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ABSTRACT 

SYNTHESIS AND CHARACTERIZATION OF SILICA HYDRIDE-BASED 

PENTYNOIC ACID STATIONARY PHASE FOR HPLC 

by Nasrin Syed 

 

       High performance liquid chromatography is an important analytical technique 

used for the separation and identification of components in a mixture. The aim of this 

research project was to synthesize and characterize a silica hydride-based pentynoic 

acid stationary phase. Analytical techniques like elemental analysis and diffuse 

reflectance infrared fourier transform spectroscopy (DRIFT) were used to confirm the 

success of bonding between silica hydride and pentynoic acid moiety. The pentynoic 

acid Si-H column allows for retention of both polar and non-polar compounds by 

carefully selecting the concentration ratio of organic solvent to water in the mobile 

phase. The characterization of the column was done using a series of polar and 

nonpolar compounds by studying their aqueous normal-phase and reversed-phase 

chromatographic behavior. The interactions between the stationary phase and the 

analyte include both hydrophobic and ionic/electrostatic interactions. The effect of   

varying the pH of the mobile phase on retention time was examined. The column’s 

ability to run under reverse and aqueous normal phase conditions provides unmatched 

versatility compared to type-B silica columns.
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I.   INTRODUCTION 

      A.  Historical Background of Chromatography 

           Chromatography is a powerful separation technique, which allows the separation of 

different molecular species from a mixture of compounds. Applications of 

chromatography are numerous in various fields such as biotechnology, pharmaceuticals, 

biochemical, environmental and related fields. Chromatography was invented by the 

Russian scientist Mikhail Twsett in 1903. He employed this technique to separate plant 

pigments such as chlorophylls and xanthophylls on a calcium carbonate column using 

ether. The separated molecular species appeared as colored bands on the column, which 

justifies the name he chose for this technique [1]. 

              The stationary phase and the mobile phase play a major role in chromatography. 

For chromatographic separation, the stationary phase is typically in the form of a column 

with small porous particles on the surface of the packing material which is used to affect 

analyte attraction. The mobile phase which carries the sample is passed through the 

stationary phase. The separation of different compounds is achieved based on the affinity 

of the analyte towards the stationary phase or mobile phase. The difference in the 

retention time is the basis of separation of compounds in a mixture.  A fundamental 

classification of chromatographic methods is mainly divided into three types based on the 

physical state of the mobile phase: gas chromatography (GC), liquid chromatography 

(LC), and supercritical-fluid chromatography (SFC) [1]. In gas chromatography, mixtures 

are examined in the vapor phase, so the sample has to be volatile in nature or thermally 

stable. Only 20-30% of chemical compounds are suitable for gas chromatography without 
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some form of sample modification. During the 1970s, the most commonly used 

chromatographic techniques were paper chromatography, open column chromatography 

and thin layer chromatography. However, these techniques were not sufficient for good 

resolution between similar compounds. This led the way for the development of high 

pressure liquid chromatography. High performance liquid chromatography is the most 

widely used technique of all the separation methods. 

       B.  High Performance Liquid Chromatography 

              High performance liquid chromatography (HPLC) is a highly efficient and 

advanced version of liquid chromatography. In industries like biotechnology and 

pharmaceuticals, HPLC has been recognized as a powerful tool for the purpose of 

identification, purification, and separation of biomolecules [2]. The basic HPLC 

instrumentation consists of five major components: pumping system, injector, column, 

detector and data processor. The pumping system can generate constant pressure up to 

6000 psi to adjust the mobile phase flow rates ranging from 0.1 to 10 mL/min [3]. The 

degasser is employed before the solvent injection system. Degassing can be carried out 

by sparging with helium or by nitrogen gas. Helium sparging removes dissolved air by 

displacing the unwanted dissolved gases. The samples can be separated in two elution 

modes: isocratic and gradient. A constant composition of one or more solvents can be 

used to analyze the samples which is called as isocratic elution. Gradient elution is 

another method of elution in which the concentration of the mobile phase solvents is 

varied at certain intervals. The injector takes a small amount of sample from the vial and 

introduces it into the constant flow of the mobile phase.  
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           Separation of the analytes takes place in the column; hence it is called the heart of 

the chromatographic system. The column consists of a tube made up of stainless steel 

with a silica-based stationary phase. The length of the analytical column varies from 5 to 

25 cm and the inner diameter of chromatographic columns is often 2.1 to 4.6 mm [4]. The 

mobile phase along with the analytes enter the detector, which produces an electrical 

signal proportional to the concentration of the analytes. This output is recorded as a 

chromatogram. The detection of molecular species eluted from the column can be done 

using a variety of techniques like UV-vis absorption, fluorescence and mass spectrometer 

(MS).  Figure 1 represents the basic schematic view of HPLC instrument.  

 

Figure 1. Schematic view of HPLC system 
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C. Detectors 

         1. Ultraviolet (UV) Detector 

               UV-vis spectrophotometric detectors are the most commonly used. They are 

selective in principle, yet possess sufficient versatility to be useful for many applications. 

This detector is based upon the light absorption characteristics of the analyte. Many 

compounds in nature can absorb light in the ultraviolet-visible region (200 to 800 nm) of 

the spectrum [1]. Some of the important chromophores are carbonyls, acids, esters, 

ethylenic, nitrile group, etc. They work on the principle of Beer’s law which states that 

the absorbance of an analyte at a particular UV wavelength is directly proportional to its 

concentration [5]. The intense 254 nm radiation from mercury lamps is suitable for a 

wide range of applications. 

       2. Photo Diode Array Detector 

  This is similar to a UV detector which operates from 190-700 nm wavelength, 

which allows the recording of the entire spectrum of each solute as it passes through the 

diode array detector. The diode array detector (DAD) uses a polychromatic light source, 

which scans a range of wavelengths every few milliseconds and continually generates 

spectral information [6].  

D. Modes of Separation 

          Based on the nature of the stationary phase and separation process, liquid 

chromatography can be classified into five different modes: ion-exchange 

chromatography, partition chromatography, size-exclusion chromatography, affinity 

chromatography and adsorption chromatography [1]. 
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             The most widely used type of HPLC is partition chromatography, in which the 

solute is retained on the basis of its distribution among two or more phases. Partition 

chromatography can be classified into either liquid-liquid or bonded-phase 

chromatography depending on how the stationary phase is held on the support surface. 

Depending upon the polarity of the stationary phase and the mobile phase, there are two 

main types of separation of HPLC:  normal-phase HPLC and reversed-phase HPLC. 

   1. Normal Phase Chromatography  

In normal phase chromatography, the mobile phase is non-polar (e.g., hexane, 

tetra-hydro furan or ethyl acetate) and the stationary phase is strongly polar (e.g.,  

bare silica, cyano or amino bonded phases). In normal-phase chromatography the most 

nonpolar compounds elute first followed by polar compounds.  Polar analytes tend to 

interact and stay with the stationary phase longer than the non-polar analytes, hence 

higher retention time for the polar compounds is expected, consequently non-polar 

analytes tend to elute faster resulting in lower retention time. 

2. Reversed-Phase Chromatography  

              In reversed-phase chromatography, the stationary phase is non-polar (bonded 

alkyl groups such as C8, C18, etc.) and the mobile phase is polar (e.g. acetonitrile-water 

or methanol-water).  Polar compounds elute first followed by non-polar compounds.  In 

reversed-phase chromatography, the separation is based on the partitioning of the analyte 

between the stationary phase and the mobile phase.  The non-polar stationary phases can 

be obtained by chemically bonding organic moieties on a solid surface such as silica. 
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    The major advantage of reversed phase is that water can be used as the mobile phase 

which is non-toxic and inexpensive. The interactions in reversed phase are considered to 

be hydrophobic forces [5]. In this mode, care must be taken to avoid pH values greater 

than 7.5, as it leads to the dissolution of the stationary phase. However, some 

biomolecules and pharmaceutical drugs contain multiple polar sites, and are very difficult 

to separate solely based on NP or RP chromatography. 

