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ABSTRACT

A METHOD FOR DETECTION OF LOCAL DIMENSION IN POINT CLOUD DATA

by Catherine T. Boersma

We have invented a method that uses the mathematical idea of local homology to

calculate the local dimension (one-dimensional, two-dimensional, mixed dimension of

varying types) of an underlying object in two-dimensional space from a point cloud

approximation. Motivated by the need to find an efficient method for computing local

homology, we define a new mathematical object – the Local Complex, and some

variations of this idea – that we show to be exactly related to the Vietoris-Rips complex

under some settings. This concept captures the essence of the local homology of point

cloud data at any scale. We provide a computationally tractable heuristic – the simplex

arc projection on a particular variation of the Local Complex – the Acute Local Complex

– to produce yet another object, simply called the simplex arc projections. Homology

computation for this latter class of objects is then described. This homology is then

related to the true local homology, by example. This relationship is not tight (as we

show by counter-example), and conditions under which it holds are the subject of

future extensions to this research. Our method also includes mechanisms for detecting

whether a particular dimensionality analysis is mathematically more meaningful (in

technical terms, “persistent”) and not just a function of a choice of parameters. We also

provide implementation and experimental results on synthetic data as well as a subset

of the Sloan Digital Sky Survey data.
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5.1.1 A Čech complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.2 A Vietoris-Rips complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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CHAPTER 1

INTRODUCTION

In this thesis, we present a novel topological data analysis algorithm, motivated by

the study of the shape and distribution of galaxies in the universe. We are especially

motivated by the anticipated massive point cloud data sets that will be produced by the

Large Synoptic Survey Telescope (LSST) galaxy survey, the size of which necessitates the

availability of efficient algorithms and tools to explore and make sense of it ([ITA+08]).

1.1 Context and Problem Description

A point cloud is a finite set of coordinate points in a metric space. Point cloud data

represents, for example, a solid object or a picture by a sampling of its points in two or

three dimensions. Such data might be generated by sensors or scanners, especially

distributed sensor networks, or by, for example, the detection of individual galaxies in

space as representing a galaxy cluster.

Topological Data Analysis (TDA) uses methods from topology to analyze the shape

of data. It has applications in sensor networks ([DSG06]), astronomy ([Sou11]), protein

complexes ([XW14]), and image processing ([CCDS06]).

Many techniques have been developed for reconstructing surfaces

(two-dimensional objects in space) from point cloud approximation (for example, see

Dey et. al. [DGGZ02] and for a survey, see Berger et. al. [BTS+14]). In this thesis, we

tackle the problem of reconstructing an object of mixed dimensionality called a

simplicial complex. That is, instead of assuming that the underlying object

approximated by a point cloud is three-dimensional, we assume that an underlying

object is made of one-dimensional, two-dimensional, and three-dimensional pieces

glued together in some fashion. Such an object has a property of “local dimension” at

any particular location: for example, some locations might be two-dimensional
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(surface-like); other locations might be more one-dimensional (string-like); and still

others might be locations where one-dimensional and two-dimensional pieces are

glued together.

More formally, let X be a subset of RN; X is a space whose structure we want to

understand. Let X ⊂X be a point cloud sample of X that we observe. Our goal is

(eventually) to estimate the topological structure of X by using X to build a simplicial

complex S that is a close approximation to X itself.

1.1.1 Sloan Digital Sky Survey (SDSS)

The Sloan Digital Sky Survey (SDSS) data set and our previous CAMCOS work

served as motivation and a point of departure for this thesis. The SDSS is optical data

collected from the 2.5 meter telescope at the Apache Point Observatory in New Mexico.

Each point in the SDSS catalogue is an entire galaxy. Our work seeks to determine the

local dimension of each galaxy in the data set, in order to identify structures of varying

dimension. These structures have been coined “The Cosmic Web" [BKP95] and are

comprised of over-dense and under-dense regions. Galaxies tend to group together and

form compact three-dimensional structures called clusters, as well as elongated

one-dimensional filaments and sheet-like two-dimensional walls. The cosmic web fills

only a fraction of all space, leaving large, mostly empty regions called voids. In our

analysis, we work with a thin rectangular subset of the SDSS flattened to two

dimensions. The flattened subset considered in this work consists of 3357 galaxies.

Galaxy clusters were first identified in the 1970s as large collections of galaxies

spanning hundreds of millions of light years. Many cluster-finding algorithms have

been developed to identify three-dimensional regions ([KKM+11]). Most studies of the

cosmic web focus on one type of structure at a time (like cataloging filaments). There

are a few approaches which use topological data analysis to analyze all the various
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structures of the cosmic web (see Sousbie [Sou11]).

1.2 Main contribution : local homology heuristics

Our contributions involve the construction of a new mathematical object closely

related to the Vietoris-Rips complex (VR complex), the Local Complex, along with a few

variants, as well as the development of a novel heuristic algorithm on this complex that

seeks to recover the local homology at any point, at any scale.

Our approach is parametric with respect to both the scale and the locality at which

the data is algorithmically studied. Our results then provide a parameter-free way of

scanning and automatically selecting interesting parameters at which to observe the

data.

We also provide implementation and experimental results on synthetic data as well

as a subset of the SDSS data.

These main contributions of this thesis are summarized and illustrated in Figure

1.2.1. The path highlighted in gray depicts the main algorithmic phases of our results.

In the algorithm, we are trying to approximate the computation of the local homology

of the VR complex. The Local Complex (Definition 5.2.1) approximates the VR complex

by Theorem 5.2.2. The Local Complex is presented with three variations: the Local Shell

Complex (Definition 5.2.5), the Local Central Hole Complex (Definition 5.2.6), and the

Acute Local Complex (Definition 5.2.7). We apply the simplex arc projection map

(Definition 6.1.1) to the Acute Local Complex to form the simplex arc projections. Then

we count the components in the simplex arc projections, as a heuristic means of

identifying its homology, yielding a result which is related to the local homology of a

vertex in the VR complex (as explained in Definition 6.1.1 and Example 6.1.3).

The Local Complex depends on parameters β (scale) and α (locality). We iterate

through the highlighted path for a wide range of α and β and then determine the values
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of α and β where the homology coloring remains stable as the parameters change. We

then use the heuristic local homologies at these
(
α,β

)
values to label and characterize

the data. We show through examples that these results correspond to human intuition

about the local dimension of both synthetic and real data.

Figure 1.2.1: The main contributions of the thesis.

1.3 Organization of the thesis

The thesis is organized as follows: chapters 2 and 3 contain background

information about algebraic topology and homology. We continue the foundational

material with chapter 4, describing homotopy, exact sequences and local homology.

Chapter 5 contains the main conceptual contribution of this thesis – the local

complex, presented against the backdrop of simplicial complexes of point cloud data.

In chapter 6, we define the simplex arc projection and through example, show how

it is related to local homology. This serves as motivation for using the simplex arc

projection as a heuristic for local homology.

Chapter 7 describes the details of the main algorithm – the computation of the

Acute Local Complex and the simplex arc projection.
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Finally, in chapter 8, we present the findings of the algorithm applied to both

synthetic data sets and the SDSS galaxy data.



6

CHAPTER 2

ALGEBRAIC TOPOLOGY

We begin with a review of algebraic topology to motivate and justify the

development of our algorithm. The discussion of the background material in chapters

2–4 borrows heavily from Hatcher [Hat02] and Munkres [Mun84] for algebraic topology.

The introductory material is also inspired by Zomorodian [ZC05], who provides a clear

introduction to computational topology.

2.1 Convex sets in RN

Definition 2.1.1. A set C in RN is convex if for any two points x and y in C , the point

(1− t ) x + t y is also in C , for all t ∈ [0,1].

Theorem 2.1.2. The intersection of convex sets is convex.

Proof. Let C be a family of convex subsets of vector space V . Let x, y ∈⋂
C . Then for

every C ∈C , x, y ∈C by definition of set intersection. So for every t ∈ [0,1],

(1− t ) x + t y ∈C . Therefore (1− t ) x + t y ∈⋂
C for every t ∈ [0,1]. So

⋂
C is convex.

Definition 2.1.3. The convex hull of a set X is the smallest convex set which contains

X ; i.e. the convex hull is the intersection of all convex sets containing X (by Theorem

2.1.2).

2.2 Simplices in RN

Definition 2.2.1. Given a set S = {a0, a1, a2, ..., an} of points in RN , S is geometrically

independent if for any ti ∈R, whenever
∑n

i=0 ti = 0 and
∑n

i=0 ti ai = 0 then

t0 = t1 = ... = tn = 0.

Theorem 2.2.2. The set S0 = {a0, a1, a2, ..., an} is geometrically independent if and only if

the set S1 = {a1 −a0, ..., an −a0} is linearly independent.
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Proof. Suppose a1 −a0, ..., an −a0 are linearly independent. Suppose also that

t0a0 + t1a1 + ...+ tn an = 0 and t0 + t1 + ...+ tn = 0. Then t0 =−t1 − t2 − ...− tn , and

(−t1 − t2 − ...− tn) a0 + t1a1 + ...+ tn an = 0.

Therefore t1 (a1 −a0)+ ...+ tn (an −a0) = 0, and t0 = t1 = ... = tn = 0 because

a1 −a0, ..., an −a0 are linearly independent. Hence a0, a1, ..., an is geometrically

independent.

Now suppose {a0, a1, ..., an} is geometrically independent. Suppose also that

t1 (a1 −a0)+ t2 (a2 −a0)+ ...+ tn (an −a0) = 0.

