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Root scores showed a significant relationship (p=0.041, r=0.366) between the log of 

weight, fat score and all three feather isotope values (Figure 18).  

 

Figure 18. Relationship between loadings (Isotope Values and Morphological 

Measurements) of HY Pacific-slope flycatchers (n= 154) for Canonical Variate 1.       

 

The Canonical Correlation Analysis demonstrated that birds with more negative δ2H, 

δ13C and δ15N values generally had lower weights (log) and fat scores.   
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 Discussion  

 

This study provides the first assessment of migratory connectivity in Pacific-slope 

flycatchers (PSFL), a species for which no such data currently exist. The primary purpose 

of this research was to collect preliminary information on the breeding origins and habitat 

selection of groups of hatching-year (HY) Pacific-slope flycatchers migrating through the 

Coyote Creek Field Station in Milpitas, CA, in the South San Francisco Bay Area, at 

different times during the fall. This study also examined potential relationships between 

the morphological characteristics of HY Pacific-slope flycatchers and the inferred relative 

breeding origins and habitats used. 

This study demonstrates that the geographic origins of HY Pacific-slope flycatchers, 

as inferred by stable isotope analysis and spatially explicit likelihood-based assignment 

models, were from a range of regions throughout their known breeding grounds and these 

origins varied temporally, specifically from northern California to southwestern British 

Columbia. Of the three approaches this study applied to deduce PSFL breeding origins, 

the partitioning of assignments by capture week proved to be the most informative. Some 

migratory connectivity studies have discussed the influence of temporal data to explain 

the variation of δ2H in feathers (González-Prieto et al., 2011; Kelly, 2006; Kelly et al., 

2002), but the investigation of geographic origins of individuals using stable isotope 

analysis, spatially explicit likelihood-based assignment models, and timing of migration 

is a novel approach.  

The significant relationship between between δ2H and capture date for PSFL justifies 

incorporation of temporal data for inference. Our results are consistent with other studies 
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that have investigated relationships between migration timing and breeding latitude. 

Kelly et al. (2002) found a strong relationship between δ2H of feathers from Wilson’s 

warblers (Cardellina pusilla) and arrival date during fall migration. Kelly (2006) found 

relationships between δ2H and capture date of yellow warblers (Setophaga petechia) 

orange-crowned warblers (Oreothlypis celata) and common yellowthroats (Geothlypis 

trichas).  

Results for the HY PSFL caught in the south San Francisco Bay Area illustrate that 

birds with natal origins of more southern latitudes such as northern California, throughout 

western Oregon and southern Washington migrated through CCFS earlier than those 

from more northern latitudes such as northern Washington and southwestern British 

Columbia. This pattern suggests that the HY PSFL may employ chain migration 

strategies, in which populations migrate in an even progression (Fontaine, Stutzman, & 

Gannes, 2015). Several other studies have reported similar findings of chain migration. 

For example, González-Prieto et al. (2011) found that HY veery (Catharus fuscescens) 

migrating from southern latitudes arrived at stopover sites in Colombia before birds from 

more northern latitudes. Kelly (2006) made the same conclusions about orange-crowned 

warblers and common yellowthroats during fall migration arriving at their wintering 

grounds in New Mexico at different times. Although this finding provides new insight on 

PSFL fall migration, the wintering grounds of the individual birds in this study were 

unknown.   

The results of the geographic assignments that were partitioned by capture week 

(Appendix B) are consistent with the results of the group assignment (Figure 11) in that 
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the majority of the birds were associated with regions spanning between northwestern 

California and midwestern Washington, with a secondary group associated with regions 

around the southwestern Canadian border. The partitioning of geographic assignments by 

capture week suggested that there may be distinct groups of migrant PSFL moving 

through the south San Francisco Bay region, with local breeders arriving the earliest (July 

20- July 26, 2014), followed by breeders from northwestern California-to-midwestern 

Washington (August 3- August 9, 2014), breeders from northern Washington (August 24- 

August 30, 2014), and British Columbia breeders arriving the latest (September 28-

October 4). Similar patterns of migratory timing have been found in other songbird 

species. Paxton et al. (2013) combined stable isotopes and mitochondrial DNA to 

determine the weekly distribution of geographic origins of after-hatching-year Wilson’s 

warblers migrating to stopover sites in Arizona during Spring migration. Migratory 

connectivity of Wilson’s warblers migrating through stopover sites in Arizona were 

further refined in a study by Ruegg et al. (2014), which incorporated high-resolution 

genetic markers with the temporal data.   