    3. Aqueous Normal Phase Chromatography 

               A new chromatographic technique has been developed by Pesek et al called 

aqueous normal phase chromatography (ANP) [7]. Aqueous normal phase is a technique 

performed on a special stationary phase, silica hydride. ANP is a mode of 

chromatography that can retain both polar as well as nonpolar analytes on the same 

column [6]. This unique dual retention capability of ANP is observed due to silica-

hydride. It is one of the most versatile separation modes allowing for a wide range of 

multi-polarity molecules to be analyzed and separated at the same time [ 8]. The ANP 

mode shows the same retention behavior as normal phase but has some water as part of 

the binary solvent system. When the percentage of acetonitrile (nonpolar solvent) 

increases, there is an increase in the retention of the polar molecules in the aqueous 

normal phase mode. As the percentage of water (polar component) increases, non-polar 

molecules are retained in the reversed-phase mode. Moreover, additives such as formic 

acid, ammonium formate, or ammonium acetate in small amounts in the mobile phase are 

used to get better peak shape and to enhance the retention of both acidic and basic polar 

solutes [9,10]. 
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   4. Hydrophilic Interaction Liquid Chromatography(HILIC) 

             Hydrophilic interaction liquid chromatography is a type of HPLC, which is used 

to separate polar-ionic compounds. The chromatographic surface used for the stationary 

phase can be polar (diol, amino) or ionic. The mobile phase in HILIC is typically less 

polar such as CH3OH or CH3CN [5]. It is used for separation of the biomolecules and the 

small polar compounds [11]. The main draw back with HILIC separation is that, it can 

only separate polar compounds. 

   5. Ion Exchange Chromatography 

            Ion exchange chromatography is a separation process in which species (ions, 

polar molecules) are separated on the basis of differences in electric charge. Cation 

exchange is a type of HPLC used for the separation of positively charged species. The 

chemically bound ions are called fixed ions and the ions of opposite charge are called 

counter ions. In this type of HPLC the retention is based on the attraction between ions in 

a solution and the opposite charged sites which are chemically bound to the stationary 

phase. In a cation-exchanger, the fixed ion carries a negative charge and exchanges 

cations from the solution [12] as shown in the Figure 2.  

 

 

(stationary phase)       (solution)                     (stationary phase)                 (solution) 

 
Figure 2. Cation exchange chromatography. 
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         Anion exchange chromatography is a type of HPLC used for the separation of 

negatively charged species. The ion exchanger is classified as anion-exchanger when the 

fixed ion carries a positive charge and exchanges anions from the solution. The mobile 

phase in ion-exchange chromatography usually consists of a buffer solution. Ion 

exchangers may be further classified as either strong or weak. Strong ion exchangers 

retain the charge on the fixed ion over a wide range of pH, whereas weak cation 

exchangers are ionized within a narrower pH range. Figure 3 depicts the anion exchange 

chromatography reaction.    

 

(stationary phase)        (solution)                  (Stationary phase)           (Solution) 

 

Figure 3. Anion exchange chromatography. 

    E. Silica Surface  

              Silica-based materials have been commonly used as solid supports in liquid 

chromatography. The chemical composition of the stationary phase can strongly affect 

the efficiency of separation. Silica is a porous material. It is mechanically stable and can 

be processed into particles of different pore sizes and shapes. The pore size of the silica 

particles has a direct interrelation shape with the size of the molecules retained on the 

stationary phase [13]. Silica used for chromatography is a condensation product of silicic 

acid. Its’ polymeric surface terminates in either a siloxane group (Si-O-Si) with the 

oxygen on the surface or one of the several forms of silanol groups (Si-OH). Silanol 
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groups on the surface of a silica particle can exist in germinal, vicinal or isolated form. 

These are hydrophilic in nature. 

         The silica surface can be best described as shown in Fig 4. Out of the two groups, 

silanols are more interesting to chromatographers since accessible silanol group localized 

on the silica surface will react with certain organic reagents to produce chemically 

bonded phases. The silanol group plays a very key role in the chromatographic separation 

properties of silica. Most of the properties are determined by their percentage of specific 

surface area and by the type of functional group attached. The concentration of silanol 

groups on the silica surface area is estimated to be 8 µmol/m2. Even short length columns 

can have sufficient surface area for analyte and stationary phase interactions [14].    

 

 

Figure 4. Different forms of silanols on the silica surface. Taken with permission from  
reference [12]. 
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 1. Type B Silica 

  Type B silica or ordinary silica is the most commonly used stationary phase 

material. The surface of Type B contains silanol groups (Si-OH).  Type B silica has a less 

acidic surface and low metal content when compared to Type A silica.  It is converted by 

derivatization to a reproducible bonding of the attached organic moieties such as, diols, 

carboxylic acids, phenyls, or hydrocarbons on the surface. The commonly used bonded 

Type B stationary phases are C8, C18, and diols. 

       Type B silica has many disadvantages like instability at high pH and the fact that 

polar compounds are poorly retained in the reversed-phase mode. There could be on-

column degradation of analytes due to the adsorbed layer of water on the surface. 

Sometimes, there are long run times and long equilibrium times while running gradients. 

Type B silica stationary phases adsorb water from the mobile phase, due to free silanols 

and as the amount of water increases the retention of the analytes often changes [15]. 

 2. Type C Silica 

  In order to overcome the limitations caused by the silanol groups on the surface of 

silica-based stationary phases, Pesek et al. introduced a new type of stationary phase 

known as silica hydride or Type C silica. The basic difference between Type B and Type 

C silica is that, silanols groups are present on the surface of ordinary silica while Si-H 

moieties are on the surface of silica hydride. This chemical change dramatically alters the 

surface properties of the two materials [15]. Figure 5 illustrates the comparison of the 

chemical surface composition of Type B and Type C silicas. 
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Figure 5. Type B (ordinary silica) and type C silica (silica hydride). Taken with 
permission from reference [16]. 

 
      Type C silica is weakly hydrophobic in nature due to the presence of the hydride on 

the surface. In the case of silica hydride, there is weak adsorption of water as opposed to 

strong water adsorption on Type B silica [16]. Figure 6 shows the association of water 

molecules with Type B and Type C silica respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Water association with type B and type C silica. Taken with permission from 
reference [17]. 

                                                                                                                                       

 

 

Strongly associated water shell 
of Type B silica 

Weakly associated water shell 
of Type C silica 
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F. Surface Modification of Silica 

        Different modification procedures can be used to modify the silica surface with a 

variety of ligands. The field of modification is a well-researched field of surface 

chemistry where a number of conversion methods to attach bonded organic moieties to 

silanol groups and their effects have been studied. Some of the reactions are 

esterification, organosilanization, chlorination, TES silanization and hydrosilation [18]. 

In all of these techniques, the organic moieties are covalently bonded to the silica surface. 

     1. Esterification 

     Esterification was the earliest method developed and it involves a reaction between an 

alcohol and the silanols on the surface to form a Si-O-C linkage as shown in Figure 7. 

This reaction is not suitable for most chromatographic applications because the Si-O-C 

linkages are hydrolytically unstable. [18,19]. 

 

 

 

 

Figure 7. Esterification reaction.  
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 2. Organosilanization 

              Another method to remove the acidic –OH group of silanol is organosilanization. 

In this reaction, a dimethylalkyl silane (X–SiR’2R) replaces the –OH in silanol [18]. The 

reaction of surface silanols with alkylchlorosilanes produce Si-O-Si-C linkages. This 

monomeric phase goes through hydrolysis under moderately acidic and moderately basic 

conditions. In the second type of organisilanization as shown in Figure 8, a polymeric 

phase is formed when a trifunctional organosilane reacts with surface silanols [20]. The 

polymeric phase gives better hydrolytic stability but the reaction is not  

reproducible [3, 21]. 

 

 

 

where n = 1 – 3 and Y = H or Si(Osi    )2R based on the extent of crosslinking [20]. 

 
Figure 8. Organosilanization reaction. 

 
 



14 
 

3. Grignard Reaction 

         Another approach that can be used is the chlorination of surface silanols followed 

by reaction of a Grignard reagent or oraganolithium compounds. As shown in Figure 9, 

this reaction produces a highly stable Si-C bond at the surface which is more stable. The 

disadvantage of this method is the formation of undesirable products such as MgClBr or 

LiCl which are difficult to wash off and can act as a potential contaminant on the silica 

surface [21, 22]. 

 

 

 

 

 

 

 

Figure 9. Chlorination of silanols by Grignard reagent and organolithium compounds. 
 
 

4. Silanization/ Hydrosilation 

      A more recent approach involves silanization followed by a hydrosilation reaction to  

attach an organic moiety to the silica surface as introduced by Pesek et al; [23] 

The first step is the silanization reaction, which involves the formation of a stable Si-H by 

the reaction of silica with TES in the presence of an acid catalyst. About 95 % of surface 
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silanols are converted into weakly hydrophobic Si-H. This reaction product, Si-H, serves 

as a stable intermediate for the hydrosilation reaction [21]. Figure 10 shows the schematic 

of the two-step synthesis procedure. 