Then
n∑

i=1
ti ai −

n∑
i=1

ti a0 = 0. Let s0 =−
n∑

i=1
ti , si = ti for 1 ≤ i ≤ n. Then we have

n∑
i=0

si ai = 0

and
n∑

i=0
si = 0. Then s0 = t1 = ... = tn = 0 since {a0, a1, ..., an} is geometrically

independent. Therefore a1 −a0, ..., an −a0 are linearly independent.

Definition 2.2.3. Let a0, a1, ..., an ∈RN be geometrically independent. The n-simplex σ

spanned by {a0, a1, ..., an} is the set

σ=
{

t0a0 + ...+ tn an

∣∣∣∣∣ti ≥ 0,
n∑

i=0
ti = 1

}
. (2.1)

Example 2.2.4. Figure 2.2.1 illustrates examples of simplices of various dimensions.

Definition 2.2.5. Given a geometrically independent set S = {a0, a1, a2, ..., an}, the

n-plane P spanned by S consists of all x ∈RN such that x =
n∑

i=0
ti ai for some ti ∈Rwith

n∑
i=0

ti = 1.

Example 2.2.6. Figures 2.2.2 and 2.2.3 demonstrate the relationship between the

n-simplex and n-plane spanned by {a0, a1, a2}.

Theorem 2.2.7. Let a0, a1, ..., an ∈RN be geometrically independent. Let σ be the

n-simplex

σ=
{

t0a0 + ...+ tn an

∣∣∣∣∣ti ≥ 0,
n∑

i=0
ti = 1

}
.
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Figure 2.2.1: A 0-simplex, a 1-simplex, a 2-simplex and a 3-simplex.

Figure 2.2.2: A 2-simplex.

Figure 2.2.3: A 2-plane.
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Then the ti are uniquely determined by x.

Proof. Let a0, a1, ..., an ∈RN be geometrically independent. Suppose we have two sets

of coefficients, ti and si which determine the same point x in simplex σ. In other

words, ti ≥ 0,
n∑

i=0
ti = 1, si ≥ 0,

n∑
i=0

si = 1, and

x = t0a0 + ...+ tn an = s0a0 + ...+ sn an . (2.2)

Therefore, (t0 − s0) a0 + ...+ (tn − sn) an = 0 and
n∑

i=0
(ti − si ) = 0, and since a0, a1, ..., an are

geometrically independent, (t0 − s0) = ... = (tn − sn) = 0. So ti = si for all i .

Definition 2.2.8. Let a0, a1, ..., an ∈RN be geometrically independent. Let σ be the

n-simplex in (2.2). Then the ti are the barycentric coordinates of x of σ with respect to

{a0, a1, a2, ..., an}.

Definition 2.2.9. Let σ be an n-simplex. The points {a0, a1, a2, ..., an} that span σ are

the vertices of σ and n is the dimension of σ. Any simplex spanned by a nonempty

subset of {a0, a1, a2, ..., an} is a face of σ. The face spanned by {a1, a2, ..., an} is the face

opposite a0. Faces different from σ are called proper faces. The union of proper faces

of σ is the boundary of σ, denoted by Bd(σ). The interior of σ is denoted Int(σ) and is

equal to σ−Bd(σ).

Definition 2.2.10. An affine transformation T of RN is a map that is a composition of

translations and non-singular linear transformations on RN .

Theorem 2.2.11. Let T be an affine transformation on RN . Then

(1) T preserves barycentric coordinates (if x =∑
ti ai then T (x) =∑

ti T (ai )) and

therefore

(2) T preserves planes spanned by {a0, a1, a2, ..., an},
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(3) T preserves lines through a0 and a1,

(4) T preserves convex sets,

(5) T preserves simplexes spanned by {a0, a1, a2, ..., an}, and

(6) T preserves geometrically independent sets.

Proof. We begin by proving (1):

Let x =∑
ti ai . First suppose T is a translation. Then

T (x) = x + c =∑
ti ai + c.

Since the ti are barycentric coordinates,
∑

ti = 1, so

T (x) =
∑

ti ai + c
∑

ti = T (x) =
∑

ti (ai + c) =
∑

ti T (ai ).

Now suppose T is a non-singular linear transformation. Then

T (x) = T
∑

ti ai = T (t0a0)+ ...+T (tn an) = t0T (a0)+ ...+ tnT (an) =
∑

ti T (ai ).

Since any affine T is a composition of translations and non-singular linear

transformations, (1) follows. To prove (2), note that the plane through {a0, a1, ..., an} is

precisely the set of all points x in RN such that x =
n∑

i=0
ti ai for some ti ∈Rwith

n∑
i=0

ti = 1.

The plane through {T (a0) ,T (a1) , ...,T (an)} is the set of all points x in RN such that

x =
n∑

i=0
ti T (ai ) for some ti ∈Rwith

n∑
i=0

ti = 1. By (1), T sends the plane through

{a0, a1, ..., an} to the plane through {T (a0) ,T (a1) , ...,T (an)}.

To prove (3), note that the line through {a0, a1} is simply a special case of the plane

through {a0, a1, ..., an} when n = 1. So by (2), T preserves lines through {a0, a1}.

To prove (4), let A be a convex set and let x0, x1 ∈ A. Then by Definition 2.1.1, the

1-simplex {t x0 + (1− t ) x1|0 ≤ t ≤ 1} ∈ A. By part (1),

T ({t x0 + (1− t ) x1}) = {tT (x0)+ (1− t )T (x1)} .



11

So T ([x0x1]) ∈ T (A) and therefore T preserves convex sets.

To prove (6), suppose that T is an invertible linear transformation. Let

{a0, a1, a2, ..., an} be geometrically independent. Then by Theorem 2.2.2,

{a1 −a0, ..., an −a0} is linearly independent. Now suppose we have {b0,b1, ...,bn} such

that

T (b1 (a1 −a0)+ ...+bn (an −a0)) = b1T (a1 −a0)+ ...+bnT (an −a0) = 0.

Since T is injective and T (0) = 0, we have

b1 (a1 −a0)+ ...+bn (an −a0) = 0.

Since {a1 −a0, ..., an −a0} is linearly independent, b1 = b2 = ... = bn = 0. So

{T (a1 −a0) , ...,T (an −a0)} is linearly independent.

Now suppose T is a translation and {a0, a1, a2, ..., an} is geometrically independent.

Then T ({a0, a1, a2, ..., an}) = {a0 + c, a1 + c, a2 + c, ..., an + c}. So by Theorem 2.2.2,

{a1 + c − (a0 + c) , a2 + c − (a0 + c) , ..., an + c − (a0 + c)} = {a1 −a0, a2 −a0, ..., an −a0}

are linearly independent, and therefore {a0, a1, a2, ..., an} are geometrically

independent.

To prove (5), let σ be a simplex spanned by {a0, a1, ..., an}. Then

σ=
{

t0a0 + ...+ tn an

∣∣∣∣∣ti ≥ 0,
n∑

i=0
ti = 1

}
.

By part (1), T (
∑

ti ai ) =∑
ti T (ai ), and by part (6), {T (a0) ,T (a1) , ...,T (an)} is a

geometrically independent set, so

T (σ) =
{

t0T (a0)+ ...+ tnT (an)

∣∣∣∣∣ti ≥ 0,
n∑

i=0
ti = 1

}

is a simplex and T preserves simplices.
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Theorem 2.2.12. Let the set S = {a0, a1, a2, ..., an} ∈RN be a geometrically independent

set and let σ be the simplex spanned by S.

(1) The barycentric coordinates ti (x) of x with respect to {a0, a1, a2, ..., an} are

continuous functions of x.

(2) The n-simplex σ is the union of all line segments joining a0 to points of the

simplex s spanned by {a1, a2, ..., an}. Two such line segments intersect only at a0.

(3) The n-simplex σ is a compact, convex set in RN which equals the convex hull of

{a0, a1, a2, ..., an}.

(4) The interior of σ is convex and is open in the plane P; its closure is σ. Int(σ) is the

union of all open line segments joining a0 to the points of Int(s) where s is the

face of σ opposite a0.

Proof.

(1) Let T be the affine transformation carrying a0 to 0 and ai to εi . Then T carries

x =
n∑

i=0
ti ai to the point (t1, ..., tn ,0, ...,0). Then ti = xi ◦T . Since the barycentric

coordinates ti are the components of the continuous map T , they are

continuous.

(2) First we show that the union of the line segments is in σ. Let

x =
{

n∑
i=1

si ai |si ≥ 0,
n∑

i=1
si = 1

}
be a point on the simplex spanned by {a1, ..., an}.

Then the line segment

{
t0a0 + (1− t0)

n∑
i=1

si ai |0 ≤ t0 ≤ 1

}
is in σ because t0si ≥ 0

and t0 + (1− t0) (s1 + ...+ sn) = 1.

Now we show that σ is in the union of the line segments. Given a point
n∑

i=0
ti ai

in σ with t0 6= 1, set si = ti
1−t0

for i = 1, ...,n. This shows that every point in the

simplex spanned by a0, ..., an , except a0, is in the union of the line segments.
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Clearly a0 is also in the union, since it is in each line segment. Therefore σ is the

union of all line segments from a0 to the simplex spanned by a1, ..., an .

Furthermore, we show that two such line segments intersect only at a0. Clearly

two line segments from a0 to the simplex spanned by a1, ..., an do intersect at

a0. Now suppose they intersect at some other point y . Then the two segments

must lie on the same line L. The other endpoints of the line segments lie on the

simplex spanned by a1, ..., an . But then L must be contained in the simplex

spanned by a1, ..., an . This contradicts the fact that a0 does not lie on the

simplex spanned by a1, ..., an , since {a0, a1, ..., an} are geometrically

independent.

(3) We demonstrate compactness by showing that σ is closed and bounded. The

simplex σ is bounded since∥∥∥∥∥ n∑
i=0

ti ai

∥∥∥∥∥≤ max{t0, ..., tn}max{‖ao‖, ...,‖an‖} ≤ max{‖a0‖, ...,‖an‖} .

The standard n-plane is closed since it is the inverse image of {1} under the

continuous map (xi ) →∑
i

ti and the n-simplex is closed because it is the

intersection of the n-plane and the closed sets ti ≥ 0.

For convexity, suppose that (t0, .., tn) and (s0, ..., sn) are two distinct n-tuples

satisfying ti ≥ 0, si ≥ 0,
∑
i

ti = 1 and
∑
i

si = 1. Then λ (t0, ..., tn)+ (1−λ) (s0, ..., sn)

parametrizes a line segment between these two points for λ ∈ [0,1]. The

corresponding curve

λ
n∑

i=0
ti ai + (1−λ)

n∑
i=0

si ai =
n∑

i=0
(λti + (1−λ) si ) ai

is a line segment connecting
n∑

i=0
ti ai to

n∑
i=0

si ai . Since ti and si are non-negative

and sum to 1, and since λ ∈ [0,1], we have that λti + (1−λ) si is also

non-negative and sums to 1. So σ is convex.
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To show that σ is the convex hull of {a0, ..., an}, we apply Theorem 2.1.2 and

show that σ is the intersection of all convex sets containing {a0, ..., an}. Suppose

S is a convex set containing a0, ..., an . Then for every point x =
n∑

i=0
ti ai ∈σ, we

can show that x ∈ S as follows. By convexity, since a0 and a1 are in S, we have

that b1 = t0
t0+t1

a0 + t1
t0+t1

a1 must also be in S. Therefore,

b2 = t0 + t1

t0 + t1 + t2
b1 + t2

t0 + t1 + t2
a2

= t0

t0 + t1 + t2
a0 + t1

t0 + t1 + t2
a1 + t2

t0 + t1 + t2
a2

is also in S. Continuing in this manner, we find

bn = t0

t0 + ...+ tn
a0 + ...+ tn

t0 + ...+ tn
an ∈ S,

but
n∑

i=0
ti = 1, so x ∈ S. Then σ is contained in every convex set containing

{a0, ..., an}.

(4) The barycentric coordinates ti are continuous functions from the plane P

spanned by vertices of σ to R. The preimage of the open interval (0,∞) under

each ti is therefore open in P . The interior of σ is the intersection of these

finitely many open sets and therefore it is open.

The interior of σ is convex since the convex combination (1− t ) x + t y of any

x, y ∈ Int(σ) is in Int(σ).

(1− t ) x + t y = (1− t )
n∑

i=0
ti ai + t

n∑
i=0

si ai

=
n∑

i=0
((1− t ) ti + t si ) ai

and if ti and si are positive, so is (1− t ) ti + t si .

Since σ is closed, the closure of Int(σ) is a subset of σ. On the other hand if a

point x ∈ Bd(σ) is not in the closure of Int(σ), one can construct a sequence of

points in Int(σ) which converges to x as follows.
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Without loss of generality, assume that x =
n∑

i=0
ti ai , and ti (x) > 0 for 0 ≤ i ≤ k

and tk+1 (x) = ... = tn (x) = 0.

Let r = min{ti (x) |0 ≤ i ≤ k }/2 and let xm =
k∑

i=0

(
ti (x)− r

m(k+1)

)
ai +

n∑
i=k+1

r
m(n−k) .

Then xm ∈ Int(σ) and the sequence converges to x.

Finally, we show that Int(σ) equals the union of open line segments which join a

vertex a0 to points in the interior of the opposite face. Let x be an interior point

of σ so that x =
n∑

i=0
ti ai with ti > 0 and

∑
ti = 1.

Rewrite this as x = t0ao + (1− t0)
n∑

i=1

ti
1−t0

ai . Therefore x is on an open line

segment joining a0 to a point on the face opposite a0.

Definition 2.2.13. If w ∈RN , then a ray R emanating from w is the set of all points of

the form w + t p where p is a fixed point of RN −~0 and t ranges over the nonnegative

real numbers.

Theorem 2.2.14. Let U be a bounded, convex open set in RN . Let w ∈U .

(1) Each ray emanating from w intersects Bd(U ) =U −U in precisely one point.

(2) There is a homeomorphism from U to B n carrying Bd(U ) onto Sn−1.

Proof. To prove (1), given a ray R emanating from w , R∩U is convex, bounded and

open in R. Hence R∩U consists of all points of the form w + t p where t ∈ [0, a). Then

R intersects U −U at the point x = w +ap. Suppose R intersects U −U at another

point, say y . Then x lies between w and y on R (see Figure 2.2.4). So x = (1− t ) w + t y

where 0 < t < 1, and w = x−t y
1−t . Choose a sequence yn of points of U converging to y and

define wn = x−t yn
1−t . Since wn → w and U is open, wn ∈U for some n. But

x = t wn + (1− t ) yn and the point x ∈U because U is convex; contradiction.
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Figure 2.2.4: Each ray emanating from a point in a convex set intersects the boundary of
the convex set in precisely one point.
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To prove (2), assume w = 0. We may define a continuous map f of Rn −~0 onto Sn−1

by f (x) = x
‖x‖ . By part 1, f restricts to a bijection of Bd(U ) with Sn−1. Since Bd(U ) is

compact, this restriction is a homeomorphism; so let g : Sn−1 → Bd(U ) be its inverse.

Extend g to a bijection G : B n →U by letting G map the line segment joining~0 to the

point u of Sn−1 linearly onto the line segment joining~0 to g (u), i.e. define

G (x) =


∥∥∥∥g

(
x

‖x‖
)∥∥∥∥x if x 6= 0

~0 if x = 0

G is continuous at x = 0 because if M is a bound for
∥∥g (x)

∥∥ then ‖x −0‖ < δ implies

‖G (x)−G (0)‖ < Mδ. It is continuous elsewhere because G is differentiable at any

x 6= 0.

As a special case of Theorem 2.2.14, we have

Corollary 2.2.15. Let σ be an n-simplex in RN . There is a homeomorphism of σ with the

unit ball B n that carries Bd(σ) onto the unit sphere Sn−1.

2.3 Simplicial complexes in RN

Definition 2.3.1. A simplicial complex K in RN is a collection of simplices in RN such

that

(1) Every face of a simplex of K is in K ; and

(2) The intersection of any two simplices of K is a face of each of the two simplices.

Example 2.3.2. Figures 2.3.1 and 2.3.2 provide examples of simplicial complexes.

Figure 2.3.3 is an example of a collection of simplices which does not form a simplicial

complex.
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Figure 2.3.1: A simplicial complex.

Figure 2.3.2: A simplicial complex.

Figure 2.3.3: A collection of simplices which do not form a simplicial complex. The figure
above is not a simplicial complex because the intersection of the two 1-simplices is not
a face of either simplex.
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Theorem 2.3.3. Let K be a collection of simplices in RN such that (1) every face of a

simplex K is in K . Then the following are equivalent:

(2) The intersection of two simplices of K is a face of each of the two simplices.

(2’) Every pair of distinct simplices of K has disjoint interiors.

Proof. Assume K is a simplicial complex. Given two simplices σ and τ of K , suppose

their interiors have a point x in common. Let s =σ∩τ. If s were a proper face of σ, then

x would belong to Bd(σ), which it does not. Therefore, s =σ. Similarly s = τ.

Now assume (1) and (2′) are true. We show that if σ and τ are simplices in K and

σ∩τ is nonempty, then σ∩τ is the face σ′ of σ spanned by those vertices b0,b1, ...,bm

of σ that lie in τ. First, σ′ is contained in σ∩τ because σ∩τ is convex and contains

b0,b1, ...,bm . Suppose x ∈σ∩τ. Then x ∈ Int(s)∩ Int(t ) for some face s of σ and t of τ.

Since we assume that distinct simplices of K have disjoint interiors, then s = t , and so

the vertices of s lie in τ, so by definition, the vertices of s are elements of b0,b1, ...,bm .

Then s is a face of σ′, so x ∈σ′.

Definition 2.3.4. If L is a subcollection of K that contains all faces of its elements, then

L is a simplicial complex. It is called a subcomplex of K . One subcomplex of K is the

collection of all simplices of K of dimension at most p, called the p-skeleton of K and is

denoted K (p). The points of the collection K (0) are called vertices of K .

Definition 2.3.5. Let K be a simplicial complex. Let |K | be the subset of RN that is the

union of the simplices of K . We give each simplex σ its natural topology as a subspace

of RN . We then topologize |K | by declaring that a subset A of |K | is closed in |K | if and

only if A∩σ is closed in σ for all σ ∈ K . This defines a topology on |K | called the

CW-topology. This is indeed a topology because the collection of all such subsets A is

closed under finite unions and arbitrary intersections. The space |K | with the subspace

topology inherited from RN is called the underlying space of K or the polytope of K . A
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space that is the polytope of a simplicial complex is a polyhedron.

Theorem 2.3.6. Let K be a simplicial complex and let |K | be the underlying space of K .

Every set which is closed in the topology on |K | as a subspace of RN is also closed in the

CW-topology on |K |.

Proof. Let K be a simplicial complex and let |K | be the underlying space of K . Suppose

A is a subset of |K | which is closed in the subspace topology. Then A = B ∩|K | for some

B closed in RN . Then for any simplex σ ∈ K , we have to show that A∩σ is closed in σ,

i.e. that B ∩|K |∩σ is closed in σ, i.e. that B ∩σ is closed in σ.

Example 2.3.7 (Counterexample to the Converse of Theorem 2.3.6). Let D be a disc in

R2. It can be thought of as the set union of all its radii, which are nothing but

1-simplices. Denote one of the radii as σ̂. Consider the subset D̂ = {D \ σ̂}∪ {0}. For any

radius σ 6= σ̂, D̂ ∩σ=σ. Also, D̂ ∩σ̂ gives the centre of the disc, which is a 0-simplex that

is closed in σ̂. So D̂ is closed in the CW complex. However, note that D̂ is not closed in

the subspace topology that D inherits from R2. This is illustrated in Figure 2.3.4.

Figure 2.3.4: An example of a set which is closed in the CW-topology, but not in the
subspace topology.

Definition 2.3.8. Let K be a simplicial complex. If v is a vertex of K , the star of v in K is

the union of the interiors of those simplices of K that have v as a vertex. The star of v in
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K is denoted St(v) or St(v,K ). Its CW-closure, St(v) is called the closed star of v in K . It

is the union of all simplices of K having v as a vertex. St(v)−St(v) is the link of v in K ,

denoted link(v).

Example 2.3.9. Figure 2.3.5a illustrates the star of a vertex. The star of a vertex, v , is the

interiors of all the simplices containing v . Note that the star of a vertex v is not a

simplicial complex unless v is isolated (not in any simplices other than itself). The

closed star, however, is a simplicial complex, as pictured in Figure 2.3.5b. The closed

star includes all simplices touching the vertex. The link of a vertex is the boundary of

the closure of the star as shown in Figure 2.3.5c. The link of a vertex is a simplicial

complex.

(a) A vertex and its star.

(b) A vertex and its closed star.

(c) A vertex and its link.

Figure 2.3.5: Stars and links of vertices.
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2.4 Simplicial maps

Theorem 2.4.1. Let K be a simplicial complex. Every simplex σ ∈ K is a subspace of K

under the CW -topology.

Proof. Let K be a simplicial complex and let σ be a simplex in K endowed with the

CW-topology T . For any closed set B ∈ (K ,T ), B ∩σ is closed in σ because K is

endowed with the CW-topology.

Conversely, suppose we have a set V ⊂σ closed in the intrinsic topology of σ. We

need to show V =σ∩B for some B closed in K . Consider B =V . Then, note that V ∩τ is

closed in τ for each simplex τ, because V ∩τ⊂ (V ∩σ)∩τ, a subspace of σ.

Therefore every simplex σ ∈ K is a subspace of K under the CW-topology.

From this point on, for the simplicial complex K , assume |K | has the CW-topology.

Theorem 2.4.2. Let K be a simplicial complex and let X be a topological space. A map

f : |K |→ X is continuous on the polyhedron |K | of K if and only if the restriction of f to

each simplex σ of K is continuous on that simplex.

Proof. Assume f : |K |→ X is continuous on |K |. Then, from Theorem 2.4.1, we know

that any simplex σ of K is closed under the CW-topology. We define the restriction of f

to σ as f |σ :σ→ X . For any closed set B ⊂ X , we have that
(

f |σ
)−1

(B) =σ∩ f −1 (B) (as a

property of inverse image). However, since f is continuous, f −1 (B) is closed in |K |.
Therefore,

(
f |σ

)−1
(B) is closed in σ and f |σ is continuous.

Now assume that f |σ :σ→ X is continuous on σ for all σ. If B is a closed set of X ,

then f −1 (B)∩σ= (
f |σ

)−1
(B), which is closed in σ by continuity of f |σ. Thus f −1 (B) is

closed in |K | by definition of the CW-topology, and f is continuous.

Theorem 2.4.3. Let K and L be complexes and let f : K (0) → L(0) be a map. Suppose

whenever vertices v0, v1, ..., vn of K span a simplex of K , the points f (v0) , f (v1) , ..., f (vn)
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are vertices of a simplex of L. Then f can be extended to a continuous map g : |K |→ |L|
such that x =

n∑
i=0

ti vi implies that g (x) =
n∑

i=0
ti f (vi ). The map g is called the linear

simplicial map induced by the vertex map f .

Proof. The map g maps the n-simplex σ spanned by v0, v1, ..., vn continuously to the

simplex τ whose vertex set is f (v0) , f (v1) , ..., f (vn). We also see that g is continuous as

a map of σ into τ and hence as a map of σ into |L|. So by Theorem 2.4.2, g is continuous

as a map from |K | into |L|.

Note that the composition of two simplicial maps, h ◦ g , is a simplicial map as well.

Definition 2.4.4. Suppose f : K (0) → L(0) is a bijective correspondence such that

v0, v1, ..., vn of K span a simplex of K if and only if f (v0) , f (v1) , ..., f (vn) span a simplex

of L. The map g : |K |→ |L| is a simplicial homeomorphism or an isomorphism of K

with L.

Theorem 2.4.5. Suppose f : K (0) → L(0) is a bijection such that v0, v1, ..., vn of K span a

simplex of K if and only if f (v0) , f (v1) , ..., f (vn) span a simplex of L. Then the induced

simplicial map g : |K |→ |L| is a homeomorphism.

Proof. (1) Since f is bijective and f : K (0) → L(0) is a bijection such that v0, v1, ..., vn

of K span a simplex of K if and only if f (v0) , f (v1) , ..., f (vn) span a simplex of L,

f −1 induces a linear simplicial map h.

(2) Note that if x =∑
ti vi then g (x) =∑

ti f (vi ) where

h
(
g (x)

)= h
(∑

ti f (vi )
)=∑

ti f −1 (
f (vi )

)=∑
ti vi = x.

So h and g are inverses on any simplex of K and therefore on all of |K |.
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Corollary 2.4.6. Let ∆N denote the complex of an N -simplex and its faces. If K is a finite

complex then K is isomorphic to a subcomplex of ∆N for some N .

Proof. Let v0, v1, ..., vN be vertices of K . Then choose a0, a1, ..., aN to be geometrically

independent points in RN and let ∆N consist of the N -simplex they span along with its

faces. The vertex map f (vi ) = ai induces an isomorphism of K with a subcomplex of

∆N , as described in Theorem 2.4.5.

Definition 2.4.7. The dimension of K , denoted dim(K ), is the largest dimension of a

simplex of K . If K ∈RN then dim(K ) ≤ N .

Definition 2.4.8. A simplicial n-complex is a simplicial complex where the largest

dimension of any simplex in the complex is n.

2.5 Abstract simplicial complexes

Definition 2.5.1. A partial order, ¹ is a binary relation which is reflexive (x ¹ x),

anti-symmetric (if x ¹ y then y � x) and transitive (if x ¹ y and y ¹ z then x ¹ z). A

poset is a set with a partial order.

Definition 2.5.2. The upset of a partially ordered set (X ,¹) is a subset U with the

property that if x ∈U and x ¹ y then y ∈U . Similarly, a downset is a subset L with the

property that if x ∈ L and y ¹ x then y ∈ L.

Example 2.5.3. Figure 2.5.1 illustrates the Boolean lattice (collection of all subsets,

ordered by inclusion) of the set
{

x, y, z
}

with the upset ↑ x highlighted, where

↑ x = {
y ∈ X

∣∣y º x
}
.

Definition 2.5.4. An abstract simplicial complex is a collection S of finite non-empty

sets such that if A is an element of S , so is every non-empty subset of A. So S is a
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Figure 2.5.1: An upset of the powerset of
{

x, y, z
}
.
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downset in some Boolean lattice. If S is a abstract simplicial complex, then A ∈S is

called a simplex of S and its dimension is one less than the number of its elements.

Each non-empty subset of A is called a face of A. The dimension of S is the largest

dimension of one of its simplices (or ∞). The vertex set V of S is the union of

one-point elements of S . A subcollection of S that is itself a complex is called a

subcomplex of S .

In other words, to define a simplicial complex S we:

(1) Choose the vertex set V of S (these are the 0-cells of S),

(2) For 1 ≤ k ≤ n, specify which k-subsets of V are in S,

(3) Check that S is actually a downset.

Definition 2.5.5. The abstract simplicial complexes S and T are isomorphic if there

is a bijection f mapping vertices of S to vertices of T such that

{a0, a1, ..., an} ∈S

if and only if {
f (a0) , f (a1) , ..., f (an)

} ∈T .

Definition 2.5.6. Let K be a simplicial complex in RN . If K is the collection of all

subsets {a0, a1, ..., an} of the vertex set V , such that a0, a1, ..., an span a simplex of K then

K is the vertex scheme of K .

Theorem 2.5.7.

(1) Every finite abstract complex S is isomorphic to the vertex scheme of some

simplicial complex K ∈RN .
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(2) Two simplicial complexes in RN are linearly isomorphic if and only if their vertex

schemes are isomorphic.

Proof. The proof of part (2) follows directly from Theorem 2.4.5.

We proceed with the proof of part (1). Given an index set J , let ∆J be the collection

of all simplices in EJ spanned by finite subsets of the standard basis εα for EJ . It is clear

that ∆J is a simplicial complex; if σ and τ are two simplices of ∆J then their combined

vertex set is geometrically independent and spans a simplex of ∆J .

Let S be an abstract complex with finite vertex set V . Choose an index set J large

enough so there is an injective function f : V → {εα |α ∈ J }. We specify a subcomplex K

of ∆J by the condition that for each abstract simplex a0, ..., an ∈ S, the geometric

simplex spanned by f (a0) , ..., f (an) is to be in K . Then it follows that K is a simplicial

complex and S is isomorphic to the vertex scheme of K . The function f is the required

correspondence between vertex sets.

Definition 2.5.8. If S is isomorphic with the vertex scheme of the simplicial complex

K , we call K a geometric realization of S . By Theorem 2.4.6, K is well-defined up to

homeomorphism.

Example 2.5.9. Figure 2.5.2 demonstrates the geometric realization of a simplicial

complex, resulting in a cylinder.

Figure 2.5.2: The geometric realization of a simplicial complex. The simplicial complex
is on the left with its geometric realization as a cylinder on the right.
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Definition 2.5.10. Given a finite abstract simplicial complex, L, a labelling of the

vertices of L is a bijective function f mapping the set of L to a set of labels L . Let S be

the simplicial complex with vertex set L and {b0,b1, ...,bk } a simplex of S if and only if

{b0,b1, ...,bk } = {
f (a0) , f (a1) , ..., f (an)

}
for some simplex {a0, a1, ..., an} in L. If K is the geometric realization of S , then K is the

complex derived from the labelled complex L and g : |L|→ |K | is the associated

pasting map. The map g is a closed quotient map.

Definition 2.5.11. If L is a complex, a subcomplex L0 of L is said to be a full

subcomplex of L if each simplex of L whose vertices belong to L0 belongs to L0 itself.

Example 2.5.12. Figure 2.5.3 depicts a full subcomplex of the exterior of a tetrahedron.

A triangle with interior is a full subcomplex, but a triangle without interior is not a full

subcomplex of a tetrahedron.

Figure 2.5.3: A full subcomplex. Suppose L is the exterior of a tetrahedron. Then L1,
the exterior of a triangle is not a full subcomplex of L, but L2, the triangle including its
interior, is a full subcomplex of L.

Theorem 2.5.13. Let L be a complex. Let f be a labelling of L. Let g : |L|→ |K | be the

pasting map induced by f . Let L0 be a full subcomplex of L. Suppose that whenever v

and w are vertices of L with the same label (i.e. f (v) = f (w)), we have that
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• v and w belong to L0, and

• St(v) and St(w) are disjoint.

Then dim
(
g (σ)

)= dim(σ) for all simplices σ ∈ L. If g (σ1) = g (σ2), then σ1 and σ2 must

be disjoint simplices belonging to L0.

Proof. Suppose that dim
(
g (σ)

) 6= dim(σ) for some simplex σ ∈ L. Then, because g is a

function sending vertices to vertices, dim
(
g (σ)

)
≯ dim(σ).

So we suppose dim(σ) > dim
(
g (σ)

)
. So there exists a vertex w ∈ g (σ) such that

there is more than one vertex v ∈ L such that g (v) = w . Say v1 and v2 are two such

vertices. But v1v2 ∈ St(v1) and v1v2 ∈ St(v2). Contradiction.

Suppose g (σ1) = g (σ2) but σ1 and σ2 are not disjoint, i.e. they share v as a common

vertex. Let u1 be another vertex in σ1 and let u2 be another vertex in σ2 such that

g (u1) = g (u2). But v ∈ St(u1) and v ∈ St(u2). Contradiction.
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CHAPTER 3

HOMOLOGY OF SIMPLICIAL COMPLEXES

3.1 Oriented simplices

Definition 3.1.1. Let σ be a simplex. Define two orderings of its vertex set to be

equivalent if they differ by even permutation. If dim(σ) > 0 the orderings fall into two

equivalence classes, and each class is called an orientation of σ. If dim(σ) = 0, then

there is only one equivalence class. An oriented simplex is a simplex σ with an

orientation.

Definition 3.1.2. If v0, v1, ..., vp are geometrically independent, then let v0v1v2...vp be

the simplex spanned by v0, v1, ..., vp and let
[
v0, v1, ..., vp

]
be called the ordered simplex

and equivalence class of the ordering
(
v0, v1, ..., vp

)
.

Example 3.1.3. Figure 3.1.1 illustrates examples of oriented simplices of various

dimension.

Figure 3.1.1: An oriented 1-simplex and 2-simplex.

Definition 3.1.4. Let K be a simplicial complex. A p-chain on K is a function c from

the set of oriented p-simplices to Z such that

• c (σ) =−c
(
σ′) if σ and σ′ are the same simplex, with opposite orientation.
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• c (σ) = 0 for all but finitely many oriented p-simplices σ.

Definition 3.1.5. The group resulting from adding the values of p-chains is called the

group of (oriented) p-chains of K , denoted Cp (K ).

Definition 3.1.6. If σ is an oriented simplex, the elementary chain, c, corresponding to

σ is defined by

c (τ) =



1 if τ=σ,

−1 if τ=σ′,

0 otherwise.

Theorem 3.1.7. The group of oriented p-chains of K , Cp (K ), is a free abelian group. A

basis for Cp (K ) can be found by orienting each p-simplex and using their corresponding

elementary chains as a basis.

Proof. Each p-chain can be written as a linear combination of elementary chains σi via

c =∑
niσi . The chain c assigns the value

c =



ni to the oriented p-simplex σi ,

−ni to the opposite orientation of σi ,

0 to all oriented p-simplices not included in the summation.

C0 (K ) has a natural basis (since a 0-simplex has only one orientation) but in general

Cp (K ) has no natural basis if p > 0. One must start by orienting the p-simplices of K to

obtain a basis.

Corollary 3.1.8. Any function f from the oriented p-simplices of K to an abelian group

G extends uniquely to a homomorphism Cp (K ) →G provided

f (−σ) =− f (σ) (3.1)

for all p-simplices σ.
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Proof. Given (3.1), pick an orientation of each of the p-simplices to obtain a basis for

Cp (K ). Then we apply the universal property of free abelian groups: for every arbitrary

function f from B to some abelian group A, there exists a unique group

homomorphism from F to A which extends f . (See Hungerford Theorem 1.1 and the

remarks following it [Hun80, pages 72–73]).

Definition 3.1.9. The boundary operator ∂p : Cp (K ) →Cp−1 (K ) is defined

∂pσ= ∂p
[
v0, v1, ..., vp

]= p∑
i=0

(−1)i [
v0, ..., v̂i , ..., vp

]
, (3.2)

where v̂i means the vertex vi is to be deleted from the list. Since Cp (K ) is the trivial

group for p < 0, ∂p is the trivial homomorphism for p ≤ 0.

Example 3.1.10. The boundary of a 1-simplex [v0, v1] is

∂1 [v0, v1] = v1 − v0.

Example 3.1.11. The boundary of the 2-simplex [v0, v1, v2] in Figure 3.1.2 is

∂1 [v0, v1, v2] = [v1, v2]− [v0, v2]+ [v0, v1] .

Figure 3.1.2: An oriented 2-simplex and its boundary.
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Example 3.1.12. The boundary of the boundary of a 2-simplex is 0, since

∂1∂2 [v0, v1, v2] = ∂1 ([v1, v2]− [v0, v2]+ [v0, v1])

= v2 − v1 − (v2 − v0)+ v1 − v0

= 0.

Theorem 3.1.13. The composition of two boundary maps is 0, i.e., ∂p−1∂p = 0.

Proof. Let ∂p−1 and ∂p = 0 be boundary maps. Then

∂p−1∂p
[
v0, v1, ..., vp

]=∑
(−1)i ∂p−1

[
v0, ..., vi , ..., vp

]
=∑

(−1)i (−1) j [
..., v j , ..., vi , ...

]+∑
(−1)i (−1) j−1 [

..., vi , ..., v j , ...
]

, (3.3)

and the terms in the two sums in (3.3) cancel in pairs.

Definition 3.1.14. The kernel of ∂p : Cp (K ) →Cp−1 (K ) is called the group of p-cycles

and is denoted Zp (K ). The image of ∂p+1 : Cp+1 (K ) →Cp (K ) is called the group of

p-boundaries and is denoted ∂p+1 (K ). The p th homology group of K is defined

Hp (K ) = Zp (K )/∂p+1 (K ) , (3.4)

or, equivalently,

Hp (K ) = ker
(
∂p

)
/im

(
∂p+1

)
. (3.5)

Definition 3.1.15. We say that a chain c is carried by a subcomplex L of K if c has value

0 on every simplex that is not in L. Two p-chains c and c ′ are called homologous if

c − c ′ = ∂p+1d for some p +1 chain d . If c = ∂p+1d , we say c is zero-homologous.

Example 3.1.16. The two chains, c1 and c2, in Figure 3.1.3 and 3.1.4 are homologous

since c2 − c1 = ∂ (S). (One must imagine that the shaded areas are filled with triangles).
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Figure 3.1.3: Homologous p-chains.

Figure 3.1.4: Homologous p-chains.
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3.2 Examples of homology computations

Example 3.2.1. Let L be the complex in Figure 3.2.1, whose underlying space is a

rectangle. Let Bd(L) denote the complex whose space is the boundary of the rectangle.

Orient each 2-simplex σi of L by a counterclockwise arrow. Orient the 1-simplices

arbitrarily. Then

(1) Every 1-cycle of L is homologous to a 1-cycle carried by Bd(L),

(2) If d is a 2-chain of L and if ∂d is carried by Bd(L), then d is a multiple of the

chain
∑
σi , where the sum is over all the simplices.

Figure 3.2.1: A complex whose underlying space is a rectangle, illustrating Example 3.2.1.

Proof. If σi and σ j have an edge in common, then ∂d must have a value of 0 on e, as

illustrated in Figure 3.2.1. It follows that d must have the same value on σi as it does on

σ j . Continuing, we see that d has the same value on every oriented 2-simplex σi ,

proving (2). For (1), start with a 1-chain c of L and push it off the 1-simplices, one at a

time. First, one shows that c is homologous to a 1-chain c1 carried by the subcomplex

pictured in Figure 3.2.2. Then one shows that c1 is homologous to a 1-chain c2 carried
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by the subcomplex pictured in Figure 3.2.1. Finally, one notes that in the case where the

original chain c is a cycle, then the chain c2 is also a cycle. So c2 must be carried by

Bd(L), otherwise c2 would have a non-zero coefficient on one or more of

v1, v2, ..., v5.

Figure 3.2.2: Illustration of the proof of Example 3.2.1.

Example 3.2.2. Let T be the complex represented by the labeled rectangle in Figure

3.2.3, whose underlying space is a torus. Then H1 (T ) ∼=Z⊕
Z and H2 (T ) ∼=Z. Orient

each 2-simplex of L counterclockwise; use the induced orientation of the 2-simplices of

T ; let γ denote their sum. Let w1 = [a,b]+ [b,c]+ [c, a] and z1 = [a,d ]+ [d ,e]+ [e, a].

Then γ generates H2 (T ) and w1 and z1 represent a basis for H1 (T ).

Proof. Let g : |L|→ |T | be the pasting map. Let A = g (|Bd(L)|). Then A is

homeomorphic to a space that is the wedge of two circles. Orient the 1-simplices of T

arbitrarily. Since g makes identifications only among simplices of Bd(L),

(1) Every 1-cycle of T is homologous to a 1-cycle carried by A,

(2) If d is a 2-chain of T and if ∂d is carried by A, then d is a multiple of γ (from

3.2.1),
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Figure 3.2.3: A complex whose underlying space is a torus.
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(3) If c is a 1-cycle of T carried by A, then c is of the form nw1 +mz1 (since A is just

the 1-dimensional complex pictured in Figure 3.2.4),

(4) ∂γ= 0.

Figure 3.2.4: A is a 1-dimensional complex.

It is clear that ∂γ= 0 on every 1-simplex of T not in A. One can also directly check that

it has value 0 on each 1-simplex of A. For example, [a,b] appears in the expression for

∂σ1 with value −1 and in ∂σ2 with value +1 so ∂γ has value 0 on [a,b]. Now we can

compute the homology of T . Every 1-cycle of T is homologous to a 1-cycle of the form

c = nw1+mz1 by (1) and (3). Such a cycle bounds only if it is trivial. If c = ∂d for some d

then (2) applies to show d = ∂γ for some p since ∂γ= 0 by (4), we have c = ∂d = 0. We

conclude H1 (T ) ∼=Z⊕
Z and the 1-cycles w1 and z1 form a basis for the 1-dimensional

homology. To compute H2 (T ), note that any 2-cycle d of T must be of the form pγ for

some p by (2). Each such 2-chain is a cycle, by (4), and there are no 3-chains for it to

bound. So H2 (T ) ∼=Z and this group has the 2-cycle γ as a generator.

3.3 Singular homology

Definition 3.3.1. A singular n-simplex in a space X is a continuous map σ :∆n → X .

The fact that the n-simplex is singular expresses that idea that σ may not be a nice

embedding, but may have singularities where its image does not look at all like a
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simplex. The map σ need not be injective, so there can be non-equivalent singular

n-simplices with the same image in X . Many of the definitions for singular homology

are analogous to those for simplicial homology, as we will see below.

Definition 3.3.2. A singular n-chain is a finite sum
∑

niσi for ni ∈Z and σi :∆n → X .

The n-chains are elements of the free abelian group Cn (X ) whose basis is the set of

singular n-simplices in X .

Definition 3.3.3. A boundary homomorphism is a map ∂n : Cn (X ) →Cn−1 (X ) whose

basis elements are

∂n (σ) =
∑

i
(−1)i σ| [v0, ..., v̂i , ..., vn]. (3.6)

Theorem 3.3.4. The composition ∂n−1∂n is zero.

Proof. Let ∂n : Cn (X ) →Cn−1 (X ) be a boundary homomorphism. Then

∂n−1∂n (σ) =
∑
j<i

(−1)i (−1) j σ
[
v0, ..., v̂ j , ..., v̂i , ...vn

]
+ ∑

i< j
(−1)i (−1) j−1σ

[
v0, ..., v̂i , ..., v̂ j , ..., vn

]
= ∑

j<i
(−1)i (−1) j σ

[
v0, ..., v̂ j , ..., v̂i , ...vn

]
+ ∑

j<i
(−1) j (−1)i−1σ

[
v0, ..., v̂ j , ..., v̂i , ..., vn

]
= ∑

j<i
(−1)i (−1) j σ

[
v0, ..., v̂ j , ..., v̂i , ...vn

]
− ∑

j<i
(−1) j (−1)i σ

[
v0, ..., v̂ j , ..., v̂i , ..., vn

]= 0.

Since the composition of two singular boundary homomorphism is zero, just as in

the case for simplicial homology, we can define the singular homology groups in the

same way as we did for simplicial homology.
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Definition 3.3.5. The nth singular homology group is the quotient group

Hn (X ) = ker∂n/im∂n+1, (3.7)

or, equivalently,

Hn (X ) = Zn (X )/∂n+1 (X ) , (3.8)

where Zn (X ) is the group of singular n-cycles and ∂n+1 (X ) is the group of singular

n-boundaries.

Theorem 3.3.6. The simplicial and singular homology groups of simplicial ∆-complexes

are always isomorphic.

The proof of Theorem 3.3.6 is discussed in Hatcher [Hat02, pages 127–129].

3.4 Example: simplicial chain complexes for a Möbius strip

Let X be the complex represented by the labeled rectangle in Figure 3.4.1, whose

underlying space is a Möbius strip.

Figure 3.4.1: A complex whose underlying space is a Möbius strip.

The chain groups are

C0 (X ) = span
{

xa , xb , xc , xd , xe , x f
}

,

C1 (X ) = span
{

xab , xad , xae , xa f , xbc , xbe , xcd , xce , xc f , xde , xd f , xe f
}

,

and

C2 (X ) = span
{

xabe , xade , xad f , xbce , xcd f , xce f
}

.
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Then the boundary map C1
∂1−→C0 can be expressed as the 6 x12 matrix A∂ where

A∂ =



−1 −1 −1 −1 0 0 0 0 0 0 0 0

1 0 0 0 −1 −1 0 0 0 0 0 0

0 0 0 0 1 0 −1 −1 −1 0 0 0

0 1 0 0 0 0 1 0 0 −1 −1 0

0 0 1 0 0 1 0 1 0 1 0 −1

0 0 0 1 0 0 0 0 1 0 1 1


.

Here the rows represent the 0-simplices xa , xb , xc , xd , xe and x f respectively, and the

columns represent the 1-simplices. So the first column represents the boundary of the

1-simplex xab , which is ∂1 (xab) = xb −xa .

Then it can be verified that the rank of A∂ is 5, so the dimension of A∂ is 5 and the

codimension of A∂ is 1.

The boundary map A∂ acts on the set of all oriented 1-simplices, which can be
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represented by the matrix B , where

B =



xab

xad

xae

xa f

xbc

xbe

xcd

xce

xc f

xde

xd f

xe f



.

Then the product A∂B is

A∂B =



−xab −xad −xae −xa f

xab −xbc −xbe

xbc −xcd −xce −xc f

xad +xcd −xde −xd f

xae +xbe +xce +xde −xe f

xa f +xc f +xd f +xe f


.

Similarly, the boundary map C2
∂2−→C1 can be expressed as the 12 x 6 matrix D∂
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where

D∂ =



1 0 0 0 0 0

0 1 1 0 0 0

−1 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

1 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 1 0 1

0 0 0 0 −1 −1

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 1



.

Here the rows represent the 1-simplices and the columns represent the 2-simplices, so

the first column represents the boundary of the 2-simplex xabe , which is

∂2 (xabe ) = xab −xae +xbe . Note that the rank of D∂ is 6 and the codimension of D∂ is

also 6.

The property that ∂n−1 ◦∂n = 0 in Theorem 3.1.13 can be verified by taking the

matrix product A∂D∂.

Then D∂ acts on the set of all oriented 2-simplices, which can be represented by the
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matrix E , where

E =



xabe

xade

xad f

xbce

xcd f

xce f


.

Then the product D∂E is

D∂E =



xabe

xade +xad f

−xabe −xade

−xad f

xbce

xabe −xbce

xcd f

xbce +xce f

−xcd f −xce f

xade

xad f +xcd f

xce f



.

Then the chain complex for the Möbius strip is detailed below in Figure 3.4.2.

Note that the dimension of C2 is 6 since C2 contains six 2-simplices, namely

xabe , xade , xad f , xbce , xcd f , and xce f . The dimension of C1 is 12 since C1 contains twelve

1-simplices, namely xab , xad , xae , xa f , xbc , xbe , xcd , xce , xc f , xde , xd f , and xe f .

Furthermore, the dimension of C0 is 6 since C0 is composed of the six 0-simplices

xa , xb , xc , xd , xe , and x f . Then we can compute the homology groups of the Möbius
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Figure 3.4.2: The chain complex for the Möbius strip.

strip. Recall that the definition of a homology group from (3.7) is

Hn = ker∂n/im∂n+1,

and so

dim(Hn) = null (∂n)− rank(∂n+1) .

Then we find that dim H2 = 0, dim H1 = 1 and dim H0 = 1, so the homology groups of

the Möbius strip are H2 ≈ 0, H1 ≈Z and H0 ≈Z.
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CHAPTER 4

LONG EXACT SEQUENCES AND LOCAL HOMOLOGY

4.1 Homotopy

Definition 4.1.1. A homotopy between two continuous functions f and g from a

topological space X to a topological space Y is defined to be a continuous function

H : X × [0,1] → Y such that if x ∈ X then H (x,0) = f (x) and H (x,1) = g (x). The

function H describes a continuous deformation of f into g .

Definition 4.1.2. Two functions are said to be homotopic if there exists a homotopy

between them.

Example 4.1.3. The two bold paths in Figure 4.1.1 are homotopic relative to their

endpoints, and the thin blue lines illustrate a homotopy parametrized at a few arbitrary

values in [0,1].

Figure 4.1.1: Homotopic paths. The paths c0 and c1 are homotopic relative to their
endpoints.

Definition 4.1.4. Given two spaces X and Y , we say that they are homotopy equivalent

if there exist continuous maps f : X → Y and g : Y → X such that g ◦ f is homotopic to

the identity map idX and f ◦ g is homotopic to idY .
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Theorem 4.1.5. Homotopy equivalence is an equivalence relation.

Proof. We need to check that homotopy equivalence is reflexive, symmetric, and

transitive. Homotopy equivalence is reflexive because the map H : X × [0,1] → X ,

H (x, t ) = f (x) is a homotopy from f to f .

Next we show that homotopy equivalence is symmetric. Suppose F : X × [0,1] → X

is a homotopy from f to g . Then the map G : X × [0,1] → X , where

G (x, t ) = F (x,1− t ) ,

is a homotopy from g to f .

Finally, we show that homotopy equivalence is transitive. Suppose F : X × [0,1] → X

is a homotopy from f to g , and G : X × [0,1] → X is a homotopy from g to h. Then the

map H : X × [0,1] → X , where

H (x, t ) =


F (x,2t ) if 0 ≤ t ≤ 1/2

G (x,2t −1) if 1/2 ≤ t ≤ 1

is a homotopy from f to h.

Example 4.1.6. The circle, the annulus, and the open cylinder (not including the lids)

are homotopy equivalent (see Figure 4.1.2).

Example 4.1.7. The simplicial complex pictured in Figure 4.1.3 is homotopic to a point,

since any simplex with a free face can be collapsed.

Example 4.1.8. Spaces that are homotopy equivalent might not be homeomorphic. For

example, an open and closed interval are homotopy equivalent, but not

homeomorphic, since a closed interval is compact, but an open interval is not.
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Figure 4.1.2: Homotopy equivalent spaces. The open cylinder, the circle and the annulus
are homotopy equivalent.

Figure 4.1.3: A simplicial complex which is homotopic to a point.
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4.2 Homotopy invariance

For the following discussion, recall the definitions of singular chain complexes and

their homology groups from Section 3.3.

Definition 4.2.1. Let Cn (X ) and Cn (Y ) be singular chain complexes on topological

spaces X and Y . For a map f : X → Y , the induced homomorphism

f# : Cn (X ) →Cn (Y )

is defined by composing each singular n-simplex σ :∆n → X with f to get a singular

n-simplex f# (σ) = f σ :∆n → Y , then extending f# linearly via

f#

(∑
i

niσi

)
=∑

i
ni f# (σi ) =

∑
i

ni f σi .

Definition 4.2.2. A diagram of maps with the property that any two compositions of

maps starting at one point in the diagram and ending at another are equal is called a

commutative diagram.

Definition 4.2.3. A chain map f# between singular chain complexes Cn (X ) and Cn (Y )

is a sequence of homomorphisms that, for each n, commutes with the boundary

operators on the two chain complexes (so that f#∂= ∂ f#). Such a map sends cycles to

cycles and boundaries to boundaries.

Theorem 4.2.4. The induced homomorphism f# is a chain map.

· · · Cn+1 (X ) Cn (X ) Cn−1 (X ) · · ·

· · · Cn+1 (Y ) Cn (Y ) Cn−1 (Y ) · · ·

f#

∂

f#

∂

f#

∂ ∂
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Proof. The maps f# : Cn (X ) →Cn (Y ) satisfy f#∂= ∂ f# since

f#∂ (σ) = f#

(∑
i

(−1)i σ| [v0, ..., v̂i , ..., vn]

)
=∑

i
(−1)i f σ| [v0, ..., v̂i , ..., vn] = ∂ f# (σ) .

Thus we have a commutative diagram, pictured above.

Theorem 4.2.5. A chain map between chain complexes induces homomorphisms

between the homology groups of the two complexes.

Proof. Recall from Definition 3.3.5 that the n-th homology group of a chain complex is

Hn (X ) = Zn (X )/∂n+1 (X ), where Zn (X ) are the n-cycles and ∂n+1 (X ) are the

n-boundaries.

Let α be a cycle in Cn (X ). Then ∂α= 0, so f# (∂α) = 0, since f# is a homomorphism.

Now, since f# is a chain map, f#∂= ∂ f#, therefore ∂
(

f#α
)= 0. Therefore f#α is a cycle in

Cn (Y ), proving that f# takes cycles to cycles.

Now let β be a boundary in Cn (X ). Then β= ∂γ, for some γ ∈Cn+1 (X ), so

f#
(
β
)= f#

(
∂γ

)= ∂(
f#γ

)
. Therefore images of ∂ (boundaries) map to images of ∂ under

f#, and f# is well-defined mod boundaries, i.e. f# is well-defined on Hn(X ).

Therefore, f# induces a homomorphism f∗ : Hn (X ) → Hn (Y ).

Theorem 4.2.6. If two maps f , g : X → Y are homotopic, then they induce the same

homomorphism f∗ = g∗ : Hn (X ) → Hn (Y ) on singular homology.

See Hatcher for a proof of Theorem 4.2.6 [Hat02, pages 112–113].

Corollary 4.2.7. The maps f∗ : Hn (X ) → Hn (Y ) induced by a homotopy equivalence

f : X → Y are isomorphisms for all n.

Proof. Choose g : Y → X such that g ◦ f is homotopic to the identity map idX and f ◦ g

is homotopic to idY . Then g∗ is the corresponding induced map from Hn (Y ) to Hn (X ).

By properties (i ) and (i i ) in Hatcher [Hat02, page 111], we know that
(

f g
)
∗ = f∗g∗ and
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idY = idHn (Y ). Then g∗ ◦ f∗ is homotopic to the identity map idHn (X ) and f∗ ◦ g∗ is

homotopic to idHn (Y ), and g∗ is the inverse of f∗. So the induced maps are

isomorphisms.

4.3 Exact sequences

Definition 4.3.1. An exact sequence is a sequence of groups Gi and group

homomorphisms fi

G0
f1−→G1

f2−→ ...
fn−→Gn

where the image of each homomorphism is equal to the kernel of the next:

im
(

fk
)= ker

(
fk+1

)
. A long exact sequence is an exact sequence with infinitely many

groups and homomorphisms.

A number of algebraic concepts can be expressed in terms of exact sequences:

(1) The sequence 0 → A
α−→ B is exact if and only if ker(α) = 0, in other words, if α is

injective.

(2) The sequence A
α−→ B → 0 is exact if and only if im(α) = B , in other words, if α is

surjective.

(3) The sequence 0 → A
α−→ B → 0 is exact if and only if α is an isomorphism, by (1)

and (2).

(4) The sequence

0 → A
α−→ B

β−→C → 0 (4.1)

is exact if and only if α is injective, β is surjective, and ker
(
β
)= im(α), so β

induces an isomorphism C ≈ B/im(α). This can be written as C ≈ B/A, if we

think of α as an inclusion of A as a subgroup of B .

Definition 4.3.2. The exact sequence in (4.1) is called a short exact sequence.
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Definition 4.3.3. Let An , Bn and Cn be chain complexes. Let i be the inclusion map of

An as a subgroup of Bn , let j be the quotient map, and let ∂ be the boundary map. The

sequence

0 → An → Bn →Cn → 0 (4.2)

is a short exact sequence of chain complexes if the sequence is a short exact sequence

for every n. An expanded version of the sequence in (4.2) is illustrated in Figure 4.3.1,

where the columns are chain complexes, the rows are short exact sequences, and the

diagram commutes.

0 0 0 0 0

0 A2 B2 C2 0

0 A1 B1 C1 0

0 A0 B0 C0 0

0 0 0 0 0

∂

∂

i

∂

∂

j

∂

∂

i j

i j

Figure 4.3.1: An expanded commutative diagram of a short exact sequence of chain
complexes, where the rows are exact and the columns are chain complexes, which we
denote A, B and C .

Definition 4.3.4. Given a subspace A ⊂ X , for each k, we can form the short exact

sequence

0 →Ck (A) →Ck (X ) →Ck (X )/Ck (A) → 0, (4.3)

where Ck (X ) denotes the singular chains on the space X . The expanded version of the
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short exact sequence in (4.3) is Figure 4.3.2, where i is the inclusion and j is the

quotient map.

0 0 0 0 0

0 Ck (A) Ck (X ) Ck (X )/Ck (A) 0

0 Ck−1 (A) Ck−1 (X ) Ck−1 (X )/Ck−1 (A) 0

0 0 0 0 0

∂

i

∂

j

∂

i j

Figure 4.3.2: A short exact sequence of chain complexes.

The corresponding homology is called the relative homology, Hn (X , A), where

Hn (X , A) is the homology of the right-hand column of the commutative diagram in

Figure 4.3.2, and

Hn (X , A) = Hn (Ck (X )/Ck (A)) . (4.4)

Theorem 4.3.5. The diagram in Figure 4.3.2 is a short exact sequence of chain

complexes.

Proof. Inclusion maps are injective and quotient maps are surjective.

We now show that ker
(

j
)= im(i ). The image of i is simply Ck (A). The kernel of the

quotient map j : Ck (X ) →Ck (X )/Ck (A) is Ck (A). So ker
(

j
)=Ck (A) = im(i ), and

therefore the diagram in Figure 4.3.2 is a short exact sequence of chain complexes.

Theorem 4.3.6. A short exact sequence of chain complexes 0 → A
i−→ B

j−→C → 0 induces a

long exact sequence of homology groups (see Figure 4.3.3).

See Hatcher for a proof of Theorem 4.3.6 [Hat02, pages 116–117].
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H3 (A) H3 (X ) H3 (X , A)

Hn (A) Hn (B) Hn (C )

Hn−1 (A) Hn−1 (B) Hn−1 (C )

H0 (A) H0 (X ) H0 (C )

∂
i∗ j∗

∂
i∗ j∗

∂

Figure 4.3.3: A long exact sequence of homology groups.

Definition 4.3.7. Given a subspace A ⊂ X , the induced inclusion map i∗, the induced

quotient map j∗ and the boundary map ∂, Theorem 4.3 yields a long exact sequence of

homology groups, shown in Figure 4.3.4.

H3 (A) H3 (X ) H3 (X , A)

H2 (A) H2 (X ) H2 (X , A)

H1 (A) H1 (X ) H1 (X , A)

H0 (A) H0 (X ) H0 (X , A)

∂
i∗ j∗

∂
i∗ j∗

∂
i∗ j∗

Figure 4.3.4: A long exact sequence of homology groups.
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4.4 Excision

Theorem 4.4.1 (Excision Theorem). Given subspaces Z ⊂ A ⊂ X such that the closure of

Z is contained in the interior of A, then the inclusion (X −Z , A−Z ) ,→ (X , A) induces

isomorphisms Hn (X −Z , A−Z ) → Hn (X , A) for all n. Equivalently, for subspaces

A,B ⊂ X whose interiors cover X , the inclusion (B , A∩B) ,→ (X , A) induces

isomorphisms Hn (B , A∩B) → Hn (X , A) for all n.

The Excision Theorem is illustrated in Figure 4.4.1. For a proof of the Excision

Theorem, see Hatcher [Hat02, Theorem 2.20, pages 119–124].

Figure 4.4.1: Through excision, H∗ (X ,Y ) = H∗
(
U ,Bd(U )

)
.

Sometimes, we desire the homology of a point to be 0. In order to force this case, we

can make a small modification to homology theory, called reduced homology,

described in detail below.

Definition 4.4.2. Let X be a simplicial complex with chain complex

· · · ∂n+1−−−→Cn
∂n−→Cn−1

∂n−1−−−→ ·· · ∂2−→C1
∂1−→C0

∂0−→ 0
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and homology groups defined by

Hn (X ) = ker(∂n)/ im(∂n+1) .

To define reduced homology, we begin with the augmented chain complex

· · · ∂n+1−−−→Cn
∂n−→Cn−1

∂n−1−−−→ ·· · ∂2−→C1
∂1−→C0

ε−→Z→ 0,

where ε

(∑
i

niσi

)
=∑

i
ni . Now we define the reduced homology groups by

H̃n (X ) = ker(∂n)/ im(∂n+1) ,

for positive n, and

H̃0 (X ) = ker(ε)/ im(∂1) .

Definition 4.4.3. The n-th local homology group of a space X at a point x is defined to

be Hn (X , X − {x}). This represents the local homology of X in neighborhoods close to x.

Definition 4.4.4. A manifold of dimension n (or n-manifold) is a Hausdorff space M in

which each point has an open neighborhood homeomorphic to Rn .

The dimension of M is characterized by the fact that for x ∈ M , the local homology

group Hi (M , M − {x} ;Z) is nonzero only for i = n.

By excision, we have

Hi (M , M − {x} ;Z) ≈ Hi
(
Rn ,Rn − {0} ;Z

)
.

Writing out the long exact sequence, we find

· · ·→ Hi
(
Rn ,Rn − {0}

)→ Hi−1
(
Rn − {0}

)→ Hi−1
(
Rn)→··· .

Since Rn is contractible,

Hi (M , M − {x} ;Z) ≈ H̃i−1
(
Rn − {0} ;Z

)
.
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And since Rn − {0} is homotopy equivalent to Sn−1,

Hi (M , M − {x} ;Z) ≈ H̃i−1
(
Sn−1;Z

)
.

Therefore, if x has a neighborhood homeomorphic to Rn , then Hi (X , X − {x} ;Z) is

H̃i−1
(
Sn−1;Z

)
. In our work, the point x often has a neighborhood homeomorphic to R2,

so the homology groups are those of the circle H̃i−1
(
S1;Z

)
. This is the justification for

why, if we are attempting to find the local homology of a point in a disk like that of

Figure 4.5.10, we can examine the relative homology of the star of the vertex relative to

the link of the vertex.

4.5 A survey of the homology groups for possible links in two dimensions

Here we compute the relative homology groups for the star X of a vertex relative to

the link A of a vertex for the some possible cases of subcomplexes in two-dimensional

space. Note that in each case, the star of the vertex is contractible, so the homology

groups are always the same, namely Hn (X ) ≈ 0 for n ≥ 1 and H0 (X ) ≈Z. The relative

homology groups can be found directly from the homology groups of the star and the

link, so in practice, we concern ourselves with the homology groups of the link of a

vertex.

In Figures 4.5.2–4.5.10, we display the long exact sequence H∗ (X , A).

H3 (A) H3 (X ) H3 (X , A)

H2 (A) H2 (X ) H2 (X , A)

H1 (A) H1 (X ) H1 (X , A)

H0 (A) H0 (X ) H0 (X , A)

Figure 4.5.1: A long exact sequence of relative homology groups.
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Figure 4.5.2: A line segment with X in red and A in blue.

Hn(A) Hn(X ) Hn(X , A)

0 0 0 n = 2

0 0 0 n = 1

Z Z 0 0 n = 0

Figure 4.5.3: H∗ (X , A) for a line segment.
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Figure 4.5.4: A line with X in red and A in blue.

Hn(A) Hn(X ) Hn(X , A)

0 0 0 n = 2

0 0 Z n = 1

Z2 Z 0 0 n = 0

Figure 4.5.5: H∗ (X , A) for a line.



60

Figure 4.5.6: A y-shaped graph with X in red and A in blue.

Hn(A) Hn(X ) Hn(X , A)

0 0 0 n = 2

0 0 Z2 n = 1

Z3 Z 0 0 n = 0

Figure 4.5.7: H∗ (X , A) for a y-shaped graph.

Figure 4.5.8: An n-star with X in red and A in blue.

Hn(A) Hn(X ) Hn(X , A)

0 0 0 n = 2

0 0 Zn−1 n = 1

Zn Z 0 0 n = 0

Figure 4.5.9: H∗ (X , A) for an n-star.



61

Figure 4.5.10: A disk with X in red and A in blue.

Hn(A) Hn(X ) Hn(X , A)

0 0 Z n = 2

Z 0 0 n = 1

Z Z 0 0 n = 0

Figure 4.5.11: H∗ (X , A) for a disk.
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CHAPTER 5

SIMPLICIAL COMPLEXES OF POINT CLOUD DATA

The goal of this work is to take a point cloud X (see Section 1.1), coming from a

simplicial complex X , and assign a label to each point x ∈ X indicating the point’s local

dimension in X . To do so, we begin with a triangulation of the point cloud with a

simplicial complex.

We will now examine some examples of simplicial complexes with the goal of

analyzing the complexes used in our main algorithm.

5.1 The Čech and Vietoris-Rips complexes

In this section, we review two well-known simplicial complexes, the Čech and

Vietoris-Rips complexes, which were developed as a means of extending homology

theory from simplicial complexes to metric spaces.

Definition 5.1.1. The ε-cover X (ε) of a point cloud X is a collection of balls of diameter

ε whose union contains X as a subset, i.e.

X (ε) = ⋃
x∈X

Bε/2 (x).

Definition 5.1.2. Given a point cloud X in a metric space M , and a real number ε> 0,

the Čech complex Cε (X ) is the abstract simplicial complex composed of simplices

σ⊂ X , where

Cε (X ) =
{
σ⊂ X

∣∣∣∣ ