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ABSTRACT

INTELLIGENT THREAT-AWARE RESPONSE SYSTEM IN
SOFTWARE-DEFINED NETWORKS

by Kunal Goswami

Software-defined networks decouple the control plane from the data plane,

enabling researchers to evaluate protocols and network configurations through the

centralized point of control, the controller. They provide easy management and

automation, scalability, and flexibility in the traditional computer network. In spite

of these advantages, software-defined networks fall prey to various denial-of-service

attacks specific to network protocols and applications despite their simplicity. There

is a need to implement intelligence in the controller as a countermeasure for not only

the various types of denial-of-service attacks but also the increasing sophistication

involved in them. In this paper, an intelligent threat-aware response system is

proposed for defending against any attack by using reinforcement learning.

Reinforcement learning can acquire intelligence for detection and reactive actions

through experience with various attacks. This experience is obtained from

interactions with the computer network through the controller. With the

combination of reinforcement learning and the software-defined networking controller,

the goal of the autonomous threat response system can be achieved.
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CHAPTER 1

Introduction

Software-defined networking (SDN) provides an abstraction of programmability

in traditional computer networks. Computer networks can be simulated virtually and

interfaced through the SDN controller from topology configurations to

protocol-specific behavior. This abstraction is facilitated by OpenFlow [1], a protocol

which decouples the data plane from the control plane on the switch. OpenFlow

protocol also makes the computer network more flexible. In addition, since the

control plane is separated from the data plane, it is possible for researchers to deploy

and test various protocols in real-time.

However, along with all the advancements in the field of computer networks,

there have been advances for compromising the networks as well. Protocol features

such as three-way handshake in TCP, HTTP GET request processing, and ICMP

response can be exploited for selfish gains. The same features which provide a secure

connection for communication, availability, and hassle-free data transfer lead to the

misuse. A few examples of such misuse are TCP SYN flood attack, HTTP GET

Request flood attack, and Ping flood attack. Recent history of network attacks [2, 3]

brings to light the innovative approaches taken by adversaries in terms of

denial-of-service (DoS) attacks. This calls for a measure which can surpass the same

innovation and counter the attacks.

The other concept which enters the picture is one of reinforcement learning [4].

It is a paradigm which closely imitates the human way of learning. The human brain

learns with the help of interaction with and feedback from a corresponding

environment. Given a state of the environment, the human brain evaluates the best

possible action to interact with it and gain the best possible outcome. The definition

of the word ‘‘best’’ is highly subjective. However, the same learning procedure helps
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us understand concepts from natural language [5] to aeronautics [6]. This paper

presents an approach in which a reinforcement learning paradigm is combined with

SDN to create an intelligent threat-aware framework which is able to take responsive

actions, given access to network behavior information.

The SDN architecture enables the underlying computer network to be managed

with the help of the controller, the logical centralized point of access [1, 7]. A lot of

information in the form of network traffic data propagates through the computer

network. This information encodes the user-specific behavior, IP specific behavior,

and usage patterns. With the introduction of reinforcement learning, this information

can be represented in a succinct form of a ‘‘state’’. The state can then be utilized in a

state-based learning process to train an agent for taking reactive action against

network threats.

The proposed framework implements the above discussed principles with traffic

analyzer, reinforcement learning agent, and threat response modules. The traffic

analyzer module gathers information through the controller and represents it into a

form suitable for the reinforcement learning agent. The agent computes the likelihood

of the action with the maximum long-term benefit in terms of the computer network.

The selected action becomes the reaction of the controller for the corresponding

network threat.

Intelligent intrusion detection has been an area of research for quite some time;

many approaches have been developed using reinforcement learning [8, 9]. Some of

these approaches include providing a response to a network attack. Examples include

router throttling [10] and Q-learning [11] applied to routing. However, there are other

approaches to network attack prevention as well which solely focus on actions

provided by software-defined networks [12]. Frameworks such as AVANT GUARD

[13] and FLOW GUARD [14] focus on changing the flow rules in the data plane to
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make software-defined networks more secure and developing a proxy firewall to

detect the changes in the network traffic, respectively. These approaches focus on

developing an intelligent response to networks or using software-defined networks to

prevent a network attack. This thesis focuses on delivering the best of both

reinforcement learning and software-defined networks.

The unique contributions of this work include a novel architecture consisting of

reinforcement learning combined with SDN to address network threats, network

condition monitoring through network congestion function, and implementation of

this framework integrated into an open-source SDN Controller RYU [15]. The scope

of network attacks covered by this framework at present includes various DoS attacks.

The rest of this document is organized as follows: Chapter 2 provides a brief

survey of similar work in this domain. Chapter 3 provides the details of the system

architecture and other implementation details. The experimental results of the

prototype are discussed in Chapter 4, followed by discussion in Chapter 5. Chapter 6

provides the future scope of this research and contains the conclusions derived from it.
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CHAPTER 2

Related Work

There are many approaches one can take to defend a computer network against

threats, some of which involve the use of sophisticated hardware to detect and nullify

threats. Others make use of the programmability offered by SDN. Recently, the

concept of combining intelligence with network security has been gaining in

popularity. This intelligence is of the form of machine learning applied to various

network statistics for threat detection and/or prevention. This chapter discusses

various approaches applied to security in SDN.

2.1 Software-Defined Network based Network Security

Padekar, Park, Hu and Chang [16] propose the AEGIS framework to protect

the SDN Controller and the network from erroneous network applications that misuse

controller APIs. The AEGIS framework follows a three-step process to secure the

controller: The first step is to identify all of the APIs that modify the internal data

for the network, the second step is to generate access rules which govern the behavior

of a network application, and the third step involves the decision engine which

intercepts and validates the API calls in real time to ensure safe operations. These

authors have developed a prototype and tested it against six network attacks for

evaluating the system.

Wang, Zheng, Lou and Hou [17], on the other hand, propose an enterprise

network security framework which utilizes the monitoring capabilities of SDN to

provide a flexible interface for taking actions against network attacks. They address

denial-of-service (DoS) attacks against cloud infrastructures which are facilitated by

SDN. The authors argue that, with the help of a properly designed framework, one

can counter such network attacks solely with the help of SDN. To the best of their

knowledge, the authors were the first to propose a network defense architecture such
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as DaMask for DoS and Distributed DoS (DDoS) attack mitigation.

Lim, Ha, Kim, Kim and Yang [18] discuss a SDN-based defense against DoS

and DDoS attacks by botnets. Due to the difficulties of identifying these attacks

using network monitoring, the responsibility lies on the victim server or host. The

authors propose a defense framework using the standard OpenFlow implementation

to thwart DDoS attacks. Their implementation relies on the victim server to

determine whether or not it is under a DDoS attack. Once the server confirms it, the

proposed solution suggests a redirection URL to all incoming requests and continues

blocking subsequent requests to the same IP address. The intuition followed by the

authors is simple; the preprogrammed bots cannot comprehend or change the address

of the victim immediately after the URL redirection is applied.

Wang, Xu and Gu [19] address the control plane to data plane saturation

attack on SDN controllers. They propose a framework called FLOODGUARD to

analyze the flow rules pushed on switches with the controller and prevent this attack.