 
 

 
Figure 10. Schematic representation of silanization/hydrosilation procedure 

 
            In the second step of hydrosilation, the desired organic moiety is attached on the 

surface of silica hydride using an acid catalyst, hexacholoroplatinic acid, also known as 

Speier’s catalyst. The technique has opened the door to the production of a variety of 

stationary phases which are hydrophobic, hydrophilic or ionic depending upon the type of 
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organic moiety attached. The separation of analytes on Type C columns, is due to the 

combined effect of the bonded organic moiety as well as the hydrophobic Si-H.  

 G. Characterization Techniques 

          Two main characterization methods, DRIFT and carbon elemental analysis, have 

been used to determine the success of bonding of pentynoic acid to a silica hydride 

surface, the material that is the focus of this study. The following sections describe the 

characterization methods used in this research. 

1. Diffuse Reflectance Infrared Fourier Transform Spectroscopy 

          Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) provides 

information about the functional groups present in the molecule bonded to the surface. 

DRIFT spectroscopy gives sufficient information about the surface chemistry of high 

surface area powders. The completion of the silanization and hydrosilation reactions, as 

well as the presence of bonded raw materials can be explained qualitatively using DRIFT. 

DRIFT analysis of powders is conducted by focusing infrared light directly onto the 

powdered sample, and the diffusely reflected beam is collected in the spectrometer. In 

this research project, DRIFT analysis is performed by irradiating the powdered sample, 

placed in a small cup. The signal contains the fingerprint spectral characteristics about the 

bonded moiety. 

2. Elemental Carbon Analysis: 

       Elemental analysis was carried out by micro-combustion. The combustion method is 

used to determine the elemental composition of organic compounds. Carbon percent 

values are useful to estimate the surface coverage of the bonded organic moiety. The 
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Berendsen and de Galan equation provides the relationship between the carbon 

percentage and surface coverage (α) of the bonded phase as shown below. 

           α (μmol/m2) = 106 pc/ (102 MC nC – pc MR) SBET 

In the above equation, 

pc - carbon % of the bonded material. 

nC - number of carbon atoms in bonded organic groups. 

MC - the atomic weight of carbon. 

MR - molecular weight of organic compound. 

SBET - specific surface area of silica material. 

  H. Research Goals 

      The primary goal in this research project was to synthesize a silica hydride based 

pentynoic acid stationary phase. The pentynoic acid moiety was selected because it 

contains an alkyl carbon chain as well as a carboxylic group. Modification of silica is a 

two-step process. The first step is the silanization process, which was used to convert the 

silanols of silica to silica hydride. Previously prepared silica hydride was used as a 

starting material. The second step is hydrosilation, in which the pentynoic acid moiety is 

attached to the surface of silica hydride. The synthesized stationary phase was 

characterized using two analytical techniques: DRIFT and elemental analyses. DRIFT 

analysis data confirmed the presence of spectral frequencies of the bonded moiety, 

pentynoic acid. Carbon elemental analysis estimated the amount of pentynoic acid 

attached to the silica hydride material 
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         The next objective was to analyze the separation ability of the silica hydride based 

pentynoic acid bonded material. A number of compounds including amino acids, 

nucleobases, nucleotide, nucleosides, ergogenic acids and polycyclic aromatic 

hydrocarbons were tested to investigate their retention on the silica hydride column. This 

study was done by selecting analytes from both hydrophobic and hydrophilic categories 

to observe the retention behavior of each under RP and ANP modes. A majority of the 

work was done using a UV detector. Retention maps of individual compounds were 

plotted under isocratic conditions. Dual retention capability and U-shaped retention 

profiles for polar and nonpolar compounds on the silica hydride based stationary phase 

were demonstrated.  

    The final goal of this project was to study the effect of varying pH on the retention 

time of compounds. Two different buffer systems, formic acid and ammonium acetate, 

were used in this study A reproducibility study was also performed to evaluate the 

column performance. Figure 11 shows an ideal retention map for silica hydride-based 

stationary phases, when using a mixture of polar and nonpolar solvents as the mobile 

phase. 
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Figure 11. Generic retention map on Si–H stationary phase. 
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II. EXPERIMENTAL 

       A. Materials 

          1. Preparation of Stationary Phase 

            The chemicals used in the preparation of the pentynoic acid stationary phase via 

the hydrosilation process are shown in Table1. 
 

 

Table 1. Chemicals used in the synthesis of stationary phase. 
 

 

Chemical Name 

 

Manufacturing Company 

4-Pentynoic acid GFS Chemicals, Inc. 

Hexachloroplatinic Acid 
Sigma-Aldrich 

 

Toulene Fisher Chemicals 

Diethyl ether Sigma-Aldrich 

Dichloromethane Fisher Chemicals 
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2. Chemicals Used in the Preparation of the Mobile Phases 

       The chromatographic evaluation of the stationary phase is carried out by using  

different concentrations of an organic solvent, acetonitrile, and a polar solvent,  
 
DI water. In addition to the above solvents, formic acid is used as an additive in 
 
 small amounts. The mobile phases used in this research project can be found in Table 2. 
 

Table 2. Chemicals used in the preparation of mobile phase. 
 

Chemical Name Manufacturing Company 

Acetonitrile 
 

Honeywell 

Formic acid 

 
Spectrum Mfg. Corp. 

 
 

Ammonium Acetate 
Matheson Coleman & Bell 

 

MilliQ DI Water Millipore 
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3. Samples analyzed for the ANP/RP HPLC retention studies 

The small polar molecules and non-polar molecules used in the evaluation of the column  

are listed in the Tables 3 through 5.  
 

Table 3. Samples analyzed for ANP retention 
 

Chemical Name Manufacturing Company 

Adenosine 
 
                     Calbiochem Co. 

 
 

Cytosine 
 

 
Nutritional Biochemical Corp. 

 
 

 
Uracil 

Sigma Chemical Co. 
 

Thymine Nutrional Biochemical Corp. 

Phenylalanine Sigma-Aldrich 

Tyrosine 
Pierce chemical Co. 

 

Creatinine 
Sigma Chemical Co. 
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Table 4. Miscellaneous compounds. 
 

Chemical Name Manufacturing Company 

Benzoic Acid Mallinckrodt 

Thiamine Hydrochloride MCB Mfg. Chemists 

  

 

Table 5. Samples analyzed for RP retention 
 

Chemical Name 

 
Manufacturing Company 

Acenaphthene 
 

Aldrich 

Anthracene 
 

Aldrich 

Naphthalene 
 

J.T. & Baker Chemical Co. 

Phenanthrene 
 

Sigma-Aldrich 

Pyrene Aldrich 
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B. Structures of Organic Compounds  

 

1.  4- Pentynoic acid Moiety  

 

 

 

 

                  
 

 

 

 

 

 

2. Analytes used for the Column Evaluation-Polar Compounds 

 

 

 

 

 
        
    Adenosine 

 

 

 
 
 
 
 
 
 

Thymine 
Uracil 
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                     Tyrosine 

 
 
 
 
 

3. Miscellaneous Compounds 

 

      
 
     Thiamine Hydrochloride                                 Benzoic Acid         

Creatinine 
          Phenylalanine 
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    4. Polycyclic Aromatic Hydrocarbons 

       The polycyclic aromatic hydrocarbons, acenaphthene, acenaphthylene, naphthalene,  

phenanthrene, and pyrene were used as another group of non-polar analytes. The  

structure of each compound is shown below. 

