualization of image (b)

Figure 7: Comparison of best buddy density and interior non-adjacent best buddies
for two images from the Pomeranz et al. 805 piece data set.

images with low best buddy density is actually an artifact of the assembler. Paikin &

Tal mentioned in [16] that their algorithm may yield ‘‘unsatisfactory results’’ on such

images.

5.1.2 Multiple Puzzle Solving

As mentioned previously, the Mixed-Bag Solver was tested by randomly

selecting a specified number of images, without replacement, from Pomeranz et

al.’s 805 piece data set. Figure 8 illustrates the Mixed-Bag Solver’s performance in

identifying the number of input puzzles when passed multiple images. A correct

33

0 1 2 3
0

20

40

60

80

100

75

16

7
2

44
48

4 4

50 50

0 0

60

20 20

0

Size of Input Puzzle Count Error

F
re

qu
en

cy
(%

)

2 Puzzles 3 Puzzles 4 Puzzles 5 Puzzles

Figure 8: Mixed-Bag Solver’s input puzzle count error frequency

estimation of the number of puzzles would represent an error of ‘‘0’’ in the figure.

Similarly, an overestimation of a single puzzle (e.g., the solver identified four puzzles

when only three were provided as an input) would represent an error of ‘‘1.’’ Across

all experiments, the Mixed-Bag Solver never underestimated the number of input

puzzles; what is more, it never overestimated the number of input puzzles by more

than 3.

In this set of experiments, the Mixed-Bag solver correctly determined the

number of input puzzles in 65% of the tests. Likewise, the solver overestimated the

number of input puzzles by more than one in less than 8% of tests. Since the solver

never underestimated the input puzzle count, it is clear that it is over-rejecting

cluster mergers and/or creating very small clusters that are too isolated to merge

with others. It is expected that this aspect of the solver’s performance would be

improved by reducing the minimum clustering threshold (see Section 3.4) as well as

34

Table 5: Comparison of the Mixed-Bag and Paikin & Tal Solvers’ performance on
multiple input puzzles

Puzzle Average SEDAS Average ENAS Perfect Reconstruction
Count MBS† MBS‡ Paikin MBS† MBS‡ Paikin MBS† MBS‡ Paikin

2 0.850 0.757 0.321 0.933 0.874 0.462 29.3% 23.6% 5.5%
3 0.953 0.800 0.203 0.955 0.869 0.364 18.5% 18.8% 1.4%
4 0.881 0.778 0.109 0.920 0.862 0.260 25.0% 15.6% 0%
5 0.793 0.828 0.099 0.868 0.877 0.204 20.0% 24% 0%

increasing the minimum segment size (see Section 3.2.2).

5.2 Comparison of Solver Output Quality

As mentioned at the beginning of this chapter, images were randomly selected

from the Pomeranz et al. data set and passed to both the Mixed-Bag Solver and

Paikin & Tal’s algorithm. Table 5 and Figure 9 show the quantified quality of the

outputs generated by both solvers for varying input puzzle counts. The three metrics

used are the mean Shiftable Enhanced Direct Accuracy Score (SEDAS), mean

Enhanced Neighbor Accuracy Score (ENAS), and the percentage of puzzles assembled

perfectly (i.e., input and output puzzles are an identical match). The results for the

Mixed-Bag Solver (MBS) are subdivided between the case when the number of input

puzzles was correctly determined (denoted with a ‘‘†’’ in the table heading) versus all

solver results (denoted with a ‘‘‡’’). The reason for this distinction is that the former

category represents the solver’s performance ceiling if it were provided the input

puzzle count.

Across all quality metrics and categories, the Mixed-Bag Solver significantly

outperformed Paikin & Tal’s algorithm. This is despite that only their algorithm was

provided additional information concerning the number of input puzzles.

Furthermore, unlike Paikin & Tal’s algorithm, there was no significant decrease in

35

the Mixed-Bag Solver’s performance as the number of input puzzles increased. In

addition, there was not a substantial difference in SEDAS or ENAS if the Mixed-Bag

Solver incorrectly estimated the number of input images; this indicates that the extra

puzzles generated were relatively insignificant in size.

5.3 Ten Puzzle Solving

Paikin & Tal’s algorithm was shown in [16] to be able to solve up to five

images simultaneously; this represents the most in the current literature. In contrast,

this thesis’ solver has been shown to work on up to 10 puzzles simultaneously, which

is double the current state of the art.

Appendix C contains the set of ten images that were input into both the

Mixed-Bag Solver (MBS) and Paikin & Tal’s algorithm. The comparison of their

respective performance is shown in Table 6. Despite the Mixed-Bag Solver receiving

less information, it scored greater than 0.9 for both Shiftable Enhanced Direct

Accuracy Score (SEDAS) and the Enhanced Neighbor Accuracy Score (ENAS) on all

puzzles. In contrast, Paikin & Tal’s algorithm only exceeded a SEDAS and ENAS

of 0.9 for image (f); their algorithm particularly struggled to select puzzle seeds with

the starting pieces of nine of the output puzzles coming from just three of the input

images. This experiment also shows that the Mixed-Bag Solver has greater immunity

than Paikin & Tal’s algorithm to potential shifts in the solved output since only four

of the Mixed-Bag Solver’s outputs showed a shift that would affect EDAS while seven

of Paikin & Tal’s outputs were shifted.

36

Table 6: Comparison of the image shifting, SEDAS, and ENAS results for the 10 puzzle
data set

Image Shifted SEDAS ENAS
ID # Pieces MBS Paikin MBS Paikin MBS Paikin
(a) 264 No Yes 1.000 0.000 1.000 0.544
(b) 330 No Yes 1.000 0.000 1.000 0.090
(c) 432 Yes Yes 0.905 0.000 0.911 0.034
(d) 540 No No 0.978 0.526 0.975 0.509
(e) 540 No No 1.000 0.059 1.000 0.327
(f) 540 Yes No 0.978 0.943 0.917 0.931
(g) 805 No Yes 0.997 0.000 0.990 0.077
(h) 805 Yes Yes 0.958 0.000 0.967 0.070
(i) 805 No Yes 1.000 0.000 1.000 0.311
(j) 805 Yes Yes 0.998 0.000 0.990 0.073

37

2 3 4 5
0

0.2

0.4

0.6

0.8

1

Input Puzzles

SE
D

A
S

MBS Correct
Puzzle Count

MBS All

Paikin & Tal

(a) Shiftable Enhanced Direct Accuracy Score (SEDAS)

2 3 4 5
0

0.2

0.4

0.6

0.8

1

Input Puzzles

E
N

A
S

MBS Correct
Puzzle Count

MBS All

Paikin & Tal

(b) Enhanced Neighbor Accuracy Score (ENAS)

2 3 4 5
0

5

10

15

20

25

30

Input Puzzles

P
er

fe
ct

R
ec

on
st

ru
ct

io
n

(%
)

MBS Correct
Puzzle Count

MBS All

Paikin & Tal

(c) Percentage of puzzles perfectly reconstructed

Figure 9: Performance of the Mixed-Bag and Paikin & Tal Solvers with multiple
input puzzles

38

CHAPTER 6

Conclusions and Future Work

This thesis presented a fully automated solver for Mixed-Bag jigsaw puzzles.

The solver outperforms the current state of the art both in terms of solution quality

and also the maximum number of puzzles it can solve simultaneously. What is more,

unlike the state of the art, it requires no externally supplied information beyond the

set of puzzle pieces.

Opportunities exist to improve the Mixed-Bag Solver’s performance. First, the

assembler places a ceiling on the quality of the solver outputs. This solver is largely

independent of the assembler used, meaning that the solver’s performance will

improve as better assemblers are proposed. As such, an improved assembler that uses

multiple best buddies to prioritize placement is currently under development. What

is more, this new assembler addresses some of the performance limitations of

Paikin & Tal’s algorithm for images with low best buddy density.

In addition, the threshold for hierarchical clustering is currently set to a fixed

value. It is expected that a dynamic approach may improve the clustering overall and

in turn the solver’s performance.

Lastly, it was explained in Section 3.3.2 that stitching pieces are always

members of saved segments. In some cases, the mini-assembly may not actually

expand the segment, which would prevent segment clustering. As such, stitching may

improve if pieces not assigned to a segment are also used since these pieces may be

more likely to bridge inter-segment gaps.

39

LIST OF REFERENCES

[1] A. D. Williams, Jigsaw Puzzles: An Illustrated History and Price Guide.
Wallace-Homestead Book Co., 1990.

[2] A. D. Williams, The Jigsaw Puzzle: Piecing Together a History. Berkley Books,
2004.

[3] H. Freeman and L. Gardner, ‘‘Apictorial jigsaw puzzles: The computer solution
of a problem in pattern recognition,’’ IEEE Transactions on Electronic
Computers, vol. 13, pp. 118–127, 1964.

[4] T. Altman, ‘‘Solving the jigsaw puzzle problem in linear time,’’ Applied
Artificial Intelligence, vol. 3, no. 4, pp. 453–462, Jan. 1990.

[5] E. D. Demaine and M. L. Demaine, ‘‘Jigsaw puzzles, edge matching, and
polyomino packing: Connections and complexity,’’ Graphs and Combinatorics,
vol. 23 (Supplement), pp. 195–208, June 2007.

[6] B. J. Brown, C. Toler-Franklin, D. Nehab, M. Burns, D. Dobkin,
A. Vlachopoulos, C. Doumas, S. Rusinkiewicz, and T. Weyrich, ‘‘A system for
high-volume acquisition and matching of fresco fragments: Reassembling Theran
wall paintings,’’ ACM Transactions on Graphics, vol. 27, no. 3, Aug. 2008.

[7] M. L. David Koller, ‘‘Computer-aided reconstruction and new matches in the
Forma Urbis Romae,’’ Bullettino Della Commissione Archeologica Comunale di
Roma, vol. 2, pp. 103–125, 2006.

[8] S. L. Garfinkel, ‘‘Digital forensics research: The next 10 years,’’ Digital
Investigation, vol. 7, Aug. 2010.

[9] T. S. Cho, M. Butman, S. Avidan, and W. T. Freeman, ‘‘The patch transform
and its applications to image editing,’’ Proceedings of the 2008 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

[10] L. Zhu, Z. Zhou, and D. Hu, ‘‘Globally consistent reconstruction of ripped-up
documents,’’ IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, pp. 1–13, 2008.

[11] W. Marande and G. Burger, ‘‘Mitochondrial DNA as a genomic jigsaw puzzle,’’
Science, vol. 318, no. 5849, pp. 415–415, 2007.

40

[12] Y.-X. Zhao, M.-C. Su, Z.-L. Chou, and J. Lee, ‘‘A puzzle solver and its
application in speech descrambling,’’ in Proceedings of the 2007 International
Conference on Computer Engineering and Applications. World Scientific and
Engineering Academy and Society, 2007, pp. 171–176.

[13] T. S. Cho, S. Avidan, and W. T. Freeman, ‘‘A probabilistic image jigsaw puzzle
solver,’’ in Proceedings of the 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), ser. CVPR ’10. IEEE Computer Society, 2010,
pp. 183–190.

[14] D. Pomeranz, M. Shemesh, and O. Ben-Shahar, ‘‘A fully automated greedy
square jigsaw puzzle solver,’’ in Proceedings of the 2011 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), ser. CVPR ’11. IEEE
Computer Society, 2011, pp. 9–16.

[15] D. Sholomon, O. David, and N. S. Netanyahu, ‘‘A genetic algorithm-based solver
for very large jigsaw puzzles,’’ in Proceedings of the 2013 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), ser. CVPR ’13. IEEE
Computer Society, 2013, pp. 1767–1774.

[16] G. Paikin and A. Tal, ‘‘Solving multiple square jigsaw puzzles with missing
pieces,’’ in Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), ser. CVPR ’15. IEEE Computer Society, 2015.

[17] A. C. Gallagher, ‘‘Jigsaw puzzles with pieces of unknown orientation,’’ in
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), ser. CVPR ’12. IEEE Computer Society, 2012, pp.
382–389.

[18] D. Sholomon, O. David, and N. S. Netanyahu, ‘‘Datasets of larger images and
GA-based solver’s results on these and other sets,’’
http://u.cs.biu.ac.il/~nathan/Jigsaw/, 2013, (Accessed on 05/01/2016).

[19] P. S. Foundation, ‘‘Comparing python to other languages | python.org,’’
https://www.python.org/doc/essays/comparisons/, (Accessed on 10/09/2016).

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[21] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, (First
Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2005.

[22] K. Son, J. Hays, and D. B. Cooper, ‘‘Solving square jigsaw puzzles with loop
constraints,’’ in Proceedings of the 2014 European Conference on Computer
Vision (ECCV). Springer, 2014, pp. 32–46.

41

http://u.cs.biu.ac.il/~nathan/Jigsaw/
https://www.python.org/doc/essays/comparisons/

[23] D. Pomeranz, M. Shemesh, and O. Ben-Shahar, ‘‘Computational jigsaw puzzle
solving,’’
https://www.cs.bgu.ac.il/~icvl/icvl_projects/automatic-jigsaw-puzzle-solving/,
2011, (Accessed on 05/01/2016).

[24] H. Braxmeier and S. Steinberger, ‘‘Pixabay,’’ https://pixabay.com/, (Accessed
on 05/15/2016).

[25] A. Olmos and F. A. A. Kingdom, ‘‘McGill calibrated colour image database,’’
http://tabby.vision.mcgill.ca/, 2005, (Accessed on 05/01/2016).

42

https://www.cs.bgu.ac.il/~icvl/icvl_projects/automatic-jigsaw-puzzle-solving/
https://pixabay.com/
http://tabby.vision.mcgill.ca/

APPENDIX A

Example Outputs of a Single Segmentation Round

This appendix is provided as example to assist in visualizing the different

outputs generated during segmentation. Figure A.10 shows the two ground-truth

images that were input into the Mixed-Bag Solver for this example. As explained in

Section 3.2, pieces from these images are assembled as if they had come from a single

puzzle; Figure A.11 is the assembler output for the first round of segmentation.

Figure A.12 shows the segments (they are colored to make them easier to identify)

identified in the assembler output. For each segment, the pieces that are further

away from an open location are lighter in color while those closer to a boundary are

darker. Although not strictly a part of segmentation, the stitching piece(s) that

would have resulted from each segment (assuming it exceeded the minimum size) are

marked with white crosses as a reference.

Figure A.13 is the best buddy visualization of the assembler output. Note that

the right and left sides of image (a) have stripes of best buddies that extend only in

the horizontal direction. All of the pieces in these stripes are articulation points. As

such, they were removed from the main segment in the center of the image as

described in Section 3.2.3.

43

Image (a) – 805 pieces [23]
Reproduced with permission Image (b) – 540 pieces [25]

Figure A.10: Ground-truth images used in the segmentation example

Figure A.11: Assembler output of a single puzzle after the first segmentation round

44

Figure A.12: Segmentation of the assembler output with marking of the articulation
points and the lightness of piece coloring dependent on the distance to the nearest
open location

Figure A.13: Best buddy visualization of the assembler output

45

APPENDIX B

Incorrectly Classified Single Image Puzzles

To determine the Mixed-Bag Solver’s performance ceiling, twenty images from

Pomeranz et al.’s 805 piece dataset were individually input into the solver. The

Mixed-Bag Solver correctly identified that there was only a single ground-truth input

for 17 out of the 20 images. Figure B.14 shows the three misidentified images, and

Figure B.15 contains the Mixed-Bag Solver’s output for these images. All three

images have large areas with little variation (e.g., a clear sky, smooth water).

Paikin & Tal note in [16] that their assembler does not perform well on such images.

Therefore, it is expected the Mixed-Bag Solver’s performance on these images would

improve if a different assembler is used.

46

Input image (a) [23]

Input image (b) [23]

Input image (c) [23]

Figure B.14: 805 piece images that were incorrectly identified by the Mixed-Bag
Solver. Reproduced with permission from Pomeranz et. al.

47

Solver output (a–1) Solver output (a–2)

Solver output (b –1) Solver output (b–2)

Solver output (c –1) Solver output (c –2)

Figure B.15: Mixed-Bag Solver outputs for the incorrectly identified images

48

APPENDIX C

Ten Puzzle Results

Figures C.16 and C.17 contain a set of 10 images of 5 different sizes that are

made up of more than 5,800 total pieces. These images were input into both the

Mixed-Bag and Paikin & Tal solvers; this experiment represents twice as many

puzzles as Paikin & Tal solved in [16].

Figures C.18 and C.19 show the Mixed-Bag Solver outputs for this test set.

Four of the images (e.g., (a), (b), (e), (i)) are perfectly reconstructions. The rest have

only a small percentage of pieces out of place. This is shown in the SEDAS

visualizations in Figures C.20 and C.21. The Mixed-Bag Solver’s output quality for

these images is comparable to that of Paikin & Tal’s algorithm when it solves these

images individually.

49

Image (a) – 264 pieces [24] Image (b) – 330 pieces [24]

Image (c) – 432 pieces [25] Image (d) – 540 pieces [25]

Image (e) – 540 pieces [25] Image (f) – 540 pieces [25]

Figure C.16: First set of six images in the 10 image test set

50

Image (g) – 805 pieces [23] Image (h) – 805 pieces [23]

Image (i) – 805 pieces [23] Image (j) – 805 pieces [23]

Figure C.17: Second set of four images in the 10 image test set. Reproduced with
permission from Pomeranz et. al.

51

Reconstructed image (a) Reconstructed image (b)

Reconstructed image (c) Reconstructed image (d)

Reconstructed image (e) Reconstructed image (f)

Figure C.18: First set of six images output by the Mixed-Bag Solver for the 10 image
test set

52

Reconstructed image (g) Reconstructed image (h)

Reconstructed image (i) Reconstructed image (j)

Figure C.19: Second set of four images output by the Mixed-Bag Solver for the
10 image test set

53

SEDAS visualization of image (a) SEDAS visualization of image (b)

SEDAS visualization of image (c) SEDAS visualization of image (d)

SEDAS visualization of image (e) SEDAS visualization of image (f)

Figure C.20: First set of six SEDAS visualizations for the 10 image test set

54

SEDAS visualization of image (g) SEDAS visualization of image (h)

SEDAS visualization of image (i) SEDAS visualization of image (j)

Figure C.21: Second set of four SEDAS visualizations for the 10 image test set

55

	A Fully Automated Solver for Multiple Square Jigsaw Puzzles Using Hierarchical Clustering
	Recommended Citation

	Introduction
	Previous Work
	Mixed-Bag Solver Overview
	Assembly
	Assembler Implementation
	Assembler Time Complexity

	Segmentation
	Overview of the Segmentation Procedure
	Partitioning a Puzzle into Segments
	Articulation Points

	Stitching
	Mini-Assemblies and Stitching Pieces
	Stitching Piece Selection
	Quantifying Inter-Segment Relationships

	Hierarchical Clustering of Segments
	Building the Initial Similarity Matrix
	Updating the Similarity Matrix via Single Linking
	Terminating Hierarchical Clustering

	Final Seed Piece Selection
	Final Assembly

	Quantifying and Visualizing the Quality of a Mixed-Bag Solver Output
	Direct Accuracy
	Enhanced Direct Accuracy Score
	Shiftable Enhanced Direct Accuracy Score
	Necessity of Using Both EDAS and SEDAS

	Neighbor Accuracy
	Enhanced Neighbor Accuracy Score

	Best Buddy Metrics
	Interior and Exterior Non-Adjacent Best Buddies
	Best Buddy Density

	Visualizing the Quality of Solver Outputs
	Visualizing EDAS and SEDAS
	Visualizing ENAS

	Visualizing Best Buddies

	Experimental Results
	Accuracy Determining the Number of Input Puzzles
	Single Puzzle Solving
	Multiple Puzzle Solving

	Comparison of Solver Output Quality
	Ten Puzzle Solving

	Conclusions and Future Work
	LIST OF REFERENCES
	Example Outputs of a Single Segmentation Round
	Incorrectly Classified Single Image Puzzles
	Ten Puzzle Results

