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ABSTRACT
USING STABLE ISOTOPE ANALYSIS TO INFER BREEDING LATITUDE AND
MIGRATORY TIMING OF JUVENILE PACIFIC-SLOPE FLYCATCHERS
(Empidonax difficilis)
by Emily B. Moffitt
Effective conservation of migratory species is hindered by a lack of knowledge of
population links between breeding, wintering and stopover habitats. The Pacific-slope
flycatcher (Empidonax difficilis) is one of the many Neotropical migratory songbirds
whose populations are steadily declining throughout western North America. This
research contributed to the assessment of connectivity in this species by inferring relative
breeding origins and habitat selection of juvenile birds that migrate along the Pacific
Flyway to the South San Francisco Bay Area in the fall. Feather data collected from July
20 to October 12, 2014 were analyzed for three stable isotopes (6°H, *°C, 6*°N).
Findings revealed that populations migrated sequentially from western regions
throughout expected breeding latitudes, with early season migrants most likely coming
from the more southern, warmer, and dryer regions of northern California, Oregon, and
southern Washington while late season migrants had probable origins in the more
northern, cooler, and wetter regions of northern Washington and southwestern British
Columbia. This study provided new information on the annual cycle and migratory

timing of Pacific-slope flycatchers, and lays the foundation for future assessments of

migratory connectivity of this species.



DEDICATION

To the memory of my grandmother, Sigrid Richter Hoffman. Sigrid had a deep
appreciation for the earth and animals and kept a garden that served as a sanctuary for
birds on the wing. Her compassion for life’s delicacies will always be remembered.

November 16, 1930 — October 15, 2016

| want to express my sincere appreciation and gratitude to all of the people that
helped make the completion of this thesis possible. To my parents, my siblings, my best
friend Julie, my family and friends: thank you for encouraging me to follow my dreams,
for pushing me to succeed in academia, and for always listening to my bird stories.
Justin: you have been an incredibly patient, loving, and supportive partner through some
of the most stressful aspects of this project; I am tremendously grateful that I’ve had you
by my side.

To my thesis advisor, Dr. Lynne Trulio: I am incredibly thankful for your knowledge,
advice, and willingness to support my research. You inspired me to follow my passion,
and provided a consistent voice of reason. My committee members, Dr. Scott Shaffer and
Dr. Kristen Ruegg: your mentoring was invaluable to all aspects of my project- thank you
for enlightening me about migratory connectivity and the utility of stable isotopes.

Thank you to the San Francisco Bay Bird Observatory, Josh Scullen, and the
volunteer bird banders at the Coyote Creek Field Station for providing me with a venue
and assistance for conducting this research. To all of my funders, laboratory assistants,

statistical advisors, and peers - | am so grateful for all of you.



TABLE OF CONTENTS

LISt OF TabIeS. ... viii
LISt OF FIQUIES. ..o iX
INErOAUCTION. ... e e e e 1
Threats to Migratory Birds...........o.oieiiiiiii e 3
Pacific-slope flycatChers. ... 8
Related RESEAICH. ... 11
Migratory CONNECHIVITY........oovie i e 11
Research Methods. .........oviniir i e 12
Pacific-slope flycatChers. ... 20

OB JBCIVES. ..ot 23
RESEArch QUESTIONS. .. ..ttt 24
NUITHYPOThESES. ..o 24
MEENOUS. . .o 25
SHUAY ST, .t 25
SHUAY DBSION. ..ottt e e 32
Data CollECtioN. .. ...t 34
Field proCedures. ... ..o 34
Laboratory ProCeAUIES. ......c.ieie ittt e, 38
SECONAANY data. ... ..o 44

Data ANALYSIS. ...ttt 47
Assignments to breeding Origin............cooiiiiiiii e 47

Group assignment to breeding origin (Q1)..........ccoviiiiiiiiiiiiiins 47
Incorporation of BBS Abundance Data (Q1).........c.covviiviiiiiininnn... 54
Incorporation of temporal data (Q2).........coovvviiiiiii e, 56
Habitat selection (Q3)........ciiriiii 56
Morphological measurement analysis (Q4).........ccoevviiiiiiiiiiiiien, 60
LIMITALIONS. ..ot 61
RESUITES. . .ttt e 66
Probable Breeding Origins of Pacific-slope flycatchers............................. 66
Precision in hydrogen analysis.............coooviiiiiiiiiiie e, 66
Relative ADUNANCE. ... ..ot 69
Timing of MIgration. ... ..., 70

Natal Origin Habitat Selection of Pacific-slope flycatchers........................ 76
Precision in carbon and nitrogen analysis..............ccooeviiiiiiiiiiinnnn.n. 76
Physical conditions of Pacific-slope flycatchers...................ooooiiiini. 81

Vi



DISCUSSION . . . e e e et e e 84

Recommendations for Future Research. ..o, 92
RETEIENCES. . ..o 95
Appendix A: Example of a field datasheet...................cooiiiii, 113
Appendix B: Weekly Assignment Models. ... 114

Appendix C: Stable isotope values (%o) of feathers from 167 HY Pacific-slope
Ty CAtCNErS. .. 121

vii



Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

LIST OF TABLES

Average value of 6°H (%o) of 169 HY Pacific-slope flycatchers
sampled at the Coyote Creek Field Station in Milpitas, California

duringfall of 2014, ... ..o

Bayesian Information Criterion (BIC) for clusters for isotopes from

feathers of 167 HY Pacific-slope flycatchers..............................

Bayesian Information Criterion (BIC) for clusters for isotopes from

feathers of 155 HY Pacific-slope flycatchers.......................ocen.

Mean (x SD) stable isotope ratios of feathers partitioned into 2

clusters based on k-means ClUStering.............ccooeviiiiiiiininiinn,

Canonical Loadings for stable isotope values of feathers from HY

Pacific-slope flycatchers. ...

Canonical Loadings for morphological measurements of HY

Pacific-slope flycatChers. ...

viii

72

78

78

80

82

82



Figure 1.

Figure 2.
Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.
Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

LIST OF FIGURES

Growing-season and mean annual global maps for deuterium in
PreCipitation. ... .. ..oiiei i

Location of CCFS within the San Francisco Bay Area, California.....
Study site location adjacent to lower Coyote Creek......................

CCEFS layout diagramming the four monitoring sites and established
MISt-Net [0CAtIONS. ... ..o

Photo of a hatching-year Pacific-slope flycatcher caught at the
Coyote Creek Field Station..............ccoeiiiiiiiiiiieee,

The total number of PSFL caught at CCFS per year from 1995 to

Photos of mist-net collection procedures at CCFS........................
Photos of sample preparation procedures...............cooevevviiininnnnn

The final “feather isoscape” of predicted hydrogen isotope values of
feathers (6°H) upon which PSFL assignments were made...............

Kernal Density estimate of HY PSFL..............cocoiiiiiiiiiiin.n.
Probable breeding origins of Pacific-slope flycatchers sampled at the
Coyote Creek Field Station in Milpitas, California during fall
MIgration iN 2014 ... ..o e
Probable breeding origins of Pacific-slope flycatchers after
incorporating North American Breeding Bird Survey Relative
Abundance data. ..ot
Relationship between §°H and Capture Date of PSFL....................

Probable breeding origins of Pacific-slope flycatchers sampled from
7120/2014 10 8/30/2014.......eei

Probable breeding origins of Pacific-slope flycatchers sampled from
8/31/2014 10 10/12/2014. .. ..o

17

25

26

28

31

32

36

40

67

68

69

70

71

73

74



Figure 16.

Figure 17.

Figure 18.

Timeline of Pacific-slope flycatchers migrating from varying
probable breeding OrigiNS. ........cooiviiiiiii e, 75

Clustering of stable isotope values of feathers from HY Pacific-slope
FIYCAtCRErS. .. e 80

Relationship between loadings (Isotope Values and Morphological
Measurements) of HY Pacific-slope flycatchers........................... 83



Introduction

A significant portion of the Earth’s biodiversity is threatened by human activities.
Scientists suggest that we are in the midst of a mass extinction of biota (hence
Anthropocene), estimating that 30-50% of all known species will be declining towards
extinction by 2050 (Thomas et al., 2004). Habitat loss, disease, over-exploitation and
competition from invasive species are among the many causes of extinction which are a
direct result of human activities including exponential population growth, urbanization
and development, pesticide implementation, and predator introduction. Perhaps the
greatest threat facing species is changing climate due to human activities, which is
expected to contribute substantially to the declines of wildlife populations (Urban, 2015).
Bird species, in particular, have shown marked population declines attributed to
anthropogenic impacts (Both, Bouwhuis, Lessells, & Visser, 2006; Both & Visser, 2001).

The earliest avian extinctions date back to the 1800s when large scavenger bird
species disappeared after hunter-gatherers over harvested large herbivores (Martin &
Wright, 1967). The prevalence of avian extinctions only worsened as humans became
more industrialized. Examples of just a few avian extinctions include the great auk
(Pinguinus impennis) in 1844 to fisherman and collectors (Hume & Walters, 2013), the
passenger pigeon (Ectopistes migratorius) to Industrial Revolution hunters in the 1850s
(Magoc, 2006), the Labrador duck (Camptorhynchus labradorius) to hunters on Long
Island in 1875 (Greenway, 1967), and the ivory billed woodpecker (Campephilus
principalis) to a sewing machine company’s forest harvest in 1948 (Collar, 1992). There

have been at least 11 bird species extinctions in North America (Classic Collection of



North American Birds, 2016), but, the International Union for Conservation of Nature
(TUCN) lists 96 avian species as threatened (IUCN, 2016b) and the 2016 State of the
Birds Report stated that 432 North American bird species, more than one-third of all bird
species, are in need of immediate conservation action (North American Bird
Conservation Initiative, 2016). As of June, 2016, the IUCN Red List stated that 140 avian
species were extinct, five were extinct in the wild, 218 were critically endangered, 416
endangered, 741 were vulnerable, and 971 avian species were near threatened worldwide
(IUCN, 20164).

Efforts in the U.S. to protect birds are varied and have deep roots. The first U.S.
federal law protecting birds was the Lacey Act of 1900, which prohibited trading illegally
obtained wildlife, prevented poaching and shipment of wildlife, and instituted later
formed wildlife refuges (American Ornithologists’ Union and Cooper Ornithological
Society, 2016). In 1913, the Weeks-Mclean Act established federal protection for
migratory waterfowl. Following the signing of the Migratory Bird Convention by Great
Britain and the U.S. in 1916, a treaty that obliges both countries to protect and preserve
migratory birds, the U.S. passed the Migratory Bird Treaty Act in 1918 (U.S. Fish &
Wildlife Service, 2016b). The Migratory Bird Treaty Act continued to separate game
birds from non-game birds through additional species classifications, and established a
migratory bird list. Under the Migratory Bird Treaty Act, the pursuit, hunting, capturing,
taking, Kkilling, or selling of birds within the migratory bird list was prohibited (American

Ornithologists” Union and Cooper Ornithological Society, 2016).



Non-governmental efforts to protect birds have served important roles in supporting
protective legislation with notable foundations of organizations such as The American
Ornithologists” Union in 1883 (American Ornithologists’ Union and Cooper
Ornithological Society, 2016) and the Audubon Society in 1905 (Graham, 1990). Such
organizations have laid the foundation for country wide efforts by non-profit
organizations and researchers to protect birds. Some large-scale present-day efforts
include those made by scientists, conservationists, anthropologists and educators
involved with National Audubon Society, the Cornell Lab of Ornithology, the American
Bird Conservancy, Partners in Flight, the Nature Conservancy, and many more. In the
San Francisco Bay Area, non-profit organizations such as the San Francisco Bay Bird
Observatory, Point Blue and the Golden Gate Raptor Observatory actively share missions
to conserve and protect birds through scientific research, educational outreach, and
management recommendations. In addition to, and often in collaboration with non-profit
organizations, a large prevalence of academic researchers undertake efforts to protect
birds. Many universities, locally and regionally support student and faculty research
within a wide range of interdisciplinary scientific programs in which common goals
towards improving the protection and conservation of wildlife are shared.

Threats to Migratory Birds

In North America there are approximately 1,154 native bird species (North
American Bird Conservation Initiative, 2016) of which 386 are considered Neotropical
migrants, birds that breed in the U.S. or Canada during the summer and spend the winter

in Mexico, Central America, the Caribbean, or South America (U.S. Fish & Wildlife



Service, 2016a). Of North America’s Neotropical migratory birds, 185 are Passeriformes,
perching songbird species (U.S. Fish & Wildlife Service, 2016a). Each year many
Neotropical migrant songbirds travel along the Pacific Flyway, the western most
migratory route in North America.

The natural phenomenon of migration, defined as the yearly seasonal movement of
individual birds originating from a specific breeding location to a specific wintering
location and back again, is what allows populations of birds to move in between areas of
varying abundances of resources in search for optimal food and nesting availability
(Webster, Marra, Haig, Bensch, & Holmes, 2002). In North America, birds migrate twice
a year. A typical pattern is that birds migrate in the fall going from summer nesting
habitats to southern wintering regions, then back in the spring. Birds in North America
spend approximately two to three months on their northern breeding grounds and two to
three months migrating to and from their southern wintering grounds where they spend
six to seven months (Norris, Marra, Kyser, Sherry, & Ratcliffe, 2004). Birds may migrate
relatively short distances, such as the northern bobwhite (Colinus virginianus), which
only migrates to different elevations to winter or breed within the same mountain range
(Brennan, Hernandez, & Williford, 1999), or extremely long distances such as the sooty
shearwater (Puffinus griseus), which migrates 40,000 miles a year between breeding
ranges in the North Pacific Ocean and wintering sites in New Zealand (Shaffer et al.,
2006). Species have evolved to migrate primarily for food and better habitats, although
competition and reproduction opportunities may be other factors (Zink, 2011). Several

studies have investigated the implications of food limitations, climatic stressors, and



breeding threats on birds (Bell, 2005; Berthold, 2001; Cox, 1985) and found that
migration is best described as a strategy employed to seasonally abandon inadequate
resource areas, promote survival and reproduction by avoiding extreme climates, and
dodge locations with numerous predators — all with the goal of promoting successful
nesting and reproduction in the following year (Boyle & Conway, 2007).

As birds prepare to migrate, they often face challenging environmental conditions as
resources decline on their summer nesting grounds; migratory challenges are magnified
by the taxing experience of flight travel during which migratory birds are constantly on
the move to inhabit a variety of locations. Some of the most daunting challenges within
the migration time frame that birds face are- time sensitivity of body mass storage
requirements, mental pressures associated with proper navigation and unfamiliar habitats,
limited stopover resources, physical land barriers, climatic fluctuations, competition,
predators, and energy use (Carlisle et al., 2009; Klaassen, 1996).

The quality of stopover environments is critical for survival as birds rely heavily on
these sites to rest and replenish fuel supplies (Buler & Moore, 2011; Moore, Smith, &
Sandberg, 2005). For fall or spring migrations to be successful, birds must arrive at the
wintering grounds (to claim a territory) or the breeding grounds (to claim a nest site and
secure a mate) in a timely manner, so time spent foraging at stopover sites must be
optimized (Moore et al., 2005). When birds arrive during stopovers, energy levels are
typically low and the duration spent at the stopover site is dependent upon food
availability, ability to locate resources, ability to avoid stress, predator abundance,

weather, competition, sex, and age (Akesson & Hedenstrém, 2000; Cohen, Moore, &



Fischer, 2014; Goymann, Spina, Ferri, Fusani, & Fusanu, 2010; Moore & Aborn, 2000;
Schaub, Jenni, & Bairlein, 2008; Yong & Moore, 1997).

Anthropogenic impacts can affect breeding, wintering and stopover habitats thereby
negatively affecting migratory birds. Habitat quality is degraded or eliminated by
urbanization, agricultural developments, water and energy management systems, the
impact of global climate change, spread of disease, and domestic and introduced
predators (Carlisle et al., 2009; Holmes, 2007; Kelly, Finch, & Yong, 2000; Kuvlesky et
al., 2007; Mehlman et al., 2005).

The variety and intensity of annual stressors can subject migratory birds to higher
mortality rates than resident bird species (Carlisle et al., 2009; Mgller, Rubolini, &
Lehikoinen, 2008). Some studies have found alarmingly high rates of mortality during
migratory periods for some species like black-throated blue warblers (Dendroica
caerulescens) (Sillett & Holmes, 2002), pied flycatchers (Ficedula hypoleuca) (Both et
al., 2006), southwestern willow flycatchers (Empidonax traillii extimus) (Paxton, 2008),
and wood thrushes (Hylocichla mustelina) (Rushing, Ryder, Marra, & Rushing, 2016).

Some of the most sensitive species are Neotropical migrant songbirds; these birds are
primarily insectivores, breed in North America and winter in the tropics when insect
abundances vary in temperate zones. Avian monitoring programs such as the Breeding
Bird Survey (BBS), Christmas Bird Count (CBC) and Monitoring Avian Productivity and
Survivorship (MAPS) have been implementing methodical, continent-wide surveys since
the 1960s. These programs show a large portion of the bird species in decline are

Neotropical migrants. BBS data (from 1966 to 2006) has shown that 57% of all



Neotropical migrant songbird populations in North America are declining (BirdLife
International, 2008; Sauer, Hines, & Fallon, 2007). Quantification of avian mortality
during migration is essential to conservation strategies (Carlisle et al., 2009).
Understanding the migratory pathways of birds is essential for species conservation
and management, but collecting these data has been extremely difficult. There are a
variety of methodologies that have been applied in avian migration studies such as mark
and recapture, citizen science, telemetry, and tissue analyses. Mark and recapture allows
researchers to track the movements and survival of birds through marking individuals
with unique tags. The strength of this methodology is limited as it requires re-sighting of
the tags or recapturing of birds by relying on chance alone. Citizen science data has
supported mark and recapture studies through annual bird counting programs and
provides valuable records of population trends at given locations and times throughout
the year, but lacks information on individual birds, which hinders abilities to infer
connections between migratory populations of concern. Advanced telemetry technology
such as radio, satellite and GPS transmitters attach to individual birds and collect reliable
movement data, but can be very expensive and often require recapture for device
removal. The analysis of bird tissues such as feathers, claws or blood can provide genetic
or biogeochemical information about the location in which the specific tissue was grown
in allowing for geographic inferences of migrating populations of individuals. Tissue
analyses are relatively inexpensive and do not require recapture, but are very sensitive to

environmental influences increasing sources of error.



Pacific-slope flycatchers (Empidonax difficilis)

Pacific-slope flycatchers (PSFL) are small, insectivorous, Neotropical migrant
songbirds. In 1989 the American Ornithologists’ Union replaced the previous western
flycatcher (Empidonax difficilis) North American bird account with two separate listings;
the Pacific-slope flycatcher(Empidonax difficilis) and the cordilleran flycatcher
(Empidonax occidentalis) (Monroe et al., 1989). Due to significant geographic
differences in the distribution of Pacific-slope and cordilleran flycatchers, this study
solely addresses Pacific-slope flycatchers.

The Pacific-slope flycatcher breeds in coastal habitats consisting of humid coniferous
forest, pine-oak forest, and dense second-growth woodland and winters in tropical
habitats consisting of montane evergreen forest, gallery forest, tropical deciduous forest,
and tropical lowland evergreen forest (American Ornithologists” Union, 1998; Lowther,
2000). The breeding range stretches from southeastern Alaska, northwestern and central
British Columbia, and the Queen Charlotte and Vancouver islands to southwestern
California and throughout the mountain ranges of northern and southern Baja California
(American Ornithologists’ Union, 1998; Lowther, 2000).

In California, the PSFL has mostly been found to breed west of the Cascade and
Sierra Nevada Mountain Ranges (American Ornithologists’ Union, 1998; Lowther,
2000). The winter range includes southern Baja California and spans from northwestern
Mexico to Oaxaca (American Ornithologists’ Union, 1998). Known spring and fall
migration stopover sites of the PSFL have been summarized by Lowther (2000). Spring

stopover sites include Colorado River, AZ; San Diego County, Orange County, Santa



Barbara County, Monterey County, and Humboldt County, CA; East of Cascades and
Lincoln County, Oregon; Coastal and Queen Charlotte Islands, British Columbia;
Ketchikan, Alaska from late February to late June depending on the location (Lowther,
2000). Fall stopover sites include Juneau, Alaska; VVancouver, British Columbia; Lincoln
County, Oregon; Santa Clara, Monterey County, Santa Barbara County, and San Diego
County, CA; and Colorado River, AZ from late July to early November depending on the
location (Lowther, 2000).

The current conservation status of PSFL determined by the IUCN is of Least
Concern, although population trends show decreasing populations (BirdLife
International, 2012). Breeding Bird Survey data indicate PSFL populations fluctuated
insignificantly between the 1960s and the late 1990s, but have been decreasing in the 21
century (Sauer et al., 2007). Combined BBS and Christmas Bird Count data have also
shown small decreases in the Pacific-slope and cordilleran flycatcher populations
(Butcher & Niven, 2007). Although current PSFL populations are relatively large and
viable, the causes of these population declines are poorly understood (BirdLife
International, 2012). There is a dearth of information about the major threats to Pacific-
slope flycatchers. Previous studies conducted in Douglas-fir (Pseudotsuga menziesii)
habitats (Raphael, Rosenberg, & Marcot, 1988; Rosenberg, Ohmart, Hunter, & Anderson,
1991) have found that PSFL tend to avoid human created clear-cut edges and prefer old
growth forests for optimal insect feeding. During secondary succession, Douglas-fir
forests of northwestern California, researchers estimated a 39% population decline

between 1980 and 1984 (Raphael et al., 1988). More information on the threats to



Pacific-slope flycatcher populations is needed to fully evaluate the viability of this
species.

Properly tracking the status of these populations remains problematic for wildlife
managers, especially within the interior Pacific Northwest (Lowther, 2000). Little to no
information exists on the assessment of migratory connectivity in these populations.
Hence, the purpose of the present study is to characterize the migratory connectivity of
Pacific-slope flycatchers that migrate south through the San Francisco Bay region each
fall, en route to destinations further south. This study contributes to aspect limited body
of knowledge regarding the migratory connectivity of PSFL by focusing solely on the
natal (also presumed breeding) origins of migratory hatching-year (HY) flycatchers.

My approach used an indirect method of migratory connectivity by using stable
isotope analysis (SIA) of Pacific-slope flycatcher tail feathers to estimate provenance and
prior habitat exposure. | also examined whether there were relationships between
flycatcher morphological characteristics and relative breeding origins. This is the first
migratory connectivity study which addresses the annual cycle of Pacific-slope
flycatchers. The results of this study provide essential information for population
ecologists to make connections between Pacific-slope flycatcher breeding origins,
stopover sites, and wintering grounds; further quantifying the dynamics of the PSFL
annual cycle. This research also provides spatial and temporal timelines for wildlife
managers to implement conservation measures at known breeding and stopover sites.
Finally, the methods used in this research can serve as a model for studies investigating

the migratory connectivity of other Neotropical bird species.
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Related Research
Migratory Connectivity

The study of avian migration and subsequent population trends involves the concept
of migratory connectivity, a way of evaluating the similarities in movements of
populations of birds by recognizing links between individuals in breeding, stopover and
wintering areas (Marra, Hobson, & Holmes, 1998; Webster et al., 2002). Common but
vital information in avian conservation is to understand how often groups of birds from a
certain breeding location move together to the same wintering location each winter,
rather than disperse to a variety of wintering locations (Esler, 2000; Webster et al., 2002).
Migratory connectivity measures population connections between travel routes and
stopover sites and across multiple events during a year (Boulet, Gibbs, & Hobson, 2006;
Webster et al., 2002). The survival rate of an individual migratory bird or of its
population can depend on certain events that occur throughout a yearly cycle, with the
notion that the impact of one seasonal event may not be reflected until the following
season, hence carry-over effects (Chamberlain et al., 1997; Fretwell, 1972).

Migratory connectivity is described as a level of strength; stronger connectivity
denotes a population with groups of migrants from certain locations, whether breeding or
wintering, who collectively migrate to the same area and back (Marra, Norris, Haig,
Webster, & Royle, 2006). Conversely, weak connectivity is when a group of migrants
disperse to a variety of locations (Marra et al., 2006). The strength of a population’s

connectivity has direct implications for breeding viability, evolution, genetic variation,

11



disease control, and habitat availability, with weaker connectivity being more desirable
(Both et al., 2006; Boulet et al., 2006; Webster et al., 2002).

Many studies focusing on migratory connectivity demonstrate links between breeding
and wintering grounds, and disregard the potential influence that the physical act of
migration and stopover may have on populations of birds (Moore et al., 2005; Newton,
2004; Paxton & Moore, 2015; Sillett & Holmes, 2002). The challenges of migration pose
significant threats to migratory birds, and links between breeding and wintering grounds
should be made with the incorporation of birds that did not survive their migratory route
(Paxton & Moore, 2015). The relationship between migratory birds and their stopover
habitats is essential for understanding the connection between breeding and wintering
grounds, and can further quantify migration success (Yong & Moore, 1997). To fully
understand migratory connectivity, the identification of stopover sites during migration is
an essential step for protecting avian populations (Cohen et al., 2015; Hobson et al.,
2006; Mazerolle, Hobson, & Wassenaar, 2005; Newton, 2004; Ruegg et al., 2014;
Webster & Marra, 2005; Webster et al., 2002). Conservation of Neotropical migrant
songbirds requires protection and management of all habitats that are used by populations
throughout their annual cycle (DeGraaf & Rappole, 1995; Gonzéalez-Prieto, Hobson,
Bayly, & Gomez, 2011; Moore, Kerlinger, & Simons, 1990; Morris, Holmes, &
Richmond, 1996).

Research Methods
Researchers have used a number of techniques to quantify the migratory connectivity

of an individual group or population. One of the most historic, prominent, and direct
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methods of studying bird migration is mark and recapture using bird banding, in which
the movement, survival, and behavior of birds is evaluated by marking an individual with
a unique band or tag. Specific morphological characteristics are then assessed to
differentiate between different species and origins (U.S. Department of the Interior &
U.S. Geological Survey, 2016). One of the most important components of mark and
recapture studies is the ability of researchers to recapture and/or re-sight previously
marked birds (Webster et al., 2002). With the help of citizen science programs such as
The Christmas Bird Count, The North American Breeding Bird Survey, The Great
Backyard Bird Count and Grassland Bird Surveys, many mark and recapture studies are
made possible. Although mark and recapture methods are widely used, the approach is
not ideal for studying specific movements of migratory birds primarily because the odds
of recapturing and re-sighting previously marked birds are very small, which reduces the
ability to make reliable conclusions about a population’s migratory patterns (\Webster et
al., 2002). Additionally, mark and recapture data are not always adequate for applying
statistical analyses to measure migratory connectivity (Webster et al., 2002). And, the
lack of observer confidence associated with re-sighting methods may falsify conclusions
on a birds’ breeding or wintering origins.

Newer technologies have provided many opportunities for researchers to acquire a
clearer understanding of avian migration paths. Radio telemetry, satellite telemetry,
geolocators, GPS transmitters and a variety of other technological tools allow for the
closer, sometimes instantaneous, tracking of individual movements, while collecting

information on the external environment (Hobson & Norris, 2008; Webster et al., 2002).
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By attaching a tracking device, researchers can obtain relatively accurate data on the
activity throughout an annual cycle, which can answer many important questions about
avian migration and life history patterns. Although the benefits of telemetry are
significant, the costs and limitations associated with species size make the option a less
desirable one for widespread use in migration studies (Webster et al., 2002).

Nevertheless, intrinsic markers, naturally occurring elements in food resources that
are incorporated into animal tissues during physiological processes, can be used to
evaluate breeding and wintering origins of birds (Boulet et al., 2006). By sampling tissue
specimens from a migratory bird, genetic and biogeochemical analyses can be used to
estimate the origin of tissue growth at the time of synthesis (Boulet et al., 2006). The
analyses of contaminants, parasites, pathogens, trace elements, mitochondrial DNA,
genome sequences, and stable isotopes are some of the intrinsic approaches that have
been used to infer migratory movements of wildlife (Hobson & Norris, 2008; Ruegg et
al., 2014). The analysis of mitochondrial DNA and stable isotopes are two of the
preferred approaches being applied in many migratory connectivity studies (Boulet et al.,
2006; Hobson & Norris, 2008; Paxton, Van Riper 11, Theimer, & Paxton, 2007; Ruegg et
al., 2014; Rundel et al., 2013; Sullins et al., 2016; Webster et al., 2002; Woodworth et al.,
2016).

A stable isotope is a natural deviation in the weight of a chemical element based on
neutron abundance variation (Inger & Bearhop, 2008). Elements such as hydrogen (H),
oxygen (O), carbon (C), nitrogen (N), strontium (Sr) and sulphur (S) all appear in

different forms in the environment as stable isotopes and are uniquely identified based on
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their atomic weights (Fry, 2006; Inger & Bearhop, 2008; Wassenaar, 2008; Webster et
al., 2002). Ratios of stable isotopes in nature have been shown to reflect a variety of
patterns across different habitats and landscapes (i.e. an isoscape), with elevation levels,
among food web systems and consequently geographically (Hobson, 2009; Inger &
Bearhop, 2008; Wassenaar, 2008; Webster et al., 2002). The ratios of stable isotopes in
the environment are reflected in the tissues of animals grown in at a given location,
allowing researchers to analyze the tissues for information on trophic placement and
relative origin of tissue growth (Bearhop, Furness, Hilton, Votier, & Waldron, 2003;
Haramis, Jorde, Macko, Walker, & Walker, 2001; Hobson, 2009; Inger & Bearhop, 2008;
Pearson, Levey, Greenberg, & Martinez Del Rio, 2003; Webster et al., 2002).

When birds are at a particular point in their molt cycle and grow in their feathers at
their breeding, stopover, or wintering grounds, the environmental isotopic signatures
becomes incorporated into their external tissues due to the inert properties of feather
proteins (Inger & Bearhop, 2008). Essentially, feathers serve as isotopic signature
records, and this naturally occurring process provides a proxy for researchers to estimate
species diet (i.e. trophic placement) and geospatial origin in relation to an isoscape map
(Inger & Bearhop, 2008).

The analysis of hydrogen isotope ratios in avian tissues has been used widely to infer
relative geographic origins (Hobson & Norris, 2008; Inger & Bearhop, 2008). Deuterium,
(62H), the heavier of the two stable hydrogen isotopes, varies continent-wide through
precipitation, and up taken into animal tissues (Hobson & Norris, 2008; Inger & Bearhop,

2008). Many early studies (Hobson & Wassenaar, 1997; Hobson, Wassenaar, & Taylor,
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1999; Holmes et al., 1997; Kelly, Atudorei, Sharp, & Finch, 2002; Meehan,
Giermakowski, & Cryan, 2004; Rubenstein et al., 2002) correlated deuterium in bird
feathers with average deuterium values of precipitation across North America (Inger &
Bearhop, 2008). Deuterium values in water have been found to occur on a geographic
sliding scale basis with latitude changes; deuterium values will decrease as latitude
increases (Hobson & Wassenaar, 1997; Inger & Bearhop, 2008; Marshall, Brooks, &
Lajtha, 2007). Deuterium values will also decrease at higher elevations (altitude), with
increased distances from the ocean (continental effect), and in areas with more rainfall
(rainfall amount effect) (Kendall, Sklash, & Bullen, 1995; Marshall et al., 2007;
Plummer, Michel, Thurman, & Glynn, 1993). Deuterium undergoes isotopic
discrimination while it passes through food chains during natural processes such as
evaporation, condensation, plant absorption, and trophic consumption (Wassenaar, 2008).
The consistency of isotopic discrimination is predictable of latitude, allowing a basis for
comparison with deuterium values in the feathers of birds (Hobson & Wassenaar, 1997;
Wassenaar, 2008).

The creation of continental maps showing deuterium precipitation value (i.e. isoscape
map) changes with latitude by Bowen, Wassenaar, & Hobson (2005) (Figure 1) has
allowed researchers to analyze the deuterium values in animal tissues as an intrinsic

marker of origin (Inger & Bearhop, 2008).
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Figure 1. Growing-season and mean annual global maps for deuterium in precipitation,
reprinted with permission from Bowen et al. (2005)

The analysis of carbon and nitrogen stable isotope ratios in avian tissues has been
used to study diet selection, foraging history, trophic ecology, and habitat use (Bearhop et
al., 2003; Inger & Bearhop, 2008; Kelly, 2000; Lajtha & Marshall, 1994; Peterson & Fry,
1987). The heavy carbon stable isotope, (6*3C), varies based on the type of
photosynthesis a plant undergoes (Inger & Bearhop, 2008; Marshall et al., 2007).
Terrestrial plants can be categorized based on the type of photosynthetic pathway (e.g.,
Cs, C4,and CAM plants), are distributed geographically based on climatic conditions and

subsequently use different processes to uptake CO2, which causes a variation in the heavy
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carbon isotope signatures (Marshall et al., 2007). Cs plants are typically found in
temperate habitats with cooler, wetter climates and undergo higher fractionation of
carbon isotopes resulting in less enriched (more negative) 63C values than C4 plants
which can be found in semi-tropical habitats with hotter, drier climates such as grasslands
or savannas (Still, Berry, Collatz, & DeFries, 2003; Still & Powell, 2010; Waller &
Lewis, 1979).

Heavy nitrogen stable isotope (6*°N) values will vary based on diet and trophic level;
tissues of consumers that rely on high protein diets are more enriched in 5*°N than lower
individuals in the food chain (Inger & Bearhop, 2008). Heavy nitrogen stable isotope
values can also be influenced by environmental soil content, such as in regions with high
agricultural activity (Inger & Bearhop, 2008). Bird feathers reflect levels of 6*°N
variation based on diets with higher protein sources such as strict insectivores (higher
o'®N values), omnivorous diets consisting of insects and plants (low §*3C to 5*°N ratios)
or diets consisting of fruits (high 5*3C to 6*°N ratios) (Hobson, 2009).

Similar to deuterium, plant 6*3C values undergo isotopic discrimination when
consumed and digested by wildlife, and animal tissues will become more enriched with
o'°N values as they move through trophic levels (Inger & Bearhop, 2008; Post, 2002).
The shift in stable carbon and nitrogen isotope ratios during these processes provide a
predictable basis for inferring diet composition and trophic level of consumers (Inger &
Bearhop, 2008; Kelly, 2000). Many studies (Bearhop et al., 2003; Evans, Newton,
Mallord, & Markman, 2012; Gagnon & Hobson, 2009; Haramis et al., 2001; Hobson,

1999a; Hopkins & Ferguson, 2012; Pearson et al., 2003) have analyzed the 6*3C and §*°N
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values in the tissues of birds to infer variation in diet among different habitat types and to
investigate trophic relationships. It has been observed that the analysis of all three
isotopes (6%H, 6'3C, and ¢*°N) can yield important information about the origins and
habitat variation of migratory birds (Garcia-Perez & Hobson, 2014; Hobson et al., 2012;
Hobson, Van Wilgenburg, Wassenaar, Moore, & Farrington, 2007; Reudink et al., 2015).
For example, Garcia-Perez & Hobson (2014) analyzed multiple isotopes in barn swallows
(Hirundo rustica) while on their breeding grounds and were able to estimate wintering
origins. Similarly, Reudink et al. (2015) applied multi-isotope methodologies to a sample
of Vaux’s swift (Chaetura vauxi) at a migratory stopover site and found natural distinct
groups from different wintering origins. Hobson et al. (2012) found latitudinal trends in
plant 8*3C and §*°N values across Africa, allowing for successful migratory assignments
of previous published feather data.

Morphological characteristics of birds have been widely studied to better understand
migratory energetic abilities, foraging behavior, and mechanisms of adaptation
(Hedenstrém, 2008; Mila, Wayne, & Smith, 2008; Nowakowski, Szulc, & Remisiewicz,
2014; Pérez-Tris & Telleria, 2003; Shaffer, Weimerskirch, & Costa, 2001; Vagasi et al.,
2016). Certain morphological variables such as wing length, fat score, body mass and
size have been examined closely in migration studies. It has been observed that some
birds who migrate longer distances have longer wings (Maggini, Spina, Voigt, Ferri, &
Bairlein, 2013; Mil4 et al., 2008; Nowakowski et al., 2014; Pérez-Tris & Telleria, 2003;
Vagasi et al., 2016) and lower body masses (Jones & Witt, 2014; Kaboli, Aliabadian,

Guillaumet, Roselaar, & Prodon, 2007; Moore et al., 2005). Fat score is a visual indicator
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of total body fat and has been found to be higher in birds that are foraging for several
days at a migratory stopover site (Lindstrom, Klaassen, Piersma, Holmgren, &
Wennerberg, 2002; Meissner, 1996; Meissner, 2009; Wichmann, Barker, Zuna-Kratky,
Donnerbaum, & Rossler, 2004). There have been few studies that have investigated the
potential relationships between the morphological measurements and stable feather
istopes of migrating songbirds, and in those that have focus questions within topics on
foraging selection (Arizaga, Alonso, & Hobson, 2014; Mgller & Hobson, 2004),
nutritional stress (Kempster et al., 2007) phenomics (Bensch, Grahn, Miiller, Gay, &
Akesson, 2009) and migratory connectivity (Delingat, Hobson, Dierschke,
Schmaljohann, & Bairlein, 2011) Arizaga, Alonso, & Hobson’s (2014) study investigated
the foraging selection of crossbills (Loxia spp.) by collecting a suite of morphological
measurements and ¢6%H feather isotope values and were able to make differentiating
conclusions about a migratory population utilizing a stopover site. A study by Delingat et
al. (2011) found significant differences in wintering origins of groups of northern
wheatears (Oenanthe oenanthe) based on wing shape, wing size and 5°H, 5*3C, 6*°N
feather values of birds at breeding and stopover sites on offshore islands of Germany.

Aside from research by (Delingat et al., 2011) little to no information exists about the
integration of morphological measurement assesment with stable isotope analysis within
migratory connectivity studies.
Pacific-slope flycatchers (Empidonax difficilis)

There is a dearth of information about the migratory connectivity of Pacific-slope

flycatcher populations. The American Ornithologists” Union’s 1989 decision to officially
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split the western flycatcher (Empidonax difficilis) into two species, the Pacific-slope
flycatcher (PSFL) and the cordilleran flycatcher (Empidonax occidentalis), was made
after research by (Johnson & Marten, 1988) found there to be enough significant vocal,
genetic and slight morphological differences in inland and coastal populations of the
western flycatcher to consider the separate populations to be unique species (Johnson &
Marten, 1988; Monroe et al., 1989). Alternatively, morphometric identification criteria
only allows for distinction of 60% of individuals (Pyle, Institute for Bird Populations, &
Point Reyes Bird Observatory, 1997). A study of Pacific-slope and cordilleran flycatcher
DNA by (Rush, Cannings, & Irwin, 2009) revealed hybridization between the two
species in southeastern British Columbia and southwestern Alberta, providing possible
evidence for the need for population re-merge. Some organizations and databases such as
the Cornell Lab of Ornithology’s Birds of North America Online, the North American
Breeding Bird Survey, and the San Francisco Bay Bird Observatory continue to refer to
the former nomenclature of western flycatcher to address both species simultaneously.
The decision to split the western flycatcher into two species has restricted our
understanding of the annual cycles of these populations as unique species.

Previous research on the migration of Pacific-slope flycatchers has focused on topics
that address population abundance, foraging selection, and local movements. Certain
trends in the abundances of PSFL populations have been observed to be influenced by
geographic location and habitat. In a study conducted at the Rocky Point Bird
Observatory in Vancouver Island, British Columbia from 1997- 2003 by Christie (2004),

Pacific-slope flycatchers showed a significant increase in abundance potentially related to
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a preference for the coastal interior forest habitats of VVancouver Island. Similarly, Skagen
et al. (2005) found PSFL abundances to increase with increasing longitude (closer to the
coast) at migratory stopover sites throughout the southern U.S. and Mexico. Research has
shown that migratory PSFL favor areas with certain vegetation to support stopover
foraging of insects, such as the finding of PSFL reliance on flowering honey mesquite
(Prosopis glandulosa) by (Fontaine & Van Riper I11, 2009) at the Cibola National
Wildlife Refuge in Arizona.

Although previous research sheds light on important factors that influence Pacific-
slope flycatcher population abundances and migratory habitat selection, assessment of
migratory connectivity has never been addressed. Aside from a study by (Nocedal, 1994)
which examined short distance movements between habitats in western Mexico, research
on the migratory timing and movement of Pacific-slope flycatcher populations in relation

to breeding, stopover and wintering grounds does not exist.
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Objectives

With the growing variety of external stressors and the increasing sensitivities of
Neotropical migrant songbirds, the mortality rates of migratory birds are rising. The
direct causes of declines are poorly understood, and a major knowledge gap is our
understanding of the relationship between Neotropical migrant songbirds’ breeding and
wintering habitat and the migratory routes birds take. Mortality factors cannot be
adequately quantified without narrower resolutions of breeding origins, stopover points,
and wintering grounds for individual species of interest. Little to no information exists on
links between particular breeding, stopover and wintering areas of Neotropical migrant
songbirds (Hobson & Wassenaar, 1997), and without filling in these gaps, the roadblocks
preventing proper conservation strategies will remain unresolved.

The overall objective of this study was to contribute to the assessment of migratory
connectivity in Pacific-slope flycatchers. My goal focused on evaluating the breeding
origins and variation in breeding habitat exposure of HY Pacific-slope flycatchers
migrating through the Coyote Creek Field Station in Milpitas, CA at different times
during the fall 2014 migration season. This study also examined relationships between
the morphological characteristics of HY Pacific-slope flycatchers and the inferred relative
breeding origins and habitat exposure.

This research provides the necessary data to better define HY PSFL fall migratory
routes, serves as a resource for wildlife managers to further protect known stopover

habitats, and may be used as a model for other ecologists conducting similar migratory
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connectivity studies. The following research questions and hypotheses address the
objectives of this study.
Research Questions
Q1: Based on §°H signatures, what are the probable breeding origins of the entire
PSFL sample that migrated through CCFS in fall of 2014?
Q2: Does the incorporation of temporal data improve our ability to determine the
probable breeding origins of Pacific-slope flycatchers that migrated through
CCFS in fall of 2014?
Q3: Based on §°H, §*3C and ¢*°N signatures, are there differences in the
ecological niches of the natal habitats that the PSFL occupied prior to migrating
through CCFS in the fall of 2014?
Q4: Are there relationships between morphological measurements and feather isotope
values of the Pacific-slope flycatchers that migrated through CCFS in the fall of
2014? (Hol)
Null Hypotheses
Hoi: There will be no relationships between the morphological measurementsand the
feather isotope values of the Pacific-slope flycatchers sampled at the Coyote

Creek Field Station in the fall of 2014.
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Methods
Study Site
The Coyote Creek Field Station (CCFS) is located within a parcel of mixed riparian

forest and woodland at the southernmost portion of the San Francisco Bay in Milpitas,

California (Figure 2).

/’V Déta SIO, NOAA U;S ¢ z ,'. ’_ 2 C()OSIC earth
Figure 2. Location of CCFS within the San Francisco Bay Area, California (Google
Earth, 2016).

CCEFsS lies within California’s Santa Clara Valley approximately 73 km south east of
San Francisco, 13.7 km north east of San José, and 5.6 km east of Alviso, 37°26'17.03"N
121°55'42.54"W. The site is situated adjacent to lower Coyote Creek (Figure 3), and is

part of the Coyote Creek watershed (Jaramillo, Hudson, & Strong, 1996).
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Figure 3. Study site location adjacent to lower Coye Creek (Google Earth, 2016).

The site was originally operated by the Santa Clara Valley Water District (SCVWD)
from 1987 to 1993 when a series of flood prevention operations and subsequent habitat
restoration occurred (Jaramillo et al., 1996; Rigney, Mewaldt, Wolf, & Duke, 1989). The
non-profit scientific organization, The San Francisco Bay Bird Observatory (SFBBO),
assisted the SCVWD by monitoring wildlife on site. In 1999, in collaboration with
another non-profit research organization, the Coyote Creek Riparian Station, SFBBO
acquired CCFS as part of the Bird Observatory’s Landbird Program. SFBBO continues
bird banding operations at CCFS under the North American Bird Banding Program
administered by the United States Geological Survey and the Department of the Interior.

Santa Clara County experiences a Mediterranean climate in which the warmest and
driest conditions occur between the spring and summer months of April and October, and

cooler, wetter conditions occur during the fall and winter, from November to March.
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Year round average temperatures can range from lows of 3.3°C to highs of 31.6°C. The
average rainfall of Milpitas is 37.8 centimeters with the majority of the rain occurring in
January and February (National Oceanic and Atmospheric Administration, 2016). The
elevation at CCFS is six to nine meters above sea level.

Historically, the area surrounding CCFS included riparian vegetation bordering
riverbeds to oak stands dominating grasslands near shorelines and a widespread variety of
willow species (Jaramillo et al., 1996). Riparian trees at CCFS include western sycamore
(Platanus racemosa), Fremont cottonwood (Populus fremontii), willow (Salix lucidum, S.
laevigata, S. lasilopis, and S. exigua), and oak (Quercus lobata and Q. agrifolia)
(Jaramillo et al., 1996). Although the riparian forest around CCFS has remained
relatively undisturbed, the urban development has greatly reduced the riparian corridor in
size and has eliminated the native oak woodland. Flood prevention operations such as the
on-site construction of the overflow channel, the waterway created by plowing portions
of the existing vegetation in 1989-1990, construction and development of Highway 237,
and the growth of surrounding businesses, parks and shopping malls (Jaramillo et al.,
1996) have all contributed to the disturbance of the surrounding CCFS ecosystem.

As mitigation for a major flood-control project conducted by the SCVWD from 1987-
1993, CCFS implemented a series of on-site riparian habitat restoration and monitoring
projects (Jaramillo et al., 1996; Rigney et al., 1989). Four monitoring sites within the area
were identified: 1) the Riparian site, 2) the Pilot Revegetation site, 3) the Overflow

Channel, and 4) the New Revegetation site (Figure 4) (Jaramillo et al., 1996).
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Figure 4. CCFS layout diagramming the four monitoring sites and established mist-net
locations, reprinted with permission from Jaramillo et al. (1997).

The habitat and vegetation diversity within each monitoring site vary due to the
previous occupation of the land for agricultural purposes. The Riparian site is set along
the 8-23 m wide habitat bordering Lower Coyote Creek which contains a variety of trees
of different species, ages and sizes, along with shrubs, and some native and nonnative
plants (Wolf, Mewaldt, Rigney, Duke, & Hopkins, 1989). Vegetation species in the
Riparian site consist of Arundo (Arundo spp.), weeping willow (Salix babylonica), box
elder (Acer negundo), blue-elderberry (Sambucus cerulean), California buckeye
(Aesculus californica), California black walnut (Juglans californica), coyote brush
(Baccharis pilularis), poison hemlock (Conium maculatum), California blackberry
(Rubus), greater periwinkle (Vinca major) and peppergrass (Lepidium virginicum)

(Taketa, 2013). The Pilot Revegetation site is a 4.3 acre plot, and was formerly used as a
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pear orchard until the SCVWD replanted the property with about 4,000 trees and shrubs
of 14 different species as part of the habitat restoration component of the flood prevention
projects (Jaramillo et al., 1996). Vegetation species in the Pilot Revegetation site consist
of willow, box elder, poison hemlock, California blackberry, coyote brush, coast live oak
(Quercus agrifolia), valley oak (Quercus lobata), California black walnut, peppergrass,
black mustard (Brassica nigra), Oregon ash (Fraxinus latifolia), blue-elderberry, western
sycamore (Platanus racemose), California bay (Umbellularia californica) and California
buckeye (Taketa, 2013). The Overflow Channel was created by the SCVWD between
1989-1990 to minimize the risk of flooding along lower Coyote Creek, and currently
consists of small herbaceous plants; woody vegetation is removed when too overgrown
(Jaramillo et al., 1996; Rigney, Katano & Otahal, 1993). Vegetation species in the
Overflow Channel consist of California blackberry, peppergrass, poison hemlock, mule
fat (Baccharis salicifolia), box elder, coyote brush, blue-elderberry, teasel (Dipsacus),
black mustard, mugwort (Artemisia vulgaris) and bindweed (Convolvulus) (Taketa,
2013).

The New Revegetation site was created in 1993 by the SCVWD, where 25 species of
trees, shrubs and plants were grown along the eight acres of land adjacent to the
Overflow Channel (Rigney, Katano, & Otahal, 1994). Today, the vegetation species in
the New Revegetation Site consist of valley oak, coyote brush, willow, blue-elderberry,
box elder, California bay, fig, California blackberry, caper spurge (Euphorbia lathyris),
California rose (Rosa californica), poison hemlock, virgin’s bower (Clematis virginiana),

aster (Aster spp.), coast live oak and peppergrass (Taketa, 2013).
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CCEFsS lies adjacent to a popular recreational trail, the Coyote Creek Trail. People
often use the Coyote Creek Trail for walking, biking, and dog-walking. Additionally,
CCFS is situated near a large shopping center, McCarthy Ranch, and surrounded by a
variety of frequently used highways and roadways. There is no public access to CCFS but
there are surrounding neighborhoods with growing developments are present in the area.
Although the role of the human dominated communities surrounding CCFS has not been
readily investigated in relation to the health of the ecosystem, it is important to keep such
factors in mind when implementing restoration and management studies.

Since the late 1980s the area within CCFS has been documented to be a desirable
habitat for avian communities due to vegetation and resource diversity and abundance
surrounding the riparian corridor. Birds from a variety of foraging guilds as well as
Neotropical migrants, winter residents, and year-round residents visit or occupy the
CCFS habitat annually. Due to the location of CCFS along the Pacific Flyway, the North
to South route of travel for migratory birds, a variety of species have been observed at
CCFS during different seasons.

Each year the fall migration brings a variety of species to CCFS, including hatching-

year (HY) Pacific-slope flycatchers (PSFL), the focal species for this study (Figure 5).
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Figure 5. Photo of a hatching-year Pacific-slope flycatcher caught at the Coyote Creek
Field Station. (E. Moffitt, personal photograph, September, 2014)

HY PSFL arrive at the site as early as July and stay until as late as November.
Because PSFL are primarily insectivorous, the eruptions of insects within the riparian
corridor during the warm summer months make CCFS an ideal stopover site for these
birds to forage. The fall migration of the HY PSFL has been very consistent over the past
15 years with between 80 and 250 birds captured at CCFS each fall (San Francisco Bay
Bird Observatory, 2016).

The trend in capture rates of PSFL at CCFS over time (Figure 6) is consistent with the
general declining trend of PSFL populations observed from BBS and Christmas Bird

Count data.
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Figure 6. The total number of PSFL caught at CCFS per year from 1995 to 2015, data
analyzed with permission from San Francisco Bay Bird Observatory (2016).

HY Pacific-slope flycatchers go through a partial pre-basic molt on their wintering
grounds between September and December (Pyle et al., 1997). When the HY PSFL
migrate south to their wintering grounds in the fall, and stopover at CCFS along the way,
they are retaining their juvenile plumage. The juvenile plumage was grown in on the HY
PSFL natal grounds, and the feathers contain isotopic signatures that are consistent with
those in the natural environment of their natal grounds. Because HY PSFL wait to molt
their feathers until they’ve reached their wintering grounds, they serve as ideal candidates
for this study.

Study Design
To address all four research questions, | sampled HY Pacific-slope (PSFL)

flycatchers at the Coyote Creek Field Station. The overall population size of PSFL is
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unknown, but each year a subset of the population migrates through the Coyote Creek
Field Station banding station as the birds make their way to their southern, tropical
wintering grounds. Each bird was the sampling unit for this project, with the intention of
obtaining a maximum of 180 samples. Based on the previous annual capture rates of the
banding station, the number of flycatchers expected to be captured at the banding station
was in the range of 85 to 200 birds. Based on similar studies, (Chamberlain et al., 1997;
Hobson, 1999b; Hobson, Mcfarland, Wassenaar, Rimmer, & Goetz, 2001; Hobson &
Wassenaar, 1997; Kelly, 2006; Kelly et al., 2002; Meehan et al., 2004; Pérez & Hobson,
2007; Rubenstein et al., 2002; Wassenaar & Hobson, 2000b) adequate sample sizes range
from 50 birds to 700 birds, depending on the number of species being examined, which
component(s) of the annual cycle is being examined (breeding and/or wintering grounds),
and the number of isotope signatures being investigated (5°H, §*C and/or §*°N).
Generally, an average of 50 birds is sufficient for determining one origin by analyzing
one isotope signature. Because this study investigated only the breeding origins of the
PSFL but analyzed three isotopic signatures (6°H, 63C and 6'°N), the maximum sample
size was set at 180 birds.

All primary data were collected at CCFS during the summer and fall 2014 PSFL
migration season which began when the first PSFL arrived (Sunday, July 20, 2014) and
was ongoing until the last PSFL arrived (Sunday, October 12, 2014). Data were collected
during the normal operating hours of the CCFS banding station, which were Wednesdays,
Saturdays, and Sundays from a half hour before local sunrise to five hours following. The

opening times varied from 5:50 to 6:30 am, and the closing times varied from 10:50 am
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to 11:30 am. Most data were collected by myself, but other data collectors included Josh
Scullen (the CCFS station manager) and 21 trained volunteer bird banders. The locations
of the mist nets were pre-established by SFBBO. The sampling locations (Figure 4),
times, and frequency were previously designated to capture birds at different areas of
each habitat type, and on different days of the week, based on volunteer availability.

Because CCFS was established to continually monitor the movement, population
trends, and breeding statuses of the avian community, control groups were not necessary
and did not apply to this research design. It was a common occurrence at CCFS for the
same birds to be sampled and captured repeatedly due to their regular use of the habitat,
but for this project the sampled PSFL were marked and, if recaptured, the data was not
collected twice.
Data Collection

Field procedures. Flycatchers were caught in 48 previously-established mist net
transects located within the Riparian, Pilot Revegetation, Overflow Channel, and New
Revegetation sites at CCFS. Forty-seven out of 48 nets used are the TQ12 model
manufactured by Avinet and are 2.6 meters high, 12 meters wide, and made of black
polyester mesh. The 48" net is the TQ06 model from Avinet and is 2.6 meters high and
six meters wide. Each net is held together by two three meter poles made of two
centimeter electrical conduit. On Sundays, 19 nets were opened: five within the Riparian
habitat, four within the Pilot Revegetation habitat, four within the Overflow Channel, and
six within the New Revegetation habitat. On Wednesdays, 15 nets were opened: three

within the Riparian habitat, five within the Pilot Revegetation habitat, four within the
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Overflow Channel, and three within the New Revegetation habitat. On Saturdays, 14 nets
were opened: four within the Riparian habitat, three within the Pilot Revegetation habitat,
four within the Overflow Channel, and three within the New Revegetation habitat. Nets
remained open during the normal operating hours of CCFS, unless weather was
inclement, which included temperatures below 4.4°C, temperatures above 26.6 °C, heavy
mist, rain, flooding, winds exceeding 24kh, if numerous predators such as feral cats, fox,
bobcat, or accipiters were present, or if there were less than two people on site
volunteering.

Nets were checked every 30 minutes or more often if possible. Once the birds were
caught in the mist-nets, they were extracted immediately and carefully transported to the

banding trailer in breathable cotton bags (Figure 7).
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tos of mist-net collection pr(i)cedurie;at CCFS. On the leftis a HY PSFL
being extracted from a mist-net, and on the right are birds being transported to the
banding trailer in cotton bags. (E. Moffitt, personal photographs, September, 2014).

Figufe 7. Pho

The flycatchers were fitted with aluminum bands provided by the Bird Banding
Laboratory of the U.S. Geological Survey within the Department of the Interior that had
an eight- or nine- digit unique number. Morphological measurements were taken as
required by the BBL standard protocol. The bands were either size 0 or OA based on the
leg measurement of the individual bird. A leg gauge was used to measure the bird’s leg
for the correct band size and the band was placed on the bird’s left leg using banding
pliers and if needed band removal pliers. The species of flycatcher were identified and all
measurements were recorded until species identification was confirmed. The only species
which were considered for this study after being identified were the Pacific-slope

flycatchers. None of the other congeners, cordilleran, willow, traill’s, hammonds, least,
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dusky, gray, yellow-bellied, acadian, and western wood-pewee- were considered for this
study. A wing chord ruler, a tail ruler and digital calipers were used to take all body
measurements on the PSFL. As previously mentioned, western flycatcher is the
previously used identification name for the Pacific-slope and cordilleran flycatchers
combined, but the CCFS banding station refers to the former nomenclature in its protocol
due to the extreme difficulties in differentiating between the two subspecies, and the
increased chance of overlap between the two species. The following formula, which only
allows distinction of 60% of individuals (Pyle et al., 1997) created by Pyle et al. (1997)
found on page 236 of the “Identification Guide to North American Birds Part 1” was
used to separate the Pacific-slope flycatchers from the Cordilleran flycatchers to the best

[Pl
S

of my ability, with “p” referring to a primary feather, “s” referring to a secondary feather,
“wg” referring to wing length, and “tI” referring to tail length:
([p6-p10]+[longest p- longest s]+[wg-tl])X (p9-p5)=
61.7-283.5 mm in Pacific-slope flycatchers
157.8- 331.0 mm in cordilleran flycatchers
Once flycatchers were properly identified, in addition to the date, capture time, and

net location the following standard Bird Banding Laboratory (BBL) data were recorded:
age, sex, how aged and sexed (based on skull, cloacal protuberance, brood patch, juv.
plumage, molt limit, plumage, molt, feather wear, mouth/bill, eye color, wing length, tail
length, or other), skull pneumatization level, display of breeding characteristics (cloacal
protuberance or brood patch), fat, feather molt stage (body molt and flight feather molt),

wing length, body mass. An optivisor (magnification device) and skulling water (tap

water) were used to determine skull pneumatization level. A digital balance and weighing
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containers were used to weigh the birds. All other measurements were obtained visually.
Data sheets were completed for each bird sampled (Appendix A).

For each newly banded Pacific-slope flycatcher, two tail feathers (left rectrice #1
[LR1], an inner most tail feather, and right rectrice #6 [RR6], an outer most tail feather),
one from each side, were carefully pulled and placed in coin envelopes labelled with the
capture date, band number, and species identification. If either LRI or RR6 were missing
from the bird, then LR2 and RR5 were respectively pulled. If more than one of the
targeted tail feathers was missing, only 1 feather was pulled. Special attention was made
to handling the feather quill ends as little as possible to avoid removing any flycatcher
DNA, so feathers were held by the tips, the distal end, and placed in the envelopes quill
ends first, proximally. The date of feather collection was noted on the data sheets. For
each recaptured Pacific-slope flycatcher, the formerly collected data on that flycatcher
was checked to confirm if feathers had been previously pulled, and only birds with
feathers which had not been pulled were subject to extraction.

A total of 176 Pacific-slope flycatchers were sampled and 349 tails feathers were
obtained for this study.

Laboratory procedures. Feathers were stored in coin envelopes as they were
collected in the cool, dry environment of San José State University’s Environmental
Studies Department Graduate Laboratory. Stored feather samples were not handled until
all of the samples had been collected by the end of the field season.

Once all samples had been collected, feather quills were cut and separated from the

rest of the feather, and stored in coin envelopes. The quill-less feathers were placed in
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clearly labelled 20ml scintillation vials (VWR, Visalia, CA; catalogue humber 66021-
453) and cleaned to remove surface oils following protocols by (Paritte & Kelly, 2009;
Wassenaar & Hobson, 2000a). All cleaning procedures were conducted at San José State
University in the Biology Department’s PROTEIN (Proteomics Research or Training
Encompassing Investigator Needs) Lab.

The quill-less feathers were cleaned once with a 1:30 solution of Fisher-Versa Clean
(Fisher Scientific, Pittsburg, PA; catalogue number 04-342) detergent: deionized water,
and then rinsed three times with pure deionized water. Fresh deionized water was used
for each rinse cycle. Spent detergent solution and deionized water was properly discarded
in hazardous waste containers as required by San José State University. The cleaned
feathers were then air dried within the 20ml scintillation vials for 24 hours under the
evacuating fume hood. Once dried, the feathers were re-cleaned by being soaked in a 2:1
chloroform: methanol (The Science Company, Denver, CO; catalogue humbers NC-0217
and NC-3495) solvent, agitated for three minutes using an Ultrasonic Cleaner (Branson
1510 Ultrasonic Cleaner) and then let to sit in the solution with vials capped and screwed
tightly for 24 hours (R. Orben, personal communication, March 11, 2014). After 24 hours
the liquid was poured out and properly disposed of, and feathers were rinsed twice with a
fresh 2:1 chloroform: methanol solution. The spent rinse was then properly disposed of,
and the feathers were left in solution-free open top vials to dry for 48 hours in the fume
hood. After cleaning, dried feathers were stored in solution-free open top vials in sealed
Tupperware containers lined with Silica Gel Dessicant packets (Uline, Pleasant Prairie,

WI; catalogue number S-3906) to prevent moisture buildup.
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Cleaned feather samples were then cut, weighed, and encapsulated in preparation for

analysis (Figure 8).
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Figure 8. Photos of sample preparation procedures. On the top left feathers are being cut
and placed in a capsule; on the top right feather pieces are weighed in a capsule; on the
bottom left the capsule containing the feather pieces is encapsulated into a small ball; and
on the bottom right finished samples are placed into a 96 well plate. (E. Moffitt, personal
photographs, February, 2015).

Approximately 75 ug of hydrogen, 125 ug of carbon and 500 ug of nitrogen needed to
be extracted from the cleaned feathers to conduct hydrogen (D/H), carbon (**C:!2C), and
nitrogen (**N:1*N) stable isotope analysis. Hydrogen (D/H) analyses were conducted
separately from carbon and nitrogen analysis, so samples were prepared separately. For
both analyses, necropsy scissors were used to cut a 0.1-0.2 mg sample of material
containing both vane and rachis from the distal end of each feather sample. For hydrogen
analysis, every 8" sample (individual bird), was prepared twice, and for carbon and

nitrogen analyses, every 12" sample was prepared twice. The purpose of this was to
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include replicate samples as recommended by the U.C. Davis Stable Isotope Facility for
the purpose of checking analytical precision. Due to complications with laboratory
preparation, 7 samples (individual birds) were removed from the study. A total of 374
samples including replicates were prepared for hydrogen, carbon and nitrogen stable
isotope analyses.

Samples were weighed and placed using fine surgical forceps into 3.5 x 5.0 mm silver
capsules (Costech, Valencia, CA; catalogue number 041066) for hydrogen analysis and
5.0 x 9.0 mm tin capsules (Costech, Valencia, CA; catalogue number 041061) for carbon
and nitrogen analysis. Of the 374 samples, 173 were weighed to the nearest .001 mg
using a guest micro-analytical balance (Sartorius Microbalance with internal calibration,
CP2P model) at the University of California Davis Stable Isotope Facility in Davis,
California. The remaining 201 samples were weighed to the nearest 0.1 mg using Dr.
Alexander Gershenson’s analytical balance (O’Haus Pioneer Analytical Balance, model #
PA2201) at located in room 51 of the Science Building at San José State University.

Once in the silver and tin capsules, samples were crimped and encapsulated into a
small, compact spherical ball. Capsule openings were folded over several times to
compress the samples and remove any trapped air. Because feather material is extremely
rigid and the capsules are delicate, there were multiple incidences in which feather
material punctured the capsule walls. These samples were wrapped in a second silver or
tin capsule. Of the 374 samples, 225 were wrapped in two capsules. Finally, encapsulated

samples were placed into separate pre-labeled wells of 96-well trays (Electron
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Microscopy Sciences, Hatfield, PA; catalogue number 70437-R1) for hydrogen and
carbon/nitrogen analyses.

Stable hydrogen, carbon, and nitrogen analysis of the feather samples occurred at the
University of California Davis Stable Isotope Facility in Davis, California between
February 2015 and January 2016. One hundred and ninety-one samples were analyzed for
deuterium: hydrogen ratios, and 183 samples were analyzed simultaneously for *C:*2C
and °N:*N ratios.

The hydrogen samples were stored by the U.C. Davis Stable Isotope Facility for a 96
hour equilibration period as described by (Wassenaar & Hobson, 2003) to avoid
complications associated with the potential exchange of hydrogen in the feather samples
with ambient water vapor (U.C. Davis Stable Isotope Facility, 2014b). Carbon and
nitrogen samples were analyzed upon receipt.

Hydrogen samples were analyzed using an elementar PyroCube (Elementar
Analysensysteme GmbH, Hanau, Germany) interfaced to an Isoprime VisION isotope
ratio mass spectrometer (Isoprime Ltd., Stockport, UK) (U.C. Davis Stable Isotope
Facility, 2014b). Samples were incinerated at 1450°C, to convert solid material to
hydrogen gas using a glassy carbon and graphite felt filled ceramic reactor (U.C. Davis
Stable Isotope Facility, 2014b). Carbon and nitrogen samples were analyzed using a PDZ
Europa ANCA-GSL elemental analyzer interfaced to a PDS Europa 20-20 isotope ratio
mass spectrometer (Sercon Ltd., Cheshire, UK) (U.C. Davis Stable Isotope Facility,
2014b). Samples were combusted at 1000°C in a chromium oxide and silvered copper

oxide filled reactor and then removed in a reduction reactor (reduced copper at 650°C)
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(U.C. Davis Stable Isotope Facility, 2014b). A helium carrier then flowed through a
water trap (magnesium perchlorate), and nitrogen gas and carbon dioxide were separated
on a Carbosieve GC column (65°C, 65 mL/min) before entering the IRMS (U.C. Davis
Stable Isotope Facility, 2014b).

To determine the hydrogen, carbon and nitrogen isotope ratios of the PSFL samples,
reference samples with known values were analyzed simultaneously, and the results were
corrected based on the known values of the analyzed laboratory standards (U.C. Davis
Stable Isotope Facility, 2014b). For hydrogen analysis, turkey keratin (TRK) was selected
as the laboratory standard due to its similar composition to the PSFL feather samples, and
was interspersed during analysis for every four PSFL samples to correct for drift. The
TRK laboratory standard was calibrated against Polyethylene Powder, an accepted
material in substitution of the International Reference Material IAEA-CH7, and two
keratin working standards Kudu Horn (KHS) and Caribou Hoof (CBS). Polyethylene
powder was interspersed between PSFL samples for the purpose of size correction and
calculating elemental totals, while KHS and CBS standards were interspersed for
normalization correction purposes. Additionally, Bowhead Whale Baleen (BWB) was
used for check standardization. Similar corrections were made for carbon and nitrogen
analysis with Bovine Liver, Nylon 5, and Glutamic Acid laboratory standards scattered
throughout the PSFL samples. These standards were calibrated against the National
Institute of Standards and Technology (NIST) Standard Reference Material USGS-41.

Preliminary hydrogen, carbon, and nitrogen isotope ratios were measured in relation

to the reference standards analyzed (U.C. Davis Stable Isotope Facility, 2014a). As
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described by Joy Matthews, the laboratory manager at the U.C. Davis Stable Isotope
Facility, the long term precision, reported as SD, for 6°H is <3 %o (J. Matthews, personal
communication, May 15, 2016). Precision standard deviations were 0.2 %o for 6**C and
0.3 %o for 6*°N. The final stable isotope ratios (deuterium to hydrogen; **C to 2C; **N to
14N) were calculated by correcting all values in the analyses based on the known values
of the simultaneously run laboratory standards (U.C. Davis Stable Isotope Facility,
2014a). Ratios were reported in parts per thousand (°/o0) written in delta (5) notation,
relative to the international standard V-SMOW (Vienna Standard Mean Ocean Water) for
hydrogen, V-PDB (Vienna PeeDee Belemnite) for carbon, and air for nitrogen (U.C.
Davis Stable Isotope Facility, 2014). The following equation was used for both analyses:
X={[(Rsampte/ Rstandard) — 1] X 1,000},
where X is the final isotope ratio for the PSFL samples (deuterium:hydrogen, 3C:*2C,
15N:1N respectively), Rsample is the preliminary isotope ratio for the PSFL samples, and
Rstandard IS the known isotope ratio of the laboratory standards.

Secondary data. Three secondary datasets were obtained for use in the assignment to
probable breeding origins process. The first was a set of isotopic data obtained to provide
a basis for comparing feather deuterium (6°Hs) and growing season precipitation (6°Hsp)
when assigning PSFL to probable breeding origins. A previously constructed model of
the “amount- weighted growing season §°H in precipitation of North America” in the
form of a georeferenced ArcGIS raster was obtained from Bowen et al. (2005) on
waterisotopes.org. Data for the models was obtained from the Global Network of

Isotopes in Precipitation (GNIP) database within the Water Resources Programme of the
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International Atomic Energy Agency (IAEA). Data from GNIP has been collected since
1961 when the IAEA in collaboration with the World Meteorological Organization
(WMO), national meteorological services, national authorities and scientific volunteers
established 1,000 research stations across the United States and other countries to collect
monthly weighted average precipitation samples for analysis of deuterium and oxygen-18
in the environment (International Atomic Energy Agency, 2014). It was unclear how the
precipitation research stations were chosen, but it was presumed that the stations were
established to sample a variety of climate types throughout the United States and other
countries. At each station, deuterium in weighted average precipitation samples were
taken from a total precipitation amount that was collected monthly (International Atomic
Energy Agency, 2014). The models created by Bowen et al. (2005) used all the
precipitation sample values from the GNIP database to calculate un-weighted (versus the
provided weighted) averages for each month, which created representations of the
average deuterium in precipitation for an entire year (Bowen et al., 2005).

The second dataset obtained was a digital map of the distribution of Pacific-slope
flycatchers for constraining probable breeding origins. A shapefile was requested from
BirdLife International and NatureServe (2015). Data to compile these maps were
obtained by BirdLife International from multiple sources including the following:
museum specimen localities; 587,000 point localities for 6,800 species in the BirdLife
International Point Locality Database; 5.02 million records for 8,600 species in the
Global Biodiversity Information Facility; observer records from the BirdLife

International’s Red Data Books and species factsheets; 300,000 records for 7,000 species
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of documented occurrences in 10,000 defined Important Bird and Biodiversity areas from
BirdLife International’s World Biodiversity Database; published literature, survey
reports, and other unpublished sources; distribution atlases from systematic surveys,
distribution maps in field guides, and expert opinion (BirdLife International and
NatureServe, 2015).

The third dataset obtained was a digital map of the North American Breeding Bird
Survey Relative Abundance results for Pacific-slope flycatchers and cordilleran
flycatchers from 1966-2012 for constraining probable breeding origins. A shapefile was
obtained from Sauer et al. (2014) through the USGS Patuxent Wildlife Research Center
Migratory Bird Research online database. The North American Breeding Bird Survey is
an annual protocol orchestrated by the Patuxent Wildlife Research Center of the U.S.
Geological Survey in which qualified observers conduct Breeding Bird Surveys
throughout North America during the highest point in the nesting season (Sauer, Hines,
Gough, Thomas, & Peterjohn, 1997). The surveys have been conducted in June of each
year since 1966 (Sauer et al., 1997). Observers visited random pre-established habitats
throughout a region and conducted point-counts for three minutes every 0.5 miles (Sauer
et al., 1997). All birds that were seen and/or heard within a 0.25 mile radius of the point
were counted during the three-minute survey (Sauer et al., 1997). The results of these
annual surveys were published in the North American BBS Relative Abundance network,
and were not comprehensive totals of breeding bird populations, but rather
representations of a species’ spatial concentration during the breeding season (Sauer et

al., 1997).
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Data Analysis

Assignments to breeding origin. Descriptive statistics were used to calculate
average 6°H values for the sample. Prior to making geographic assignments to breeding
origins, a Shapiro-Wilk test of normality was applied to determine if the ¢°H of PSFL
sampled at CCFS came from a normally distributed population. To determine if there was
a relationship between the migration origin (latitude specific) of the HY PSFL passing
through CCFS during the fall of 2014 and the capture date of the birds, linear models
were fitted with capture dates as the independent variables, and §°H values as the
dependent variables. The significance level for all statiscal analyses was set at P<0.05.
All statistical analyses were performed in RStudio version 3.2.3 (R Core Team, 2015).

Geographic assignments to breeding origin were performed in RStudio version 3.2.3
(R Core Team, 2015) using scripts which employed the “raster” (Hijmans et al., 2016),
“maps” (Becker, Wilks, Brownrigg, Minka, & Deckmyn, 2016) and “maptools” (Bivand
et al., 2016) packages.

Group assignment to breeding origin (Q1). To portray the most probable breeding
origins of the southern bound migratory HY Pacific-slope flycatchers sampled at a
stopover site, CCFS, a spatially explicit likelihood-based assignment technique (Hobson,
2009; Royle & Rubenstein, 2004; Van Wilgenburg & Hobson, 2011; Wunder, 2010,
2012) was used following the steps designed by (Van Wilgenburg & Hobson, 2011).
Likelihood-based assignment methods have been used in many animal migration studies
(Arizaga et al., 2016; Hobson et al., 2014, 2015; Holberton, VVan Wilgenburg, Leppold, &

Hobson, 2015; Wunder, 2010, 2012; Wunder & Norris, 2008) to deduce migratory origin.
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Likelihood-based assignments follow a Bayesian framework to evaluate the probability
that an assigned origin is the true location of that origin for a sample evaluated with
measured 9°H (Bowen, Liu, Vander Zanden, Zhao, & Takahashi, 2014).

| obtained a georeferenced ArcGIS raster of the amount-weighted growing season
&°H in precipitation of North America as reported in Bowen et al. (2005) from
waterisotopes.org. When downloaded, the file was in the form of an .adf file, but with the
assistance of Steven Van Wilgenberg the .adf file was converted into an .asc file using
ArcGIS. This ascii raster file was then imported into RStudio, as a step in the assignment
model script created by Van Wilgenburg & Hobson (2011). Additionally, a shape file of
the North American and Mexico State boundaries, obtained from Steven Van
Wilgenberg, was imported into RStudio as a shape file. The “raster” (Hijmans et al.,
2016), “maps” (Becker et al., 2016) and “maptools” (Bivand et al., 2016) packages were
used to import, plot and add country/state boundaries to the amount-weighted growing
season 02H in precipitation of North America raster from Bowen et al. (2005).

Because of the known isotopic discrimination of ¢2H that occurs when 6?H in
precipitation is metabolized into an animals’ tissues, it was critical to convert the
amount-weighted growing season 5°H in precipitation of North America raster from
Bowen et al. (2005) into a raster that demonstrates a prediction of what the 6°H in
feathers of PSFL grown in at various origins would reflect. A linear model would be
conducted, and it was recommended that feathers from birds of known origins are used as
the dependent variable. Known-origin feather isotope ratios would be regressed against

the amount-weighted growing season ¢2H in precipitation of North America ratios. The
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resulting algorithm would be used to calibrate the amount-weighted growing season §°H
in precipitation of North America raster, and convert the map into a “feather isoscape”
for making assignments. For this study, PSFL feathers from known-origins were not
available due to limited feasibility for obtaining samples, an inadequate sample size of
available known-origin samples, and the uncertainty behind the accuracy of sample
origin. Published calibration algorithms have been generated from studies that
investigated biological factors and avian life history traits. Hobson, Van Wilgenburg,
Wassenaar, & Larson (2012) used data from the Avian Life History Information
Database and Birds of North America Species Account Database to create categories of
species based on:

1) foraging guild (insectivore, omnivore)

2) foraging substrate (ground foragers versus species

foraging elsewhere [in shrubs, canopy or aerially; hereafter

non-ground foragers])

3) migratory guild (Neotropical migrant, short-distance

migrant, resident)

4) whether the species was associated with an aquatic

versus upland habitat.
Hobson et al. (2012) modeled variation in ¢°H based on the determined species
categories, and published the following equation for use in calibrating the amount-
weighted growing season ¢2H in precipitation of North America raster from Bowen et al.
(2005) for Neotropical migrant non-ground foraging songbirds:

5°He=-27.0894 + 0.9527 (*GSD)
where (GSD) are the §2H in precipitation of North America raster values. Several studies

(Garcia-Perez & Hobson, 2014; Garcia-Perez, Hobson, Powell, Still, & Huber, 2013;

Haché, Hobson, Bayne, Van Wilgenburg, & Villard, 2014; Pillar, Marra, Flood, &
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Reudink, 2016) have used the published algorithms from Hobson et al. (2012) to calibrate
the amount-weighted growing season ¢2H in precipitation of North America raster from
Bowen et al. (2005) when making assignments. The above equation was entered into
RStudio to calibrate the previously generated amount-weighted growing season 5°H in
precipitation of North America raster resulting in model (hereafter feather isoscape) of
the predicted 6%H in feathers (6°Hs). The corresponding standard deviation of the
calibration model residuals for Neotropical migrant non-ground foraging songbirds (SD=
14.4 %o) from Hobson et al. (2012) was also entered for estimating variance in the
assignments.

Because PSFL are only known to be found within the Pacific coast states (California,
Oregon and Washington), Alaska, and Coastal/ Southern British Columbia (Lowther,
2000), likelihood-based assignments results in RStudio were restricted to conceivable
origins within the species’ distribution range. A shape file of the PSFL geographic extent
was obtained from Bird Life International and Nature Serve (2015) and imported into
RStudio. The spatial “mask” and “crop” operations within the “raster” package (Hijmans
et al., 2016) were used to reduce the feather isoscape to only areas within the PSFL
distribution range.

Following the isoscape calibration and masking, a normal probability density function
was used to evaluate the possibility of a region within the isoscape denoting a potential
migratory origin for the PSFL samples (Van Wilgenburg & Hobson, 2011). After the
isoscape was calibrated in RStudio the boundaries within the isoscape were divided into

cells. The normal probability density function serves as an equation that evaluates the
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likelihood of each cell within the isoscape being a migratory origin given the expected
mean of a cell and the expected level of variance in 6°H (Van Wilgenburg & Hobson,
2011). Again, the expected level of variance was derived from the reported standard
deviation (SD= 14.4 %.) from Hobson et al. (2012) for Neotropical migrant non-ground
foraging songbirds who grew their feathers in at the same site.

The resulting probability densities for each cell of the isoscape were reported as
individual maps, in a way that did not sum to a whole value, or one, uniformly across the
isoscape (Van Wilgenburg & Hobson, 2011). To correct for this the data had to be
normalized and rescaled to sum to one by obtaining the cumulative sum of each cell’s
probability within the isoscape, and then dividing by that value to create one uniform
map of each cell’s probability of origin (Van Wilgenburg & Hobson, 2011). The resulting
probability of origin surfaces for each individual bird were then stacked into one vector.

The individual birds were then assigned to the calibrated isoscape using an “odds
ratio approach” (Hobson, Wunder, Van Wilgenburg, Clark, & Wassenaar, 2009; Van
Wilgenburg & Hobson, 2011; Wunder, 2007). The “odds ratio approach” is an alternative
method of making spatially explicit assignments to the historically implemented
“cumulative probabilities approach” which examines an entire sample set’s migration
origin by determining cumulative probabilities from the individual samples’ (or birds)
probability densities (Van Wilgenburg & Hobson, 2011). It has been found that the
cumulative probabilities approach creates sources for error in assignments when the
sample set has a possibility of originating from bimodal or multimodal migration origins;

the spatially explicit results do not fully depict all potential sites of origin (Van
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Wilgenburg & Hobson, 2011). The “odds ratio approach” follows the cumulative
probability method by first determining individual probability surfaces, then extracting
only a small quantity of the previously calculated probability distribution (Van
Wilgenburg & Hobson, 2011). The extracted proportion of the cumulative probability
distribution is then used to signify the “likely” origins of the individual birds, and the
remaining cumulative probabilty surfaces are incorporated to represent the “unlikely”
origins (Hobson et al., 2009; Van Wilgenburg & Hobson, 2011; Wunder, 2007). The
displays of the “likely” versus “unlikely” individual representations of origins are then
totaled to exhibit the “likely” versus “unlikely” spatially explicit origins of the sample as
a whole (Hobson et al., 2009; Van Wilgenburg & Hobson, 2011; Wunder, 2007).

The vector of individual probability of origin surfaces were then assigned to the
calibrated isoscape using the “odds ratio approach” (Hobson et al., 2009; Van
Wilgenburg & Hobson, 2011; Wunder, 2007). To do this, a new data frame of the
estimated origins from each individual probability surface was created and edited to align
the results with individual sample numbers for the purpose of acting as a factor in
subsequen probability density determination (Van Wilgenburg & Hobson, 2011). The
new data frame sets up an environment where, based on the chosen odds ratio, a basis for
calculating the “likely” versus “unlikely” probability densities can be determined (Van
Wilgenburg & Hobson, 2011). The odds ratio chosen was 2:1, which means that the odds
of any given assigned origin being correct is 67%, and the odds of any given assignment
being incorrect is 33%. A more conservative odds ratio, i.e. a ratio above 5:1, would

decrease the risk of making incorrect assignments by assigning birds to a larger range of
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potential geographical origins (Van Wilgenburg & Hobson, 2011). A more liberal odds
ratio, i.e. a ratio below 2:1, would increase the risk of making incorrect assignments by
assigning birds to a narrow range of potential geographic origins (Van Wilgenburg &
Hobson, 2011). The application of different odds ratios was investigated by (Van
Wilgenburg & Hobson, 2011) using known-origin data for validation, and it was
concluded that the selection of an odds ratio between 4:1 and 2:1 would provide
sufficient probability of correct assignment percentages, and results that are reflective of
accurate migration origins. Similar migratory connectivity studies (Hobson et al., 2014,
2015; Hobson, Van Wilgenburg, Ferrand, Gossman, & Bastat, 2013; Holberton et al.,
2015) employed a 2:1 odds ratio.

Once the odds ratio was defined in R, a spline function was executed to select only
the upper 67% of cumulative probabilities from the new data frame (Van Wilgenburg &
Hobson, 2011). This was done in R with a “predict smooth spline” function that fit a
spline curve to the pre-determined cumulative probabilties of the sample, and set a cutoff
point where the selected odds of 67% had been reached (Van Wilgenburg & Hobson,
2011). With the cumulative probability cutoff determined, the individual probability of
origin densities were then re-assigned into two groups; likely origins (1) or unlikely
origins (0); using the “reclassify” function within the Raster package of R (Van
Wilgenburg & Hobson, 2011). Finally, the resulting list of re-classified individual
assignments, individual maps, were combined to form a “raster stack” using the “Raster
Stack” function of the “raster” package (Hijmans et al., 2016) in RStudio, a multi-layer

collection of maps (Van Wilgenburg & Hobson, 2011). The individual assignment
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surfaces were then summed and plotted on the isoscape to portray the distribution of
breeding origins for the entire PSFL sample as a population (Van Wilgenburg & Hobson,
2011).

Incorporation of BBS Abundance data (Q1). The reliance on stable isotope data
(specifically 92H) alone in making likelihood-based spatially explicit assignments can be
unreliable and problematic, and most significantly lacks information about population
distributions (Royle & Rubenstein, 2004). An alternative to analyzing stable ¢°H data
alone is the incorporation of species relative abundance data.

Knowing that PSFL migrate from their northern breeding ranges to their southern
tropical wintering grounds in the fall (Lowther, 2000) it is assumed that the birds
migrating through the Coyote Creek Field Station are representative of the entire PSFL
breeding population. North American BBS Relative Abundance Data has been
incorporated into spatially explicit likelihood-based assignment methods and treated as a
prior probability with the goal of highlighting the regions where the birds were most
prevalent during breeding season (Gonzéalez-Prieto et al., 2011; Hobson et al., 2014;
Royle & Rubenstein, 2004). This method follows Bayes Rule in which the final
likelihood-based assignments are established from not only the probability of breeding
origin given the d2hf values, but also given the prior Relative Abundance Breeding
distribution for PSFL (Royle & Rubenstein, 2004).

Relative Abundance shapefiles for PSFL were obtained from (Sauer et al., 2014). In
order to use the above spatially explicit likelihood-based script in RStudio, the Relative

Abundance shapefiles had to be in a raster format and the geographic resolution had to
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match that of the amount-weighted growing season §°H in precipitation of North America
isoscape (Bowen et al., 2005) exactly. With the assistance of Steve Van Wilgenberg,
Relative Abundance shape files were re-projected to the WGS1984 (latitude/longitude)
projection in Arc Map (S. Van Wilgenburg, personal communication, February 17,
2016). The polygon to raster conversion tool was then used to force the resolution of the
Relative Abundance shape file to match the cell sizes of the amount-weighted growing
season ¢2H in precipitation of North America isoscape from Bowen et al. (2005) (S. Van
Wilgenberg, personal communication, February 17, 2016). The final raster was converted
to an ascii format (S. Van Wilgenberg, personal communication, February 17, 2016).

The new relative abundance raster file was imported into RStudio to run the
additional likelihood-based assignment. The same steps as the previous assignment
model were implemented with the following minor adjustments:

e The precipitation isoscape was cropped by the boundaries of the relative
abundance raster.

e Two additional steps were implemented for formatting purposes. To force the
geographical extent of the isoscape to match that of the abundance raster, the
“extent” function within the “raster” package (Hijmans et al., 2016) was used.

e To make sure the model properly identified the relative abundance raster as a
prior probability, the abundance raster had to be normalized. The “cellStats”
function of the “raster” package (Hijmans et al., 2016) was used to divide by the

sum of all of the values in the relative abundance raster.
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e Before finalizing the likelihood assignments, the relative abundance raster was

called to be the prior probability surface.

Incorporation of temporal data (Q2). Additional sets of spatially explicit
likelihood-based assignments were investigated based on the arrival timing of the HY
PSFL passing through CCFS. The 6°H values were first partitioned into two groups: birds
captured during the first half of the season (7/20/14-8/30/14, n=58), and birds captured
during the second half of the season (8/31/14-10/12/14, n=111). Deuterium values were
then partitioned into 13 separate data sets organized by capture week starting with the
date that the first HY PSFL arrived at CCFS (7/20/2014) and the date that the last HY
PSFL arrived at CCFS (10/12/2014) during the fall 2014 southbound migration. Because
the CCFS banding station only operates on Sundays, Wednesdays, and Saturdays, the
data that was collected is only reflective of these 3 days per week. The 13 spatially
explicit likelihood-based assignments were conducted in RStudio version 3.2.3 (R Core
Team, 2015) using the previously described script and methodology of (Van Wilgenburg
& Hobson, 2011).

Habitat selection (Q3). To examine if there were natural groupings of individuals
based on similarities between their feather ¢°H, 63C, and 5*°N values, I ran a Cluster
Analysis based on methodolgies presented by (Reudink et al., 2015). As previously
discussed, 6°H, 6'3C, and §*°N signatures represent probable breedng origin, habitat
composition, and trophic level, respectively. By investigating potential relationships
between these three elements, the breeding origin habitat type can be further

characterized. Cluster analysis examines data on a multivariate level by determining if
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there are any natural groupings present based on measurements of similarity and
dissimilarity and defining the number of clusters the data should be sorted into (Quinn &
Keough, 2002). Similar studies (Garcia-Perez & Hobson, 2014; Reudink et al., 2015)
have used cluster analysis for this purpose. 167 samples (individual birds) were examined
for this analysis. Samples (individual birds) that did not have feather isotope values for
all three elements, 6°H, 53C, and 5*°N, were eliminated.

Prior to conducting Cluster Analyses, mean isotopes ratios were calculated for ¢%H,
o'3C, and ¢*°N using descriptive statistics. Linear regressions were conducted to examine
if there were correlations among ¢2H and ¢*3C isotope values, 9°H and §*°N isotope
values, and §*3C, and 6'°N isotope values. In preparation for subsequent multivariate
analyses, 5°H, 5*3C, and 6'°N feather isotope values were standardized by subtracting by
each variable’s mean and dividing by each variable’s standard deviation. Standardization
is a common practice employed prior to multivariate analysis to ensure that all variables,
likely measured at different scales, are weighed equally, and to minimize sources of error
(Milligan & Cooper, 1988; Quinn & Keough, 2002).

All statistical analyses were performed in RStudio version 3.2.3 (R Core Team, 2015)
using scripts which employed the “RVAideMemoire” (Hervé, 2016), “chemometrics”
(Filzmoser & Varmuza, 2016), “NbClust” (Charrad, Ghazzali, Boiteau, & Niknafs, 2015)
“mclust” (Fraley, Raftery, Scrucca, Murphy, & Fop, 2016) and “scatterplot3D” (Ligges,
Maechler, & Schnackenberg, 2016) packages. To determine if the 5°H, 6*3C, and 6*°N
feather isotope values of the PSFL sampled at CCFS were normally distributed, a

Shapiro-Wilk test of multivariate normality was applied. The Shapiro-Wilk test of
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multivariate normality was applied using the “mshapiro.test” function of the
“RVAideMemoire” package in RStudio (Hervé, 2016). The 5°H, 5*3C, and 6'°N feather
isotope values were then examined for multivariate outliers using the robust
Mahalanobis distance. The robust Mahalanobis, versus the classical Mahalanobis
distance was used because the data was not normally distrubted. Similar studies (Reudink
et al., 2015) used the same method to isolate and remove multivariate outliers prior to
running cluster analyses. The robust Mahalanobis distance was examined using the
“Moutlier” function of the “chemometrics” package in RStudio (Filzmoser & Varmuza,
2016).

To execute the Cluster analysis, the “NbClust” package (Charrad et al., 2015) in
RStudio was used. Many cluster analysis packages are available in RStudio, but the
“NbClust” package was chosen because it provides the most comprehensive
interpretation of the data. NbClust runs 30 validity indices of which each use unique
criteria to determine how many clusters are present within the data set, and provide the
user with a conclusion for the best number of clusters to use based on the majority results
of the validity indices (Charrad et al., 2015). Each validity index uses a different
methodology to measure similarities and dissimilarities between variables, and is
described in detail in (Charrad et al., 2015).

Within the NbClust package, two of several approaches to Cluster analysis are
available; K-means clustering and hierarchical agglomerative clustering. Both procedures
were employed to further support the selection of cluster groups. K-means clustering

creates preliminary cluster groups based on the user-defined minimum/maximum, and
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then using the criteria of the validity indexes, the cluster groups are continually refined
until the result is uniform (Charrad et al., 2015; Quinn & Keough, 2002).

Hierarchical agglomerative clustering begins by analyzing the data on the individual
observation level and subsequently organizes individuals into clusters that are joined with
other individuals based on dissimilarity measurements (Charrad et al., 2015; Quinn &
Keough, 2002). Both the K-means cluster and hierarchical agglomerative analyses were
executed in RStudio with the default parameters for the dissimilarity matrix (“NULL”)
and distance (“euclidean”). The euclidean distance is the square distance between two
vectors (Charrad et al., 2015). For both analyses the mimimal number of clusters were set
to 2, and the maximum number of clusters were set to 10. For both analyses all validity
indices except GAP, Gamma, Gplus, and Tau were selected be calculated.

Because the K-means clustering and hierarchical agglomerative clustering procedures
of the NbClust package are restricted to setting the minimal number of clusters to two, |
wanted to investigate the possibility of there being a single cluster in the data. To do this,
I used the “mclustBIC” function of the “mclust” package (Fraley et al., 2016) in RStudio.
This procedure uses a Gaussian mixture model-based hierarchical clustering method
which follows an expectation-maximazation (EM) algorithm that determines the optimal
number of clusters based on the Bayesian Information Criterion (BIC) (Fraley et al.,
2016). Similar studies (Reudink et al., 2015) have used the same procedure. | used the

default specification of 1-9 clusters to be evaluated.
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To confirm that there were significant differences in the 9°H, 6*3C, and 5*°N feather
values of the identified cluster groups, I ran a multivariate analysis of variance
(MANOVA) test. This test was performed in RStudio using the “man.mod” function.

Morphological measurement analysis (Q4). To test for relationships between
morphological measurements and feather hydrogen isotope values (5°H), feather carbon
isotope values (6'3C), and feather nitrogen isotope values (6*°N) of the Pacific-slope
flycatchers, Canonical Correlation Analysis (CCA) was performed. Data was separated
into a set of independent variables (the feather isotope values), and a set of dependent
variables (the morphological measurements). The morphological measurements obtained
from each PSFL that were selected for this analysis were weight, bill length, bill width,
wing length, tail length, fat score, skull ossification, and primary feather wear. All
variables used in this analysis were continuous.

Prior to conducting the Canonical Correlation Analysis, all variables were
standardized, and a Shapiro-Wilk test of multivariate normality was applied to determine
if the variables were normally distributed. The Shapiro-Wilk test of multivariate
normality was applied using the “mshapiro.test” function of the “RV AideMemoire”
package in RStudio (Hervé, 2016).

The following analyses were conducted in IBM SPSS 2012. Descriptive statistics
were applied to determine which variables, if any, were skewed. Data was transformed
using the LN function to compute the natural log of the skewed variables. Pearson

Product-moment correlations were used to confirm that all variables within their given
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data set (feather isotope values or morphological measurements) were independent from
one another (r>|0.700 | ).

The null hypothesis for canonical variate selection was accepted at a significance
level of p<0.05. Final interpretation was based upon the root score calculations of the
unstandardized canonical coefficient values that corresponded with the variables with
canonical loadings (> | 0.300 |).

Limitations

Potential limitations of this study are rooted in our study design and applied stable
isotope analysis methodologies.

Although the sample size for this study (169 individual Pacific-slope flycatchers)
was sufficient, results could have potentially improved with an expansion of stopover
study sites throughout the western states to incorporate multiple angles of the Pacific
Flyway and to increase chances of sampling after hatching-year birds. Because this study
investigated the migratory origins of solely hatching-year birds, the results may not be
fully reflective of Pacific-slope flycatcher populations. The sampling of after hatching-
year birds would improve abilities to draw conclusions about expanded dynamics of
Pacific-slope flycatcher populations. Because the fall capture rates of after hatching-year
Pacific-slope flycatchers are significantly lower than those of hatching-year birds,
obtaining a proper sample size of after hatching-year birds at the Coyote Creek Field
Station would not be possible. The expansion of sampling locations would not have been
feasible for this project. The collection of Pacific-slope flycatcher morphological

measurements for this study were part of the standard procedures implemented by the
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Coyote Creek Field Station for Bird Banding Laboratory use. My intention of analyzing
this data was to make basic inferences on potential relationships between morphological
measurements and stable isotope data, but because measurements were collected under a
previously established protocol the parameters that were available for analysis hold
limited biological significance. Some studies that have made successful inferences from
morphological measurements and isotope analysis incorporated parameters such as tarsus
length, keel length and wing span to calculate body size (Arizaga et al., 2014; Bensch et
al., 2009; Kempster et al., 2007; Mgller & Hobson, 2004). Statistical analyses may not
have been so limited with the collection of additional morphological measurements, but
given the sensitivity of Pacific-slope flycatchers during the banding process the collection
of additional parameters was not feasible.

It is within the nature of stable isotopes to undergo isotopic discrimination during
biological processes that are involved with assimilation by different trophic organisms,
which subsequently increases chances of error, or variation in values, during
investigations. Major potential sources of error fall within the naturally occurring
environmental influences on stable isotope (6°H, *3C and ¢*°N) values. The analysis of
&°H in feather values contains many environmental influences such as altitude, oceanic
distances, and rainfall amount which can lead to misintepreations of 5°H values (Kendall
et al., 1995; Marshall et al., 2007; Plummer et al., 1993). Additionally, the ranges of 5°H
values in growing-season and mean annual precipitation maps overlap multiple regions,
reducing the ability to rely on stable isotope analysis alone (Bowen et al., 2005; Hobson

et al., 2014; Paxton, Yau, Moore, & Irwin, 2013). Researchers have been sucessful in
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improving geographic assignments by pairing additional data with 5°H analyses such as
feathers of known origin (Hobson et al., 2015), band-recovery data (Sullins et al., 2016),
genetic data (Paxton et al., 2013; Ruegg et al., 2014), vegetation cover data (Hobson et
al., 2013), geolocaters (Solovyeva et al., 2015), and much more; all of which were not
feasible for this study.

As with analysis of 6°H, 53C and §*°N values vary with environmental factors such
as microhabitat or diet selections amongst individuals for 6*3C (Inger & Bearhop, 2008;
Marshall et al., 2007; Reudink et al., 2015) and trophic diet or agricultural influences for
oN (Inger & Bearhop, 2008). Unlike with ¢°H, where growing-season and mean annual
global maps for deuterium in precipitation are made readily available for assignment
analyses by Bowen et al. (2005), maps of regional-scale 6*3C in vegetation have not been
produced for the northwestern United States and Canada. Without a strong basis of
known-vegetation sample comparison, abilities to interpret Pacific-slope flycatcher prior
habitat use is very limited. Additionally, analysis of 5°N values are limited in providing
information that hasn’t already been provided by 6°H and ¢6*3C data. Like with §*3C, there
are no readily available datasets of geographic variation in 6*°N values (which would
likely be created from trophic organisms such as insects or prey species) upon which
findings can be based. Even if known-origin §*°N in the food chain existed, a sample’s
proximity to agricultural soils could severely skew results. Furthermore, such known-
origin ¢3C vegetation and 6*°N insect samples could only be used for comparison based

on species specific individual diet selection.
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An additional source of error in reported 5°H, §C and ¢*°N values could potentially
be caused by laboratory preparation procedures and analytical measurement error. The
cleaning of the feather samples was employed to reduce potential variation in stable
isotope values from surface oil contaminants, but there is always a chance that re-
contamination occurred during encapsulation procedures. Laboratory surfaces,
encapsulation tools, and instruments were cleaned with methanol in between each sample
to avoid contamination risk, but there is no way of determining if user-based
contamination occurred. Sample stable isotope values are reported as expected (mean)
values through analytical measurements using continuous flow isotope ratio mass
spectrometry (Wunder & Norris, 2008). Variation in stable isotope values from analytical
measurement error could potentially contribute to misinterpretation of results for this
study.

Variation in 9°H feather stable isotope values that could have potentially been caused
by environmental factors, sample preparation error, and analytical measurement error
were accounted for by calibrating the amount-weighted growing season ¢2H in
precipiation of North America raster from (Bowen et al., 2005) with the published
equation for Neotropical migrant non-ground foraging songbirds from (Hobson et al.,
2012).

Although these limitations can cause variances in results, they do not negate this
study’s ability to collect preliminary information on the breeding origins and habitat
selection of groups of HY Pacific-slope flycatchers migrating through the Coyote Creek

Field Station at different times during the fall. The study design, data collection and
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analytical methodologies applied in this study are appropriate and sufficient for meeting
our objective of obtaining basic inferences, not confident conclusions, about the probable

geographic origins of migrating HY Pacific-slope flycatchers.
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Results

Probable Breeding Origins of Pacific-slope flycatchers at CCFS during Fall
Migration

Precision in hydrogen analysis. Imprecision in the §2H analysis was significantly
greater than 3 %o for 4 out of the 18 duplicate samples. Four hydrogen samples were
omitted due to handling error at the UC Davis Stable Isotope Facility (samples were
either swapped or analyzed together). The following analyses were based on a total of
169 hatching-year Pacific-slope flycatcher individuals captured at the Coyote Creek Field
Station in Milpitas, California during the fall migration of 2014.

The range of 92H values for all individuals was between —38 %o to —141 %o, which
indicates that the HY Pacific-slope flycatchers sampled at the Coyote Creek Field Station
in Milpitas, California represented a wide geographic range of breeding grounds (Figure

9).
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Figure 9. The final “feather isoscape” of predicted hydrogen isotope values of feathers
(62H) upon which PSFL assignments were made, derived from the amount-weighted
growing season ¢2H in precipitation of North American isoscape with permission from
Bowen et al. (2005), calibrated using the equation for Neotropical migrant non-ground
foraging songbirds with permission from Hobson et al. (2012), and restricted to the
Pacific-slope flycatcher distribution range with permission from BirdLife International
and NatureServe (2015).
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The mean and standard deviation of the feather 5°H values were -87.6 + 19.8 %o. The
values of the HY PSFL §°H were normally distributed (Shapiro-Wilk normality test, W=
0.99, P=0.3), and the distribution was likely bi-modal (Figure 10). All null hypothesis

were accepted at a significance level of p>0.05.
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Figure 10. Kernal Density estimate of HY PSFL (n=169).

The breeding origins of the sampled PSFL likely originated from the central and
southern most regions of the known Pacific-slope flycatcher breeding range. The spatially
explicit likelihood-based assignment model indicated that the most likely breeding
origins for the majority of the birds were equally associated with latitudinal regions with
expected 6°H ranges of =76 %o to —97 %o in northwestern California, throughout western

Oregon, and southern/mid-western Washington (Figure 11).
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Figure 11. Probable breeding origins of Pacific-slope flycatchers (n=169) sampled at the

Coyote Creek Field Station in Milpitas, California (red dot) during fall migration in 2014.
The legend scale specifies the number of individual PSFL (n=96) that had consistent
isotopic feather values with pixels on the map of the same color based on the likelihood-
based assignment at 2:1 odds.

Ninety-six of the 169 PSFL (57%) most likely originated from these regions.
Secondary assignments were associated with latitudinal regions with expected §°H ranges
0f —98 %o to —119 %o, which included the northernmost regions of Washington and the
southern border of British Columbia. There were no assignments associated with the
northernmost portion of the PSFL breeding range, north of the VVancouver islands.

Relative Abundance. The incorporation of the North American Breeding Bird
Survey Relative Abundance data as a prior probability surface assigned 162 out of 169
observations (individual birds) to origins throughout the entire PSFL breeding range. The
model concluded that the most-likely breeding origins for this sample were from

latitudinal regions with expected ¢?H ranges of —50 %o to —97 %o in central-

north/northwestern California, throughout western Oregon, and southern/mid-western
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Washington. Secondary assignments were associated with latitudinal regions with
expected 6°H ranges of —98 %o to —141 %o, the northernmost regions of Washington, and

throughout western British Columbia (Figure 12).
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Figure 12. Probable breeding origins of Pacific-slope flycatchers (n=169) sampled at the

Coyote Creek Field Station in Milpitas, California (red dot) during fall migration in 2014.
The legend scale specifies the number of individual PSFL (n=162) that had consistent
isotopic feather values with pixels on the map of the same color based on the likelihood-
based assignment at 2:1 odds incorporating North American Breeding Bird Survey
Relative Abundance data within pixels as a prior probability.

Timing of migration. A significant relationship between 6°H and capture date at
CCFS was found (R?=0.19, p << 0.001), which explains some of the variation of 6°H of
PSFL tail feathers. There was a negative correlation between §°H (representing latitudinal
origin) and capture date at the Coyote Creek Field Station (Figure 13). PSFL migrating

from more southern regions tended to arrive earlier in the season, and PSFL migrating

from more norther regions tended to arrive later in the season.
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Figure 13. Relationship between 5°H and Capture Date of PSFL (n=169) sampled at the
Coyote Creek Field Station in Milpitas, California during fall migration in 2014.

A significant relationship between ¢2H and capture date at CCFS was found for birds
that arrived within the first half of the season (R?= 0.24, p << 0.001), but not for birds
that arrived within the second half of the season (R?= 0.02, p = 0.07). The 5°H values
from feathers of HY PSFL migrating through the Coyote Creek Field Station in the first
half of the season were on average (~15.2 %o) lower than birds migrating through the

Coyote Creek Field Station later in the season. No significant relationships between §°H
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and capture date at CCFS were found for any of the 13 weekly sub groups (p > 0.05). The
average shift in 52H per mil was —2.945 + 0.494 %o per week (Table 1).
Table 1.

Average Values of 6°H (%o) of 169 HY Pacific-Slope Flycatchers Sampled at the Coyote
Creek Field Station in Milpitas, California During Fall of 2014.

Week of capture n Mean Range SD SE
7/20-7/26 1 715 -71.5 -- --
7127-8/2 3 -66.7 -57.9t0-82.2 13.4 7.7
8/3-8/9 17  -68.0 -46.1t0 -94.7 16.1 3.9
8/10-8/16 4 625 -46.8t0-78.4 14.1 7.1
8/17-8/23 6 739 -55.1t0-107.9 21.5 8.7
8/24-8/30 27  -88.2 -53.6t0-119.5 17.7 3.4
8/31-9/6 33 909 -47.6 to -141.4 19.2 3.3
9/7-9/13 25 879 -38.810-129.8 21.5 4.3
9/14-9/20 17 9538 —69.1t0-121.7 14.8 3.6
9/21-9/27 12 947 -66.5t0-123.1 16.9 4.8
9/28-10/4 20 979 -70.7t0 -128.4 14.7 3.2
10/5-10/11 3 988 —-84.7 to -109.7 12.8 7.3
10/12-10/18 1 -90.8 —90.8 -- --

The spatially explicit likelihood-based assignment model assigned 29 out of the 58
birds that migrated through CCFS during the first half of the season, from 7/20/14 to
8/30/14, to latitudinal regions with expected 6°H ranges of —76 %o to =97 %o in
northwestern California, throughout western Oregon, and southern/mid-western

Washington (Figure 14).
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Figure 14. Probable breeding origins of Pacific-slope flycatchers (n=58) sampled at the
Coyote Creek Field Station in Milpitas, California (red dot) from 7/20/2014 to 8/30/2014.
The legend scale specifies the number of individual PSFL (n=29) that had consistent
isotopic feather values with pixels on the map of the same color based on the likelihood-
based assignment at 2:1 odds.

Secondary assignments were associated with latitudinal regions with expected §°H
ranges of —98 %o to —119 %eo; the northernmost regions of Washington and the southern
border of British Columbia. There were no assignments associated with the northernmost
portion of the PSFL breeding range, north of the VVancouver islands.

Of the 111 birds that migrated through CCFS during the second half of the season,
from 8/31/14 to 10/12/2014, 68 individuals were assigned to latitudinal regions with

expected 6°H ranges of =76 %o to —115 %o in northwestern California, throughout western

Oregon, and throughout western Washington (Figure 15).
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Figure 15. Probable breeding origins of Pacific-slope flycatchers (n=111) sampled at the

Coyote Creek Field Station in Milpitas, California (red dot) from 8/31/2014 to
10/12/2014. The legend scale specifies the number of individual PSFL (n=68) that had
consistent isotopic feather values with pixels on the map of the same color based on the
likelihood-based assignment at 2:1 odds.

Secondary assignments were associated with latitudinal regions with expected §°H
ranges of —98 %o to —119 %eo; the northernmost regions of Washington and the southern
border of British Columbia. There were no assignments associated with the northernmost
portion of the PSFL breeding range, north of the VVancouver islands.

Spatially explicit assignments varied when the samples (individual birds) were
separated by week of capture, with birds arriving earlier in the season being assigned to
latitudinal regions with expected ¢?H ranges of —32 %o to —96 %o in northwestern
California and throughout western Oregon, and birds that arrived later in the season being

assigned to latitudinal regions with expected 6°H ranges of —94 %o to —119 %o in northern

Washington and the southern border of British Columbia (Appendix B and Figure 16).
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Figure 16. Timeline of Pacific-slope flycatchers migrating from varying probable
breeding origins through the Coyote Creek Field Station in Milpitas, California in fall of
2014.

Birds that were assigned to latitudinal regions with expected ¢?H ranges of —54 %o to
—75 %o, the San Francisco Bay Area west of the Sierra Nevada Mountain Range, were
captured at CCFS only between 7/20/14 and 8/23/14. Birds that were assigned to
latitudinal regions with expected ¢?H ranges of —76 %o to —97 %o, northwestern
California, western Oregon, and southwestern Washington, were captured at CCFS only
between 8/3/14 and 10/12/2014. Birds that were assigned to latitudinal regions with

expected 6°H ranges of —98 %o to —119 %, northwestern Washington and southern British

Columbia; were captured at CCFS only between 8/24/14 and 10/13/14.



Natal Origin Habitat Selection of Pacific-slope flycatchers at CCFS during Fall
Migration

Precision in carbon and nitrogen analysis. Imprecision in the 53C analysis was
significantly greater than 0.2 %o for 8 out of the 14 duplicate samples, and significantly
greater than 0.3 %o for 7 out of the 14 duplicate samples for 6*°N analysis.

All three (6°H, 613C, and §*°N) stable isotope feather values were accessible from 167
HY PSFL (Appendix C). The mean (and standard deviation) isotope values for 6°H were
—87.5 +19.8 %o, —23.1 + 0.9 %o for 6:3C, and 5.5 + 1.5 %o for 6*°N. Significant
relationships were found among all three stable isotopes: 5°H and 6*3C (R?=0.14, p <<
0.001), 62H and 6"5N (R?= 0.10, p << 0.001), 5*3C and 5N (R?=0.07, p <0.001). The
feather isotope values of 6°H, 63C, and 6*°N were not multivariate normally distributed
(Shapiro-Wilk test of multivariate normality, W= 0.91, p < 0.001). All null hypotheses
were accepted at a significance level of p > 0.05. The robust Mahalanobis distance
operation detected 12 multivariate outliers. These outliers were removed from the dataset,
leaving 155 observations to analyze.

The k-means cluster analysis concluded that 2 clusters were the best number of
clusters based on the majority (10 out of 30, 33%) of the validity indices. Against the
majority were 4 indices (13%) proposing 3 clusters as the best number, and 3 indices
(10%) proposing 10 clusters as the best number. The results were similar after removing
the 12 multivariate outliers; the majority (9 out of 30, 30%) proposed 2 as the best
number of clusters. This was followed by 8 indices (26%) proposing 4 clusters and 3

indices (10%) proposing 8 clusters as the best number.
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The hierarchical agglomerative cluster analysis showed that 2 clusters were the best
number based on the majority (10 out of 30, 33%) of the validity indices. The second and
third ranks were 6 indices (20%) proposing 4 clusters, and 4 indices (13%) proposing 10
clusters. Alternatively, after removing outliers, the majority (8 out of 30, 26%) of the
validity indices for the hierarchical agglomerative method proposed 4 as the optimal
number of clusters, but this was followed closely by 7 indices (23%) proposing the use of
2 clusters. 5 indices (16%) proposed that 3 clusters were the best number.

The model-based hierarchical cluster analysis resulted in all 3 of the top models (VII,
VVE, VEV) concluding that 2 was the optimal number of clusters. This conclusion is
based on the highest BIC value for each model (Table 2). Alternatively, after removing
outliers, 3 different top models (EEE, EEV, EVE) all concluded that 1 was the optimal

cluster number (Table 3).
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Table 2.

Bayesian Information Criterion (BIC) from the Top 3 Hierarchical Clustering Models.

BIC

Number of clusters VII VVE VEV

-1439.2 -1416.1 -1416.1
-1401.5 -1402.8 -1403.2
-1419.7 -1413.9 -1419.1
-1432.9 -14475 -1460.4
-1440.6 -1488.1 -1472.2
-1446.1 -1489.1 -1483.3
-1447.7 -1506.5 -1506.8
-1467.9 -1516.2 -1533.8
-1478.8 -1558.6 -1561.4

O© 00 NO Ol d W DN B

Note. BIC values are shown for 1-10 clusters for §°H, *3C, and 5!°N isotopes from
feathers of 167 individual HY Pacific-slope flycatchers.

Table 3.

Bayesian Information Criterion (BIC) from the Top 3 Hierarchical Clustering Models.

BIC

Number of clusters EEE EEV EVE

-1171.7 -1171.7 -1171.7
-1173.2 -1186.1 -1179.8
-1179.9 -1199.8 -1200.6
-1200.6 -1224.3 -1221.9
-1201.7 12427 -1232.4
-1221.1 -1264.1 -1254.2
-1237.9 -1290.9 -1274.9
-12409 -1317.2 -1296.9
-1261.1 -1338.1 -1316.1

O© 00 NO Ol WDN -

Note. BIC values are shown for 1-10 clusters for §°H, *3C, and 5'°N isotopes from
feathers of 155 individual HY Pacific-slope flycatchers.
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These results show that there is an apparent grouping of 2 clusters amongst all 167
observations (individual birds). Because the majority of the clustering procedures
detected 2 clusters, a liberal approach to keeping the multivariate outliers was taken.
Slight variation in analysis selection of cluster groups is common, several other studies
have also found that results may be inconsistent amongst indices (Charrad et al., 2015;
Milligan & Cooper, 1985; Reudink et al., 2015).

The results of the MANOVA confirmed that there were significant differences
between the 6°H, 6'3C and 5*°N feather stable isotope values between the 2 cluster groups
that stemmed from the k-means cluster analysis (MANOVA, F=126.99, df = 3, 163, p <
0.001). The observations (individual birds) in the k-means cluster group #1 showed, on
average, lower (more negative) 6°H, lower (more negative) 5*3C, and lower 6'°N values,
while the observations (individual birds) in the k-means cluster group #2 showed, on

average, higher 5°H, §*3C, and 5*°N ratios (Table 4, Figure 17).
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Table 4.

Mean (+ SD) Stable Isotope Ratios of Feathers from 167 Individual HY Pacific-Slope
Flycatchers Partitioned into 2 Clusters Based on K-Means Clustering.

Cluster no. ¢°H oBC OBN
1 _99.3(13.6) -234(07) 48(L1)
2 70.2(13.9) -22.4(08) 65 (L3)

Note. Clusters correspond to those shown in Figure 17.

513¢ (%)

—
5N (%)

8°H (%)

Figure 17. Clustering of stable isotope values of feathers from HY Pacific-slope
flycatchers (n=167) sampled at the Coyote Creek Field Station in Milpitas, California
during fall migration in 2014 into 2 clusters based on k-means clustering.
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Physical Conditions of Pacific-slope flycatchers at CCFS during Fall Migration

All three stable isotopes (6°H, 6*3C, 6'°N) and all eight (weight, bill length, bill width,
wing length, tail length, fat score, skull ossification, and primary feather wear)
morphological measurements were accessible from 154 HY PSFL. The three feather
stable isotopes and the eight morphological measurements were not multivariate normally
distributed (Shapiro-Wilk test of multivariate normality, W= 0.69, p << 0.001). Weight
and primary feather wear were asymmetrically distributed to the right, with a skewness of
2.6 (SE=0.195) and 1.7 (SE=0.195), respectively. Primary feather wear was removed
from further analysis due to too many missing data values. All within-set variables were
independently correlated (Pearson Product-moment correlations, r < | 0.700 | ).

The Canonical Correlation Analysis returned 1 statistically significant canonical
variate, Canonical Variate 1, (F-test, p = 0.041). All three Canonical Loadings from Set 1
(feather isotopes values) returned values (> | 0.300 | ) and were selected for interpretation
(Table 5). Fat score and the log of weight returned Canonical Loading values of

(>]0.300 | ) and were selected for interpretation (Table 6).
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Table 5.

Canonical Loadings for Stable Isotope Values of Feathers from HY Pacific-Slope
Flycatchers (n=154).

Canonical Loadings

Variable 1 2 3
02H -.898 .366 245
013C -.763 =377 -.525
015N -.490 -.625 .608

Note. Interpretation was based on Loadings with values (> | 0.300 | ) for Canonical
Variate 1.

Table 6.

Canonical Loadings for Morphological Measurements of HY Pacific-Slope Flycatchers
(n=154).

Canonical Loadings

Variable 1 2 3
Bill Length -.269 591 -.071
Bill Width 210 .040 -.602
Wing Length 133 227 -.808
Tail Length -.139 118 -.531
Fat Score .619 -.059 .298
Skull -.053 -.733 .096
Log of Weight .878 .265 -.075

Note. Interpretation was based on Loadings with values (> | 0.300 | ) for Canonical
Variate 1.
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Root scores showed a significant relationship (p=0.041, r=0.366) between the log of

weight, fat score and all three feather isotope values (Figure 18).
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Figure 18. Relationship between loadings (Isotope Values and Morphological
Measurements) of HY Pacific-slope flycatchers (n= 154) for Canonical Variate 1.

The Canonical Correlation Analysis demonstrated that birds with more negative ¢%H,

o¥3C and 6'°N values generally had lower weights (log) and fat scores.
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Discussion

This study provides the first assessment of migratory connectivity in Pacific-slope
flycatchers (PSFL), a species for which no such data currently exist. The primary purpose
of this research was to collect preliminary information on the breeding origins and habitat
selection of groups of hatching-year (HY) Pacific-slope flycatchers migrating through the
Coyote Creek Field Station in Milpitas, CA, in the South San Francisco Bay Area, at
different times during the fall. This study also examined potential relationships between
the morphological characteristics of HY Pacific-slope flycatchers and the inferred relative
breeding origins and habitats used.

This study demonstrates that the geographic origins of HY Pacific-slope flycatchers,
as inferred by stable isotope analysis and spatially explicit likelihood-based assignment
models, were from a range of regions throughout their known breeding grounds and these
origins varied temporally, specifically from northern California to southwestern British
Columbia. Of the three approaches this study applied to deduce PSFL breeding origins,
the partitioning of assignments by capture week proved to be the most informative. Some
migratory connectivity studies have discussed the influence of temporal data to explain
the variation of ¢°H in feathers (Gonzalez-Prieto et al., 2011; Kelly, 2006; Kelly et al.,
2002), but the investigation of geographic origins of individuals using stable isotope
analysis, spatially explicit likelihood-based assignment models, and timing of migration
is a novel approach.

The significant relationship between between 6°H and capture date for PSFL justifies

incorporation of temporal data for inference. Our results are consistent with other studies
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that have investigated relationships between migration timing and breeding latitude.
Kelly et al. (2002) found a strong relationship between 6°H of feathers from Wilson’s
warblers (Cardellina pusilla) and arrival date during fall migration. Kelly (2006) found
relationships between ¢?H and capture date of yellow warblers (Setophaga petechia)
orange-crowned warblers (Oreothlypis celata) and common yellowthroats (Geothlypis
trichas).

Results for the HY PSFL caught in the south San Francisco Bay Area illustrate that
birds with natal origins of more southern latitudes such as northern California, throughout
western Oregon and southern Washington migrated through CCFS earlier than those
from more northern latitudes such as northern Washington and southwestern British
Columbia. This pattern suggests that the HY PSFL may employ chain migration
strategies, in which populations migrate in an even progression (Fontaine, Stutzman, &
Gannes, 2015). Several other studies have reported similar findings of chain migration.
For example, Gonzélez-Prieto et al. (2011) found that HY veery (Catharus fuscescens)
migrating from southern latitudes arrived at stopover sites in Colombia before birds from
more northern latitudes. Kelly (2006) made the same conclusions about orange-crowned
warblers and common yellowthroats during fall migration arriving at their wintering
grounds in New Mexico at different times. Although this finding provides new insight on
PSFL fall migration, the wintering grounds of the individual birds in this study were
unknown.

The results of the geographic assignments that were partitioned by capture week

(Appendix B) are consistent with the results of the group assignment (Figure 11) in that
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the majority of the birds were associated with regions spanning between northwestern
California and midwestern Washington, with a secondary group associated with regions
around the southwestern Canadian border. The partitioning of geographic assignments by
capture week suggested that there may be distinct groups of migrant PSFL moving
through the south San Francisco Bay region, with local breeders arriving the earliest (July
20- July 26, 2014), followed by breeders from northwestern California-to-midwestern
Washington (August 3- August 9, 2014), breeders from northern Washington (August 24-
August 30, 2014), and British Columbia breeders arriving the latest (September 28-
October 4). Similar patterns of migratory timing have been found in other songbird
species. Paxton et al. (2013) combined stable isotopes and mitochondrial DNA to
determine the weekly distribution of geographic origins of after-hatching-year Wilson’s
warblers migrating to stopover sites in Arizona during Spring migration. Migratory
connectivity of Wilson’s warblers migrating through stopover sites in Arizona were
further refined in a study by Ruegg et al. (2014), which incorporated high-resolution
genetic markers with the temporal data.

Inferences about natal habitats provide valuable information that can further refine
the geographic origins of migratory birds and aid in the assessment of migratory
connectivity.

Results for HY Pacific-slope flycatchers, as revealed by 6°H, 5*3C, and §*°N stable
isotope feather values, suggested that individual birds clustered naturally into two
isotopically distinct groups representing regional origin. Variations in 6°H, 6'C, and 6*°N

values can be explained by a variety of environmental factors that ultimately define
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different habitat types (Reudink et al., 2015). Variation in 6°H values are related to
latitude, altitude, distance from the ocean, and rainfall amount (Kendall et al., 1995;
Marshall et al., 2007; Plummer et al., 1993). Variation in 5*°C is related to the climatic
distribution of Cs, C4,and CAM plants (Inger & Bearhop, 2008; Marshall et al., 2007),
while variation in 5*°N is related to trophic diet and agricultural soil exposure (Inger &
Bearhop, 2008).

The one distinct group migrated from more northern latitudes with cooler and wetter
climates than birds in the second group. Additionally, the diet of birds from the first
group may have consisted of fewer insects than plants than the diets of birds from the
second group, but more data on such materials would need to have been collected to
properly infer this. The finding that HY Pacific-slope flycatchers originating from cooler
and wetter climates than others is supported by research showing that 6*3C values vary
across differentiating habitats under temperature and moisture influences influences
(Garcia-Perez & Hobson, 2014; Hobson et al., 2012; Inger & Bearhop, 2008; Marra et al.,
1998; Marshall et al., 2007; Reudink et al., 2015). Pacific-slope flycatchers breed in
coastal habitats stretching from southeastern Alaska, northwestern and central British
Columbia, and the Queen Charlotte and Vancouver islands to southwestern California
and throughout the mountain ranges of northern and southern Baja California (American
Ornithologists’ Union, 1998; Lowther, 2000). Habitats within the Pacific Coast mountain
ranges are characterized by climatic-moisture scales which vary with latitude; cooler,
wetter regions are found farther north (The Editors of Encyclopeadia Britannica, 2006;

Turner & Kuhlmann, 2014). The HY Pacific-slope flycatchers that were characterized to
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have originated from cooler and wetter climates were also shown to originate from more
northern latitudes, which further supports my findings within the spatially explicit
likelihood-based assignment models.

Multi-isotope (6°H, 6*3C and 6*°N) approaches have been previously used in studies
of migratory connectivity. Reudink et al. (2015) found natural wintering ground clusters
(inferred from 6°H, 5*3C and §*°N claw values) within a population of Vaux’s swift
(Chaetura vauxi) using a stopover roost site in British Columbia. In a study conducted by
Garcia-Perez & Hobson (2014), multi-isotope clusterering, migratory connectivity
indices, and probability-based assignment models yielded longitudinal links between the
wintering and breeding grounds of barn swallow (Hirundo rustica) sampled on breeding
sites throughout Canada and the U.S. Garcia-Perez & Hobson’s (2014) study
incorporated an isoscape of vegetation cover (based on previously collected 5*3C values
from plants throughout the potential wintering range) which strenghtened their ability to
make geographic assignments. Similarly, Hobson et al. (2012) constructed plant 6*3C and
o'°N isoscapes of Africa and were successful making in assignments of previously
published feather data to geographic clusters based on multi-isotopes. Similar to my
findings, these studies have used 5*C and §*°N feather isotope data to further refine
migratory origins of birds.

This study also investigated potential relationships between morphological
measurements and feather isotope values (6°H, 63C and ¢*°N) of the HY Pacific-slope
flycatchers that migrated through CCFS in the fall of 2014. Certain morphological

characteristics of birds affect energetic abilities during migration, and have the ability to
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provide information about an individual’s migratory and foraging behavior (Hedenstrom,
2008; Nowakowski et al., 2014; VVagasi et al., 2016). For example, it has been widely
observed that the length of a bird’s wing is positively correlated with the length of
distance that the bird migrates (Delingat et al., 2011; Gunnarsson et al., 2012; Mila et al.,
2008; Nowakowski et al., 2014; Pérez-Tris & Telleria, 2003; Vagasi et al., 2016). Body
mass has been observed to decrease with migration distances (Jones & Witt, 2014; Kaboli
et al., 2007; Sol, Lefebvre, & Rodriguez-Teijeiro, 2005). Fat score at stopover sites is
representative of the amount of fat being stored in a birds body and has many
implications for migration strategies (Lindstrém et al., 2002; Meissner, 1996; Meissner,
2009; Wichmann et al., 2004).

The results of the analysis between morphological measurements and the feather
isotope values of the HY Pacific-slope flycatchers suggested that individual birds with
less enriched 5°H, §*3C, and 6'°N feather isotope values will exhibit lower body masses
(Log of weight) and lower fat Scores.

The findings of my study align most closesly with Arizaga, Alonso, & Hobson’s
(2014) study of crossbills (Loxia spp.), in which researchers were able to isolate a
migratory population moving through a stopover site based on morphological
measuremeants associated with regions with distinct foraging vegetation specific to
crosshill preferences. Unlike with the crossbills, there are no known obvious
morphometric differences between populations of Pacific-slope flycatchers, most likely
because they are not specialist foragers. In a captive-rearing study of song sparrows

(Melospiza melodia), Kempster et al. (2007) concluded there were no significant
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relationships between ¢*3C and 6*°N values and physiological parameters of nutritional
stress, but as expected body mass and fat score were found to be significantly lower in
malnourished captive birds. Morphological measurements in this study may have similar
implications to those of Kempster et al. (2007), in that 6*3C and 6'°N feather values
provide less information then ¢2H values and that lower body masses and Fat Scores may
be indicitive of a certain level of nutritional/environmental stress. The Pacific-slope
flycatchers that exhibited lower body masses and fat scores likely migrated through the
south San Francisco Bay from more northern breeding regions than the other birds, and
we may be able to speculate that longer migration serves as a form of environmental
stress that is reflected in these morphological characteristics.

Overall, | found the incorporation of temporal data with spatially explicit likelihood-
based assignment models of Pacific-slope flycatcher 6°H feather values proved to be the
most informative in terms of determining probable geographic origins and initial
assessments of migratory connectivity. The incorporation of 6'3C and 6'°N feather values
and morphological data within the cluster and canonical correlation analyses further
supported my findings within the spatially explicit likelihood-based assignments, but
were not especially informative on their own. In summary, weekly spatially explicit
likelihood-based assignment models suggest that HY Pacific-slope flycatchers utilize
chain-migration strategies, and migrate through the Coyote Creek Field Station in
Milpitas, CA during the fall from a range of geographic origins within their known
breeding grounds. The proportion of individuals migrating through CCFS from more

northern breeding regions was discovered to be significantly lower than the individuals
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migrating from lower latitudes. The incorporation of §**C and §*°N data provided
secondary information to further confirm that HY Pacific-slope flycatchers migrating
through CCFS originated from multiple breeding origins. Analysis of morphological data
suggested that birds that migrate through CCFS from more northern breeding latitudes
(and with the incorporation of the temporal data we can speculate that these populations
migrate through CCFS towards the end of fall migration) will have lower body weights
and small fat scores.

Although there were limitations, and the points made in this study are basic
inferences about the probable geographic origins of migrating HY Pacific-slope
flycatchers, the results provided valuable initial information on the fall migration of this
species. These findings can serve as a foundation for future researchers to better define
the migratory patterns, breeding territories and levels of migratory connectivity of
Pacific-slope flycatcher populations. This is the only known study that has investigated
the migration of Pacific-slope flycatchers and shed light on chain-migration patterns of
the species. The inferences made from the migratory timing data collected in this study
have multiple implications for stopover ecology, environmental degradation, and
methodologies in migratory connectivity. This study strongly indicates that Pacific-slope
flycatchers breeding in multiple regions of western North America, that migrate hundreds
of miles south to winter, rely heavily on stopover sites such as the Coyote Creek Field
Station in Milpitas, CA. It is imperative that riparian corridors surrounding the southern
boundary of the South San Francisco Bay remain preserved for sensitive neo-tropical

migrant songbirds like the Pacific-slope flycatcher. | emphasize management of the
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Coyote Creek Field Station to ensure continuous restoration and protection of the site to
provide nutritious and quality habitat for migrant species. Future research may seek to
fully understand migratory connectivity of Pacific-slope flycatchers, and the location and
timing of PSFL populations migrating through the Coyote Creek Field Station will play
an important role in better understanding genetic variation, evolution, and environmental
adaptability of the species. The role of CCFS as a valuable stopover location for
migrating Pacific-slope flycatchers from multiple breeding origins at different times may
help wildlife managers track the future spread of disease and parasites, better understand
aspects of climate change, and properly track population decline. The methodologies
used in this study demonstrate the potential ability for researchers to explore the
migratory movements of individuals, or smaller groups of migrants, through temporal
data to make inferences about populations. It is my hope that the methodologies used in
this study can be improved upon by future researchers and applied in migratory
connectivity studies of many other species.
Recommendations for Future Research

Future research should further refine the geographic origins of migrating Pacific-
slope flycatchers by expanding the sample size and by sampling flycatchers that pass
through other nearby banding stations such as Point Blue Conservation in Point Reyes,
CA or local areas where flycatchers have been seen or heard by citizen scientists. This
expanded sample would target not only hatching-year Pacific slope flycatchers, but after-
hatch year adult Pacific-slope flycatchers as well to make proper inferences of the

population as a whole. An interesting phenomenon that has been historically observed at
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the Coyote Creek Field Station is that the proportion of HY to AHY Pacific-slope
flycatchers moving through is significantly higher in HY birds (San Francisco Bay Bird
Observatory, 2016). Increased incidences of HY birds at stopover sites may be indicative
of young birds solely selecting a coastal, or alternative migration route to the routes of
adult birds (Ralph, 1981). Additionally, very few AHY birds are observed migrating
through CCFS during the spring. A future study that targets HY and AHY birds at
periphery locations to CCFS may provide insight on the true migratory movements of the
population as a whole, and help quantify any HY mortality events that are likely
connected to coastal route selection.

When sampling the Pacific-slope flycatchers, collecting additional morphological
data such as presence number of fault bars on flight feathers and tarsus length, keel length
and wing span to calculate body size could add valuable data. Expanded analyses could
incorporate secondary data sets such as Pacific-slope flycatcher feathers from known
breeding origins to better calibrate the deuterium in precipitation maps from (Bowen et
al., 2005). These samples would need to be collected through museum specimens or
banding stations throughout known breeding sites in western North America. Additional
secondary data sets could also include banding and encounter data from the U.S.
Geological Survey Bird Banding Laboratory to investigate direction of migratory
movements or PSFL Productivity (reproductive index) data from the Institute for Bird
Populations Monitoring Avian Productivity and Survivorship program to investigate
potential source-sink dynamics. Techniques, such as genetic analyses and or light-level

geolocators can also be used to improve estimates of migratory origins.

93



Another refinement would be to re-structure the incorporation of 5*C and §*°N data
into analyses to improve inferences about migratory origin and habitat selection. 6*3C and
o™N data should only be used if stable isotope data from vegetation and insects across the
known Pacific-slope flycatcher breeding range can be collected prior to migration to be
used as a basis of comparison. Additionally, the incorporation of compound-specific
stable isotope analysis of amino acids, a newer methodology that has shown to improve
information about food-web and diet structure in wildlife, could be used.

Finally, a full-circle assesmment of migratory connectivity in Pacific-slope
flycatchers should be continued by sampling migratory individuals during the spring to
determine geographic origins of their wintering grounds.

Investigations of the probable wintering origins of Pacific-slope flycatchers during
spring migration will further quantify the dynamics of the PSFL annual cycle, open more
doors for population ecologists to quantify mortality events, and provide concrete spatial
and temporal advisement to wildlife managers to prioritize conservation measures in

breeding, stopover, or wintering sites.
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APPENDIX A: Example of a field data sheet
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APPENDIX B: Continued
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APPENDIX B: Continued
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APPENDIX B: Continued
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APPENDIX B: Continued
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APPENDIX B: Continued
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APPENDIX B: Continued
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Figure 19. Probable breeding origins of Pacific-slope flycatchers sampled at the Coyote
Creek Field Station in Milpitas, California (red dot) from (A) 7/20/2014 to 7/26/2014
(N=1); (B) 7/27/2014 to 8/2/2014 (N=3); (C) 8/3/2014 to 8/9/2014 (N=17); (D)
8/10/2014 to 8/16/2014 (N=4); (E) 8/17/2014 to 8/23/2014 (N=6); (F) 8/24/2014 to
8/30/2014 (N=27); (G) 8/31/2014 to 9/6/2014 (N=33); (H) 9/7/2014 to 9/13/2014
(N=25); (1) 9/14/2014 to 9/20/2014 (N=17); (J) 9/21/2014 to 9/27/2014 (N=12); (K)
9/28/2014 to 10/4/2014 (N=20); (L) 10/5/2014 to 10/11/2014 (N=3); and (M) 10/12/2014
to 10/18/2014 (N=1). Each legend scale specifies the number of individual PSFL that had
consistent isotopic feather values with pixels on the maps of the same color based on the
likelihood-based assignment at 2:1 odds.
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APPENDIX C: Stable isotope values (%o) of feathers from 167 HY Pacific-slope
flycatchers sampled at the Coyote Creek Field Station in Milpitas, California

ID o*H oBC O®N

01 —-715 -21.82 5.2
02 —60 —22.37 6.8
03 -58 —21.74 5.2
04 -823 2233 6.2
05 -49.9 -22.92 5.8
06 —52 -21.83 6.1
07 -80 —22.7 8.2
08 -51.7 -21.79 7.8
09 —73 —23.62 5.9

010 -81.7 —22.82 8.6
011 -80.2 -23.43 7.9
012 948 2458 8.1
013 -829 -20.57 7.9
014 -496 2232 8.4
015 -46.1 -21.89 7.8
016 -51.3 -23.33 4.7
017 —63 -23.02 6.3
018 -87.5 -23.49 5.7
019 -80.2 -21.36 6.1
020 -56.6 -21.31 6.0
021 —77.1 -24.04 5.6
022 —785 -22.87 6.6
023 -46.9 -23.23 5.5
024 -55.3 -21.04 6.1
025 —-69.4 -22.69 8.7
026 -108 —-22.96 6.6
027 -76.8 -23.39 6.1
028 -89.2 -25.39 6.2
029 -55.9 2453 4.2
030 -58.6 —22.96 8.4
031 -55.2 214 5.1
032 —63.9 -22.26 5.6
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APPENDIX C: Continued

ID o°H o3C N
033 -931 -2351 74
034 -105.3 -2322 46
035 -56.9 2235 81
036 -102.6 -23.8 4.7
037 -99.3 -22.04 37
038 -754 2288 45
039 984 2279 6.1
040 813 -2327 63
041 536 -2282 6.9
042 -68.7 -22.02 52
043  -109.9 -23.77 5.0
044 985 2237 438
045 983 2255 49
046 -96.6 -24.16 5.7
047 832 -2569 7.3
048 ~-108 2259 55
049 -784 2241 59
050 ~-781 -2252 6.0
051 -84.4 2447 6.6
052 -90.5 2295 6.8
053 —-775 2197 53
054 -923 2199 42
055 -1195 -2385 7.2
056 ~108 2358 4.9
057 574 2152 55
058 ~-104 2248 53
059 -61.2 -2238 53
060 —97.1 2422 46
061 -96.3 -2335 40
062 -88.7 -2293 51
063 ~778 -23.06 6.1
064 -79.3 -2357 56
065 -71.4 -2301 6.6
066 -80.8 -2353 38
067 925 2314 45
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APPENDIX C: Continued

ID o°H o3C N
068 -99.4  -235 5.2
069 -91 -23.3 5.5
070 -786 2173 47
071 -90.6 -23.88 35
072 -96.1 -2332 42
073 -88 2361 48
074 -941 -2385 6.1
075 -126.6 -23.2 4.7
076 -934 2335 37
077 -1184 -2438 36
078 115 2356 5.9
079 -855 2257 9.2
080 —99 2349 71
081 -824 -2234 6.0
082 -61.8 -22.38 6.1
083 -1145 -2315 36
084 -858 -20.81 112
085 629 -218 7.9
086 477 -2183 6.4
087 -108.9 -2334 4.0
088 933 -2355 50
089 -965 -23.03 88
090 843 -22.08 57
091 1415 -2236 6.3
092 -76.7 -23.06 7.4
093 88 -2218 31
094 -59 2204 58
095 —98 2284 47
096 72 2236 75
097 574 218 4.2
098 ~752 2257 91
099 955 2329 48
100 644 2238 79
101 -826 227 5.4
102  -101.1 -2268 5.1
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APPENDIX C: Continued

ID o°H o3C N
103 -38.8 2146 53
104 ~-116 -19.13 85
105  -113.7 -2333 46
106  —129.9 -2425 40
107 -889 -2388 7.3
108 -824 -2346 7.0
109 -112.3 -23.61 45
110  -1048 -23.26 5.7
111 ~75.2 -23 7.3
112 1157 -24.3 4.2
113 774 -2358 6.1
114  -104.6 -23.78 4.0
115 865 -2355 6.1
116 -83 2212 35
117 917 -2296 438
118  -106.6 -23.24 53
119 946 2227 43
120 817 -2256 7.0
121 945 2495 57
122 -1165 -23.72 42
123 —772 2278 715
124  -1132  -23 5.6
125 935 2222 43
126 -753 2268 52
127 -96.2 -2323 4.2
128  -121.8 -22.79 8.0
129 —924 2228 49
130 -1119 -244 2.4
131 924 2234 51
132 -100.3 -23.73 4.2
133 -69.1 2249 45
134  -1049 -2298 47
135  -1232 -2354 43
136  -100.3 -2351 49
137 ~-79.7 -2312 6.8
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APPENDIX C: Continued

ID o°H o3C N
138 -66.5 -23.89 6.5
139 -76.3 -23.05 57
140 -96.8 -2348 57
141 -829 -2248 49
142 976 2347 44
143 -855 2292 43
144  -1163 -24.09 3.3
145  -107.4 -2363 5.0
146 926 2424 32
147 ~76.7 -2299 54
148 -822 2259 32
149 -92 2273 37
150 -116.1 -2354 44
151 982 -2343 41
156  -116.1 -2358 55
157 -1284 -22.13 6.8
158 -958 -23.79 16
161 -70.8 -2434 58
162 -938 -2318 38
163  -1005 -24.85 46
164  -112.2 -2342 56
165 —927 2324 51
166 ~773 2334 48
167 1065 -22.85 45
168 -933 -2351 30
169  -109.8 -23.95 53
170 -848 -2379 54
171  -102.1 -23.77 44
174  -109.8 -25.32 39
175 -90.8 247 6.3

125



	Using Stable Isotope Analysis to Infer Breeding Latitude and Migratory Timing of Juvenile Pacific-Slope Flycatchers (Empidonax Difficilis)
	Recommended Citation

	tmp.1498506486.pdf.ubQK7