 

 

                                                   
 
         Pyrene                                    Naphthalene  

 
 
 

                                             
                
         Acenaphthene                                                    Acenaphthylene              
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     C. Synthetic Procedures  

          The synthesis of pentynoic acid silica hydride involves two steps. Silanization is 

the first step, in which silanol groups are converted into silica hydride. Previously  

synthesized silica hydride was used in this project. The second step is hydrosilation. The 

hydrosilation reaction was carried out in order to bond pentynoic acid moieties onto the 

silica hydride surface. All the glassware required for the synthesis was dried overnight in 

an oven at 110°C. Five grams of silica hydride, which is synthesized by the silanization 

procedure, were also dried overnight in a vacuum oven at 120°C prior to synthesis. The 

organic moiety, 4-pentynoic acid (HC≡C(CH2)2COOH), was used for this particular 

reaction. A 500 mL three necked round bottom flask was attached to a condenser with a 

drying tube, a thermometer, and a stopper. The round bottom (RB) flask was kept in a 

heating mantle, which was placed on the electric heater. A magnetic stir bar was placed 

inside the RB flask.  About 200 ml of toluene, 0.5 mL of 10 mM Speier’s catalyst and 2.5 

g of 98% pure 4-pentynoic acid were transferred to the flask. The reaction mixture was 

heated at a constant temperature of 70°C for an hour with constant stirring to ensure 

complete activation of the new complex formed. After one hour, 2.5 g of silica hydride 

was added gradually to the flask and in small portions with constant stirring. This 

reaction mixture was refluxed at 110°C for 96 hours. Afterwards, this reaction mixture 

was allowed to cool down and  filtered through a crucible using vacuum suction. The 

filtered solid was washed successively with 50 mL of toluene, 50 mL of dichloromethane 

and 50 mL of diethyl ether. The final silica hydride (pentynoic acid bonded to silica 

hydride) product was dried overnight at room temperature by placing the beaker in the 
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hood to evaporate the ether used during the washing cycles. The final product was then 

dried overnight in the vacuum oven at 110°C for 24 hours. Figure 12 shows the 

experimental set-up for the hydrosilation reaction. 

 
 

Figure 12. Experimental setup for hydrosilation reaction. 
 

D. Column Packing 

 

         Column packing involves loading the synthesized stationary phase under high 

pressure into a stainless steel column. The packing of 4-pentynoic acid was done by the 

Micro-Solv Technology Corporation (Eatontown, NJ). The dimensions of the stainless 

steel tubes used for packing the bonded phase material were 75 x 4.6 mm, pore size 100 
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Å and particle size 4 – μm.  Figure 13 shows the newly synthesized pentynoic acid 

column. 

 

 

Figure 13. Newly synthesized pentynoic acid column. 
 
 

E. Instrumental Procedures 

 

       Two main characterization methods, DRIFT and carbon analysis have been used to  
 
determine the success of bonding 4-pentynoic acid to the silica hydride surface.  
 

1. Diffuse Reflectance Infrared Fourier Transform Spectroscopy 

 

     An ATI Mattson Infinity Series FT-IRTM spectrophotometer that is equipped with a 

deuterated triglycine sulfate (DTGS) detector and Hewlett Packard computer was used to 

collect the spectrum of pentynoic acid bonded to silica hydride. The sample was put into 

a diffuse reflectance cup, a round hollow container 3 mm in diameter and 2 mm deep, and 

the surface was smoothed using a spatula. First, a background signal was collected and 

then the sample cup was placed carefully in the instrument. The infrared region at which 

the spectra were recorded was 4000― 450 cm-1. 
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2. Carbon Elemental Analysis 

       The surface coverage provides quantitative information about the organic groups on 

the surface of the silica hydride.  Elemental analysis was done by the combustion method. 

Carbon analysis provides valuable information about the percentage of carbon in the 

bonded phase. 10 mg of pentynoic acid bonded phases, obtained from the hydrosilation 

step, were sent to ALS Environmental laboratories (Tucson, AZ) for carbon elemental 

analysis. The structure of the attached organic moiety plays an important role in the 

surface of the packing material. The value of % C was used to calculate the surface 

coverage of the bonded phase on the silica material. 

3. High Performance Liquid Chromatography 

       The HPLC instrument used in this research consisted of a Hewlett Packard series 

1050 instrument equipped with a variable wavelength UV detector, a quaternary pump, 

auto sampler and an Alltech in-line degasser. The common main processor (CMP) 

controls all functions of the modules. The software used for data analysis was Chem 

station. An HP Deskjet printer was used to print the chromatograms. The pump flow rate 

was set at 0.5 mL/min for a majority of the samples. The volume of the samples for each 

injection was 4-5 μL and the column temperature was maintained at ambient. Figure 14 

shows the HPLC instrument used for analysis. 
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Figure 14. HP/Agilent 1050 series HPLC-UV instrument. 
 
 
           The second HPLC instrument used was an HP 1090 Series II. The instrument was 

equipped with a three-solvent system, oven compartment, and an HP-IB interface board. 

The detector was a UV/Vis diode array detector.  This instrument had a solvent degassing 

nitrogen inlet to remove the other gases dissolved in the solvents. Chem Station software 

was used for the purpose of instrument control and data collection. The results of the 

analyses were printed using an HP Laser jet printer. The HP 1090 used to study varying 

concentration of buffers is shown in Figure 15. 
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Figure 15. HP/Agilent 1090 series HPLC-UV instrument. 

         The DI water used for mobile phases was prepared on a Milli-QTM purification 

system. The mobile phase was vacuum filtered with a Nylon filter to enhance the purity 

of the solvent. The columns were flushed with 100% methanol for 1.0 hour as a means of 

preparation before the actual study. The instrument was set for two wavelengths at 

214nm and 254 nm for optimum detection of all analytes using the HP 1090 system. 
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III. RESULTS AND DISCUSSION 

         A. DRIFT Spectroscopic Analysis 

         The success of the hydrosilation synthetic procedure can be confirmed using DRIFT 

spectroscopy. The DRIFT spectrum of the 4-pentynoic acid hydride bonded phase is 

shown in Figure 16, which confirms the bonding of the organic moiety on the surface of 

the silica hydride. 

    The presence of the sharp peak at the 2250 cm-1 frequency is due to the stretching 

vibrations of the Si-H functional group. This intense Si-H band confirms the presence of 

Si-H bonds on the surface. The characteristic features of the spectrum are the presence of 

peaks at the approximately 2950-3000 cm-1 region, representing C―H stretching bands 

which is indicative of an organic moiety (4-pentynoic acid) and the sharp peak near 1700 

cm-1 was indicative of the presence of a C=O bond which is consistent with the organic 

compound structure. It also confirms that bonding between silica hydride and pentynoic 

acid is successful. 
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Figure 16. DRIFT spectrum of silica hydride based pentynoic acid 

C=O 

Si-H 

C-H 



35 
 

     B. Carbon Elemental Analysis  

             Elemental analysis is a quantitative method for determining the bonding of an 

organic moiety to the surface of silica hydride. It provides information about surface 

coverage of the pentynoic acid moiety. Surface coverage plays an important role in the 

retention time, selectivity, and stability of the bonded phase.  The surface coverage of 

carbon was calculated using the Berendsen and de Galan equation. A high percent of 

carbon means more carbon loading on the surface, and a high surface coverage value 

indicates that more organic moiety has been successfully bonded to the silica surface. 

Table 6 shows the surface coverage values for the three carboxylic acid phases C-5, C-8 

and C-18.   

Table 6. Surface coverage of carboxylic acid phases 

Column Surface Coverage 

C-5 4.64 μmol/m2 

C-8 4.72 μmol/m2 

C-18 3.5 μmol/m2 

 

    The molecular weight of 4-pentynoic acid is 98.10 g/mol. The surface coverage value 

for 4-pentynoic acid bonded phase is 4.64 μmol/m2
.
 High surface coverage was achieved, 

which means greater column capacities and better resolution. Table 7 shows the specific 

surface area value for silica, the molecular formula of the alkyne that has been attached to 
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silica hydride, the percentage of carbon loading, and the surface coverage values in 

μmol/m2 for the 4-pentynoic acid bonded phase.     

Table 7. Surface coverage of bonded organic moiety. 

Silica 
SBET 

(m2/g) 
Bonding moiety 

% C 
Elemental 
analysis 

Surface 
coverage 

(α) μmol/m2 

Atrosil 350 

4-pentynoic acid 
 

Molecular Formula- 
 CH≡CCH2CH2COOH 

 
 

8.42 4.64 

 
 

     C. Chromatographic Characterization of the Stationary Phase 

 

             The main objective of this research was to characterize and establish the ANP 

retention behavior of the silica hydride based 4-pentynoic acid column. The dimensions 

of the silica hydride based pentynoic acid column were 7.5cm x 4.6mm. Different types 

of analytes ranging from those that exhibit ANP behavior (hydrophilic compounds) such 

as amino acids, nucleobases and analytes with RP characteristics (hydrophobic 

compounds) such as polycyclic aromatic hydrocarbons were chosen for retention 

behavior studies. Each HPLC run was repeated three times to check if the HPLC results 

were repeatable. The retention profile of different samples was studied using UV-vis and 

PDA detectors. The retention performance of this column is discussed in the following 

sections.  
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     1. ANP Behavior of Si-H Column Using an UV Detector 

        The column was first conditioned for an hour using 50:50 methanol and water to 

remove impurities. Polar solutes like amino acids, nucleobases, nucleosides and 

ergogenic acids were tested for chromatographic characterization of the silica hydride 

column. The mobile phase was composed of a mixture of polar and nonpolar solvents. 

The polar solvent used was DI water and the nonpolar solvent was acetonitrile. The polar 

solvent is referred to as solvent A and the nonpolar solvent is referred to as solvent B. 

The parameters used for HPLC runs were a flow rate of 0.5 mL/min, the column 

temperature was ambient and the injection volume was 5 μL for most of the analytes. 

        1.1 Nucleobase related Compounds 

    The nucleobases cytosine, adenosine, thymine and uracil were analyzed under ANP 

solvent conditions on the pentynoic acid column. Stock solutions of the samples were 

prepared at 1000 ppm (1mg/mL) in 50:50 acetonitrile and water (both premixed with 

0.1% formic acid).  Some samples like thymine and uracil were further diluted to 

overcome the overloading issue which could result in peak shape distortions. The 

optimized injection volume was 5 μL. The flow rate was 0.5 mL/minute. A 254 nm UV 

wavelength was selected and stabilized with the starting conditions of the isocratic 

system. Table 8 shows the retention times of adenosine and cytosine at various 

compositions of acetonitrile: water with 0.1 % formic acid 
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                       Table 8. Retention times of adenosine and cytosine. 

Concentration (%) Retention Time (Minutes) 

DI Water + 
0.1% 

Formic Acid 

Acetonitrile + 
0.1% 

Formic Acid 
Adenosine Cytosine 

90 10 4.291 4.070 

80 20 3.715 3.868 

70 30 3.249 3.535 

60 40 4.275 5.208 

50 50 4.675 6.471 

40 60 4.989 6.687 

30 70 5.891 10.607 

20 80 8.712 19.604 

10 90 18.441 * 

             *peak was not observed 

         The graphical representation of the analytes retention is plotted as % ACN versus 

retention time of nucleobase which is referred to as a retention map. Figure 17 shows the 

retention maps of adenosine and cytosine. Both the compounds have very good retention 

on the pentynoic acid column. According to the retention maps, as the polarity of the 

mobile phase decreases i.e. from 40% to 90% ACN, the retention time for polar 

compounds increases which shows the typical ANP behavior. The retention time of 
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compounds decrease when the mobile phase becomes more hydrophilic (above 40% 

water) showing the RP behavior of the column. Around 40% ACN, the column is 

switching from the RP mode to the ANP mode. In the ANP mode, the retention of the 

compound increases as the percentage of acetonitrile increases. The mechanism of ANP 

retention is most likely due to various interactions between the analyte and polar (COOH) 

moiety of the column. 

 

 

Figure 17. Retention maps of adenosine and cytosine. 

        Table 9 shows the retention times for uracil and thymine. All the nucleobase 

compounds showed good ANP retention. Nucleobases like uracil and thymine showed 

less retention time when compared to adenosine and cytosine. Uracil is generally used to 

determine the void volume in RP chromatography, due to its high polarity. Both the 

compounds were retained on the pentynoic acid column with distinguishable retention 
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time differences as the percentage of acetonitrile increases in the mobile phase. 

According to the retention maps of uracil and thymine which are shown in Figure 18, the 

pentynoic acid bonded stationary phase shows RP and ANP retention for these polar 

compounds. 

Table 9. Retention times of uracil and thymine. 

Concentration (%) Retention Time (Minutes) 

DI Water + 
0.1% 

Formic Acid 

Acetonitrile + 
0.1% 

Formic Acid 
Uracil Thymine 

90 10 2.3082 2.569 

80 20 2.195 2.328 

70 30 2.134 2.218 

60 40 2.565 2.639 

50 50 2.56 2.509 

40 60 2.568 2.529 

30 70 2.606 2.724 

20 80 2.890 2.873 

10 90 2.926 3.109 
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Figure 18. Retention maps of uracil and thymine. 
 
 
   

 

 

 

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

0 20 40 60 80 100

R
et

en
ti

on
 T

im
e 

(M
in

ut
es

)

% Acetonitrile

Uracil

Thymine



42 
 

 

  1.2 Amino Acids 

            The next group of polar compounds to be analyzed under ANP /RP conditions 

was the two amino acids, phenylalanine and tyrosine. The sample solutions were 

prepared at 1mg/ml concentration using 50:50 acetonitrile: DI water mixed with 0.1% 

formic acid. Phenylalanine was dissolved easily, whereas tyrosine was hard to dissolve. 

The tyrosine sample was sonicated further. In this study, solvent A was DI water and 

solvent B was acetonitrile with 0.1% formic acid as buffer. The optimized injection 

volume was set to 5 μL. The UV detector was used for this study with 254 nm as the 

wavelength of detection. Retention times are plotted on the y-axis versus % ACN on the 

x-axis. Figure 19 shows the retention pattern for phenylalanine and tyrosine. 

        Due to the presence of the -OH polar functional group, tyrosine showed higher ANP 

retention compared to phenylalanine. As the concentration of acetonitrile increases i.e. 

from 40% to 80 % ACN, the retention time for polar compounds increases which is 

typical ANP behavior. ANP behavior of the amino acids can be due to the effect of 

various interactions between the analyte and polar pentynoic acid stationary phase. 

        A mobile phase which consists of a binary solvent system and runs on a stationary 

phase with dual RP/ANP properties, the column behaves in the ANP mode at lower 

concentrations of polar solvent and in the RP mode at lower concentrations of ACN 

which is a nonpolar solvent. Table 10 summarizes the retention time in minutes at 

different compositions of mobile phase. 
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Table 10. Retention times of amino acids. 

Concentration (%) Retention Time (Minutes) 

DI Water + 
0.1% 

Formic Acid 

Acetonitrile + 
0.1% 

Formic Acid 
Phenylalanine Tyrosine 

90 10 3.460 2.876 

80 20 3.149 2.759 

70 30 2.982 2.698 

60 40 3.896 3.592 

50 50 4.110 4.044 

40 60 5.168 4.455 

30 70 5.562 4.434 

20 80 10.059 19.604 
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Figure 19. Retention map of amino acids. 
 

1.3 Retention of Creatinine 

        Creatinine is a breakdown product of creatinine phosphate in muscle. Creatinine is 

an ergogenic acid which is polar in nature. The mobile phase for each run was composed 

of a mixture of water and acetonitrile solvents. The flow rate was set at 0.5 mL/min with 

a 5 μL injection volume. The UV detector wavelength was set at 210 nm. The 

concentration of the creatinine sample was 1 mg/ml.  Table 11 shows the retention times 

of creatinine at different compositions of the mobile phase.  
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         The chromatographic runs began in the RP mode which means a decrease in the 

retention time as the percentage of water decreases followed by an increase in the 

retention time as the percentage of ACN increases. Figure 20 shows the retention map of 

creatinine which is very well retained on the silica hydride pentynoic acid stationary 

phase. 

Table 11. Retention times for creatinine. 

Concentration (%) Retention Time (Minutes) 

DI Water + 
0.1% 

Formic Acid 

Acetonitrile + 
0.1% 

Formic Acid 
Creatinine 

90 10 4.190 

80 20 3.977 

70 30 3.625 

60 40 4.354 

50 50 5.638 

40 60 8.654 

30 70 9.709 

20 80 18.300 
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Figure 20. Retention map of creatinine. 
 

        A mobile phase which consists of a binary solvent system and runs on a stationary 

phase with dual RP/ANP properties, the column behaves in the ANP mode at lower 

concentrations of polar solvent and in the RP mode at lower concentrations of ACN 

which is a nonpolar solvent. It can be concluded that the pentynoic acid bonded 

stationary phase exhibits both ANP and RP retention behavior as shown in the Figure 21. 

It is important to note that the RP retention of the pentynoic acid column is minimal.  
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Figure 21. Retention profile of polar compounds. 
 

    2. Reversed-Phase Retention of Nonpolar Compounds 

 

           The next step of the project was to test the retention of hydrophobic compounds in 

the reverse phase mode. The RP behavior of the 4-pentynoic acid bonded stationary 

phase was tested using polycyclic aromatic hydrocarbons. Acenaphthene, pyrene, 

naphthalene, acenaphthylene and phenanthrene were used as test analytes. In this study, 

solvent A was DI water and solvent B was acetonitrile with 0.1% formic acid as buffer. 

