
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Spring 2017

A Parallel Processing and Diversified-Hidden-Gene-based Genetic A Parallel Processing and Diversified-Hidden-Gene-based Genetic

Algorithm Framework for Fuel-Optimal Trajectory Design for Algorithm Framework for Fuel-Optimal Trajectory Design for

Interplanetary Spacecraft Missions Interplanetary Spacecraft Missions

Dhathri Harsha Somavarapu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Somavarapu, Dhathri Harsha, "A Parallel Processing and Diversified-Hidden-Gene-based Genetic
Algorithm Framework for Fuel-Optimal Trajectory Design for Interplanetary Spacecraft Missions" (2017).
Master's Theses. 4822.
DOI: https://doi.org/10.31979/etd.a67b-xy8b
https://scholarworks.sjsu.edu/etd_theses/4822

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/4822?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4822&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A PARALLEL PROCESSING AND DIVERSIFIED-HIDDEN-GENE-BASED
GENETIC ALGORITHM FRAMEWORK FOR FUEL-OPTIMAL TRAJECTORY

DESIGN FOR INTERPLANETARY SPACECRAFT MISSIONS

A Thesis

Presented to

The Faculty of the Department of Aerospace Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Dhathri H. Somavarapu

May 2017

© 2017

Dhathri H. Somavarapu

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

A PARALLEL PROCESSING AND DIVERSIFIED-HIDDEN-GENE-BASED
GENETIC ALGORITHM FRAMEWORK FOR FUEL-OPTIMAL TRAJECTORY

DESIGN FOR INTERPLANETARY SPACECRAFT MISSIONS

by

Dhathri H. Somavarapu

APPROVED FOR THE DEPARTMENT OF AEROSPACE ENGINEERING

SAN JOSÉ STATE UNIVERSITY

May 2017

Dr. Kamran Turkoglu Department of Aerospace Engineering

Dr. Nikos Mourtos Department of Aerospace Engineering

Prof. Jeanine Hunter Department of Aerospace Engineering

ABSTRACT

A PARALLEL PROCESSING AND DIVERSIFIED-HIDDEN-GENE-BASED
GENETIC ALGORITHM FRAMEWORK FOR FUEL-OPTIMAL TRAJECTORY

DESIGN FOR INTERPLANETARY SPACECRAFT MISSIONS

by Dhathri H. Somavarapu

This thesis proposes a new parallel computing genetic algorithm framework for

designing fuel-optimal trajectories for interplanetary spacecraft missions. The framework

can capture the deep search space of the problem with the use of a fixed chromosome

structure and hidden-genes concept, can explore the diverse set of candidate solutions with

the use of the adaptive and twin-space crowding techniques, and can execute on any

high-performance computing (HPC) platform with the adoption of the portable message

passing interface (MPI) standard. The algorithm is implemented in C++ with the use of

the MPICH implementation of the MPI standard. The algorithm uses a patched-conic

approach with two-body dynamics assumptions. New procedures are developed for

determining trajectories in the V∞-leveraging legs of the flight from the launch and

non-launch planets, and deep-space maneuver legs of the flight from the launch and

non-launch planets. The chromosome structure maintains the time of flight as a free

parameter within certain boundaries. The fitness or the cost function of the algorithm uses

only the mission ∆V , and does not include time of flight. The optimization is conducted

with two variations for the minimum mission gravity-assist sequence, the 4-gravity-assist,

and the 3-gravity-assist, with a maximum of 5 gravity-assists allowed in both the cases.

The optimal trajectories discovered using the framework in both of the cases demonstrate

the success of this framework.

DEDICATION

To my loving mother, for her unwavering support.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to Dr. Kamran

Turkoglu, my advisor, whose guidance has been a tremendous factor in my educational

and research achievements. His drive to meet the highest of standards in the work

produced by his students has helped me greatly and is highly respected and appreciated.

Second, I would like to thank Dr. Nikos Mourtos and Prof. Jeanine Hunter from the

Aerospace Engineering department for being generous with their time and knowledge to

serve on my thesis committee.

Third, I would like to thank Mr. Sean Fritz, a former classmate of mine and a

current employee of the Lockheed Martin Space Company, for introducing me to genetic

algorithms, for countless discussions on topics related to my thesis, and for allowing me to

use a gravity-assist feasibility method that he developed along with Dr. Turkoglu.

Last but not the least, I would like to thank my Mother and Sister, for their

unwavering support throughout my long pursuit of this degree.

vi

TABLE OF CONTENTS

CHAPTER

1 INTRODUCTION 1

2 PROBLEM STATEMENT AND THESIS OUTLINE 6

2.1 Problem Statement . 6

2.2 Thesis Outline . 6

3 ORBITAL MECHANICS FUNDAMENTALS 7

3.1 Kepler’s Problem . 7

3.2 Lambert’s Problem . 8

3.3 Multiple-Revolution Lambert’s Problem 8

3.4 Gravity-Assist Dynamics . 8

3.4.1 Gravity-Assist Feasibility . 9

3.5 Deep-Space Maneuver Modeling . 10

3.6 V∞-Leveraging Maneuver . 10

3.6.1 A Procedure for V∞-Leveraging Maneuver 11

3.6.2 The V∞-Leveraging Maneuver from the Launch Planet 11

3.6.3 The V∞-Leveraging Maneuver from a Non-Launch Planet 12

4 THE PROPOSED GENETIC ALGORITHM 15

4.1 The Basic Genetic Algorithms . 15

4.1.1 Selection . 15

4.1.2 Crossover . 17

4.1.3 Mutation . 18

4.2 Elements of the Proposed Genetic Algorithm 18

4.2.1 The Chromosome Structure . 18

4.2.2 The Fitness of the Chromosome 21

4.2.3 The Genetic Operators . 22

vii

4.2.4 The Diversification of Population using a Crowding Technique . . . 23

4.2.5 The Diversification of Population using an Adaptive GA Technique . 23

4.2.6 The Termination Criteria . 26

5 THE IMPLEMENTATION AND PARALLELIZATION WITH MPI 27

5.1 The Implementation . 27

5.1.1 Interpolation of Ephemeris . 27

5.1.2 Orbital Mechanics Procedures . 27

5.2 The MPI Standard . 30

5.3 Parallelization with MPI . 30

5.4 HPC Platform of Choice . 31

6 FUEL-OPTIMAL TRAJECTORIES TO SATURN 32

6.1 An Optimal Earth-Saturn Trajectory with 4 Gravity-Assist Maneuvers . . . 32

6.2 An Optimal Earth-Saturn Trajectory with 3 Gravity-Assist Maneuvers . . . 32

6.3 Comparison of the Optimal Trajectories 34

6.4 Performance of the Adaptive Twin-Space Crowding Genetic Algorithm . . . 36

7 CONCLUSIONS AND RECOMMENDATIONS 39

REFERENCES 42

APPENDIX 1 THE FITNESS OF THE PROPOSED CHROMOSOME 43

1.1 A Procedure for Computation of the Fitness of the Proposed Chromosome . 43

APPENDIX 2 ORBITAL MECHANICS PROCEDURES 48

2.1 A Procedure for V∞-Leveraging Launch Leg 48

2.2 A Procedure for Launch Leg with Deep-Space Maneuver 50

2.3 A Procedure for V∞-Leveraging Leg from a Non-Launch Planet 53

2.4 A Procedure for Non-Launch Leg including a Deep-Space Maneuver 55

2.5 A Procedure for determining V∞-Leveraging Trajectory 58

viii

LIST OF TABLES

Table

4.1 Genes of the Proposed Hidden Gene-based Chromosomes 22

6.1 Configuration of the Algorithm for 4 Gravity-Assists 33

6.2 The GA Gene Configuration for 4 Gravity-Assists 33

6.3 4 Gravity-Assist Fuel-Optimal Earth-Saturn Trajectory Parameters 35

6.4 Configuration of the Algorithm for 3 Gravity-Assists 36

6.5 The GA Gene Configuration for 3 Gravity-Assists 36

6.6 3 Gravity-Assist Fuel-Optimal Earth-Saturn Trajectory Parameters 37

ix

LIST OF FIGURES

Figure

3.1 Gravity-Assist Orientation [2]. 12

4.1 Genetic Algorithm Flow Chart . 16

4.2 Hidden Gene Chromosomes by Gad and Abdelkhalik [1]. 19

4.3 Proposed Hidden Gene Chromosomes . 21

4.4 TCGA Flow Chart [3] . 24

6.1 An Earth-Saturn Optimal Trajectory with 4 Gravity-Assist Maneuvers . . . 32

6.2 The Parameters of the Genetic Algorithm for 4 Gravity-Assists 34

6.3 The Minimum ∆V over the Generations of the Genetic Algorithm for 4

Gravity-Assists . 34

6.4 An Earth-Saturn Optimal Trajectory with 3 Gravity-Assist Maneuvers . . . 35

6.5 The Parameters of the Genetic Algorithm for 3 Gravity-Assists 37

6.6 The Minimum ∆V over the Generations of the Genetic Algorithm for 3

Gravity-Assists . 37

x

CHAPTER 1

INTRODUCTION

Humans have long aspired to explore other worlds in search of resources and

extraterrestrial life. While all other major planets in the solar system are currently not

hospitable to forms of life as we know it, the planetary moons such as Europa, Titan, and

Enceladus are believed to have underneath their outer crusts liquid oceans that could

potentially support microbial life forms such as those that exist on Earth [4–6]. Despite

widespread agreement based on existing data indicating the existence of a salt-water ocean

underneath Europa’s icy crust, this remains to be confirmed by future missions [4]. The

same can be said about the two moons of Saturn. Given the significance of proving the

existence of salt-water oceans and possible microbial life on these moons, there is

significant interest within the scientific community in pursuing missions to these moons of

the outer planets.

Missions to planetary moons are usually designed in two phases. The first phase is

the interplanetary voyage to the sphere-of-influence of the parent planet. The second phase

involves designing trajectories to do one or more of three things: (1) multiple fly-bys of the

moons, (2) launching a probe to the surface of a moon, or (3) getting into and maintaining

an orbit around one or more of the moons. In either of those 3 phases or in the voyage to

the parent planet, any number of planetary or moon gravity-assists and deep-space

maneuvers (DSMs) are used. This thesis proposes a framework for determining a

gravity-assist based fuel-optimal trajectory to a parent planet, such as Saturn or Jupiter.

A space mission strives to maximize the payload mass, while minimizing the launch

energy and total ∆V required to achieve the mission. Hollenbeck [7] introduced the

concept of an extra-deep space maneuver for decreasing launch energy and total ∆V ,

calling it the ∆V-Earth-Gravity-Assist. Sims and Longuski [8] used the term

V∞-leveraging in their expanded analysis of the ∆V-Earth-Gravity-Assist maneuver, to

2

formalize the deep-space maneuver recommended by Hollenbeck [7]. Sims, Longuski,

and Staugler [9] extended this analysis to a more generalized V∞-leveraging technique to

apply to any solar planet, especially to missions to inner planets. Brinckerhoff and

Russel [10] successfully applied the V∞-leveraging technique to the problem of a

phase-fixed Jovian moon tour, albeit with more flight time than that of a regular Hohmann

transfer. Strange, Compagnola, and Russell [11] developed a novel non-tangential

V∞-leveraging technique to achieve effective gravity-assists around low-mass moons in

terms of time of flight. This would otherwise be impractical, given the insufficient bending

provided by the low mass moons using the traditional V∞-leveraging technique.

Compagnola, Russell, and Strange [12] utilized this non-tangential V∞-leveraging

technique to design an optimal mission to place an orbiter around the moon Enceladus of

the planet Saturn with a ∆V requirement of only 445 m/s over that of 4 km/s for the regular

Hohmann transfer, at the expense, however, of extending the flight time to 2.7 years.

The V∞-leveraging technique, along with gravity-assists and other deep-space

maneuvers, has become a mainstay of interplanetary missions. The challenge of finding

the correct sequence of these operations for a given launch and target date, however, is

immense. This is because of the depth of the search space involved in finding an optimal

solution. To address this immense challenge, this thesis explores a class of

non-deterministic evolutionary algorithms, genetic algorithms, known to provide

near-global optimal solutions, from a large search space of the problem domain. Genetic

algorithms use selection, crossover, and mutation operators on the candidate solutions to

mimic the evolutionary processes found in nature. This allows for a near-optimal solution

in the best-case scenario. Genetic algorithms are "non-deterministic" because they may in

some cases lead to local-optimal or practically infeasible solutions. Because of the search

space depth, it is standard practice to limit the design space of the problem to a prescribed

number of gravity-assists, V∞-leveraging maneuvers and general deep-space maneuvers.

3

Not all missions have the same number of design parameters (genes). Gad and

Abdelkhalik [1] presented a novel approach in which the number of design parameters

(genes) are fixed for all conceivable problems with some of the parameters (genes)

designated as "hidden" depending on the nature of the particular problem being solved.

These "hidden" genes are not used in the fitness evaluation of a candidate solution. This

more generalized genetic algorithm, which applies to any kind of interplanetary mission

problem, can provide the optimal sequence of maneuvers-as well as the magnitudes of

velocities and locations of the maneuvers-for the available launch and target dates. In their

analyses of known missions to Mars, Jupiter, and Mercury, their algorithm could generate

the actual known optimal solutions, in some cases, with improvements. Gad and

Abdelkhalik [13] presented another novel approach to this trajectory optimization problem

using the variable size design parameters (variable-size genes in a chromosome). In this

approach, Gad and Abdelkhalik [13] restricted the problem design space to one that obeys

the solutions to multiple-revolution Lambert’s problem, within the realm of the two-body

dynamics model.

Gad and Abdelkhalik’s [1] hidden-gene genetic algorithm works in two phases

because of the prohibitive computational cost (time) involved in implementing that

algorithm directly in a single phase. The first phase computes the optimal sequence of

gravity-assist planets. The second phase refines the first-phase solution by adding

deep-space maneuvers (DSMs). The algorithm proposed in this thesis employs the same

concept of hidden genes. However, in this thesis, the algorithm is improved in terms of its

computational cost by employing an industry standard parallel computation framework

known as the message passing interface [14], thereby avoiding the need to separate the

algorithm into two phases.

Achieving population diversity is a very common challenge in genetic algorithms.

Population diversity enables the genetic algorithm to explore vast swathes of the problem

4

search-domain, thus increasing the likelihood that the solution will be globally optimum,

thereby preventing the algorithm from getting stuck at a local optimum. Two different

techniques, niching and crowding, have emerged during the past several years as solutions

to this challenge. Beasly, Bull, and Martin [15] originally proposed the niching technique

as a means of achieving population diversity in retrieving solutions to a multi-modal

optimization problem. The use of niching technique requires the knowledge of the

niche-radius a priori. The niche-radius is not known a priori for the problem of this thesis

and is highly likely that it is not constant. Due to this, the niching technique is not

considered. Crowding is a technique that determines the selection of individuals from a

current generation to carry over to the subsequent generation, in such a way that the

population diversifies with each generation. Some crowding techniques require the

knowledge of search space. However, the twin-space crowding technique proposed by

Chen, Chou, and Liu [3] does not require prior knowledge of the search space to produce

offspring. The twin-space crowding technique has shown to diversify the population

significantly with little to no knowledge of the search space. The problem of this thesis

requires that the genetic algorithm explore as much of the search space as possible with as

little knowledge of the search space as possible. Due to this, this thesis utilizes the

twin-space crowding technique proposed by Chen, Chou, and Liu [3]. Population diversity

is also highly dependent on the crossover and mutation probabilities in the genetic

algorithm. Srinivas and Patnaik [16] proposed the concept of adaptive crossover and

mutation probabilities for each chromosome based on the knowledge of the cumulative

and individual fitness/cost characteristics of the population. In this approach, the most fit

chromosomes are protected from being disrupted, increasing the possibility of carrying

them over to next generation. At the same time, chromosomes with less than average

fitness of the population are disrupted with higher crossover and mutation probabilities to

help infuse the population with potentially new and unexplored solution candidates, in a

5

maximization problem. In this thesis, the adaptive crossover and mutation probabilities

technique of Srinivas and Patnaik [16] is employed. The technique is adapted to the

minimization problem of this thesis as described in section 4.2.5.

The orbital mechanics procedures developed in this thesis make use of two-body

orbital dynamics. In the actual missions, when a spacecraft flies by a planet for a

gravity-assist, the effects of the moons of the planet on the resultant trajectory of the

spacecraft must be considered. Developing an algorithm to consider n-body effects during

a gravity-assist is very complex and may not be necessary during the preliminary analysis

of the optimal trajectory candidates. In practice, the preliminary analysis only considers

two-body dynamics. The candidate trajectories determined from the preliminary analysis

are further refined for determination of feasibility by taking the n-body effects into

consideration. For example, the Cassini mission to Saturn was designed in two phases as

described by Peralta and Flanagan [17]. The VVEJGA trajectory of the Cassini mission

was developed using two optimization programs developed at the Jet Propulsion

Laboratory. The first program, MIDAS, uses the two-body orbital dynamics and the

patched conic method to determine the preliminary feasible trajectories. The second

program, PLATO, uses multi-conic (n-body) propagation methods to refine the feasible

trajectories for safety of the spacecraft and success of the mission. The refinement of

preliminary feasible trajectories is not considered in this thesis. The goal of this thesis is to

facilitate the preliminary analysis. Hence the use of the two-body dynamics is justified.

This study was prompted by the need for an improved means of interplanetary

trajectory design accessible in the academia. Given the interest in future missions to

Jupiter’s Europa [18], Saturn’s Enceladus and Titan moons [19], the need for charting

fuel-optimal trajectories to the parent planets Jupiter and Saturn is immense. The

trajectories determined using the algorithm developed here can be used in initial trade

studies to discover candidate trajectories.

6

CHAPTER 2

PROBLEM STATEMENT AND THESIS OUTLINE

2.1 Problem Statement

This thesis focuses on the problem of developing a computationally efficient general

algorithm framework for fuel-optimal interplanetary trajectory and mission design within

the solar system. The requirements for this algorithm are as follows:

(1) Because of the vastness of the search space involved in this problem, the

algorithm must be capable of generating and evaluating diversified candidates

from the problem search space.

(2) The algorithm should be reasonably fast, i.e., finishing in days, as opposed to

several weeks, and in hours rather than several days, depending on the size of the

search space.

(3) The algorithm should be generic enough to accommodate a variable number of

problem parameters among competing candidates for an optimal solution.

2.2 Thesis Outline

The algorithm developed in this thesis is presented in the following manner:

(1) The various appropriate orbital mechanics problems utilized are discussed in

Chapter 3.

(2) The genetic algorithm, along with the chromosome structure, the adaptive and the

twin-space crowding techniques, is presented in Chapter 4.

(3) The implementation and the parallelization mechanism are explained in Chapter

5.

(4) The results obtained by applying the algorithm to the problem of finding a

fuel-optimal trajectory to Saturn are presented in Chapter 6.

(5) Conclusions and recommendations are given in Chapter 7.

7

CHAPTER 3

ORBITAL MECHANICS FUNDAMENTALS

This thesis employs various solutions to two-body problems in astrodynamics. The

basic approach used is patched-conic [20]. In the actual missions, the n-body effects on

the spacecraft must be considered for a gravity-assist maneuver, due to the presence of

moons of the gravity-assist planet within the sphere-of-influence of the gravity-assist

planet. In practice, for an interplanetary mission design, preliminary analysis on the

possible candidate trajectories is conducted using two-body dynamics and patched-conic

method. The candidate solutions obtained from the preliminary analysis are refined for

feasibility in the presence of n-body effects in the gravity-assist maneuvers involved in a

trajectory. Since the objective of this thesis is the development of an efficient algorithm for

the preliminary analysis, the refinement process considering the n-body effects is not

considered. Thus, the gravity-assist feasibility procedure developed by Fritz and

Turkoglu [23], which does not take n-body effects into account is employed in this thesis.

This chapter outlines and describes the various maneuvers used in the solution to the

fuel-optimal trajectory design problem. This work is restricted to trajectories with either

multiple gravity-assists (MGA) only, or gravity-assists with one single deep-space

maneuver (DSM) in between each of the possible gravity-assist maneuvers (MGA-1DSM).

When the trajectory calls for consecutive gravity-assists from the same planet, the

V∞-leveraging maneuver (VILM) is used.

3.1 Kepler’s Problem

In the realm of classical orbital mechanics, the problem of tracking a celestial

object’s position and velocity as a function of time is known as Kepler’s problem. The

problem addressed by this thesis requires that the position and velocity vectors of all

planets and the spacecraft be known at all times under consideration. In this thesis,

ephemerides of the planets are known a priori using the Horizons tool, provided by the Jet

8

Propulsion Laboratory [24]. For tracking the position and velocity of the spacecraft, a

universal variable-based solution provided by Curtis [21] in Matlab has been converted

into C++.

3.2 Lambert’s Problem

The problem of finding required velocities, when two positions and time-of-flight in

between are given, is known as Lambert’s problem [22]. In this problem, a single

revolution of the celestial body around the central body of gravitational influence is

assumed. In this thesis, the universal variable-based solution to this problem provided by

Curtis [22] in Matlab has been converted into C++.

3.3 Multiple-Revolution Lambert’s Problem

This problem is a variation of the regular Lambert’s problem, involving multiple

revolutions of the celestial body around the central body. In this thesis, a novel method

developed by Izzo [25] is employed for solving multiple-revolution Lambert’s problem.

3.4 Gravity-Assist Dynamics

The gravity-assist maneuver helps to gain or shed the mechanical energy of the

spacecraft, depending on the mission requirement. There are two kinds of gravity-assist

maneuvers: non-powered and powered. This thesis employs both the types of the

gravity-assist maneuver. When the leg of the flight is a Lambert’s leg, the powered

gravity-assist maneuver is employed. When the leg of the flight includes a deep-space

maneuver, the non-powered gravity-assist maneuver is used. In non-powered gravity-assist

maneuvers, the incoming and outgoing V∞ of the spacecraft with respect to the planet is

the same in magnitude. In powered gravity-assist maneuvers, they are not equal, because a

∆v maneuver is conducted at the periapse of the hyperbolic trajectory with respect to the

planet. The mechanical energy gained or shed is significant, helping to reduce the cost of

the mission in terms of fuel required.

For non-powered gravity-assist maneuvers,

9

��v−∞�� = ��v+∞�� = v∞ (3.1)

sin(
δ

2
) =

µp

µp + rperv
2
∞

(3.2)

and,

��∆vnps
�� = ��v+∞ − v−∞�� = 2v∞sin(

δ

2
) (3.3)

For powered gravity-assist maneuvers,

∆vps = (v
+
s/c)req − (v

+
s/c)nps (3.4)

where, (v+s/c)req is the spacecraft’s required outgoing heliocentric velocity and,

(v+s/c)nps = vp − v
+
∞ (3.5)

Here vp represents the heliocentric velocity of the gravity-assist planet.

Knowing the radius of the periapse, rp, of the hyperbolic trajectory of the spacecraft

and the incoming v∞ of the spacecraft, enables us to solve the gravity-assist maneuver.

3.4.1 Gravity-Assist Feasibility

A special case in this study requires determination of feasibility of gravity-assist

from a planet, given the required parameters for the gravity-assist. The required

parameters are: the inbound and outbound heliocentric velocity vectors of the spacecraft,

the heliocentric velocity vector of the gravity-assist planet, the radius of the gravity-assist

planet, the gravitational parameter of the gravity-assist planet, and the tolerance for the

bending angle of the hyperbolic trajectory of the spacecraft from the gravity-assist. A

10

method developed by Fritz and Turkoglu [23] is used to determine the feasibility of the

gravity-assist from the given planet. This method applies the Newton-Raphson iteration

scheme, for determining feasibility.

3.5 Deep-Space Maneuver Modeling

A deep-space maneuver helps conduct a non-powered gravity-assist maneuver.

When employing a deep-space maneuver, the standard practice is to conduct a ∆V

maneuver at a location in the transfer orbit, in such a way that the spacecraft can get a free

(non-powered) gravity-assist from another planet. During a leg of the flight, the position

of velocity of the spacecraft at the starting planet are known. The time of flight from the

starting planet to the position in transfer orbit where the deep-space maneuver is to be

conducted is also known. Using the solution to Kepler’s problem, the exact position and

velocity vectors of the spacecraft (in the transfer orbit) are calculated for the deep-space

maneuver. An instantaneous tangential ∆v burn is assumed at this location. The position

vector obtained from the solution to Kepler’s problem is used in the subsequent procedure,

to determine the required velocity vector at this location.

To determine the velocity vector of the deep-space maneuver, we first consider the

following known parameters: (1) the position and velocity vectors of the ending planet in

the current leg of flight and (2) the time of flight from the deep-space maneuver location to

the ending planet. Using these data, Lambert’s problem is solved, to determine the

required velocity vectors at the deep-space maneuver location and that of the ending planet.

3.6 V∞-Leveraging Maneuver

The V∞-leveraging maneuver is defined as a relatively small deep-space maneuver to

modify V∞ at a body such as the Earth [9]. The maneuver, when timed properly, in

conjunction with a gravity-assist from the same body, can significantly reduce the launch

energy requirement [7]. It should be noted here that this technique can be applied to any

planetary body or moon from which multiple gravity-assists are sought. It should also be

11

noted that the method for determining the maneuver details (such as location, magnitude,

and direction) is numeric in nature. Because of this, the problem domain and the design or

solution space can be extended to include trajectories that involve multiple revolutions of a

planet and the spacecraft. In this thesis, the time-of-flight parameter for a leg of the flight

is chosen arbitrarily, within certain boundaries. It is therefore beneficial to consider

trajectories that involve multiple revolutions of the planet or the spacecraft.

3.6.1 A Procedure for V∞-Leveraging Maneuver

The following procedure is employed in solving for the parameters of the

V∞-Leveraging Maneuver.

(1) First, the position and velocity vectors of the spacecraft are determined at the

location of the DSM using the solution to Kepler’s problem.

(2) Second, Kepler’s problem is used again to verify that the maneuver is possible

without a DSM. If such a trajectory is feasible, the procedure concludes there.

(3) Third, if such a trajectory is not feasible, the solution to Lambert’s problem(s) is

employed to verify if the trajectory is feasible with a DSM.

There are two different conditions under which V∞-leveraging maneuver is employed in

the current study.

3.6.2 The V∞-Leveraging Maneuver from the Launch Planet

In this special case, a gravity-assist is sought from Earth after launching from Earth.

In this case, the required hyperbolic excess velocity V∞ at launch is not known, since the

goal is to determine a DSM that would minimize this quantity. For this reason, a

procedure is employed that iterates over a range of values for V∞ to determine the value

that results in minimum total ∆v with a DSM. The procedure from section 3.6.1 is used

repeatedly with different inputs bases on the V∞ value of the current iteration.

12

3.6.3 The V∞-Leveraging Maneuver from a Non-Launch Planet

In this special case, gravity-assists are sought from a non-launch planet sequentially,

e.g., seeking gravity-assist from Mars after already flying by Mars immediately prior to the

desired gravity-assist. In this scenario, the outbound heliocentric velocity vector of the

spacecraft after the first gravity-assist from the planet is not known, because of the

presence of the VILM DSM between the two gravity-assists. This velocity vector is

required to know the position vector of the spacecraft at the VILM DSM location (given as

a fraction of the time-of-flight of the entire leg of the flight between two planetary

gravity-assists) and its corresponding velocity vector. To address this problem, the

gravity-assist periapse radius and orientation (angle ζ) of the plane of gravity-assist are

used as the problem parameters. In other words, the non-launch VILM procedure requires

these two parameters for inputs. Using these two parameters, the heliocentric outbound

velocity vector of the spacecraft from the first gravity-assist from the planet is determined

using the equations listed as follows:

Figure 3.1: Gravity-Assist Orientation [2].

13

Figure 3.1 depicts the orientation of the outbound V∞ of the spacecraft with respect

to the planet. Here the vectors b1, b2, and b3 are defined as follows by Molenaar [2]:

b1 =
®V∞in ®V∞in

2

b2 =
b1 × ®rplb1 × ®rpl

2

b3 = b1 × b2

The angle δ represents the gravity-assist rotation/bending angle, while ζ represents

the gravity-assist plane orientation angle, with δ is obtained as follows:

δ = 2 arcsin(
1

e
) (3.6)

where the eccentricity e is calculated as

e = 1 +
rp

 ®V∞in

2
2

µpl
(3.7)

The vector rotation with angles δ and ζ yields the following expression for ®V∞out :

®V∞out =
®V∞in[cos(δ)b1 + sin(δ)sin(ζ)b2 + sin(δ)cos(ζ)b3] (3.8)

The outbound heliocentric velocity vector is obtained as follows:

®Vout = ®Vpl + ®V∞out (3.9)

Once ®Vout is computed, using the position vector ®r of the planet, the method

described in sub-section 3.6.1 is used to compute the optimal DSM, to re-encounter the

14

planet for a second gravity-assist.

15

CHAPTER 4

THE PROPOSED GENETIC ALGORITHM

4.1 The Basic Genetic Algorithms

Genetic algorithms are a class of evolutionary algorithms that take an initial

population or pool of candidate solutions from the problem search space, and gradually

evolve them toward the optimal solution(s) based on the fitness criteria for candidate

solutions. Initial pool of candidate solutions is usually generated randomly within the

bounds of the problem parameters. Genetic algorithms use an iterative process and

evolutionary biological operators such as selection, crossover and mutation to repeatedly

and progressively improve the initial population or pool toward the optimal solution(s).

The general structure of a genetic algorithm is shown in Figure 4.1.

Two important tasks required in the genetic algorithm are problem-specific. The first

is the definition of the structure of the candidate solution, known as the chromosome in the

parlance of genetic algorithms. The second task is the definition of the "fitness or cost" of

the candidate solution, usually defined by the objective function for the optimization

problem. It is possible for a candidate solution or chromosome to be either fixed in length

or variable, depending on the problem at hand. Most or all of the individual parameters of

the chromosome, also known as genes, are used in the computation of fitness.

4.1.1 Selection

The genetic algorithms employ various schemes to select the candidate solutions for

the next generation from the current generation of candidate solutions. All the selection

schemes use the fitness or the cost of the candidate solutions in the population as the

criteria for selection. The purpose of selection is to carry forth the most fit candidate

solutions to the next generation so that algorithm gets closer to the optimal solution. In all

selection schemes, two candidate solutions, often called parents, are selected to be passed

along to the subsequent genetic operators, crossover and mutation. The predominant

16

Start

Initialization and fitness evaluation on D0, t=0

Selection on Dt to generate a temporary mating pool M

Crossover on M to obtain D
′t

Mutation on D
′t

Fitness evaluation on D
′t

Stop criteria

Stop

t = t + 1

yes

no

Figure 4.1: Genetic Algorithm Flow Chart

17

selection schemes are the Roulette Wheel or the Fitness Proportionate selection and the

Tournament selection.

4.1.1.1 The Roulette Wheel or The Fitness Proportionate Selection Scheme

The Roulette Wheel or the Fitness Proportionate selection works as follows:

(1) Compute the sum of the fitness of all candidate solutions in the population.

(2) Normalize the fitness of each of the candidate solution with the sum of fitness so

that the fitness values fall between 0 and 1 for each candidate solution.

(3) Sort the candidate solutions based on the fitness value in descending order.

(4) Draw a random number between 0 and 1.

(5) The first candidate solution with the fitness value above the random number

drawn is selected for next generation.

(6) Repeat random number draw and candidate solution selection N number of times,

where N is the population size.

4.1.1.2 Tournament Selection Scheme

The tournament selection, where tournament size is k, works as follows:

(1) Select k number of candidate solutions from the current population at random.

(2) Sort the k candidate solutions based on their fitness value in descending order.

(3) Pick the first candidate solution in the list, i.e. the candidate with the best fitness

is selected.

4.1.2 Crossover

The crossover operator is equivalent to mating and creation of children in nature.

The purpose of crossover is to diversify the next generation of population to get closer to

the optimal solution for the problem. There are two predominantly used crossover

techniques, known as the single-point crossover and the two-point crossover. In both the

techniques a threshold called crossover threshold is used to swap the genes of the parents

to produce the children. In single-point crossover, a single cutoff point is chosen randomly.

Genes from parent 1 before the cutoff point and from parent 2 after cutoff point are used to

18

generate child 1. Genes from parent 1 after the cutoff point and from parent 2 before the

cutoff point are used to generate child 2. In two-point crossover, two cutoff points are

selected randomly. The two parts of the chromosome from parent 1 before the first cutoff

point and after the second cutoff point and one part from parent 2 between the two cutoff

points is merged to produce child 1. Similarly, the two parts of the chromosome from

parent 2 before the first cutoff point and after the second cutoff point and one part from

parent 1 between the two cutoff points are chosen to produce child 2.

4.1.3 Mutation

The mutation operator mimics the biological mutation process and works on

individual genes of the chromosome. In practice, the predominantly used mutation scheme

is the Gaussian mutation scheme. In this scheme, each gene has a predefined mutation

threshold. During mutation, a random number is generated for each gene in the

chromosome. If the random number is below the mutation threshold for the gene under

consideration, another random number is generated from the Gaussian distribution. This

Gaussian random number is multiplied with the standard deviation for the gene and the

result is added to the current value for the gene. If the final value of the gene falls outside

the boundaries for the gene, the value of the gene is adjusted to fit either minimum or

maximum boundary for the gene as appropriate. The purpose of mutation is to diversify

the next generation of the population to increase the possibility of finding the optimal

solution.

4.2 Elements of the Proposed Genetic Algorithm

4.2.1 The Chromosome Structure

In the problem solved for this thesis, not all candidate solutions are the same in

number of parameters or genes. It is possible for various candidate solutions to have

different number of gravity-assists on the way to the target planet. It is also possible for

various candidate solutions to have or not have a deep-space maneuver between two

19

gravity-assist planets. In other words, the chromosome can have variable number of

parameters or genes. In literature, so far there have been two main approaches to the

problem of capturing variable number of genes in a chromosome. One is the hidden-gene

concept proposed by Gad and Abdelkhalik [1]. Gad and Abdelkhalik [13] also propose the

variable-size chromosome. In the variable-size chromosome approach, the population of

candidate solutions varies in size and in each iteration of the genetic algorithm the size of

each candidate solution in the population keeps varying based on the fitness. In the hidden

genes approach, a fixed size chromosome is proposed that can capture all possible

candidate solutions. However, not all genes may be active or effective for the candidate

solution. Some candidate solutions can have fewer than the maximum number of allowed

gravity-assists, in which case the planets for gravity-assists is limited to only those up to

the active number of planets for gravity-assists. This concept is illustrated with the

proposed hidden-gene chromosomes in Figure 4.2.

Figure 4.2: Hidden Gene Chromosomes by Gad and Abdelkhalik [1].

Figure 4.2 shows the fixed size of the chromosome limited by a maximum of

possible gravity-assists on the way to the target planet. The variable m denotes the actual

number gravity-assists applicable in each candidate solution and is always less than or

equal to the maximum number of gravity-assists allowed in the problem. td and ta denote

time of departure from Earth and time of arrival at the target planet, respectively. i can

vary from 1 to m. Ti denotes the time of flight in each leg flight to each of the gravity-assist

planets. Pi denotes the identifier for the planet of the gravity-assist. f denotes either

20

prograde or retrograde motion. hi and ηi denote height of gravity-assist maneuver and a

rotation angle in gravity-assist mechanism used by Gad and Abdelkhalik [1] respectively.

εi, representing a fraction of the Ti (a value between 0.1 and 0.9), is an epoch at which a

deep-space maneuver is conducted in ith leg of the flight. ni indicates the number of

deep-space maneuvers in ith leg of flight. Finally, ∆Vi represents the magnitude of a

deep-space maneuver.

Gad and Abdelkhalik [1] use a two-phase approach. The first phase determines a

solution containing an optimum number of gravity-assists. The second phase refines the

optimal solution from first phase by introducing deep-space maneuvers in various legs of

the optimal solution. According to them, this reduces the total time complexity of their

algorithm significantly, despite not specifying the performance metrics of their algorithm

in their published work on hidden-gene genetic algorithm. One possible drawback of their

algorithm, that contributes to the increased time complexity if it were to be executed in

one single phase, is the inclusion of the magnitudes ∆Vi of deep-space maneuvers in the

chromosome. Given the vast range of values for this parameter, it is not possible to capture

feasible values of this parameter with a population of 100 of less for example. This

increases the problem search space immensely and thus increases the time complexity of

the algorithm.

In this thesis, the general concept of hidden-gene chromosome is adopted, but with

different number of parameters for the fixed chromosome, yet capturing the problem

search space at hand completely. The new chromosome structure proposed is shown in

Figure 4.3. Table 4.1 describes the genes of the proposed chromosome from this Figure.

As can be seen by comparing the Figures 4.2 and 4.3, there are many differences in the

approach taken in the proposed chromosome structure. First is that the time of arrival is

not fixed, and is left out to be determined as the sum of the randomly chosen

times-of-flight in each chromosome. This is done so to find the most optimal solution in

21

terms of fuel consumption, albeit at the expense of mission time. Second, the

gravity-assist mechanism used in this thesis is different from that used by Gad and

Abdelkhalik [1]. Because of this difference the gravity-assist plane altitude and orientation

angle are considered as genes in the proposed chromosome structure. Third, ∆V for the

deep-space maneuver is not considered to be a part of the chromosome structure. The

magnitude and direction of the deep-space maneuver is computed from the other genes of

the chromosome. This is done so to reduce the computation time of the algorithm. When

deep-space maneuver ∆V is included in the chromosome structure, the number of

chromosomes in the population to be evaluated to determine an optimal solution increases

by multiple fold and results in increased time complexity for the algorithm. Because of the

proposed new structure, the algorithm can be executed in one single phase as opposed to

the two phases in which Gad and Abdelkhalik [1] execute their algorithm. Fourth,

although a chromosome can have a deep-space maneuver in any leg of flight, the proposed

algorithm does not always include the deep-space maneuvers in a leg of flight, it does so

only when a better solution cannot be found using the regular Lambert’s problem.

Figure 4.3: Proposed Hidden Gene Chromosomes
4.2.2 The Fitness of the Chromosome

The fitness function of the proposed chromosome structure from Figure 4.3 needs to

account for only the effective genes of the given chromosome. Procedure 1.1 captures the

computation of fitness for the proposed chromosome structure.

22

Table 4.1: Genes of the Proposed Hidden Gene-based Chromosomes

Gene Name Description
Td Time of departure captured as a Julian date value
m Number of gravity-assists on the way to the target

planet
Pi Integer identifier for the gravity-assist planet for leg i
Ti Time of flight in seconds in the leg of flight i
hi Height of periapse of gravity-assist trajectory around

a given planet in leg i
gi Gravity-assist plane orientation angle in the gravity-

assist planet centered frame of reference in leg i
ni 0 or 1, indicating whether there is a deep-space ma-

neuver in leg i, this must be set to 1 if a VILM is
involved

ei A fraction between 0.1 and 0.9 of the time of flight
for leg i, indicating the epoch at which the deep-space
maneuver is conducted

f Direction of flight, 0 for prograde, 1 for retrograde

4.2.3 The Genetic Operators

4.2.3.1 Selection

In the proposed algorithm, a variation of the Roulette Wheel or Fitness

Proportionate selection scheme is used. In a deviation from the standard form of this

selection scheme, the cost or fitness of the chromosome is not normalized. In the current

algorithm, there is a possibility of the cost or fitness being∞, and this does not lend itself

well to normalization.

4.2.3.2 Crossover

The proposed algorithm uses the single-point crossover scheme. In a deviation from

the standard genetic algorithms, the crossover threshold or probability changes for each

pair of parent chromosomes, based on the fitness value of the best parent, and the average

and minimum fitness values of the population.

23

4.2.3.3 Mutation

The proposed algorithm uses the Gaussian mutation scheme. In a deviation from the

standard practice of each of the individual genes of the chromosome having a specific

mutation threshold or probability, the proposed algorithm uses a single mutation threshold

for all genes. However, the algorithm uses adaptive mutation probabilities that are defined

in each generation based on the fitness value of the chromosome, the average and

minimum fitness values of the population. Due to this approach, the mutation probability

is fixed for all the genes for the chromosome.

4.2.4 The Diversification of Population using a Crowding Technique

Basic genetic algorithms have a tendency of exploring a small search space of the

problem domain and repeated consideration of the same sub-optimal chromosomes

generation after generation. Generally, the more diverse the population becomes in each

generation of computation, the more of the problem search space explored. Diverse

population is key to finding global optimum. Otherwise the GA might get stuck at the

local minima. In the current study, a special crowding technique called "twin-space

crowding" [3] is used to maintain population diversity, which aids on the optimal

convergence characteristics. Figure 4.4, reproduced from Chen, Chou, and Liu [3] shows

the application of this special technique to the basic GA. Here, two additional steps are

added to basic GA to introduce the capability to diversify the population generation over

generation. After creating the offspring from parent population, the offspring fitness is

computed and is used in the application of twin-space crowding technique to determine a

diverse population for next generation of computation.

4.2.5 The Diversification of Population using an Adaptive GA Technique

The crowding technique does a great job of carrying over most fit solutions to the

next generation, while also diversifying the population with solutions from currently

24

Start

Initialization and fitness evaluation on D0, t=0

Selection on Dt to generate a temporary mating pool M

Crossover on M to obtain D
′t

Mutation on D
′t

Fitness evaluation on D
′t

Crowding method on Dt + D
′t to obtain Dt+1

Stop criteria

Stop

t = t + 1

yes

no

Figure 4.4: TCGA Flow Chart [3]

25

unexplored search space. However, the speed at which the population diversifies is a

function of the crossover and mutation probabilities (pc and pm). If these probabilities are

constant for the entire execution of the algorithm, the solution convergence is not fast and

the algorithm may get stuck at local optima. If the offspring population constructed is

homogeneous, the diversification process and hence the algorithm slows down. It is more

efficient to use variable crossover and mutation probabilities determined from the fitness

characteristics of the population, to prevent premature convergence and explore more of

the search space. Srinivas and Patnaik [16] introduced the relationship between the

average and the best fitness values (f and fmax) of the population as the decisive factor in

tuning the crossover and mutation probabilities over the execution span of the algorithm

for a maximization problem. If the difference between average and best fitness values of

the population is small, the population is deemed homogeneous, and hence higher values

of crossover and mutation probabilities must be used to diversify the offspring constructed

from the population. Similarly, if the difference is higher, the population is diverse and

lower values of crossover and mutation probabilities must be used to preserve diversity. In

other words, pc and pm must vary inversely with fmax − f . Srinivas and Patnaik [16] also

reasoned that pc and pm must vary per chromosome depending on the difference between

the best fitness value of the population and the fitness of the chromosome, fmax − f ′. If pc

and pm solely depended on fmax − f , both the near-optimal and sub-optimal chromosomes

will be equally disrupted, potentially causing divergence in the algorithm. Hence, pc and

pm must also vary per chromosome directly with fmax − f ′. Srinivas and Patnaik [16] use

tuning constants k1, k2, k3, and k4 to maintain the probabilities to a range of [0,1].

Srinivas and Patnaik [16] use the following equations to formalize the inverse and direct

relationships with various fitness values for determining pc and pm for each chromosome:

26

pc = k1
fmax − f ′
fmax − f

, f ′ ≥ f (4.1)

pc = k3, f ′ < f (4.2)

and

pm = k2
fmax − f ′
fmax − f

, f ′ ≥ f (4.3)

pm = k4, f ′ < f (4.4)

The problem of this thesis is a minimization problem. So, the equations 4.1 - 4.4 are

adjusted for a minimization problem as follows:

pc = k1
f ′ − fmin

f − fmin
, f ′ ≤ f (4.5)

pc = k3, f ′ > f (4.6)

and

pm = k2
f ′ − fmin

f − fmin
, f ′ ≤ f (4.7)

pm = k4, f ′ > f (4.8)

4.2.6 The Termination Criteria

In the proposed algorithm, a minimum number of generations are evaluated. After

that, algorithm is terminated if it cannot improve the fitness of the winning chromosome

for more than another minimum number of generations.

27

CHAPTER 5

THE IMPLEMENTATION AND PARALLELIZATIONWITH MPI

The proposed algorithm is implemented in C++ using a parallel computing

framework, the message passing interface (MPI). Thus, the algorithm can be executed on

any high-performance computing (HPC) environment.

5.1 The Implementation

The chromosome pool is represented in C++ using matrices. The Armadillo C++

linear algebra library developed by Sanderson and Curtin [26] is used to do so. The min,

max and sort functions from this library are used extensively. This library also has a

reliable uniform and Gaussian random number generation functionality necessary in the

genetic algorithms.

5.1.1 Interpolation of Ephemeris

The ephemerides collected from the Horizons tool [24] are in a day granularity.

However, the time-of-flight gene of the chromosome is expressed in seconds. Due to this

discrepancy, an interpolation scheme developed by Fritz and Turkoglu [23] is used to

derive the ephemeris of the planets for the exact times-of-flight specified in the gene.

5.1.2 Orbital Mechanics Procedures

A leg of the flight is a flight sequence between any two planets in a trajectory. There

are several flavors of a leg of the flight depending on the combination of various genes for

that leg of the flight in the chromosome, listed as follows:

(1) Single-revolution Lambert’s leg

(2) Multiple-revolution Lambert’s leg

(3) V∞-Leveraging launch leg

(4) Launch leg including a deep-space maneuver

(5) V∞-Leveraging leg from a non-launch planet

(6) Non-launch leg including a deep-space maneuver

28

The single-revolution Lambert’s leg is solved using the universal variable based

solution from Curtis [22]. The multiple-revolution Lambert’s leg is solved using the fast

solution developed by Izzo [25]. Rest of the 4 types of leg of flight are solved as follows.

5.1.2.1 A Procedure for V∞-Leveraging Launch Leg

This procedure is required when a leg of the flight has the launch planet as the

source and target planets. The purpose of this procedure is to leverage a deep-space

maneuver to reduce the launch energy of the spacecraft. The procedure limits the launch

v∞ to a range of [0.1, 5.0] km/s. The procedure attempts to solve the V∞-leveraging

maneuver repeatedly using the launch v∞ values in the given range with increments of 0.1

km/s. The solution parameters that solve the V∞-leveraging maneuver with minimum v∞

are picked as the solution for the leg of flight. If the range of v∞ values does not yield a

solution to the V∞-leveraging maneuver,∞ is returned as the solution to that leg of flight,

resulting in the termination of fitness computation for the chromosome in the current leg

of flight. Procedure 2.1 documents the pseudo-code for this procedure.

5.1.2.2 A Procedure for Launch Leg with Deep-Space Maneuver

This procedure is required when the chromosome has a deep-space maneuver

specified between the launch planet and the target planet in the current leg of flight, and

the target planet is different from the launch planet. The purpose of this procedure is to

minimize the launch energy of the spacecraft. Although the chromosome has a gene value

indicating the use of a deep-space maneuver in this type of leg of flight, the use of a

deep-space maneuver is optional. The deep-space maneuver is only used if a direct

Lambert’s transfer between the planets is not more economical in terms of launch energy.

The procedure first attempts to compute the ∆V for a Lambert’s transfer, if such a

trajectory is feasible at all. The procedure then attempts to determine the trajectory with

deep-space maneuver to target planet by repeatedly using the launch v∞ values in the range

29

of [0.1, 5.0] km/s with increments of 0.1 km/s. The solution parameters that determine

the trajectory with minimum v∞ are picked. This minimum v∞ is compared to the ∆V that

would be required for a Lambert’s transfer, if Lambert’s transfer were feasible. The

solution parameters corresponding to the minimum of these two values are returned.

Procedure 2.2 documents the pseudo-code for this procedure.

5.1.2.3 A Procedure for V∞-Leveraging Leg from a Non-Launch Planet

This procedure is required for determining the trajectory in a leg of flight when the

source and target planets of the leg are the same non-launch planet. A deep-space

maneuver may be required in this case. A non-powered gravity-assist maneuver is

conducted at the beginning of this leg. The outbound heliocentric velocity vector from the

gravity-assist maneuver is used in to determine the resultant trajectory to the target planet

in the current leg. A deep-space maneuver is only used if necessary. Procedure 2.3 lists

the pseudo-code in detail.

5.1.2.4 A Procedure for Non-Launch Leg including a Deep-Space Maneuver

This procedure is necessary to determine trajectory for a leg of flight containing

different source and target planets. The deep-space maneuver is used only when a

Lambert’s transfer trajectory is not feasible or is not more economical than the trajectory

with the deep-space maneuver in terms of fuel. First a gravity-assist maneuver is

conducted about the source planet. The resultant outbound heliocentric velocity vector of

the spacecraft is used in subsequent steps to determine the trajectory for the current leg of

flight. Procedure 2.4 lists the pseudo-code in detail.

5.1.2.5 A Procedure for determining V∞-Leveraging Trajectory

This procedure is required to determine a V∞-Leveraging trajectory in a leg of flight.

In this case both the source and target planets of the leg are the same. Because of this a

deep-space maneuver may be required in the current leg of flight. The procedure computes

the position and velocity vectors of the spacecraft at the expected deep-space maneuver

30

location. At the deep-space maneuver location, an instantaneous tangential ∆V maneuver

is assumed. It is the goal of this procedure to determine the minimum such ∆V burn to

determine a fuel-optimal trajectory to target location of the planet. Procedure 2.5 lists the

pseudo-code in detail for this procedure.

5.2 The MPI Standard

The message passing interface (MPI) is a platform-independent standard for

message communication and coordination of program execution in parallel computing

environments. The first version (1.0) of MPI was released in June of 1994. The latest

version of MPI (3.1) was published in June of 2015. The main advantage of the MPI

standard is its portability. There are several open-source implementations of MPI available

today. MPICH [27] and OPENMPI [28] are the most prevalent open-source

implementations of the MPI standard. In this thesis, MPICH implementation of MPI is

used.

5.3 Parallelization with MPI

The MPI_Send and MPI_Recv functions are used extensively in coordinating the

communication between the master and worker cores. The fitness computation is

distributed to all the cores used in the program. Master core divides and distributes the

population for parent or offspring generation equally to all the available cores using the

MPI_Scatter function. All the cores compute the fitness of the sub-pool distributed to

them from either the parent pool or offspring pool and send the results back to master core

using the MPI_Gather function. Master core is responsible for executing all the other

genetic operators (selection, crossover, and mutation) as well as the operators of the TCGA

(crowding method). Master core is also responsible for testing the termination criteria and

communicating termination of the algorithm to all the worker cores.

31

5.4 HPC Platform of Choice

There is a myriad of HPC platforms out there. However, the San Jose State

University is yet to establish an HPC environment accessible to students as of this writing.

Due to this, the HPC platform of choice is a small cluster of micro-controllers, the

ODROID XU4’s, manufactured by HardKernel [29], established in the Control Science

and Dynamical Systems (CSDy) laboratory of the Aerospace Engineering department at

San Jose State University. These micro-controllers are very user friendly and yet powerful.

The ODROID XU4 has two types of ARM CortexT M processors, the 2 GHz A-15 and 1.2

GHz A-7 processor. There are 4 cores in each of these two processors, giving a total of 8

cores for the ODROID XU4. The ODROID XU4 has 2GB of LPDDR3 RAM along with

support for Gigabit Ethernet for inter-node communication. A cluster of 7 ODROID

XU4’s is established, with a total core capacity of 56.

32

CHAPTER 6

FUEL-OPTIMAL TRAJECTORIES TO SATURN

6.1 An Optimal Earth-Saturn Trajectory with 4 Gravity-Assist Maneuvers

For finding an optimal trajectory to Saturn with 4 gravity-assist maneuvers, the

proposed algorithm is tuned with the following configuration. Table 6.1 lists the various

configuration parameters for the GA. Table 6.2 lists the lower and upper bounds, and the

standard deviation for all the genes of the chromosome. The resultant optimal trajectory is

shown in Figure 6.1. Figure 6.2 shows the minimum and average ∆V over the genetic

algorithm generations. It also shows the total number of feasible solutions found in each

generation. Figure 6.3 shows the minimum ∆V over the generations of the genetic

algorithm. The total ∆V for the mission is 10.018 km/s with a mission time of 19.06 years.

Table 6.3 lists all the parameters of this trajectory.

Figure 6.1: An Earth-Saturn Optimal Trajectory with 4 Gravity-Assist Maneuvers

6.2 An Optimal Earth-Saturn Trajectory with 3 Gravity-Assist Maneuvers

For finding an optimal trajectory to Saturn with 3 gravity-assist maneuvers, the

proposed algorithm is tuned with the following configuration. Table 6.4 lists the various

33

Table 6.1: Configuration of the Algorithm for 4 Gravity-Assists

Parameter Description Value
LEO Height Height of the LEO parking orbit of the

spacecraft for a Lambert’s launch
500 km

Population or
Pool Size

Size of the population for the GA 280

Target Planet Id Integer identifier for the target planet, Sat-
urn

6

Ephemerides
Start Date

Start date of the Ephemerides downloaded
from JPL

01-01-2020

Ephemerides End
Date

End date of the Ephemerides downloaded
from JPL

12-31-2055

Ephemerides
Granularity

Granularity of the Ephemerides down-
loaded from JPL

1 day

Termination Tol-
erance

Tolerance for mission ∆V , over a given
number of generations

0.01 km
s

Convergence
Generations

Minimum number of generations for
which ∆V is within termination tolerance

50

Minimum Gener-
ations

The minimum number of generations to
execute for the GA

50

Maximum Gener-
ations

The maximum number of generations to
execute before termination of the GA

1000

Table 6.2: The GA Gene Configuration for 4 Gravity-Assists

Gene Lower Bound Upper Bound Standard De-
viation

Td 01-01-2020 12-31-2020 30 days
m 4 5 1
Pi 2, Venus 5, Jupiter 1
Ti 3 months 72 months 2 months
hi 0.1 ∗ rp 10 ∗ rp 0.1 ∗ rp
gi 0 radians 2π radians 0.1 radians
ni 0 1 1
ei 0.1 ∗ Ti 0.9 ∗ Ti 0.05 ∗ Ti
f 0 1 0

configuration parameters for the GA. Table 6.5 lists the lower and upper bounds, and the

standard deviation for all the genes of the chromosome. The resultant optimal trajectory is

34

Figure 6.2: The Parameters of the Genetic Algorithm for 4 Gravity-Assists

Figure 6.3: The Minimum ∆V over the Generations of the Genetic Algorithm for 4 Gravity-
Assists

shown in Figure 6.4. Figure 6.5 shows the minimum and average ∆V over the genetic

algorithm generations. It also shows the total number of feasible solutions found in each

generation. Figure 6.6 shows the minimum ∆V over the generations of the genetic

algorithm. The total ∆V for the mission is 11.2426 km/s with a mission time of 14.365

years. Table 6.6 lists all the parameters of this trajectory.

6.3 Comparison of the Optimal Trajectories

The main difference between the 4-gravity-assist trajectory and the 3-gravity-assist

trajectory is the extended mission time in the 4-gravity-assist trajectory, albeit with an

improvement in the mission cost (total ∆V) by 1.2242 km/s. In both the trajectories, the

∆V for Mars Gravity-Assist is very high at 7.561 km/s.

35

Table 6.3: 4 Gravity-Assist Fuel-Optimal Earth-Saturn Trajectory Parameters

Trajectory Parameter Value
Launch Date 07-06-2020 8:52 PM
Launch V∞ 0.1 km/s
DSM 1 Date 03-21-2021 7:59 PM
DSM 1 ∆V 0.4267 km/s
Earth Gravity-Assist Date 02-21-2022 2:45 AM
DSM 2 Date 04-23-2024 6:53 PM
DSM 2 ∆V 0.2264 km/s
Earth Gravity-Assist Date 02-20-2025 2:45 AM
Mars Gravity-Assist Date 06-25-2028 3:28 AM
Mars Gravity-Assist ∆V 7.561 km/s
Jupiter Gravity-Assist Date 09-30-2033 0:16 AM
Jupiter Gravity-Assist ∆V 1.2627 km/s
Saturn Rendezvous Date 04-29-2-39 1:15 AM
Total Mission ∆V 10.018 km/s
Total Mission Time 19.06 years

Figure 6.4: An Earth-Saturn Optimal Trajectory with 3 Gravity-Assist Maneuvers

36

Table 6.4: Configuration of the Algorithm for 3 Gravity-Assists

Parameter Description Value
LEO Height Height of the LEO parking orbit of the

spacecraft for a Lambert’s launch
500 km

Population or
Pool Size

Size of the population for the GA 280

Target Planet Id Integer identifier for the target planet, Sat-
urn

6

Ephemerides
Start Date

Start date of the Ephemerides downloaded
from JPL

01-01-2020

Ephemerides End
Date

End date of the Ephemerides downloaded
from JPL

12-31-2055

Ephemerides
Granularity

Granularity of the Ephemerides down-
loaded from JPL

1 day

Termination Tol-
erance

Tolerance for mission ∆V , over a given
number of generations

0.01 km
s

Convergence
Generations

Minimum number of generations for
which ∆V is within termination tolerance

50

Minimum Gener-
ations

The minimum number of generations to
execute for the GA

50

Maximum Gener-
ations

The maximum number of generations to
execute before termination of the GA

1000

Table 6.5: The GA Gene Configuration for 3 Gravity-Assists

Gene Lower Bound Upper Bound Standard De-
viation

Td 01-01-2020 12-31-2020 30 days
m 3 5 1
Pi 2, Venus 5, Jupiter 1
Ti 3 months 72 months 2 months
hi 0.1 ∗ rp 10 ∗ rp 0.1 ∗ rp
gi 0 radians 2π radians 0.1 radians
ni 0 1 1
ei 0.1 ∗ Ti 0.9 ∗ Ti 0.05 ∗ Ti
f 0 1 0

6.4 Performance of the Adaptive Twin-Space Crowding Genetic Algorithm

For the 4-gravity-assist trajectory, the algorithm converged at the 534th generation.

Figure 6.2 shows the average and the minimum ∆V values of the population as well as the

37

Figure 6.5: The Parameters of the Genetic Algorithm for 3 Gravity-Assists

Figure 6.6: The Minimum ∆V over the Generations of the Genetic Algorithm for 3 Gravity-
Assists

Table 6.6: 3 Gravity-Assist Fuel-Optimal Earth-Saturn Trajectory Parameters

Trajectory Parameter Value
Launch Date 11-15-2020 10:56 AM
Launch V∞ 0.1 km/s
DSM 1 Date 01-12-2022 12:26 PM
DSM 1 ∆V 0.4267 km/s
Earth Gravity-Assist Date 09-01-2022 11:42 AM
DSM 2 Date 10-12-2024 2:49 AM
DSM 2 ∆V 0.2264 km/s
Earth Gravity-Assist Date 08-13-2025 0:35 AM
Mars Gravity-Assist Date 07-09-2029 7:01 PM
Mars Gravity-Assist ∆V 7.561 km/s
Saturn Rendezvous Date 01-12-2035 9:33 PM
Total Mission ∆V 11.2426 km/s
Total Mission Time 14.365 years

38

total number of feasible solutions in the population over all of the 534 generations. As can

be seen in Figure 6.2, the number of feasible solutions in the population increases steeply

till 125th generation to reach a value of 200 out of a total of 280 solution candidates in the

population. Correspondingly, the minimum and average ∆V values also steeply decrease

during this span. After the 125th generation, the number of feasible rises steadily but

slowly. Accordingly, the minimum and average ∆V values also decrease slowly but

steadily until convergence. Similar trend is also observed in the 3-gravity-assist trajectory

case in Figure 6.5. In this case, the algorithm converged at the 293rd generation. The

number of feasible solutions in the population quickly gets to 200 out of possible 280

candidate solutions by the 40th generation. After this the number rises slowly but steadily.

A similar trend is observed in minimum and average ∆V values. This is due to the

combination of adaptive and twin-space crowding techniques employed. An attempt is

made to use adaptive diversification technique alone for the genetic algorithm. However, it

is observed that the convergence is not as effective as when the two diversification

techniques are combined. The algorithm executed for 173 minutes for the 4-gravity-assist

trajectory and for 110 minutes for the 3-gravity-assist trajectory. The scale of calculations

involved in interplanetary travel is astronomical. Given this, the execution times of the

algorithm in these two cases are deemed efficient.

39

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

The algorithm proposed in this thesis is producing optimal solutions with

economical costs. The two solutions found using this algorithm are yielding costs that are

comparable to the Cassini 2 mission cost (8.385 km/s) found by Gad and Abdelkhalik’s [1]

hidden-gene based algorithm. However, the algorithm is not doing well in terms of the

mission time. This is because the cost/fitness function does not include the mission time.

The time-of-flight gene of the chromosome is also crucial to the mission time. The

proposed algorithm uses common minimum, maximum and standard deviation values for

all the solar planets. This is not an ideal choice. These GA parameters should be tuned

according to the pair of planets involved in each leg of the flight. For example, the

time-of-flight in a Venus-Earth leg will be much smaller to that of an Earth-Jupiter leg.

Since the goal of this thesis is to determine fuel-optimal trajectories, this work is left as a

recommendation for future work. To complete the mission design for a real mission, it is

necessary to consider the n-body effects in space. The process for refining the preliminary

optimal trajectories found using the proposed algorithm, to make sure that the spacecraft

does not crash into any of the known celestial bodies, is quite complex and cannot be

generalized. However, it can be attempted on a case by case basis and left as a

recommendation for future work. It is possible to further optimize the solutions with the

use of more than one deep-space maneuver in a leg of the flight. This is also left as a

recommendation for future work. Another interesting problem that is worth solving is the

trajectory design for the moon tour or orbiter missions of the parent planet. This problem

requires solutions to gravity-assist maneuvers from low-mass moons. This is also left as a

recommendation for future work.

40

REFERENCES

[1] A. Gad and O. Abdelkhalik, "Hidden genes genetic algorithm for multi-gravity-assist
trajectories optimization,", Journal of Spacecraft and Rockets, vol. 48, no. 4, 2011

[2] S. Molenaar. (2017, June 7). "Optimization of interplanetary trajectories with deep
space maneuvers - model development and application to a uranus orbiter mission"
[Online]. Available: https://repository.tudelft.nl/islandora/object/uuid:8d44eef0-
1da0-47fa-b44e-cad4ab3e6a46?collection=education

[3] C. H. Chen, J. H. Chou, and T. K. Liu, "A novel crowding genetic algorithm and its
applications to manufacturing robots,", IEEE Transactions on Industrial Informatics,
vol. 10, no. 3, 2014

[4] NASA. (2017, June 7). "Europa: In Depth" [Online]. Available:
http://solarsystem.nasa.gov/planets/europa/indepth

[5] NASA. (2017, June 7). "Titan: Saturn’s largest moon" [Online]. Available:
https://saturn.jpl.nasa.gov/science/titan

[6] L. Spliker. (2017, June 7). "Cassini: Mission to saturn: Enceladus" [Online].
Available: https://saturn.jpl.nasa.gov/science/enceladus

[7] G. R. Hollenbeck, "New Flight Techniques for Outer Planet Missions," in
AAS/AIAA Astrodynamics Specialist Conference, Nassau, Bahamas, 1975

[8] J. A. Sims and J. M. Longuski. (2017, June 7). "Analysis of V(infinity) leveraging for
interplanetary missions" [Online]. Available: https://engineering.purdue.edu/people/
james.m.longuski.1/ConferencePapersPresentations/1994AnalysisofV\
_infinityLeveragingforInterplanetaryMissions.pdf

[9] J. A. Sims, J. M. Longuski, and A. J. Staugler, "V8 Leveraging for Interplanetary
Missions: Multiple-Revolution Orbit Techniques,", Journal of Guidance, Control
and Dynamics, vol. 20, no. 3, pp. 409–415, 1997

[10] A. T. Brinckerhoff and R. P. Russell. (2017, June 7). "Pathfinding and V-infinity
Leveraging for Planetary Moon Tour Missions" [Online]. Available:
http://www.ssdl.gatech.edu/papers/conferencePapers/AAS-2009-222.pdf

[11] N. J. Strange, S. Compagnola, and R. P. Russell. (2017, June 7). "Leveraging Flybys
of Low Mass Moons to Enable an Enceladus Orbiter" [Online]. Available:
http://russell.ae.utexas.edu/FinalPublications/ConferencePapers/09AugAAS_09-
435_enceladusLeverage.pdf

41

[12] S. Campagnola, R. P. Russell, and N. Strange, "A Fast Tour Design Method using
Non-tangent V-infinity Leveraging Transfer,", Celestial Mechanics and Dynamical
Astronomy, vol. 108, no. 2, 2010

[13] A. Gad and O. Abdelkhalik, "Dynamic-size Multiple Populations Genetic Algorithm
for Multigravity-assist Trajectory Optimization,", Journal of Guidance, Control and
Dynamics, vol. 35, no. 2, 2012

[14] MPI-Standards. (2017, June 7). "MPI Documents" [Online]. Available:
http://mpi-forum.org/docs/docs/html

[15] D. Beasly, D. R. Bull, and R. R. Martin. (2017, June 7). "A Sequential Niche
Technique for Multimodal Function Optimization" [Online]. Available: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.4189\&rep=rep1\&type=pdf

[16] M. Srinivas and L. Patnaik, "Adaptive Probabilities of Crossover and Mutation in
Genetic Algorithms,", IEEE Transactions on Systems, Man and Cybernetics, vol. 24,
no. 4, pp. 656–667, 1994

[17] F. Peralta and S. Flanagan, "Cassini Interplanetary Trajectory Design,", Control
Engineering Practice, vol. 3, no. 11, pp. 1603-1610, 1995

[18] B. Buffington, "Trajectory Design Concept for the Proposed Europa Clipper Mission
(invited),", AAS/AIAA Astrodynamics Specialist Conference, 2014

[19] P. Tsou, D. E. Brownlee, C. P. McKay, A. D. Anbar, H. Yano, K. Altwegg,
L. W. Beegle, R. Dissly, N. J. Strange, and I. Kanik, "Life: Life Investigation for
Enceladus a Sample Return Mission Concept in Search for Evidence of Life,",
Astrobiology, vol. 12, no. 8, pp. 730–742, 2012

[20] H. D. Curtis, "Method of Patched Conics", in Orbital Mechanics for Engineering
Students, 3rd ed, Amsterdam, Netherlands: Butterworth-Heinemann, 2013, ch. 8,
sec. 5, pp. 417–418

[21] H. D. Curtis, "Orbital Position as a Function of Time", in Orbital Mechanics for
Engineering Students, 3rd ed, Amsterdam, Netherlands: Butterworth-Heinemann,
2013, ch. 3, pp. 145–186

[22] H. D. Curtis, "Lambert’s Problem", in Orbital Mechanics for Engineering Students,
3rd ed, Amsterdam, Netherlands: Butterworth-Heinemann, 2013, ch. 5, sec. 3,
pp. 247–258

[23] S. Fritz and K. Turkoglu, "Optimal Trajectory Determination and Mission Design for
Asteroid/Deep Space Exploration via Multi-Body Gravity Assist Maneuvers," in
IEEE Aerospace Conference, 2016 ©IEEE, doi: [10.1109/AERO.2016.7500537]

42

[24] A. Chamberlin. (2017, June 7). "Horizons Web-Interface" [Online]. Available:
http://ssd/jpl.nasa.gove/horizons.cgi

[25] D. Izzo, "Revisiting Lambert’s Problem,", Celestial Mechanics and Dynamical
Astronomy, vol. 121, no. 1, pp. 1–15, 2014

[26] CC. Sanderson and R. Curtin, "Armadillo: A Template-based C++ Library for
Linear Algebra," The Journal of Open Source Software, vol. 1, no. 2, 2016.

[27] MPICH.org. (2017, June 7). "Mpich Overview | Mpich" [Online]. Available:
http://www.mpich.org/about/overview/

[28] OPENMPI.org. (2017, June 7). "Open MPI: Open Source High Performance
Computing" [Online]. Available: https://www.open-mpi.org/

[29] HardKernel. (2017, June 7). "Odroid | Hardkernel" [Online]. Available:
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143452239825

APPENDIX 1

THE FITNESS OF THE PROPOSED CHROMOSOME

1.1 A Procedure for Computation of the Fitness of the Proposed Chromosome

1: procedure fitness(chromosome,flyby-limit,source,target,mu,rp,ephemerides,con f ig)

Input:

chromosome → Chromosome for which the fitness is to be computed

flyby-limit → Maximum number of gravity-assists allowed in the GA

source → Identifier for the source planet for the trajectory

target → Identifier for the target planet for the trajectory

mu → A list of gravitational parameters of the solar planets

rp → A list of radii of the solar planets

ephemerides → Ephemerides of the solar planets in the time span chosen for the GA

con f ig → A list of configuration parameters for the GA

Output:

Fitness (Total ∆V of the trajectory) of the chromosome

2: soilimits ← a composite list of minimum and maximum distances for the Sphere-

of-Influence of solar planets

3: dVtotal ←∞

4: leo-height← con f ig.leo-height

5: Td ← chromosome.Td

6: m← chromosome.m

7: Pi ← chromosome.Pi

Procedure 1.1: Procedure for Computation of the Fitness of a Chromosome

44

8: Ti ← chromosome.Ti

9: hi ← chromosome.hi

10: gi ← chromosome.gi

11: ni ← chromosome.ni

12: ei ← chromosome.ei

13: directionn← chromosome. f

14: dir ← (direction == 0)?true : f alse

15: for i ← source to target do . Initialize the position and velocity vectors of the

planets in Pi at Ti

16: rv ← vec-interp(Td +
ΣTi(1: i)
24∗60∗60), ephemerides.slice(Pi(i)))

17: r(i) ← rv.®r

18: v(i) ← rv.®v

19: end for

20: if source == Pi(0) then . Compute the feasibility and ∆V for the first leg flight

21: result ← VILT-LAUNCH(®r(source), ®v(source), vecr(Pi(0)), Ti(0),

ei(0), mu(Sun), soilimits(source))
22: V∞ ← result .V∞

23: else if ni(0) == 1 then

24: result ← launch-dsm(r(source), v(source),Ti(0), ei(0), r(Pi(0)), direction,mu(Sun))

25: V∞ ← result .V∞

26: else

27: lOutput ← lambert(r(source), r(Pi(0)),Ti(0),mu(Sun), dir)

28: if The Single-revolution Lambert is Not Feasible then

29: lOutput ← multi-rev-lambert(r(source), r(Pi(0)),Ti(0),mu(Sun), dir)

30: end if

Procedure 1.1: Procedure for Computation of the Fitness of a Chromosome (continued 1)

45

31: if Either of Lambert solutions converged then

32: vscleo ←

√
mu(source)

rp(source)+leo-height

33: vsc ←

√lOutput . ®V1 − ®v(source)
2 + 2mu(source)

rp(source)+leo-height

34: dV(1) ←
��vsc − vscleo

��
35: result ← Result(0, dV(1), lOutput . ®V2, 0)

36: else

37: result ← Result(∞,∞, ®empty,∞)

38: end if

39: end if

40: if result .V∞ == ∞ or result.∆V == ∞ then

41: return∞

42: end if

43: sa f ety ← true

44: angle-tol← 1e − 3

45: for i ← 2 to m-1 do . Determine the feasibility and compute the ∆V for each of the

intermediate legs of flight

46: p1 ← Pi(i)

47: p2 ← Pi(i + 1)

48: if p1 == p2 then . This is a V∞-Leveraging leg

49: result ← flyby-vilt-non-launch(®r(i), ®v(i), result . ®V, hi(i) ? rp(p1) +

rp(p1), gi(i), ®r(i + 1),Ti(i + 1), ei(i + 1),mu(p1), sa f ety, soilimits(p1))

50: else if ni(i + 1) > 0 then

51: result ← flyby-with-dsm(®r(i), ®v(i), result . ®V, hi(i) ? rp(p1) +

rp(p1), gi(i), ®r(i + 1),Ti(i + 1), ei(i + 1), direction,mu(p1),mu(Sun), sa f ety)

Procedure 1.1: Procedure for Computation of the Fitness of a Chromosome (continued 2)

46

52: else

53: lOutput ← lambert(®r(i), ®r(i + 1),Ti(i + 1),mu(Sun), dir)

54: if The Single-revolution Lambert is Not Feasible then

55: lOutput ← multi-rev-lambert(®r(i), ®r(i + 1),Ti(i + 1),mu(Sun), dir)

56: end if

57: if Neither of Lambert solutions converged then

58: return∞

59: end if

60: dVt ← flyby(result. ®V, lOutput. ®V1, ®v(i), rp(p1),mu(p1), angle-tol)

61: if dVt == ∞ then

62: return∞

63: end if

64: result ← Result(0, dVt, lOutput . ®V2, 0)

65: end if

66: if result.∆V == ∞ then

67: return∞

68: end if

69: dV(i + 1) ← result.dV

70: end for

71: if target == Pi(m) then

72: result ← flyby-vilt-non-launch(®r(m), ®v(m), result . ®V, hi(m) ? rp(Pi(m)) +

rp(Pi(m)), gi(m), ®r(target),Ti(m), ei(m),mu(Pi(m)), sa f ety, soilimits(Pi(m)))

73: else if

then

Procedure 1.1: Procedure for Computation of the Fitness of a Chromosome (continued 3)

47

74: result ← flyby-with-dsm(®r(m), ®v(m), result . ®V, hi(m) ? rp(Pi(m)) +

rp(Pi(m)), gi(m), ®r(target),Ti(m), ei(m), direction,mu(Pi(m)),mu(Sun), sa f ety)

75: else

76: lOutput ← lambert(®r(m), ®r(target),Ti(m),mu(Sun), dir)

77: if The Single-revolution Lambert is Not Feasible then

78: lOutput ← multi-rev-lambert(®r(m), ®r(target),Ti(m),mu(Sun), dir)

79: end if

80: if Neither of Lambert solutions converged then

81: return∞

82: end if

83: dVt ← flyby(result. ®V, lOutput. ®V1, ®v(m), rp(Pi(m)),mu(Pi(m)), angle-tol)

84: if dVt == ∞ then

85: return∞

86: end if

87: result ← Result(0, dVt, lOutput. ®V2, 0)

88: end if

89: if result .dV == ∞ then

90: return∞

91: end if

92: dV(last) ← result.dV

93: dVtotal ← V∞ + Σ|dV |

94: return dVtotal

95: end procedure

Procedure 1.1: Procedure for Computation of the Fitness of a Chromosome (continued 4)

48

APPENDIX 2

ORBITAL MECHANICS PROCEDURES

2.1 A Procedure for V∞-Leveraging Launch Leg

1: procedure vilt-launch(®rpl ,®vpl ,®rplt ,t,ε ,µ,soilimits)

Input:

®rpl → Position vector of the launch planet at launch

®vpl → Velocity vector of the launch planet at launch

®rplt → Position vector of the launch planet at the end of the current leg

t → Time of flight for the current leg

ε → Fraction of time of flight where deep-space maneuver is to be conducted

µ → The gravitational parameter of the Sun

soilimits → The limits of the Sphere-of-Influence (SOI) for the launch planet

Output:

Result → A composite object containing solution parameters

2: min-dVp←∞

3: min-dVap←∞

4: min-err←∞

5: Td ← t ? ε

6: vnorm←
®vpl

2

7: ®dir ← ®vpl
vnorm

8: lambert-dir← 0

9: for dV p← 0.1 to 5.0 do

Procedure 2.1: Procedure for V∞-Leveraging Launch Leg

49

10: ®V ← ®dir ? (vnorm + dV p)

11: result ← vilt-kepler-lambert(®rpl, ®V, ®rplt, t, ε, soilimits, µ, lambert-dir)

12: if result.error < min-err and dV p + result.dV < min-dVp+min-dVap then

13: min-err← result .error

14: min-dVap←|result .dv |

15: min-dVp← dV p

16: ®Vr ← result . ®V

17: ®Rd ← result. ®Rd

18: ®Vd ← result . ®Vd

19: end if

20: end for

21: return Result(min-dVp,min-dVap, ®Rd, ®Vd,Td, ®Vr,min-err)

22: end procedure

Procedure 2.1: Procedure for V∞-Leveraging Launch Leg (continued)

50

2.2 A Procedure for Launch Leg with Deep-Space Maneuver

1: procedure launch-dsm(®rpl ,®vpl ,t,ε ,®rplt ,dir ,µ)

Input:

®rpl → Position vector of the launch planet and spacecraft at launch

®vpl → Velocity vector of the launch planet and spacecraft at launch

t → Time of flight for the current leg

ε → Fraction of time of flight where deep-space maneuver is to be conducted

®rplt → Position vector of the launch planet at the end of the current leg

dir → 0 or 1 indicating prograde or retrograde motion respectively

µ → The gravitational parameter of the Sun

Output:

Result → A composite object containing solution parameters

2: min-vinf←∞

3: min-dV←∞

4: min-dV-tot←∞

5: Td ← t ? ε

6: vnorm←
®vpl

2

7: ®vdir ← ®vpl
vnorm

8: lOutput1← lambert(®rpl, ®rplt, t, µ, dir)

9: if Single-revolution Lambert’s solution does not exist then

10: lOutput1← multi-rev-lambert(®rpl, ®rplt, t, µ, dir)

11: end if

12: for vin f ← 0.1 to 5.0 do

Procedure 2.2: Procedure for Launch Leg including a Deep-Space Maneuver

51

13: ®vm ← ®vdir ? (vnorm + dV p)

14: rv ← kepler(®rpl, ®vm, t ? ε, µ)

15: if A solution to Kepler’s problem is found then

16: lOutput ← lambert(rv.®r, ®rplt, t ? (1 − ε), µ, dir)

17: if Single-revolution Lambert’s solution did not coverge then

18: lOutput ← multi-rev-lambert(rv.®r, ®rplt, t ? (1 − ε), µ, dir)

19: end if

20: if Either of Lambert’s solutions coverged then

21: dV ←
lOutput . ®V1 − rv.®v

2

22: if min-dV-tot > vin f + dV then

23: min-dV-tot← vin f + dV

24: min-vinf← vin f

25: min-dV← dV

26: ®V ← lOutput. ®V2

27: ®Rd ← rv.®r

28: ®Vd ← lOutput. ®V1

29: end if

30: end if

31: end if

32: end for

33: if Either of direct Lambert’s solutions converged then

34: dVl ←
lOutput1. ®V1 − ®vpl

2

Procedure 2.2: Procedure for Launch Leg including a Deep-Space Maneuver (continued 1)

52

35: if dVl < min-dV-tot then

36: return Result(dVl, 0, ®Rd, ®Vd, t, lOutput1. ®V2, 0)

37: end if

38: end if

39: return Result(min-vinf,min-dV, ®Rd, ®Vd,Td, ®V, 0)

40: end procedure

Procedure 2.2: Procedure for Launch Leg including a Deep-Space Maneuver (continued 2)

53

2.3 A Procedure for V∞-Leveraging Leg from a Non-Launch Planet

1: procedure flyby-vilt-non-launch(®rpl ,®vpl ,®vscin ,rp,ζ ,®rplt ,t,ε ,µpl ,µS,sa f ety,soilimits)

Input:

®rpl → Position vector of the planet at the start of the leg

®vpl → Velocity vector of the planet at the start of the leg

®vscin → Inbound heliocentric velocity vector of the spacecraft at the start of the leg

rp → Periapse radius of the hyperbolic trajectory of the spacecraft around the planet

at the start of the leg

ζ → Orientation of the hyperbolic trajectory of the spacecraft around the planet at the

start of the leg

®rplt → Position vector of the planet at the end of the current leg

t → Time of flight for the current leg

ε → Fraction of time of flight where deep-space maneuver is to be conducted

µpl → The gravitational parameter of the planet

µS → The gravitational parameter of the Sun

sa f ety → 1 or 0 indicating whether or not to consider safety of the spacecraft, to

make sure it does not crash into or get dangerously close to the Sun respectively

soilimits → The Sphere-of-Influence (SOI) limits for the planet

Output:

Result → A composite object containing solution parameters

2: ®V∞in ← ®vscin − ®vpl

3: vinf-in←
 ®V∞in

2

4: ®i ←
®V∞in
vinf-in

Procedure 2.3: Procedure for V∞-Leveraging Leg from a Non-Launch Planet

54

5: ®j ← ®i × ®vpl

6: ®j ←
®j
‖ j‖2

7: ®k ← ®i × ®j

8: e← 1 + rp?vin f−in2

µpl

9: δ← 2 sin 1
e

10: ®V∞out ←
®V∞in[cos(δ)®i + sin(δ)sin(ζ)®j + sin(δ)cos(ζ)®k]

11: dir ← 0

12: result ← vilt-kepler-lambert(®rpl, ®V∞out, ®rplt, t, ε, soilimits, µS, dir)

13: if safety is set to 1 and result.dV < ∞ then

14: [a, e] ← ae-from-rv(result . ®Rd, result. ®Vd, µS)

15: rpsc ← a(1 − e2)

16: if rpsc < 10% of an AU then

17: return Result(0,∞, ®empty, ®empty, t ? ε, ®empty,∞)

18: end if

19: end if

20: return result

21: end procedure

Procedure 2.3: Procedure for V∞-Leveraging Leg from a Non-Launch Planet (continued)

55

2.4 A Procedure for Non-Launch Leg including a Deep-Space Maneuver

1: procedure flyby-with-dsm(®rpl ,®vpl ,®vscin ,rp,ζ ,®rplt ,t,ε ,dir ,µpl ,µS,sa f ety)

Input:

®rpl → Position vector of the planet at the start of the leg

®vpl → Velocity vector of the planet at the start of the leg

®vscin → Inbound heliocentric velocity vector of the spacecraft at the start of the leg

rp → Periapse radius of the hyperbolic trajectory of the spacecraft around the planet

at the start of the leg

ζ → Orientation of the hyperbolic trajectory of the spacecraft around the planet at the

start of the leg

®rplt → Position vector of the planet at the end of the current leg

t → Time of flight for the current leg

ε → Fraction of time of flight where deep-space maneuver is to be conducted

dir → 0 or 1 indicating prograde or retrograde motion respectively

µpl → The gravitational parameter of the planet

µS → The gravitational parameter of the Sun

sa f ety → 1 or 0 indicating whether or not to consider safety of the spacecraft, to

make sure it does not crash into or get dangerously close to the Sun respectively

Output:

Result → A composite object containing solution parameters

2: ®V∞in ← ®vscin − ®vpl

3: vinf-in←
 ®V∞in

2

4: ®i ←
®V∞in

vin f−in

Procedure 2.4: Procedure for Non-Launch Leg including a Deep-Space Maneuver

56

5: ®j ← ®i × ®vpl

6: ®j ←
®j
‖ j‖2

7: ®k ← ®i × ®j

8: e← 1 + rp?vin f−in2

µpl

9: δ← 2 sin 1
e

10: ®V∞out ←
®V∞in[cos(δ)®i + sin(δ)sin(ζ)®j + sin(δ)cos(ζ)®k]

11: isLambertSa f e← true

12: lOutput1← lambert(®rpl, ®rplt, t, µS, dir)

13: if Single-revolution Lambert trajectory does not exist then

14: lOutput1← multi-rev-lambert(®rpl, ®rplt, t, µS, dir)

15: end if

16: if Either of Lambert’s trajectories exists then

17: dVl ←
lOutput1. ®V1 − ®V∞out

2

18: ®Vl ← lOutupt1. ®V2

19: [a, e] ← ae-from-rv(®rpl, lOutput1. ®V1)

20: rpsc ← a(1 − e2)

21: if rpsc <10% of an AU then

22: isLambertSa f e← f alse

23: end if

24: end if

25: rv ← kepler(®rpl, ®V∞out, t ? ε, µS)

26: lOutput ← lambert(rv.®r, ®rplt, t ? (1 − ε), µS, dir)

27: if Single-revolution Lambert trajectory does not exist then

28: lOutput ← multi-rev-lambert(rv.®r, ®rplt, t ? (1 − ε), µS, dir)

29: end if

Procedure 2.4: Procedure for Non-Launch Leg including a Deep-Space Maneuver (contin-
ued 1)

57

30: if Either of Lambert’s trajectories exists then

31: dV ←
lOutput. ®V1 − rv.®v

2

32: lOutput . ®V2

33: end if

34: if safety is set to 1 then

35: [a, e] ← ae-from-rv(rv.®r, lOutput . ®V1)

36: rpsc ← a(1 − e2)

37: if rpsc <10% of an AU then

38: if dVl == ∞ then

39: return Result(0,∞, ®empty, ®empty, t ? ε, ®empty,∞)

40: else if isLambertSafe is true then

41: return Result(0.0, dVl, ®rpl, lOutput1. ®V1, t, ®Vl, 0)

42: end if

43: end if

44: end if

45: if dV < dVl then

46: return Result(0, dV, rv.®r, lOutput . ®V1, to f ? ε, ®V, 0)

47: end if

48: if isLambertSafe is true then

49: return Result(0.0, dVl, ®rpl, lOutput1. ®V1, t, ®Vl, 0)

50: end if

51: return Result(0.0,∞, ®empty, ®empty, t, ®empty, 0)

52: end procedure

Procedure 2.4: Procedure for Non-Launch Leg including a Deep-Space Maneuver (contin-
ued 2)

58

2.5 A Procedure for determining V∞-Leveraging Trajectory

1: procedure vilt-kepler-lambert(®r ,®v,®rt ,t,ε ,soilimits,µ,dir)

Input:

®r → Position vector of the launch planet at launch

®v → Velocity vector of the launch planet at launch

®rt → Position vector of the launch planet at the end of the current leg

t → Time of flight for the current leg

ε → Fraction of time of flight where deep-space maneuver is to be conducted

soilimits → The limits of the Sphere-of-Influence (SOI) for the launch planet

µ → The gravitational parameter of the Sun

dir → 0 or 1 indicating the prograde or retrograde motion respectively

Output:

Result → A composite object containing solution parameters

2: rv ← kepler(®r, ®v, t ? ε, µ)

3: if The Kepler’s solution did not converge then

4: return Result(0,∞, ®empty, ®empty, t, ®empty,∞)

5: end if

6: rvt ← kepler(rv.®r, rv.®v, t ? (1 − ε), µ)

7: if The Kepler’s solution converged then

8: err ←
rvt.®r − ®rt

2

9: if err > soilimits.min and err < soilimits.max then

10: return Result(0, 0, rv.®r, rv.®v, t ? ε, rvt.®v, 0)

11: end if

12: end if

Procedure 2.5: Procedure for V∞-Leveraging Maneuver

59

13: lOutput1← lambert(rv.®r, ®rt, t ? (1 − ε), µ, dir)

14: if Single-revolution Lambert trajectory does not exist then

15: lOutput1← multi-rev-lambert(rv.®r, ®rt, t ? (1 − ε), µ, dir)

16: end if

17: if Either of Lambert’s trajectories exists then

18: dVl ←
lOutput1. ®V1 − rv.®v

2

19: return Result(0, dVl, rv.®r, rv.®v, t ? ε, lOutput1. ®V2, 0)

20: end if

21: return Result(∞,∞, ®empty, ®empty, t ? ε, ®empty,∞)

22: end procedure

Procedure 2.5: Procedure for V∞-Leveraging Maneuver (continued)

	A Parallel Processing and Diversified-Hidden-Gene-based Genetic Algorithm Framework for Fuel-Optimal Trajectory Design for Interplanetary Spacecraft Missions
	Recommended Citation

	tmp.1498506486.pdf.S07c1