Another framework which addresses security in SDN is AVANT-GUARD [13], which

addresses the attacks focused on the SDN controller itself. The authors propose an

extension to the data plane in the form of ‘‘connection migration’’ and ‘‘actuating

trigger.’’ These are novel contributions to the software-defined network environment

and help in minimizing the probability of saturation attacks on the controller. Braga,

Mota and Passito [20] propose a lightweight DoS detection framework using NOX

[21] controller. They use the concept of IP flows [22] to detect network attacks.

These frameworks certainly are well developed but can be extended when combined

with the capacity to take action against an attack.

Another approach to protecting the network involves the help of host IP

address mutation. Jafarian, Al-Shaer and Duan [23] propose a random host mutation

approach which assigns virtual IP addresses to all the hosts present in the network.
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The virtual IP addresses are changed at random intervals of time. The benefit is that

the adversaries cannot discover these hosts through scanning or worm propagation. It

is an ingenious way of defending against network attacks. However, it might fall prey

to an attacker who compromises an authorized system, who can then use the actual

IP addresses of these hosts to communicate.

2.2 Machine Learning based Network Security

Malialis and Kudenko [10] discuss an approach to intrusion detection using

reinforcement learning. The focus of their work is to inhibit DDoS attacks. They use

a multi-agent router throttling approach to regulate the traffic towards a victim in

such a way that it does not collapse. This approach proposes ‘‘coordinated team

learning’’ as an extension to the original multi-agent router throttling approach.

Coordinated team learning is decentralized, which is one of the biggest advantages it

has over the traditional approach. They experimented with up to 100 reinforcement

learning agents against dynamic attacks and managed to outperform state-of-the-art

router throttling procedures.

Another approach to intrusion detection in networks has been along the lines of

Q-learning [11], a novel approach indeed. Detecting network intrusion with the help

of a modified version of the traditional Q-learning algorithm, this framework achieves

an accuracy of 98%. The authors combine the Q-learning algorithm with rough set

theory to achieve higher classification results. Reinforcement learning is popularly

implemented for interacting with the system rather than classifying the state of the

system. Sengupta, Sen, Sil and Saha [11] developed an online system in which the

network packets become the actions in the system, and the traffic is categorized as

either ‘‘normal’’ or ‘‘anomaly.’’

Chung, Khatkar, Xing, Lee and Huang [24] propose the NICE framework for
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securing a virtual network environment. They focus on securing cloud systems which

provide virtual machines to users. Their framework prevents these virtual machines

from being zombie machines by using network intrusion detection. In their approach,

they classify network intrusion by using the similar activities of the users and

analyzing them. They also scan the virtual machines for vulnerabilities to check for

compromised machines.

Restricted Boltzmann Machines (RBMs) [25] have also been used for network

anomaly detection. The work primarily revolves around classifying network traffic as

hostile or normal. The authors gather network data for training the RBM. However,

they state that ‘‘network traffic is very complex and unpredictable, and the model is

subject to changes over time, since anomalies are continuously evolving.’’ The

network traffic data are converted into a time series, and the algorithm is trained

based on a discriminative approach and a generalized approach. The generalized

approach trains on normal data, considering each data point by how well it fits with

the others, whereas the discriminative approach focuses on learning the difference

between hostile data points and normal data points. Cannady [26] developed an

intrusion detection system with the help of adaptive neural networks. The neural

network received many more inputs along with feedback from the system. The

trained system had an error rate of around 2% against known attacks. The author

also demonstrated that the neural network adapts very well to the new attack vectors

upon feeding them as input.

Wang, Chao, Lin, Lin and Lo [27] proposed an attack detection and mitigation

system in SDN. This system made the use of support vector machine (SVM)

algorithm to detect network attacks. The authors analyzed the features generated

from the network with decision tree algorithm and trained the SVM classifier to

detect threats. The mitigation action was taken through the northbound REST API
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of the controller with the help of a flow rule. Although this work has promise, it has

an inherent need of labeled data. For a dynamic environment such as SDN, it is not

really feasible to generate labels to depict all scenarios. Colbaugh and Glass [28]

propose a proactive framework for defense against cyber attacks. The authors

develop this framework by ‘‘modeling attacker / defender interaction as a stochastic

hybrid dynamical system (S-HDS)’’ to counter against more complex or synthetic

attacks. The system is evaluated on the KDD cup 1999 dataset and Ling-Spam

dataset. The authors created a synthetic attack space to train and evaluate the

algorithm. This approach can be extended by providing a semi-supervised or an

unsupervised solution combined with measures which qualify as the proactive

measures against network threats.

An early work for intrusion detection is by Xu and Luo [29]. The authors

modeled network intrusion detection with the help of reinforcement learning. The

intrusion detection problem is modeled in the form of a Markov decision process

(MDP) by using host-specific features in the network. Though the work is different in

nature from the one proposed in this paper, it is crucial to highlight the approach

used by the authors because it acts as an inspiration to model the problem of reactive

action against network threats as a MDP. The various frameworks presented in this

section prove to be an inspiration to learn from and extend the same for achieving

better network security.

This paper proposes a framework which intends to combine the

programmability and flexibility of SDN with the learning nature of reinforcement

learning to not only detect network threats but also autonomously take

countermeasures against such threats. It encompasses the MDP and Q-learning

algorithm to develop intelligence integrated with the SDN controller.

8



CHAPTER 3

System Architecture

This chapter presents the system architecture for the intelligent threat-aware

response system in software-defined networks. It gives an explanation of the different

components of the framework in a unique combination of northbound and southbound

interfaces for knowledge discovery and data mining (KDD) process, reinforcement

learning, and the reactive actions. The three main components are as follows:

• Traffic Analyzer

A southbound interface for monitoring the network traffic propagating

through each of the switches connected in the network. The same

implementation facilitates the initial steps of the KDD process.

• Reinforcement Learning Agent

An additional component developed in the SDN controller operating system

for the implementation of the Q-learning algorithm.

• Threat Response

Another southbound interface which provides APIs to communicate with

OpenFlow and ovsdb to manage the bandwidth of the switches and also to

update flow tables on the switch.

Figure 1 depicts the component-based block diagram of this framework. In the

following sections, each component of the framework is discussed in detail.

9



Figure 1 – The component-based architecture and representation of control flow
through the system

3.1 Traffic Analyzer

A threat-aware system needs to continuously monitor the network to detect

any unusual behavior. The traffic analyzer is the module responsible for the network

monitoring in the proposed framework. It collects information about the total

number of packets sent and received along with the total number of bytes sent and

received through the network. However, the total number of packets and bytes alone

do not provide much of an insight to discriminate between various types of network

threats. To achieve that, traffic analyzer module collects information specific to

different protocols such as TCP, UDP, HTTP, etc.

The traffic analyzer module is a southbound interface in the SDN controller

operating system that monitors network traffic. The OpenFlow protocol APIs allow

the controller to check for flow-specific and port-specific statistics. This framework is

implemented as a part of the RYU [15] SDN controller. RYU is an event-driven

controller wherein the southbound APIs are invoked whenever there is an appropriate

event. For example, one could set up an event listener for an OpenFlow packet and

define an API to be invoked whenever there is an incoming OpenFlow packet. In a

similar way, there are listeners for port-specific statistics on the switch. The traffic

10



analyzer sends a stats request to the switch, invoking the corresponding API for

replying with the real-time statistics.

The other perspective to network monitoring addressed in this work is one from

the KDD process. The statistics lack contextual information to derive conclusions.

This contextual information can be captured by accumulating the statistics over time

or combining together two or more values to obtain a third one. This module deals

with the initial phases of the KDD process to obtain a representation of the network

through the information collected by monitoring it.

3.1.1 Data Selection

Just as the name suggests, the data selection process involves the determination

of the respective data type and source. As discussed earlier, the selected statistics

comprise the total number of packets, the total bytes of data being transferred, and

protocol-specific information with respect to the overall values. For example, let us

suppose that 10% of the bandwidth capacity is under use in the network. The first

set of features would determine how much of that 10% is occupied by the respective

switches present in the network and then calculate what percent of the overall usage

belongs to a specific protocol. The features are computed with the help of the

network congestion function and traffic classification while transforming the data into

an appropriate representation for the reinforcement learning agent.

DoS attacks mainly focus on exhausting the bandwidth of the network or the

resources of the switch and/or a host. The information about the total number of

packets and the total size allows one to estimate the bandwidth usage to some extent.

Resource exhaustion is achieved by sending spoofed or fake requests to the victim;

therefore, protocol-specific statistics are selected to address these type of attacks.

Also, if a network is under attack, the network latency would be relatively high.
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Hence, network latency is also one of the features included during the data selection

phase.

3.1.2 Data Preprocessing

The data that exist in the natural state or exist in the world are not necessarily

in the best possible format. First of all, it is not necessary for the data to have all the

uniform values as an ideal data set. For this research, an ideal data set is one where

there are no missing or invalid values for any considered parameter. The challenge to

solve in this phase is generating the features in a synchronized manner. It is

important to measure the number of packets, the total number of bytes exchanged,

and the network latency at the same time in order to represent the network state for

that time. Even a slight shift in the measurement would lead to confusion in the

network state. For example, if the number of packets and the number of bytes are

recorded at different times, one could end up with many more bytes for a relatively

small number of packets and vice versa. Such a discrepancy in the statistics would

mislead the reinforcement learning agent and cause errors while it selects a reactive

action. During the data preprocessing step, the data are filtered to form the features

that will be used later for further computation.

3.1.3 Data Transformation

The information obtained so far lacks context. The context information allows

the framework to understand the need for taking a reactive action. That is, the

context information helps to derive some conclusion from the data. With respect to

the framework, the context information summarizes the overall behavior of the

network at a given point in time. The aim of this phase is to provide concrete

evidence that the network is congested or is under an attack. This evidence

contributes towards the intelligence of the proposed framework. The intelligence is
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not only in taking the right action given a threat, but also on the right understanding

of the network behavior. For example, if the framework scales up the bandwidth at a

time when the network does not need more bandwidth to function, it defeats the

purpose of an intelligent system. The context information is provided with the help

of network congestion function and traffic classification. Network congestion function

is one of the contributions of this research to identify the network behavior given

limited information. Traffic classification is an extension to the network congestion

function for obtaining protocol-specific congestion across the network.

3.1.4 Network Congestion Score

The very first requirement of a threat-aware response system is to know if there

is any threat to the computer network. A network threat can be identified as an

unusual behavior of the network, whether it is through the traffic or by the switches.

This unusual behavior needs to be captured through some measure to determine if

there is an active threat to the computer network. The network congestion function

carries that purpose in the framework. This function returns a congestion score which

helps the reinforcement learning agent distinguish between the normal and abnormal

network behavior. That is, the congestion score becomes the ‘‘observation’’ and input

to the reinforcement learning algorithm. Hence, congestion score allows the

intelligence module to take reactive action in case of a threat and scale up the

network resources when needed.

The network congestion score is defined as a function of throughput and

network latency. The throughput of the network indicates the number of bytes or the

rate of bytes being exchanged through the network per unit time. The network

latency on the other hand indicates the round trip-time (RTT) that a packet would

take for traveling across all the nodes of the network and returning to the origin.
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That is, the packet will originate from the switch and hop onto each of the hosts

present in the network and back to the switch. The following equation can be used to

calculate network congestion score:

Congestion Score =

{︂
△𝐵

𝐵
* 100

}︂
+

{︂
1

𝑘 * 𝑛
* △𝐿

𝐿

}︂
(1)

△𝐵 is the difference between the current speed of the port and the default

speed of the port B, the current speed is the byte rate with which the port is

transmitting data, and the default speed is the maximum speed with which the port

can transmit data. The value of n indicates the total number of links in the local

network and △𝐿 is the difference between the network latency and the ideal latency

𝐿 of the local network. The total number of links helps to determine the ideal

network latency. The importance of latency for the congestion can be specified with

the constant 𝑘. A relatively smaller value of k would increase the emphasis of

network latency in the congestion score and vice versa. The network latency has a

penalty measure just to assign a higher importance to the bandwidth usage, as most

network attacks focus on exhausting the network bandwidth.

The intuition behind this equation is very simple and can be understood with

the help of simple questions. First, how does one determine if the network is

congested? It is by the amount of data that is exchanged in the channel. The

available bandwidth of the channel indicates the maximum amount of data that can

be exchanged through the channel, and the throughput indicates the real time data

exchange. The second question to ask is, how fast does a packet travel from one end

to the other end of the network? The answer is network latency. It is necessary to

determine, given n links how much time it takes for the packet to make a round trip

of the local network. If it is an ideal network, it should be less than 1 ms per link.

Any congestion in the links would indicate the extent to which the links are
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compromised. A congested link would result in a relatively higher value of network

latency.

3.1.5 Traffic Classification

The traffic classification is an intuitive extension to the network congestion

function discussed previously. The overall network usage can be estimated through

the congestion score. The protocol-specific network usage can be estimated through

the traffic classification, that is, the number of packets and number of bytes per

packet per protocol. The term traffic classification originates from the question that,

out of the total used bandwidth, how much is occupied by a certain protocol P? For

example, if the total bandwidth usage comes out to be 70%, traffic classification for a

protocol P measures the portion of bandwidth occupied by P.

As discussed earlier, because most of the DoS attacks are protocol-specific, the

intuition behind traffic classification is to narrow down the protocol involved in the

attack. Network congestion function checks if the network is congested or not.

Similarly, traffic classification checks for the protocol-specific congestion. For the

scope of this research, HTTP, TCP, DNS, UDP, and ICMP protocols were

considered. These protocols are largely used in day-to-day applications for complex

communication carried out over the network. A southbound interface using tshark

[30] was developed to gather the protocol-specific statistics, which is then combined

with the statistics obtained from OpenFlow specific southbound APIs.

3.2 Reinforcement Learning Agent

This section explains the reinforcement learning paradigm as applied to

network security. This module is developed as a part of the RYU [15] SDN controller

operating system. Formally speaking, a reinforcement learning problem consists of

the following sub-elements:
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• Policy

• Reward Signal

• Value function

The reinforcement learning problem is the selection of the right reactive action

given the current network behavior. Let us go over each of the sub-elements of

reinforcement learning. This approach not only provides an overview of reinforcement

learning but also provides context information that facilitates the relationship

between the concept of reinforcement learning and its practical implementation for

network security.

3.2.1 Policy

According to Sutton and Barto [4] ‘‘A policy is defined as a function which

determines the action taken by a reinforcement learning agent given some state 𝑆𝑖.’’

The policy can choose any action from the set of available actions. It is

formally represented with the help of 𝜋*(𝑆). The problem is represented in a state

based system. That is, there is a set of states in which the system can be and there is

a set of actions which make the system transition from one state to another. With

reference to the learning problem in this paper, the actions would be the sub-modules

present in the threat response module.

3.2.2 Reward Signal

Reinforcement learning paradigm is reward driven. A reward can be defined as

a favorable condition being met upon taking some action. This action would

essentially make the system transition from one state to other. For example, when a

child learns to walk, the reward is moving from one place to another without being

hurt, or taking each step without falling. It could also be possible that the reward is

considered for both the situations, not falling on each step as well as not falling even
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once while walking from the starting point to the destination. For the reinforcement

learning problem addressed by this paper, the reward signal is determined from the

input state at time t, 𝑆𝑡 and the input state at time t+1, 𝑆𝑡+1. With the help of the

congestion score and protocol-specific congestion, it is possible to determine whether

the congestion increased or decreased after taking the particular action. The same

measure becomes the key to the reward signal for the reinforcement learning agent. If

the congestion of the network at time 𝑡+ 1 did not improve by some particular action

taken at time 𝑡, the action was not really the best action that could have been taken.

The reward signal specifies the immediate reward received upon a transition.

However, there is a greater part of the reward obtained by taking the value of the

action into consideration. It is also considered the goal of a reinforcement learning

problem. After all, every problem is solved with the motivation of obtaining the

maximum possible reward.

3.2.3 Value Function

Consider a system in which the number of states, the reward of each state, and

the value of the action taken from a given state are known beforehand. This is the

ideal reinforcement learning problem that can be solved by planning or dynamic

programming. However, in the real world, even if the number of states and the

immediate reward of each state are known, the value (or long-term benefit) of an

action given a particular state is unknown. This gives rise to the concept of the value

function in the reinforcement learning problem. The overall reward for taking any

action is the sum of the immediate reward obtained from the state and the value of

the action taken with respect to the previous state.

Suppose that in a reinforcement learning problem, the agent has to find the

path from one state to another state. If the agent keeps selecting the path which
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gives the highest immediate reward, it is possible that the agent might not devise the

most optimal path to the destination. However, it is the optimal solution which is

very much desired, not just a good enough solution. The value function in a

reinforcement learning problem helps the agent determine which action or actions

correspond to the maximum long-term reward which can be obtained. The learning

problem which arises is how to determine the value of an action. It is not really

possible to estimate the value, given some state 𝑆𝑖 and some action 𝐴𝑖.

The value of an action is captured through the experience obtained by the

reinforcement learning agent over time as it interacts with the environment. The

more experience that a reinforcement learning agent has with each respective action,

the more likely it is that the agent can select the best action in case of a complex

situation. That is, if the network is currently under attack, the experience of the

reinforcement learning agent with each possible reactive action determines the

likelihood of the agent to make a wise decision. The value function is the learning

challenge in the reinforcement learning problem. It is not known beforehand, nor can

it be guessed at random. However, there are approaches with which the value

function can be approximated such as Monte Carlo simulations, Temporal difference

(TD) learning, Q-learning, etc. The approach used for this framework is Q-learning,

the working of which is explained in one of the following sections.

3.2.4 Overview: Markov Decision Processes

Markov decision processes (MDPs) are used to model decision making problems

when the outcome cannot be predetermined completely. The outcome usually has

some degree of uncertainty associated with it. Covering the concept of MDPs in depth

is beyond the scope of this paper, but this section attempts to introduce it briefly.

According to Sutton and Barto [4], ‘‘A reinforcement learning task that satisfies
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the Markov property is called a Markov decision process, or MDP.’’ The Markovian

property informally specifies that only the present matters. Consider a scenario

wherein there is some decision to be taken with respect to some parameters. If this

decision can be taken by considering only the last few values of the parameters rather

than the complete history, this system is a MDP. More formally, MDPs prove that

taking into account the entire history of parameters is equivalent to taking into

account only the recent history of the environment. Again, the proof of this is beyond

the scope of this paper. With reference to network attacks, it can be said that only

the present network behavior information or the network behavior information

collected for the past few seconds matters. If the network is under attack, the present

information collected from the network would reflect the attack, not the information

which was gathered from an attack which occurred ten days ago. With this argument,

one can say that the reinforcement learning problem that this framework is trying to

solve is a MDP. Therefore, there exists a set of actions which can solve the problem

optimally.

3.2.5 Q-learning

The reinforcement learning problem consists of the state space and the action

space. The state space consists of the information available to the agent at each point

in time 𝑡. The action space is the set of all possible actions the agent can undertake

from a particular state 𝑆𝑖. As discussed earlier, the long-term benefit of each action

with respect to the state 𝑆𝑖 is not known beforehand. Let us assume that the function

𝑄*(𝑆𝑖, 𝐴𝑖) represents the long-term benefit of the action 𝐴𝑖 taken in the particular

state 𝑆𝑖. There is also an immediate reward 𝑅𝑖 for the action and state pair. Assume

that for all 𝐴𝑖 ∈ 𝐴, where A is the set of all possible actions, the function 𝑄*(𝑆𝑖, 𝐴𝑖)

outputs real values indicating the long-term benefit of taking action 𝐴𝑖 in state 𝑆𝑖. In
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this case, it is possible to select the action that corresponds to the maximum

long-term benefit from the action space.

However, the 𝑄*(𝑠𝑖, 𝑎𝑖) function is not always known beforehand in a

reinforcement learning problem. This 𝑄*(𝑠𝑖, 𝑎𝑖) function is more commonly known as

the value function in a reinforcement learning problem and as the Q-function for

Q-learning. As discussed previously, the value function can be approximated by

accumulating experience over time. The reinforcement learning agent accumulates

experience through the interaction with the computer network. Depending on the

action, the reinforcement learning agent would receive more information from the

network. This information would then be passed to the reward signal to obtain the

immediate reward for the action. The immediate reward and the estimated long-term

benefit of the action taken form the learning process for Q-learning. The intuition

behind Q-learning is that given enough tuples of states, actions, and rewards, it is

possible to approximate the value function accurately.

Q-learning approximates this function by using a non-linear curve-fitting

approach such as neural networks. The value function is a pattern which can be

approximated by taking into account the present network behavior information and

comparing it with the previous network behavior information to obtain the reward.

The reward acts as an implicit label, and the algorithm can be trained upon it to

obtain an approximation of the value function.

The problem now becomes more of a learning through experience. As the

number of interactions with the environment increases, the Q-learning algorithm

accumulates more information. Suppose the approximated value function is

represented by 𝑄
′
(𝑠𝑖, 𝑎𝑖), Now as 𝑡𝑖𝑚𝑒 → ∞ the approximation of the value function

𝑄
′
(𝑠𝑖, 𝑎𝑖) → 𝑄*(𝑠𝑖, 𝑎𝑖). It is an approach which can be summarized as pattern

recognition through experience. The function approximation is facilitated by neural
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networks, or an architecture better known as Q-networks. Q-networks learn through

experience, considering the information obtained from the environment in the next

state as an implicit label.

Another concept to be considered is one of creativity. Reinforcement learning

agents are creative by nature in terms of the developed strategies. With enough

experience, the agent can propose a novel strategy to reach the goal state or to

maximize the value obtained in the process. The fundamental idea behind this

creativity is the exploration vs. exploitation for the action space.

Given a set of actions A, it is very important that the reinforcement learning

agent evaluates each action 𝐴𝑖 from it. The above mentioned idea is more formally

known as exploration. Suppose that the reinforcement learning agent chose an action

𝐴𝑗 from the action space 𝐴, and the action turned out to be something beneficial.

Now, the value of this action would be increased as compared to the other actions as

it returned a good reward. Also, in the future, if a scenario similar to the current

scenario arises, the likelihood of choosing the same action 𝐴𝑗 increases. This concept

is called exploitation. A balance is needed between these two concepts to solve the

problem. The goal is to find the best possible actions from the action space 𝐴, and it

is necessary for the agent to try out different actions from the action space.

The agent can be forced to take up some action from the action space by just

selecting a random value at random time intervals. Let us say that for some 𝜖 and a

random real value 𝑃 ∈ [0, 1], if 𝑃 > 1− 𝜖, the reinforcement learning agent chooses a

random value and determines the reward received from it. Otherwise, it selects the

action with the maximum value of 𝑄′
(𝑆𝑖, 𝐴𝑖). The value of epsilon decreases with the

number of interactions carried out by the reinforcement learning agent. The ideal

initial value of 𝜖 is 1, as 𝑡𝑖𝑚𝑒 → ∞, 𝜖 → 0. This methodology is known as 𝜖− 𝑔𝑟𝑒𝑒𝑑𝑦

approach in reinforcement learning. Now that the foundation of how different
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approaches work for value function approximation has been developed, the concepts

can be combined to present the algorithm that updates the value of 𝑄′
(𝑆𝑖, 𝐴𝑖),

making it closer to the ideal 𝑄*(𝑆𝑖, 𝐴𝑖) function. The algorithm used to achieve it is

known as Q-learning and is represented by the following equation, where the next

state of the system is 𝑆
′
𝑖 :

𝑄
′
(𝑆𝑖, 𝐴𝑖) = 𝑅 + 𝛾𝑚𝑎𝑥𝐴′ (𝑄

′
(𝑆

′

𝑖 , 𝐴
′

𝑖)) (2)

𝑅 is the immediate reward obtained by the agent upon taking the action 𝐴𝑖. 𝛾 is the

discount factor which avoids the risk of infinite reward values when there is no

termination state in the system. The ideal value of 𝛾 is taken as 0.9 [31]. With the

above mentioned equation, the value of each action is updated. For a large enough

number of iterations, this value function approximates the ideal value function.

3.3 Threat Response

The threat response module interacts with the ovsdb and OpenFlow

southbound APIs of the SDN controller to deploy network configurations from the

framework. The configurations are selected with the help of reinforcement learning

and are deployed in real-time. As shown in Figure 1, the threat response consists of

two sub-modules: bandwidth manager and flow rule update manager. Both of these

sub-modules represent the actions which the reinforcement learning agent can take

against a network threat. This module can be easily extended with more choices for

actions against the network threat.

3.3.1 Bandwidth Manager

The bandwidth manager can be thought of as an interface which provides a

southbound API to modify the bandwidth of the switch. The value of the bandwidth

is determined by another reinforcement learning agent, making it possible for the

system to scale the bandwidth up and down as needed. The state space and action
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space for this agent are not so different from the agent that determines whether to

update bandwidth or update a flow rule. The bandwidth allocation agent takes as

input the congestion score defined in the traffic analyzer section and selects the

optimal bandwidth. The congestion score provides the estimate of the bandwidth

usage to the agent. With the help of the bandwidth usage, the agent can determine

whether the suggested bandwidth value was a profitable decision or a loss. The profit

and loss here are used in the context of reward. If the suggested bandwidth maintains

the optimal network operation, it is a positive reward. However, if the suggested

bandwidth does not affect the network congestion much, it is a negative reward.

The same learning paradigm helps the reinforcement learning agent to scale up

or scale down the bandwidth depending on the network usage on a normal basis.

This feature allows the agent to work as a resource allocation algorithm as well. The

agent is given a set of values which can be deployed as the network bandwidth, and

each one of these values becomes an action. Since the state space and action space

have been defined, the agent learns the value of each corresponding action over time

and determines the relationship between the actions and states, which maximizes the

reward given a particular state.

There are many network attacks which can be countered by simply modifying

the network bandwidth to some extent. There certainly is a large number of attacks

which can exhaust the bandwidth even after scaling, but for them, the other action

deals with the protocol-specific traffic rates in the network.

3.3.2 Flow Rule Manager

The flow rule manager is another interface which provides a southbound API to

update flow rules on the switch. This API sends an OpenFlow message to the

particular switch to indicate the update in the flow table. With the help of this API,
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the framework can add, modify, and remove rules corresponding to various packets.

There are many cases wherein just updating the bandwidth of the network does not

solve the problem. For example, in the case of HTTP GET Request Flood, it is not

the bandwidth which is exhausted in the network but the resources of the victim

server. The action could be to limit or stop the incoming HTTP traffic to a particular

switch or host in the network.

The learning switch deployed with the help of the SDN controller has an inbuilt

add_flow API to make changes in the flow table. The parameters include a match

object to a protocol, the specific actions, and the datapath of the switch. The

framework checks for the protocol-specific information which is gathered in the traffic

analyzer section. The protocol-specific features help to determine which flow rule

needs to be deployed on the corresponding switch. The protocol having a higher

density in terms of bandwidth and packets is the one which needs to be moderated.

3.4 Layer-wise grouping of DoS attacks

Denial-Of-Service (DoS) attacks focus on disrupting the victim service or the

victim network for the legitimate users or legitimate hosts, respectively. These

attacks exploit the features of different protocols and misuse them, and can be

classified based on the various layers of the TCP/IP model as follows:

3.4.1 Attacks on the IP Layer

A basic network attack targeting the IP layer is MAC flooding. This attack

involves flooding the switch with data packets, which draw out the legitimate MAC

address and imitate a unicast behavior by sending traffic to the areas of network

where it is not intended to go. The methods to mitigate this attack might involve

limiting the number of MAC addresses learned through a particular port,

authentication of MAC addresses, etc. Another attack on this layer involves ICMP
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flooding. This attack is a volumetric attack which focuses on overloading the network

bandwidth. The adversary floods the network with ICMP echo requests until the

server or the machine exhausts all the resources in replying to the message. A typical

way to mitigate this attack is by filtering ICMP echo requests or rate limiting them.

It is also known as the Smurf Attack.

3.4.2 Attacks on the Transport layer

The attacks on the transport layer exploit the TCP and UDP protocols. Most

of the communication is carried out through the transport layer, as many of the

applications use TCP/UDP in the underlying process. The two main attacks on the

transport layer are the TCP SYN Flood attack and the UDP Flood attack.

SYN Flood: The TCP protocol is a connection oriented protocol and this

connection is facilitated through a three-way handshake. SYN flood attack exploits

the three-way handshake to hinder the services provided by any server by sending

spoofed or fake SYN requests to the server. Upon receiving a SYN request, a network

server would simply acknowledge it and wait for a reply. However, in case of a SYN

flood, the reply never arrives, thereby hindering the functionality of the server. This

attack can be mitigated by limiting the number of SYN requests, filtering the SYN

requests, or even a timer to SYN RECEIVED.

UDP Flood: As the name suggests, this attack involves sending a huge number of

UDP packets to the victim. The victim cannot process the large influx of packets all

at once and hence remains occupied. Because of this, it cannot process the legitimate

traffic or requests. The victim would simply reply with the destination host

unreachable ICMP reply, as the packet would be spoofed. This attack can be

mitigated with the help of appropriate firewalls.
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3.4.3 Attacks on the Application Layer

The attacks on the application layer exploit the vulnerabilities in the

applications, such as an HTTP server, DNS and Ping. Each application has some

procedure to deal with communication, whether it is in request and response form or

echo and reply form. The same procedure which allows the applications to work

perfectly, is also the one which leads to exploitation.

HTTP Flood Attacks: As the name suggests, these attacks involve sending a

large number of HTTP POST requests to the server. By nature, this attack is a

resource consumption attack, as the victim cannot process the large number of POST

requests in time, resulting in high utilization of system resources or a crash in the

worst case. Similarly, one could achieve the same goal with the help of an HTTP

GET Flood, which involves the influx of a large number of HTTP GET requests. A

reasonable way to mitigate this attack is by monitoring the application which is

accepting such requests.

NTP Amplification Attack: NTP is a UDP based protocol which can be

exploited to return a large reply to a small request. Using the same property, a

resource consumption attack can be launched against a server. The NTP protocol has

a ‘‘monlist’’ command which returns the total number of servers which the NTP

server has contacted. Given a number of open NTP servers, one could easily

accomplish an amplification attack resulting into a DDoS attack. This attack is an

amplification attack, as the response packet size is much larger than the request

packet size. A typical way to mitigate this attack is by securing the NTP client.

DNS Amplification Attack: A DNS server upon receiving a "ANY" request

returns all information about that host to the source IP address, thereby making the

response packet size much larger than the request packet size. In a DNS

amplification attack, the adversary spoofs DNS lookup requests with the IP address
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of the victim and sends "ANY" requests to open DNS servers. All these servers

would then respond by sending out all the information they know about the

requested IP address, and this information would be sent to the victim. This attack

can be mitigated by reducing the number of recursive resolvers. This work covers

ICMP flooding, TCP SYN flooding, UDP flooding, HTTP GET request flood, and

DNS amplification attack. The performance of the framework with respect to each

attack scenario is discussed in the next chapter.
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CHAPTER 4

Evaluation

The proposed framework is evaluated by deploying it with a network topology.

An SDN controller can best be tested by allowing it to handle the operations for

which it was developed. In the same way, the proposed framework can be best tested

by allowing it to protect a network against attacks. The network topology can be

simulated with the help of mininet [32]. It is a network simulation tool that makes

use of Linux containers to simulate switches and hosts on the system.

The other aspect to testing is simulating normal network traffic. In case of a

real network, there are various users using their systems to fetch different sorts of

information. For testing purposes, it is possible to simulate usual or normal traffic

using traffic generators. A traffic generator is a tool that takes in the type of packets

to generate, the number of packets to generate, and the destination IP addresses.

One such traffic generation tool is Ostinato [33]. It can be used through the GUI or

the Python API. The following steps show the working of the tool and the equivalent

actions on the GUI are demonstrated in Figure 2, Figure 3, Figure 4, Figure 5, and

Figure 6.

1. Create a new stream under the interface.

2. Select the Layer 3 protocol version and Layer 4 protocol type.

3. Enter the custom protocol data. [If needed]

4. Enter the total number of packets to send, that is, the number of packets per

second.

5. Choose the source and destination IP addresses; it is possible to make them

both random.
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6. Apply the stream on the port and start it.

Figure 2 – Adding a new stream to Ostinato

Figure 3 – Configuring the stream with L3 and L4 protocols
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Figure 4 – Configuring the protocol data

Figure 5 – Configuring the values in the stream
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Figure 6 – Configuring the source and destination for the packets

4.1 Generating the Attacks

The framework is evaluated against UDP flood, TCP SYN flood, ICMP flood,

HTTP GET request flood, and DNS amplification attack. These attacks are some of

the most well-known DoS attacks, and despite the simplicity, each attack is prevalent.

The first step is to isolate the adversary machine. For evaluating this framework, a

host from the available hosts is selected from the simulated topology, and the IP

address of the host is changed so that it belongs to a different subnet. The host IP

address can be preset if the mininet topology is created using the Python API or it

can be set using the ifconfig and netmask commands as follows:

h1 ifconfig <interface> <new IP address> netmask <appropriate netmask>

The above example can be used with a host ℎ1 in mininet. The new IP address

can be set to 10.0.1.1 from 10.0.0.1 by using a different netmask, per the need. The

adversary has been identified and so has the normal traffic flow. The next step is to

generate the DoS attacks. These attacks involve a large number of packets, and there

are many sophisticated tools with which one can carry them out for research
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purposes. These tools involve hping3 [34], Metaspolit [35], and Scapy [36]. A simple

UDP attack can also be implemented by using Python socket programming APIs.

The TCP SYN flood, UDP flood, and ICMP flood were generated with the help of

hping3 tool. The following command can be used to deploy a TCP SYN flood attack

on the victim of choice:

hping3 -S -P -U --flood -V --rand-source <victim-IP/URL>

By default, this command would run infinitely, but the number of packets can

be limited by using the -c option and specifying the total number of packets to send.

The port can be specified as well with the -p option of the command. One more

attack that can be carried out using hping3 is the UDP flood attack. It is possible to

specify the bytes per packet using the -d option followed by the size of each packet in

bytes. The following command carries out a UDP flood on port 53.

hping3 -udp -p 53 -flood-rand-source <victim-IP/URL>

An alternate way to carry out a DoS attack is by wrapping up the hping3 system call

in the Python programming language and setting up a loop against different port

numbers. This attack would be difficult to manage, as multiple threads would be

flooding the network. The ICMP attack can also be generated with the help of hping3.

There are ICMP attacks with various codes, and for the testing of this framework it

is ICMP echo flood. The following command is used to generate the flood:

hping3 --icmp -C 8 -K 0 --flood <victim-IP/URL>

The ICMP code and ICMP type are specified using the -K and -C options in the

attack. The HTTP GET request flood and DNS amplification attacks were simulated

with the help of Python scripts. Using BaseHTTPServer module in Python, it is very
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easy to create a victim server that can respond to GET requests. With the help of an

infinite loop or multiple threads, one can send a large number of HTTP GET

requests with spoofed IP addresses. The DNS amplification attack is carried out with

an automated Python script as well. A large list of domain names to be resolved is

prepared for the DNS server, and each one of the requests is sent through the script

by spoofing the source address as the victim’s IP address.

4.2 Network Topologies

The reinforcement learning agent learns through experience with the computer

network. The goal is to make the agent understand the various scenarios of network

attacks, so that it can learn to take complex decisions in real-time. This section

explains the testbeds used for evaluating the framework. These testbeds are

simulated with the help of mininet [32].

Figure 7 showcases a very simple network topology generated with the help of

mininet [32]. This simple topology is a linear topology of a network consisting of one

switch and three hosts connected to the switch. It is a learning switch facilitated with

the help of OpenFlow [1] protocol, and simulated with the help of OpenVSwitch. The

initial evaluation of any framework is easier with the help of a small scale network

topology instead of a large scale one. The small scale network topology allows for

easy debugging in terms of an error, and the results can be seen immediately. Also,

with a smaller number of hosts connected to the switch, the network monitoring

becomes simple as well. Considering the perspective of reinforcement learning agent,

the agent first learns the complexity of a small scale environment, thereby making it

possible to derive a conclusion whether or not it is feasible to deploy the agent on a

relatively complex network topology. The results obtained with this network

topology align with this view.
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Figure 7 – A linear network topology with 3 hosts and one switch

Another viewpoint is, when the agent is first deployed and tested with a simple

network topology, it is possible to also make a conclusion on how well the framework

scales with a more complex network topology. Figure 8 shows a linear topology with

six switches and twelve hosts. It allows for the reinforcement learning agent to be a

part of a more diverse environment. With an increase in the number of hosts, the

normal network usage increases as well. The first learning curve for the agent is to

accommodate itself with the change in the environment. The next section presents

the experimental results obtained with the help of the proposed framework.

Figure 8 – A more complex linear network topology with six switches and twelve hosts
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4.3 Experimental Results

The framework was tested iteratively against the different DoS attacks. This

stepwise training of the reinforcement learning agent helps build a more robust

understanding of various reactive actions in various scenarios. At first, the agent was

trained against a UDP flood DoS, and then the other type of DoS attack was

simulated on the network. This new attack would appear to be a zero-day attack to

the agent, and it would adjust the value for each reactive action to counter the

attack. This process was repeated with a set of five DoS attacks to evaluate the

overall performance of the framework.

The framework was evaluated on the basis of percentage packet loss for an

intended user of the service or a legitimate request made to the victim host. A basic

UDP server was deployed on the victim host, and the client was deployed on one of

the benign hosts to calculate the packet loss. The client tracks the total number of

packets sent and received from the server. For every packet that the server does not

respond to, it accumulates the packet loss with respect to the total number of packets

sent. It is evident from the results obtained, that the framework reduces the packet

loss by at least 70-80% as compared to the test results on RYU SDN controller

without using the framework.

4.3.1 UDP Flood Attack

As the name suggests, a UDP flood attack douses a victim server with UDP

packets. For the purpose of this attack on both testbeds, a simple UDP Server was

set up on the victim host. The flood attack was carried out with the help of hping3

tool. The flood size determines the number of UDP packets which were used in the

attack. For example, an attack of 500 Megabytes indicates a total of 5000000 packets

sent, each having a size of 100 bytes. Figure 9 and Figure 10 show the results
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obtained on testbed 1 and testbed 2 respectively.

Figure 9 – Packet loss with and without framework in case of UDP flood on testbed 1

Figure 10 – Packet loss with and without framework in case of UDP flood on testbed
2

It is evident from the results that the packet loss is quite high when the

framework is not deployed in the network. However, once the framework is deployed,

the SDN Controller manages to thwart the attack to a great extent. Even though

there is some packet loss after that too, it is not as significant as without using the
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framework.

4.3.2 TCP SYN Flood Attack

Next, the reinforcement learning agent or rather the framework was tested with

a TCP SYN flood attack. Since it was the first time the framework comes across a

TCP SYN flood attack, it could be considered as a zero day attack. The

reinforcement learning agent does learn how to tackle it, and the number of

interactions it took to do so are depicted in the latter part of this chapter. However,

the motive of training the framework like this was to inspire the reinforcement

learning agent to explore more actions. The TCP SYN flood attack is focused more

on exhausting the resources of the victim host rather than exhausting the bandwidth.

Therefore, an appropriate action in this case would be to moderate the incoming TCP

SYN Requests.

This attack focuses on sending spoofed TCP SYN packets to the victim. It

exploits the three-way TCP Handshake. Since the IP addresses are spoofed, the

handshake is never completed and the victim keeps waiting for the sender to respond.

In this way, the resource exhaustion is achieved in a TCP SYN flood attack. Figure

11 and Figure 12 show the packet loss with and without the framework on testbed 1

and testbed 2, respectively.
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Figure 11 – Packet loss with and without framework in case of TCP SYN flood on
testbed 1

Figure 12 – Packet loss with and without framework in case of TCP SYN flood on
testbed 2

Packet loss is measured as the number of legitimate TCP SYN requests being

refused as the victim is too busy. This attack is simulated using hping3 tool and the

legitimate TCP SYN packets are generated through a Python script, which also keeps

an account for the packet loss.
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4.3.3 ICMP Flood Attack

Ping application is used to check if there is an active host for the corresponding

IP address or URL. The same utility is exploited to send a multitude of ICMP

requests that force the victim to respond with an ICMP packet. It is a classic

resource consumption attack wherein the victim server becomes too busy in handling

all the incoming ICMP requests. However, an ICMP packet does not have a higher

priority such as HTTP or TCP, so it might get ignored. The main targets of these

types of flood attacks are the switches because a switch is responsible to forward all

such packets to the respective hosts. Figure 13 and Figure 14 show the results

obtained on both testbeds under an ICMP flood attack.

Figure 13 – Packet loss with and without framework in case of ICMP/Ping flood on
testbed 1
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Figure 14 – Packet loss with and without framework in case of ICMP/Ping flood on
testbed 2

The goal of ICMP flood attack might be to disconnect the victim from the

network by making it busy. Once the victim is busy enough, it might not respond or

collect information necessary to stay connected in the network. The reinforcement

learning agent iteratively learns the type of attack and also learns the optimal action

necessary to counter it.

4.3.4 HTTP GET Request flood Attack

The HTTP GET Request flood attack is an application layer DoS attack

targeted on an HTTP Server. The target is to flood the server with enough fake

requests that it cannot handle legitimate requests. All different kinds of DoS attacks

share essentially the same goal. The packet loss is taken into account as the number

of legitimate HTTP GET Requests that were refused service. Figure 15 and Figure

16 showcase the results on testbed 1 and testbed 2 with and without the framework

respectively.
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Figure 15 – Packet loss with and without framework in case of HTTP GET Request
flood on testbed 1

Figure 16 – Packet loss with and without framework in case of HTTP GET Request
on testbed 2

4.3.5 DNS Amplification Attack

The last attack which the reinforcement learning agent is trained against is a

DNS Amplification Attack. In this attack the adversary sends spoofed DNS requests

to DNS servers. The DNS Servers resolve the request and send their responses back

to the origin. The origin address is the address of the victim. This attack can be
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carried out on a large scale as the number of Open DNS Servers available is high and

most of these DNS Servers have a very high bandwidth. It might be perceived as

though these DNS servers are executing a DDoS attack on the victim.

However, the DNS protocol does contain a UDP packet underneath it. These

UDP packets can be regulated in the network in order to thwart the amplification

attack. This attack is not focused only on bandwidth exhaustion but also on resource

exhaustion for the victim. Whenever the victim receives a DNS response it starts

processing it, and with enough DNS responses, the victim would be so busy

processing these responses that the more important traffic might be overlooked.

A simple Python script is used to simulate a DNS amplification attack. The

packet loss is accounted for by using simple UDP Client and server programs across

the network. Figure 17 and Figure 18 show the results with the help of the

framework on testbeds 1 and 2, respectively.

Figure 17 – Packet loss with and without framework in case of DNS Amplification on
testbed 1
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Figure 18 – Packet loss with and without framework in case of DNS Amplification on
testbed 2

Apart from the iterative training of the reinforcement learning agent on various

types of DoS attacks, the other aspect of evaluation is how quickly the reinforcement

learning agent learns to select the optimal or the right action as per the standard

strategy. For example, the standard strategy for a UDP flood might be increasing the

bandwidth, but for a UDP flood with a higher intensity, it would be to moderate

UDP traffic using a flow rule.

Figure 19 shows the number of interactions the reinforcement learning agent

made before choosing the correct action. Each attack is repeated ten times to get an

estimate of the learning curve for the reinforcement learning agent. There is a lot of

variance in the number of interactions made, and the reinforcement learning agent

does not take too many interactions as well. The main reason for it is the number of

actions in the framework; at present, the framework supports two major actions. The

first one is bandwidth management in the computer network and the other one is

flow rule management. There are different flow rules under the flow rule management

action, and each of these flow rules are selected by looking at the protocol-specific
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features obtained during traffic classification. It is possible that, with the increase in

the number of actions, the reinforcement learning agent takes more interactions to

arrive at the correct action for the particular scenario.

Figure 19 – The learning curve of the agent w.r.t. various network attacks

The last test which was carried out on the framework was one of bandwidth

allocation. It is possible that at some point in time, the computer network is busier

than usual. Maybe all the users were streaming live videos or playing games. This

framework was developed with a major focus on handling different types of network

attacks, but it also has an additional feature of bandwidth management. It can be

configured to act like a resource allocation agent as well. Table 1 shows the various

values of the bandwidth suggested by the reinforcement learning agent under

different network congestion scenarios.
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Table 1 – Evaluating Optimal Bandwidth Allocation

Case Network Congestion(%) Suggested Bandwidth(Mbps)
1 99.98 92-96
2 85.47 79-83
3 50.32 41-43
4 10.39 4-7

It is clear from all the results that were obtained, that the framework works

reasonably well against various DoS attacks. However, there were challenges faced

during the process to obtain such results. These challenges include simulation

techniques for the various attacks to the deployment of the framework and the

learning of the reinforcement learning agent. Overall, the agent counters the network

attacks to a greater extent. Hence, it gives sufficient background on further

implementation of an intelligent network security module with SDN.
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CHAPTER 5

Discussion

The goal of this framework is to protect the network from DoS attacks. These

attacks can target the hosts and/or the switches that make up the network. The

controller handles topology management, provides an interface to collect switch

statistics, and uploads appropriate flow rules on the switches. With the same features

and an added southbound interface to push changes in the switch configurations, the

framework protects the entire network against attacks. The framework forms a

successful relationship between the network behavior and the reactive action space

which helps to counter various network attacks.

5.1 Memory Usage Comparison

The controller loads the reinforcement learning agent along with the analyses

modules in memory to make a decision against network attacks. The decision

specifies the reactive action which needs to be taken for thwarting the network threat

or stabilizing the network operation. The reactive actions are deployed on the

switches individually. Thus, it is important to evaluate memory usage of the

controller with and without the framework. There is an increase in memory usage as

the framework loads the reinforcement learning agent and the tshark [30] library in

memory. However, the usage stays constant even with an increase in the number of

switches connected to the controller. Figure 20 shows the memory usage comparison

of the controller with and without the framework.
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Figure 20 – Comparison of memory usage

The memory usage statistics were obtained using the ‘‘top’’ terminal utility

command. The graph shows the physical memory used by the controller when it is

deployed in network topologies with a different number of switches. Each one of

these switches is monitored for collecting statistics, and the reactive actions are

pushed switch-wise; thus the memory usage is taken with reference to the number of

switches in the network. The increasing number of switches does not have an impact

on the memory used by the framework. The memory used by the framework is nearly

constant as the number of switches increases. The difference in memory usage with

and without the framework suggests that the reinforcement learning agent needs a

certain amount of memory to function. However, it is a memory difference which can

be accommodated by the present day switches with ease.

The experimental results discussed in Chapter 4 prove that the congestion score

and other protocol-specific features calculated in the traffic analyzer module are

effective representations of the network behavior. The effectiveness is proven through

the actions taken by the reinforcement learning agent. There is no accuracy which can

be measured in terms of such an agent, but the impact on the network turns out to
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be a valuable metric in its performance. The frequency with which the agent arrives

at the correct action shows the exploration vs. exploitation concept in real-time. The

actions selected by the agent are executed in less than one second. Overall, the

proposed framework asserts that with reinforcement learning the capabilities of SDN

can be increased significantly, especially in the area of network security.

From an implementation perspective, RYU [15] is a component-based,

event-driven controller which allows for fast prototyping. The main advantage of

using RYU is its smaller code density and modular implementation. The security

measures can very well be integrated with an enterprise-grade controller, but the

importance lies in evaluation of the framework’s usefulness. This paper covers DoS

attacks for evaluating the framework. However, there are many other network

attacks that target software-defined networks. It is possible to develop a multi-agent

reinforcement learning solution to cover different scenarios across the network. Other

approaches as well as extensions to the framework are discussed in Chapter 6.

The reinforcement learning agent first starts off with a random action given the

𝜖− 𝑔𝑟𝑒𝑒𝑑𝑦 approach. It solves the cold start problem, wherein the agent does not

have prior experience with the environment. With time, the agent accumulates

experience for each reactive action and the understanding of network state to make

an intelligent decision. The average number of iterations it takes from switching over

to an intelligent action from a random action is three to four. However, the number

of iterations depends on how well the random action worked for the network

environment. If the action worked out well for the network, the value for that action

would increase automatically. In the upcoming iterations, the likelihood of the

reinforcement learning agent choosing that action increases.

There are other approaches which can be used to train the agent. One of these

approaches is to train the network in a live environment. The reinforcement learning
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agent can accumulate more information about the network behavior and take an even

better action against a network attack, as the dynamics of a live environment are

much different. However, in a simulated environment such as the one presented in

this paper, the agent can acquire enough prior experience to handle the live network

properly. The agent can also be trained with different network attacks to incorporate

more actions in the action space.
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CHAPTER 6

Conclusion and Future Work

This thesis proposed a framework that can autonomously protect the network

against attacks. The framework does so by forming a successful non-linear

relationship between the state space and the action space. The state space is the

information collected to represent network behavior and the action space is the set of

reactive actions defined to protect the network. The framework has a traffic analyzer

module which calculates the state space and a threat response module that forms the

action space. Both of these modules make use of the southbound interfaces and

provide southbound APIs to monitor and protect the network. The reinforcement

learning agent forms the non-linear relationship between network behavior and

reactive action space through the experience gathered from the interactions with the

network. With a large number of interactions, the agent accumulates enough

information to even thwart unknown attacks on the network in the future. The

iterative evaluation of the framework was carried out to estimate the behavior in case

of a previously unknown attack. As shown by the results, the framework performs

quite well in defending the network.

However, this implementation supports only the bandwidth management and

traffic moderation through flow rule management action. More actions such as

setting up VLANs, restricting the traffic specific to the port, and routing path

changes can be incorporated to make an even more complete solution. Also, this

framework can be extended by using other enterprise-grade SDN controllers. The

framework prototype focuses on defending the network against DoS attacks; future

work will focus on implementing a generic framework for all types of network attacks.

It is hoped that this work would serve as an inspiration for other researchers to

pursue intelligent security measures in software-defined networks and extend the
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same to an even higher level.
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