All the samples were prepared by dissolving in 100% acetonitrile (premixed with 0.1% 

formic acid) to make a 1 mg/mL sample solution. 

       The flow rate was set to 0.5 mL/min, and a UV absorption wavelength of 254nm was 

used. The injection volume was 5 μL. The retention times at different compositions of 

mobile phase are provided in Tables 12 and 13. Figure 22 shows the reverse phase 

retention maps for all five hydrocarbons. As the concentration of acetonitrile increases 
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from 10% to 90%, the retention time decreases for all the hydrocarbons. Above 80% of 

acetonitrile there was no significant change in the retention time, as the fact that the 

compounds elute faster with a higher amount of acetonitrile demonstrates the RP 

behavior of the column. The non-polar compounds for this study when testing the 

pentynoic acid bonded stationary phase exhibit RP behavior entirely.  

Table 12. Retention times of acenaphthene, acenaphthylene, and naphthalene. 
 

 
 
 
 
 
 

Concentration (%) Retention Time (Minutes) 

DI Water + 
0.1% 

Formic Acid 

Acetonitrile + 
0.1% 

Formic Acid 
Acenaphthene Acenaphthylene Naphthalene 

80 20 13.400 12.482 8.956 

70 30 5.232 5.217 4.654 

60 40 4.393 4.232 3.977 

50 50 3.187 3.154 3.079 

40 60 2.653 2.631 2.598 

30 70 2.007 2.005 2.008 

20 80 1.857 2.075 2.075 

10 90 1.857 1.857 1.857 
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Table 13. Retention times of pyrene and phenanthrene. 
 

Concentration (%) Retention Time (Minutes) 

DI Water + 
0.1% 

Formic Acid 

Acetonitrile + 
0.1% 

Formic Acid 
Pyrene Phenanthrene 

70 30 8.957 7.054 

60 40 
5.147 4.594 

50 50 
3.398 3.237 

40 60 2.674 2.622 

30 70 
1.958 1.939 

20 80 
1.875 1.866 

10 90 
1.855 1.846 
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Figure 22. RP retention map of polycyclic aromatic hydrocarbons. 
 

3. U-shaped Retention Curve 

       The dual retention ability of the pentynoic acid silica hydride-based stationary 

phase was confirmed by the U-shaped retention curve. The elution characteristics of the 

polar molecules and non-polar molecules for this study are compared in Figure 23. The 

right side of the curve shows ANP retention of polar analytes and the left side of the 

curve shows the RP behavior of nonpolar compounds. The columns ability to run under 

reverse phase and aqueous normal phase conditions is demonstrated by these 

experiments. 

 

0

2

4

6

8

10

0 20 40 60 80 100

R
et

en
ti

on
 T

im
e 

(M
in

ut
es

)

% Acetonitrile

Pyrene

Naphthalene

Acenaphthylene

Acenaphthene

Phenanthracene



51 
 

 

Figure 23. U-shaped Retention Profile for Pentynoic acid Silica Hydride 

                   Stationary Phase. 

 

E. Different Buffer Systems 

The next goal of this project was to identify the effect of varying concentrations 

of buffer on the retention of polar and nonpolar analytes. The mobile phase pH value can 

be controlled by using different buffers. The pH of the mobile phase can affect 

chromatography, in many ways like selectivity, peak shape, and retention. Silica hydride 

columns are stable between pH 2- pH 8. 

 

0

2

4

6

8

10

12

0 20 40 60 80 100

R
et

en
ti

on
 T

im
e 

(M
in

ut
es

)

% Acetonitrile

Adenosine

Cytosine

Uracil

Thymine

Pyrene

Naphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Creatinine

Phenylalanine

Tyrosine



52 
 

1. Formic Acid Buffer System 

       To further study the retention behavior of polar and nonpolar solutes with the 

pentynoic acid stationary phase, formic acid was used as a buffer. Formic acid is the most 

suitable buffer for Type-C columns (silica hydride). In this study, solvent A was DI water 

and solvent B was acetonitrile. Samples were prepared by dissolving 1 mg of the 

compound in 1 mL of 50:50 A: B solvent composition. Polar test compounds used to 

study the effect of pH were cytosine, tyrosine, phenylalanine, and creatinine. Four test 

samples were prepared for every single compound with five different buffer 

concentrations. A mobile phase composition of 20:80A: B was used. Different 

concentrations of formic acid were added ranging from 0.05 to 0.3%.  The pH range of 

these buffers in 20:80 ratio of DI water: acetonitrile was determined using a Beckman pH 

meter. It is important to note that the pH meter was calibrated at pH 4.0 and pH 7.0 with 

standards. Table 14 shows the pH range of the mobile phases at five different 

concentrations of formic acid. Creatinine was analyzed using a wavelength of 210 nm for 

detection and 0.5 mL/min mobile phase flow rate. All other compounds were analyzed 

using a UV wavelength of 254 nm to monitor the peaks. The mobile phase flow rate was 

set to 0.5 mL/min. Table 15 shows the retention of polar analytes at different 

concentrations of formic acid. 
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Table 14. pH range for 20:80 mixtures of DI water and acetonitrile with formic acid 

20:80 ratio of DI water + Acetonitrile 

Buffer 
Concentration 

range 
PH range 

Formic Acid 0.05-0.3 3.26-2.86 

 

Table 15. Retention times at different concentrations of formic acid. 

Concentration 

% 
Retention Time (min) 

 

% Formic 
Acid 

Cytosine Tyrosine Creatinine Phenylalanine 

0.05 8.606 9.006 16.216 8.923 

0.075 8.111 8.612 14.356 8.368 

0.2 7.23 7.69 12.31 7.767 

0.3 6.052 7.628 12.67 7.772 
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    Those data can be seen graphically in Figure 24. It shows the plot of retention time as a 

function of the percent of formic acid phenylalanine, tyrosine, creatinine and cytosine. As 

the concentration of formic acid increases from 0.05% to 3%, there is a decrease in the 

retention time of polar compounds. 

        

 

Figure 24. Retention time as a function of concentration of formic acid. 
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1.1 Varying concentration Formic Acid (Thiamine hydrochloride and Benzoic acid)  

          Polar test compounds used to study the effect of pH were thiamine hydrochloride 

and benzoic acid. Thiamine is a highly positively charged compound, whereas benzoic 

acid is neutral compound. To study the effect of pH, different concentrations of formic 

acids prepared were:0.05%, 0.075%, 0.1%, and 0.2%. DI Water was used as solvent A 

and acetonitrile was used as solvent B. A mobile phase composition of 20:80 A: B was 

used with four different percentages of the formic acid. The optimized sample injection 

volume was 5 μL, and the flow rate was set to 0.5 mL/minute to monitor the peaks. Table 

16 and table 17 shows the retention times in minutes for these polar test compounds.  

Figure 25 and Figure 26 shows the plot of retention time as a function of the percent of 

formic acid for thiamine hydrochloride and benzoic acid. Error bars indicate the standard 

deviation in retention time. 

Table 16.  Retention times of thiamine hydrochloride. 

% Formic 
acid 

Retention 
Time  
Run1 

Run 2 Run 3 Average 
Standard 
deviation 

0.05 2.509 2.578 2.510 2.5323 0.04 

0.075 2.443 2.447 2.420 2.4367 0.01 

0.1 2.321 2.321 2.351 2.3310 0.02 

0.2 2.399 2.382 2.324 2.3683 0.04 

0.3 1.932 1.935 1.999 1.9553 0.04 
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Figure 25. Error bars indicate standard deviation in retention time (thiamine 
hydrochloride). 

 

          The error bars in Figure 25 and Figure 26 represents the retention time deviation of 

thiamine hydrochloride and benzoic acid. With an increase in the concentration of buffer 

formic acid from 0.05% to 3%, there is a decrease in the retention time of thiamine 

hydrochloride. However, in the case of a neutral compound benzoic acid, there is no 

apparent change in the retention time with varying concentration of formic acid. 
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Table 17. Retention times of benzoic acid. 

Formic 
acid 

Retention 
Time 
Run1 

Run 2 Run 3 Average 
Standard 
deviation 

0.05 2.351 2.352 2.364 2.3557 0.01 

0.075 2.383 2.383 2.372 2.3793 0.01 

0.1 2.341 2.342 2.379 2.3540 0.02 

0.2 2.355 2.359 2.375 2.3628 0.01 

0.3 2.335 2.243 2.337 2.3050 0.05 

 

 

 

Figure 26. Error bars indicate standard deviation in retention time (benzoic acid). 
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1.2. Difference Between ANP and HILIC Retention Modes 

      For polar compounds, with an increase in the concentration of formic acid buffer 

there is a decrease in the retention time observed on pentynoic acid column. It has been 

reported in literature, that buffer concentration studies performed on HILIC column 

showed the opposite trend. Hence, it can be predicted that the retention mechanism 

involved in silica hydride-based stationary phase is different from HILIC. However, 

retention times for a neutral compound, benzoic acid, were found to be independent of 

buffer concentration.  

         The mechanism of aqueous normal phase retention is an active area of 

investigation. A recent study has demonstrated that the water layer adsorbed onto the 

surface of the silica hydride surface is on average only 0.5 on a monolayer, very much 

less compared to the water adsorbed onto a surface containing silanol groups [24,25]. 

This low amount of water differentiates the polar analyte retention mechanism in the 

HILIC and ANP modes. A variety of experiments have been conducted to understand the 

surface of silica hydride in the presence of typical mobile phase solvents like acetonitrile 

and water. These studies have also shown that the silica hydride surface possess a very 

high negative charge (by measuring the zeta potential) this charge is due to the presence 

of excess hydroxide ions on the surface from the aqueous component of the mobile phase 

as shown in the Figure 27. The ε value shown in the figure is the zeta potential indicating 

the high negative charge near the surface [26]. In the case of HILIC, the negative charge 

is attributed to the presence of silanols (from bare silica). It can be deduced from these 
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experiments, that the ANP mechanism is most likely a combination of ion attraction for 

positively charged compounds or ion displacement for negatively charged species. For 

polar neutral compounds, it may be due to displacement /adsorption effects for retention. 

 

Figure 27. Composition of environment near the surface of a particle with a silica 
hydride surface. Adapted from reference [25]. 

 

  2. Ammonium Acetate Buffer System 

       2.1. Compatibility of Ammonium Acetate Buffer with Pentynoic acid Column 

                     The next experiment was designed to study the effect of ammonium acetate 

buffer on the retention of polar solutes. The pH of ammonium acetate is much higher than 

formic acid. Whenever the ammonium acetate was used, the sample solution and the 

mobile phase solution were filtered using nylon membrane filter. Two hundred and fifty 

ml of 300 mM ammonium acetate stock solution was prepared by dissolving 5.7811 g of 
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ammonium acetate in 250 mL of DI water. Water and acetonitrile were used as solvents 

A and B. The ammonium acetate should be in both the acetonitrile and water.  However, 

the acetonitrile cannot be pure acetonitrile.  It should be 90:10 acetonitrile water.  If there 

is no water present, the ammonium acetate can easily precipitate out of solution. This 

water and acetonitrile binary mobile phase system with a pH ~6 was used in the 

following sections for the retention studies of polar molecules. The buffer concentration 

was set to 2 mM. 

      The polar analytes analyzed using UV detection were phenylalanine, adenosine and 

cytosine. They were analyzed using a wavelength of 254 nm for detection and 0.5 

mL/min mobile phase flow rate. This sample solution was used to evaluate the pentynoic 

acid column using 50:50, 60:40, 70:30, 80:20, and   90:10 acetonitrile: water at a pH~6 

mobile phase compositions. Table 18 lists the retention times for three test solutes in 

minutes at different compositions of the mobile phase. Figure 28 demonstrates that the 

three polar test solutes exhibit typical ANP retention profile in the presence of 

ammonium acetate buffer. Therefore, it was concluded that ammonium acetate is a 

suitable buffer system for the pentynoic acid silica hydride based stationary phase. 
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Table 18. Retention times of polar solutes with ammonium acetate buffer. 

 

 

 

Concentration (%) Retention Time (Minutes) 

DI Water + 
2 mM 

Ammonium 
Acetate 

Acetonitrile 
+ 

2 mM 
Ammonium 

Acetate 

Phenylalanine Cytosine Adenosine 

50 50 2.444 5.624 2.541 

40 60 2.679 5.437 2.560 

30 70 2.851 6.132 3.191 

25 75 3.715 6.563 3.087 

20 80 4.631 7.474 3.451 

15 85 6.427 
9.258 

 
4.016 
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Figure 28. Retention of polar solutes with ammonium acetate buffer. 

 

          2.2 Varying Concentration of Ammonium Acetate Buffer 

                    To study the effect of varying concentrations of ammonium acetate three 

polar solutes were selected. The different buffer concentrations prepared for this study 

were 2 mM, 4mM, 6 mM, 8 mM, and 10 Mm. The pH of the 20:80 compositions of A: B 

solution at five different buffer concentrations was measured using a Beckman pH meter. 

The flow rate was set to 0.5 mL/min and the UV absorption wavelength was 254 nm. The 

sample solution at a concentration of 1 mg/mL was made using 50:50 acetonitrile: water. 

The optimized injection volume was 5 µl. 

        Figure 29 includes three different plots for cytosine, adenosine and uracil. It shows 

the plot of retention time as a function of concentration of ammonium acetate (mM) for 

three different solutes. Table 19 shows the pH range of the mobile phases at five different 

concentrations of ammonium acetate. Table 20 summarizes retention times in minutes for 

1

3

5

7

9

11

40 50 60 70 80 90

R
et

en
ti

on
 T

im
e 

(M
in

s)

% Acetonitrile

Ammonium acetate buffer study

Phenylalanine

Cytosine

Adenosine



63 
 

the three polar compounds. With an increase in the concentration of buffer ammonium 

acetate from 2 mM to 10 mM, there is no specific trend observed in terms of retention 

time.   

Table 19. pH range for 20:80 mixtures of DI water and ACN with ammonium acetate. 
 

20:80 ratio of DI water + Acetonitrile 

Buffer 
Concentration 

range 
PH range 

Ammonium acetate 2-10 mM 6.47-5.68 

                                                                                                              

Table 20. Retention times at different concentrations of ammonium acetate. 
 

 
Concentration of 
Ammonium 
Acetate (mM) 

Retention Time (Minutes) 

Cytosine 
 

Adenosine 
 

Uracil 

 
2 
 
 

7.475 3.451 2.467 

4 9.259 3.595 2.801 

6 7.199 3.750 2.676 

8 6.086 3.289 2.765 

10 6.125 3.377 2.953 
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Figure 29. Retention time as a function of concentration of ammonium acetate. 

F. Comparison of Buffer Trends on Pentynoic acid and Undecynoic acid Columns 

The alkyl chain length of the bonded phase is an important factor during the 

method development process. There are several possible retention characteristics that 

these phases could possess. Undecynoic acid has a long hydrocarbon chain as well as a 

polar carboxylic group; whereas pentynoic acid contains a 5- carbon chain, will have less 

hydrophobic retention and a carboxylic group. 

The buffer trends on two silica hydride based columns with different alkyl chain 

lengths, pentynoic acid and undecynoic acid were compared in this experiment. Sample 

solutions were prepared by weighing out 1 mg solid standards and dissolving them in a 

premixed 50:50 mixture of DI water and acetonitrile. The polar analytes analyzed using 

UV detection were tyrosine, uracil, and cytosine. The solvent ratio for the polar compounds 
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was 20:80 of A: B. They were analyzed using a wavelength of 254 nm for detection and 

0.5 mL/min mobile phase flow rate. 

       Table 21 shows the retention time of cytosine and tyrosine on the pentynoic acid 

column and Table 22 shows the retention time of cytosine and uracil on the undecynoic 

acid column [27]. Figure 30 and Figure 31 include two different plots for cytosine and 

uracil. It shows the plot of retention time as a function of concentration of formic acid 

(mM) on two different columns, pentynoic acid and undecynoic acid. The polar 

compounds had a drastic decrease in retention as the concentration of formic acid was 

increased. This sharp decrease is clearly seen in case of the pentynoic acid column, 

whereas there is no trend observed in case of undecynoic acid [27] as demonstrated in 

Figure 31. 

Table 21. Retention time for polar solutes with formic acid. 

% Formic acid Cytosine Tyrosine 

0.05 8.606 9.006 

 0.075 8.111 8.612 

0.2 7.230 7.690 

 0.3 6.052 7.628 
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Figure 30. Retention time as a function of concentration of formic acid (pentynoic acid 
clolumn). 

 

Table 22. Retention time for polar solutes with formic acid. 

% Formic acid Cytosine Uracil 

0.05 3.435 1.9397 

0.075 2.862 1.9463 

0.2 2.529 1.9473 

0.3 1.966 1.9463 
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Figure 31. Retention time as a function of concentration of formic acid 

(undecynoic acid column)                      

The relationship between the concentration of ammonium acetate (buffer with a 

higher pH range) and retention times of polar analytes was studied on both the columns. 

The pH of the 20:80 compositions of A: B solution at five different buffer concentrations 

was measured. Table 23 shows the retention time of cytosine and uracil on pentynoic acid 

column and table 24 shows the retention time of cytosine and uracil on 1undecynoic acid 

column. Figure 27 and Figure 28 include two different plots for cytosine and uracil. It 

shows the plot of retention time as a function of concentration of ammonium acetate 

(mM) on two different columns, pentynoic acid and undecynoic acid [27]. With an 

increase in the concentration of buffer ammonium acetate from 2mM to 15mM, there is 

no specific trend observed in terms of retention time on both the columns. These results 

are different than what was observed with the formic acid buffer system.     
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Table 23. Retention times for polar Solutes with ammonium acetate buffer. 

Ammonium Acetate 
(mM) 

Cytosine Uracil 

 2 7.475 2.467 

 4 9.259 2.801 

6 7.199 2.676 

  8 6.086 2.765 

10 6.125 2.953 

 

 

 

Figure 32. Retention time as a function of concentration of ammonium acetate 
(pentynoic acid column) 
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Table 24. Retention times for polar solutes with ammonium acetate buffer. 

Ammonium Acetate 
(mM) 

Cytosine Uracil 

1 3.9563 1.853 

2 2.7863 1.7853 

5 2.9306 1.9563 

10 2.733 1.8683 

15 2.6103 1.894 

 

 

 

Figure 33. Retention time as a function of concentration of ammonium acetate 
(undecynoic acid column). 
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   G. Column Efficiency 

       The efficiency of a column can be determined from the Equation 1. Column 

efficiency can be expressed by the number of theoretical plates(N) 

 

                         N = 16 (t/w)2………………. (1) 

 

where t is the analyte retention time, w is the peak width measured at the base. The 

narrower the peak width, the smaller the value of w, the higher the value of N, and the 

better the separation between the two peaks. 

   H. Peak Symmetry Factor 

           An ideal peak is symmetric in shape. Unwanted interactions of basic compounds 

with residual silanols on the stationary phase or a contaminated mobile phase or sample 

can sometimes cause peak tailing effects and the analytes can retain for a long time in the 

column [3]. Peak tailing is often measured by the peak asymmetry factor (As). The peak 

asymmetry factor is defined as the distance from the center line of the peak to the back 

slope divided by the distance from the center line of the peak to the front slope, with all 

measurements made at 10% of the maximum peak height. The peak asymmetry factor 

can be defined by Equation 2.  

            As =B/A ……… [2] 

Where As is the asymmetry factor, B and A are determined at 10% peak height as shown 

in Figure 34 [3]. 
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Figure 34. Determination of peak asymmetry factor. Adapted from reference [28]. 

        Details of the column and method information are shown in Table 25. Figure 35 

shows the separation of acetophenone and biphenyl on the silica hydride based pentynoic 

acid column. Both compounds are well separated. The symmetry factor and column 

efficiency were calculated for both compounds and the data is reported in Table 23. 

Column efficiency and symmetry factor are relative numbers and depend on several 

parameters like column length, particle size, flow rate and the packing process. Some 

external factors like sample -injection technique, tubing and the detector can also effect 

these two column parameters. It can be seen from Table 26 that the efficiency and 

symmetry for pentynoic acid column are moderately good.  Better symmetry can be 

achieved by adding some modifiers like formic acid or ammonium acetate or by using a 

gradient elution mode. 
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Table 25. Method information 

 Pentynoic Acid Hydride Particle size:  4µm 
Pore: 100 
Angstrom 

Column size:  4.6 mm i.d. x 
75 mm Lot#: test lot 

SN. #:  
141014A 

Detection: 254 nm Flow Rate:  1.0 ml/min. 
Pressure:  
2465 psi 

Injection Volume:  1.0 µL Mobile Phase:  40% Acetonitrile, 60% Water 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Separation of acetophenone and biphenyl compounds. 
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Table 26.  Retention times, asymmetry and column plates data. 

     # Plates/meter 

Index Time Name 
Asymmetry 

(USP) 
# Column 

Plates (HH) (HH)       

 
[Min

]     

1 1.42 Acetophenone 1.74 1430 19067 

2 2.17 Biphenyl 1.76 1488 19840 

 

I. Reproducibility Study  

 

      The reproducibility study was conducted for this column using uracil, pyridine and  
 
phenol, in 90:10 ACN: DI water as mobile phase. Five consecutive injections of the  
 
analytes resulted in retention times with close proximity, as shown in Table 27 and the  
 
chromatograms are shown in Figure 36. 
     

Table 27. Reproducibility of 5 injections using UV. 
 

 
 

 

 
Retention Time (min) 

Number of 
injections 

Uracil Pyridine Phenol 

1 1.319 2.438 2.438 
2 1.320 2.439 2.439 
3 1.318 2.439 2.439 
4 1.319 2.440 2.440 
5 1.320 2.443 2.443 

% RSD 0.06 0.07 0.07 
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Figure 36. Retention maps of uracil, pyridine and phenol. 

     The range of % RSD values obtained is 0.06-0.07 which is remarkable, since values 

less than 1 are difficult to obtain. The significance of this range verifies the high degree 

of precision in the silica hydride based pentynoic acid stationary phase for ANP retention 

data. 

 

 

 



75 
 

IV. CONCLUSIONS 

         The main goal of this study was to a synthesize novel stationary phase that could 

perform in both reversed-phase and aqueous normal phase modes and to characterize the 

column in terms of the RP/ANP properties. The synthetic procedures of silanization/ 

hydrosilation have successfully produced a silica hydride based pentynoic acid stationary 

phase.  DRIFT and carbon analysis were the two techniques used to evaluate the 

pentynoic acid stationary phase. DRIFT spectroscopic results have qualitatively 

confirmed that hydrosilation /silanization utilizing Spier’s catalyst is a suitable method 

for bonding the pentynoic acid moiety onto the silica hydride material.  

           The carbon elemental analysis provided percent carbon values for the newly 

synthesized pentynoic acid stationary phase. The surface coverage value was calculated 

using the Berendsen and de Galan equation. A high percent of carbon means more carbon 

loading on the surface, and a high surface coverage value indicates that more organic 

moiety has been successfully bonded to the silica surface. 

        The pentynoic acid stationary phase exhibited both aqueous normal phase 

capabilities as well as reversed-phase behavior. Polar compounds were well retained in 

the ANP mode, at a higher % of ACN in the mobile phase. The nonpolar compounds 

were retained in RP mode at lower organic content. The interactions between the 

stationary phase and the analyte include both hydrophobic and ionic/electrostatic 

interactions. The versatility of the silica hydride based pentynoic acid stationary phase to 

operate in the reverse phase and normal phase conditions was documented by a U-shaped 

retention profile. 
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        The effect of varying the concentration of formic acid was studied resulting in a 

decrease of retention time for polar compounds as the formic acid buffer concentration 

increases. There was no significant change for neutral compounds like benzoic acid. The 

observed trend is exactly opposite of HILIC [29]; hence it can be predicted that the 

retention mechanism involved in silica hydride-based stationary phase is not a 

partitioning mechanism. Instead, the separation mechanism of this column might be due 

to ionic/electrostatic interactions. The compatibility of the ammonium acetate buffer with 

the column was tested using polar solutes. As the concentration of ammonium acetate 

increased, retention times of analytes did not show any specific trend on the silica 

hydride based pentynoic acid column. The peak symmetry factor and column efficiency 

parameters for the pentynoic acid column were moderately good. 

     Future work includes expanding the range of the analytes to molecules such as 

proteins/peptides and carbohydrates that could provide additional information on the 

behavior of the newly synthesized pentynoic acid stationary phase. The effects of varying 

temperature, reaction type and type of catalyst on the surface coverage should be 

examined. Batch-to-batch reproducibility of the pentynoic acid stationary phase needs to 

be investigated. 
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