Inferences about natal habitats provide valuable information that can further refine 

the geographic origins of migratory birds and aid in the assessment of migratory 

connectivity.    

Results for HY Pacific-slope flycatchers, as revealed by δ2H, δ13C, and δ15N stable 

isotope feather values, suggested that individual birds clustered naturally into two 

isotopically distinct groups representing regional origin. Variations in δ2H, δ13C, and δ15N 

values can be explained by a variety of environmental factors that ultimately define 
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different habitat types (Reudink et al., 2015). Variation in δ2H values are related to 

latitude, altitude, distance from the ocean, and rainfall amount (Kendall et al., 1995; 

Marshall et al., 2007; Plummer et al., 1993). Variation in δ13C is related to the climatic 

distribution of C3, C4, and CAM plants (Inger & Bearhop, 2008; Marshall et al., 2007), 

while variation in δ15N is related to trophic diet and agricultural soil exposure (Inger & 

Bearhop, 2008).  

The one distinct group migrated from more northern latitudes with cooler and wetter 

climates than birds in the second group. Additionally, the diet of birds from the first 

group may have consisted of fewer insects than plants than the diets of birds from the 

second group, but more data on such materials would need to have been collected to 

properly infer this. The finding that HY Pacific-slope flycatchers originating from cooler 

and wetter climates than others is supported by research showing that δ13C values vary 

across differentiating habitats under temperature and moisture influences influences 

(Garcia-Perez & Hobson, 2014; Hobson et al., 2012; Inger & Bearhop, 2008; Marra et al., 

1998; Marshall et al., 2007; Reudink et al., 2015). Pacific-slope flycatchers breed in 

coastal habitats stretching from southeastern Alaska, northwestern and central British 

Columbia, and the Queen Charlotte and Vancouver islands to southwestern California 

and throughout the mountain ranges of northern and southern Baja California (American 

Ornithologists’ Union, 1998; Lowther, 2000). Habitats within the Pacific Coast mountain 

ranges are characterized by climatic-moisture scales which vary with latitude; cooler, 

wetter regions are found farther north (The Editors of Encyclopædia Britannica, 2006; 

Turner & Kuhlmann, 2014). The HY Pacific-slope flycatchers that were characterized to 
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have originated from cooler and wetter climates were also shown to originate from more 

northern latitudes, which further supports my findings within the spatially explicit 

likelihood-based assignment models.                     

Multi-isotope (δ2H, δ13C and δ15N) approaches have been previously used in studies 

of migratory connectivity. Reudink et al. (2015) found natural wintering ground clusters 

(inferred from δ2H, δ13C and δ15N claw values) within a population of Vaux’s swift 

(Chaetura vauxi) using a stopover roost site in British Columbia. In a study conducted by 

Garcia-Perez & Hobson (2014), multi-isotope clusterering, migratory connectivity 

indices, and probability-based assignment models yielded longitudinal links between the 

wintering and breeding grounds of barn swallow (Hirundo rustica) sampled on breeding 

sites throughout Canada and the U.S. Garcia-Perez & Hobson’s (2014) study 

incorporated an isoscape of vegetation cover (based on previously collected δ13C values 

from plants throughout the potential wintering range) which strenghtened their ability to 

make geographic assignments. Similarly, Hobson et al. (2012) constructed plant δ13C and  

δ15N isoscapes of Africa and were successful making in assignments of previously 

published feather data to geographic clusters based on multi-isotopes. Similar to my 

findings, these studies have used δ13C and δ15N feather isotope data to further refine 

migratory origins of birds.          

This study also investigated potential relationships between morphological 

measurements and feather isotope values (δ2H, δ13C and δ15N) of the HY Pacific-slope 

flycatchers that migrated through CCFS in the fall of 2014. Certain morphological 

characteristics of birds affect energetic abilities during migration, and have the ability to 
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provide information about an individual’s migratory and foraging behavior (Hedenström, 

2008; Nowakowski et al., 2014; Vágási et al., 2016). For example, it has been widely 

observed that the length of a bird’s wing is positively correlated with the length of 

distance that the bird migrates (Delingat et al., 2011; Gunnarsson et al., 2012; Milá et al., 

2008; Nowakowski et al., 2014; Pérez-Tris & Tellería, 2003; Vágási et al., 2016). Body 

mass has been observed to decrease with migration distances (Jones & Witt, 2014; Kaboli 

et al., 2007; Sol, Lefebvre, & Rodríguez-Teijeiro, 2005). Fat score at stopover sites is 

representative of the amount of fat being stored in a birds body and has many 

implications for migration strategies (Lindström et al., 2002; Meissner, 1996; Meissner, 

2009; Wichmann et al., 2004). 

The results of the analysis between morphological measurements and the feather 

isotope values of the HY Pacific-slope flycatchers suggested that individual birds with 

less enriched δ2H, δ13C, and δ15N feather isotope values will exhibit lower body masses 

(Log of weight) and lower fat Scores.    

The findings of my study align most closesly with Arizaga, Alonso, & Hobson’s 

(2014) study of crossbills (Loxia spp.), in which researchers were able to isolate a 

migratory population moving through a stopover site based on morphological 

measuremeants associated with regions with distinct foraging vegetation specific to 

crossbill preferences. Unlike with the crossbills, there are no known obvious 

morphometric differences between populations of Pacific-slope flycatchers, most likely 

because they are not specialist foragers. In a captive-rearing study of song sparrows 

(Melospiza melodia), Kempster et al. (2007) concluded there were no significant 
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relationships between δ13C and δ15N values and physiological parameters of nutritional 

stress, but as expected body mass and fat score were found to be significantly lower in 

malnourished captive birds. Morphological measurements in this study may have similar 

implications to those of Kempster et al. (2007), in that δ13C and δ15N feather values 

provide less information then δ2H values and that lower body masses and Fat Scores may 

be indicitive of a certain level of nutritional/environmental stress. The Pacific-slope 

flycatchers that exhibited lower body masses and fat scores likely migrated through the 

south San Francisco Bay from more northern breeding regions than the other birds, and 

we may be able to speculate that longer migration serves as a form of environmental 

stress that is reflected in these morphological characteristics.   

Overall, I found the incorporation of temporal data with spatially explicit  likelihood-

based assignment models of Pacific-slope flycatcher δ2H feather values proved to be the 

most informative in terms of determining probable geographic origins and initial 

assessments of migratory connectivity. The incorporation of δ13C and δ15N feather values 

and morphological data within the cluster and canonical correlation analyses further 

supported my findings within the spatially explicit  likelihood-based assignments, but 

were not especially informative on their own. In summary, weekly spatially explicit 

likelihood-based assignment models suggest that HY Pacific-slope flycatchers utilize 

chain-migration strategies, and migrate through the Coyote Creek Field Station in 

Milpitas, CA during the fall from a range of geographic origins within their known 

breeding grounds. The proportion of individuals migrating through CCFS from more 

northern breeding regions was discovered to be significantly lower than the individuals 
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migrating from lower latitudes. The incorporation of δ13C and δ15N data provided 

secondary information to further confirm that HY Pacific-slope flycatchers migrating 

through CCFS originated from multiple breeding origins. Analysis of morphological data 

suggested that birds that migrate through CCFS from more northern breeding latitudes 

(and with the incorporation of the temporal data we can speculate that these populations 

migrate through CCFS towards the end of fall migration) will have lower body weights 

and small fat scores.  

Although there were limitations, and the points made in this study are basic 

inferences about the probable geographic origins of migrating HY Pacific-slope 

flycatchers, the results provided valuable initial information on the fall migration of this 

species. These findings can serve as a foundation for future researchers to better define 

the migratory patterns, breeding territories and levels of migratory connectivity of 

Pacific-slope flycatcher populations. This is the only known study that has investigated 

the migration of Pacific-slope flycatchers and shed light on chain-migration patterns of 

the species. The inferences made from the migratory timing data collected in this study 

have multiple implications for stopover ecology, environmental degradation, and 

methodologies in migratory connectivity. This study strongly indicates that Pacific-slope 

flycatchers breeding in multiple regions of western North America, that migrate hundreds 

of miles south to winter, rely heavily on stopover sites such as the Coyote Creek Field 

Station in Milpitas, CA. It is imperative that riparian corridors surrounding the southern 

boundary of the South San Francisco Bay remain preserved for sensitive neo-tropical 

migrant songbirds like the Pacific-slope flycatcher. I emphasize management of the 
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Coyote Creek Field Station to ensure continuous restoration and protection of the site to 

provide nutritious and quality habitat for migrant species. Future research may seek to 

fully understand migratory connectivity of Pacific-slope flycatchers, and the location and 

timing of PSFL populations migrating through the Coyote Creek Field Station will play 

an important role in better understanding genetic variation, evolution, and environmental 

adaptability of the species. The role of CCFS as a valuable stopover location for 

migrating Pacific-slope flycatchers from multiple breeding origins at different times may 

help wildlife managers track the future spread of disease and parasites, better understand 

aspects of climate change, and properly track population decline. The methodologies 

used in this study demonstrate the potential ability for researchers to explore the 

migratory movements of individuals, or smaller groups of migrants, through temporal 

data to make inferences about populations. It is my hope that the methodologies used in 

this study can be improved upon by future researchers and applied in migratory 

connectivity studies of many other species. 

Recommendations for Future Research 

 

Future research should further refine the geographic origins of migrating Pacific-

slope flycatchers by expanding the sample size and by sampling flycatchers that pass 

through other nearby banding stations such as Point Blue Conservation in Point Reyes, 

CA or local areas where flycatchers have been seen or heard by citizen scientists. This 

expanded sample would target not only hatching-year Pacific slope flycatchers, but after-

hatch year adult Pacific-slope flycatchers as well to make proper inferences of the 

population as a whole. An interesting phenomenon that has been historically observed at 
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the Coyote Creek Field Station is that the proportion of HY to AHY Pacific-slope 

flycatchers moving through is significantly higher in HY birds (San Francisco Bay Bird 

Observatory, 2016). Increased incidences of HY birds at stopover sites may be indicative 

of young birds solely selecting a coastal, or alternative migration route to the routes of 

adult birds (Ralph, 1981). Additionally, very few AHY birds are observed migrating 

through CCFS during the spring. A future study that targets HY and AHY birds at 

periphery locations to CCFS may provide insight on the true migratory movements of the 

population as a whole, and help quantify any HY mortality events that are likely 

connected to coastal route selection. 

When sampling the Pacific-slope flycatchers, collecting additional morphological 

data such as presence number of fault bars on flight feathers and tarsus length, keel length 

and wing span to calculate body size could add valuable data. Expanded analyses could 

incorporate secondary data sets such as Pacific-slope flycatcher feathers from known 

breeding origins to better calibrate the deuterium in precipitation maps from (Bowen et 

al., 2005). These samples would need to be collected through museum specimens or 

banding stations throughout known breeding sites in western North America. Additional 

secondary data sets could also include banding and encounter data from the U.S. 

Geological Survey Bird Banding Laboratory to investigate direction of migratory 

movements or PSFL Productivity (reproductive index) data from the Institute for Bird 

Populations Monitoring Avian Productivity and Survivorship program to investigate 

potential source-sink dynamics. Techniques, such as genetic analyses and or light-level 

geolocators can also be used to improve estimates of migratory origins. 
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Another refinement would be to re-structure the incorporation of δ13C and δ15N data 

into analyses to improve inferences about migratory origin and habitat selection. δ13C and 

δ15N data should only be used if stable isotope data from vegetation and insects across the 

known Pacific-slope flycatcher breeding range can be collected prior to migration to be 

used as a basis of comparison. Additionally, the incorporation of compound-specific 

stable isotope analysis of amino acids, a newer methodology that has shown to improve 

information about food-web and diet structure in wildlife, could be used. 

Finally, a full-circle assesmment of migratory connectivity in Pacific-slope 

flycatchers should be continued by sampling migratory individuals during the spring to 

determine geographic origins of their wintering grounds.  

Investigations of the probable wintering origins of Pacific-slope flycatchers during 

spring migration will further quantify the dynamics of the PSFL annual cycle, open more 

doors for population ecologists to quantify mortality events, and provide concrete spatial 

and temporal advisement to wildlife managers to prioritize conservation measures in 

breeding, stopover, or wintering sites.                   
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APPENDIX B: Continued 
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APPENDIX B: Continued 
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APPENDIX B: Continued 

 

 

 

(M) 

 

 
 

 

 

Figure 19. Probable breeding origins of Pacific-slope flycatchers sampled at the Coyote 

Creek Field Station in Milpitas, California (red dot) from (A) 7/20/2014 to 7/26/2014 

(N=1); (B) 7/27/2014 to 8/2/2014 (N=3); (C) 8/3/2014 to 8/9/2014 (N=17); (D) 

8/10/2014 to 8/16/2014 (N=4); (E) 8/17/2014 to 8/23/2014 (N=6); (F) 8/24/2014 to 

8/30/2014 (N=27); (G) 8/31/2014 to 9/6/2014 (N=33); (H) 9/7/2014 to 9/13/2014 

(N=25); (I) 9/14/2014 to 9/20/2014 (N=17); (J) 9/21/2014 to 9/27/2014 (N=12); (K) 

9/28/2014 to 10/4/2014 (N=20); (L) 10/5/2014 to 10/11/2014 (N=3); and (M) 10/12/2014 

to 10/18/2014 (N=1). Each legend scale specifies the number of individual PSFL that had 

consistent isotopic feather values with pixels on the maps of the same color based on the 

likelihood-based assignment at 2:1 odds.            

 

 

 

 

 

 

 

 



 

121 
 

APPENDIX C: Stable isotope values (‰) of feathers from 167 HY Pacific-slope 

flycatchers sampled at the Coyote Creek Field Station in Milpitas, California  

 

 

ID δ2H δ13C δ15N 

01 –71.5 –21.82 5.2 

02 –60 –22.37 6.8 

03 –58 –21.74 5.2 

04 –82.3 –22.33 6.2 

05 –49.9 –22.92 5.8 

06 –52 –21.83 6.1 

07 –80 –22.7 8.2 

08 –51.7 –21.79 7.8 

09 –73 –23.62 5.9 

010 –81.7 –22.82 8.6 

011 –80.2 –23.43 7.9 

012 –94.8 –24.58 8.1 

013 –82.9 –20.57 7.9 

014 –49.6 –22.32 8.4 

015 –46.1 –21.89 7.8 

016 –51.3 –23.33 4.7 

017 –63 –23.02 6.3 

018 –87.5 –23.49 5.7 

019 –80.2 –21.36 6.1 

020 –56.6 –21.31 6.0 

021 –77.1 –24.04 5.6 

022 –78.5 –22.87 6.6 

023 –46.9 –23.23 5.5 

024 –55.3 –21.04 6.1 

025 –69.4 –22.69 8.7 

026 –108 –22.96 6.6 

027 –76.8 –23.39 6.1 

028 –89.2 –25.39 6.2 

029 –55.9 –24.53 4.2 

030 –58.6 –22.96 8.4 

031 –55.2 –21.4 5.1 

032 –63.9 –22.26 5.6 

 

 



 

122 
 

APPENDIX C: Continued 

 

ID δ2H δ13C δ15N 

033 –93.1 –23.51 7.4 

034 –105.3 –23.22 4.6 

035 –56.9 –22.35 8.1 

036 –102.6 –23.8 4.7 

037 –99.3 –22.04 3.7 

038 –75.4 –22.88 4.5 

039 –98.4 –22.79 6.1 

040 –81.3 –23.27 6.3 

041 –53.6 –22.82 6.9 

042 –68.7 –22.02 5.2 

043 –109.9 –23.77 5.0 

044 –98.5 –22.37 4.8 

045 –98.3 –22.55 4.9 

046 –96.6 –24.16 5.7 

047 –83.2 –25.69 7.3 

048 –108 –22.59 5.5 

049 –78.4 –22.41 5.9 

050 –78.1 –22.52 6.0 

051 –84.4 –24.47 6.6 

052 –90.5 –22.95 6.8 

053 –77.5 –21.97 5.3 

054 –92.3 –21.99 4.2 

055 –119.5 –23.85 7.2 

056 –108 –23.58 4.9 

057 –57.4 –21.52 5.5 

058 –104 –22.48 5.3 

059 –61.2 –22.38 5.3 

060 –97.1 –24.22 4.6 

061 –96.3 –23.35 4.0 

062 –88.7 –22.93 5.1 

063 –77.8 –23.06 6.1 

064 –79.3 –23.57 5.6 

065 –71.4 –23.01 6.6 

066 –80.8 –23.53 3.8 

067 –92.5 –23.14 4.5 
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APPENDIX C: Continued 

 

ID δ2H δ13C δ15N 

068 –99.4 –23.5 5.2 

069 –91 –23.3 5.5 

070 –78.6 –21.73 4.7 

071 –90.6 –23.88 3.5 

072 –96.1 –23.32 4.2 

073 –88 –23.61 4.8 

074 –94.1 –23.85 6.1 

075 –126.6 –23.2 4.7 

076 –93.4 –23.35 3.7 

077 –118.4 –24.38 3.6 

078 –115 –23.56 5.9 

079 –85.5 –22.57 9.2 

080 –99 –23.49 7.1 

081 –82.4 –22.34 6.0 

082 –61.8 –22.38 6.1 

083 –114.5 –23.15 3.6 

084 –85.8 –20.81 11.2 

085 –62.9 –21.86 7.9 

086 –47.7 –21.83 6.4 

087 –108.9 –23.34 4.0 

088 –93.3 –23.55 5.0 

089 –96.5 –23.03 8.8 

090 –84.3 –22.08 5.7 

091 –141.5 –22.36 6.3 

092 –76.7 –23.06 7.4 

093 –88 –22.18 3.1 

094 –59 –22.04 5.8 

095 –98 –22.84 4.7 

096 –72 –22.36 7.5 

097 –57.4 –21.8 4.2 

098 –75.2 –22.57 9.1 

099 –95.5 –23.29 4.8 

100 –64.4 –22.38 7.9 

101 –82.6 –22.7 5.4 

102 –101.1 –22.68 5.1 
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APPENDIX C: Continued 

 

ID δ2H δ13C δ15N 

103 –38.8 –21.46 5.3 

104 –116 –19.13 8.5 

105 –113.7 –23.33 4.6 

106 –129.9 –24.25 4.0 

107 –88.9 –23.88 7.3 

108 –82.4 –23.46 7.0 

109 –112.3 –23.61 4.5 

110 –104.8 –23.26 5.7 

111 –75.2 –23 7.3 

112 –115.7 –24.3 4.2 

113 –77.4 –23.58 6.1 

114 –104.6 –23.78 4.0 

115 –86.5 –23.55 6.1 

116 –83 –22.12 3.5 

117 –91.7 –22.96 4.8 

118 –106.6 –23.24 5.3 

119 –94.6 –22.27 4.3 

120 –81.7 –22.56 7.0 

121 –94.5 –24.95 5.7 

122 –116.5 –23.72 4.2 

123 –77.2 –22.78 7.5 

124 –113.2 –23 5.6 

125 –93.5 –22.22 4.3 

126 –75.3 –22.68 5.2 

127 –96.2 –23.23 4.2 

128 –121.8 –22.79 8.0 

129 –92.4 –22.28 4.9 

130 –111.9 –24.4 2.4 

131 –92.4 –22.34 5.1 

132 –100.3 –23.73 4.2 

133 –69.1 –22.49 4.5 

134 –104.9 –22.98 4.7 

135 –123.2 –23.54 4.3 

136 –100.3 –23.51 4.9 

137 –79.7 –23.12 6.8 
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APPENDIX C: Continued 

 

ID δ2H δ13C δ15N 

138 –66.5 –23.89 6.5 

139 –76.3 –23.05 5.7 

140 –96.8 –23.48 5.7 

141 –82.9 –22.48 4.9 

142 –97.6 –23.47 4.4 

143 –85.5 –22.92 4.3 

144 –116.3 –24.09 3.3 

145 –107.4 –23.63 5.0 

146 –92.6 –24.24 3.2 

147 –76.7 –22.99 5.4 

148 –82.2 –22.59 3.2 

149 –92 –22.73 3.7 

150 –116.1 –23.54 4.4 

151 –98.2 –23.43 4.1 

156 –116.1 –23.58 5.5 

157 –128.4 –22.13 6.8 

158 –95.8 –23.79 1.6 

161 –70.8 –24.34 5.8 

162 –93.8 –23.18 3.8 

163 –100.5 –24.85 4.6 

164 –112.2 –23.42 5.6 

165 –92.7 –23.24 5.1 

166 –77.3 –23.34 4.8 

167 –106.5 –22.85 4.5 

168 –93.3 –23.51 3.0 

169 –109.8 –23.95 5.3 

170 –84.8 –23.79 5.4 

171 –102.1 –23.77 4.4 

174 –109.8 –25.32 3.9 

175 –90.8 –24.7 6.3 

 


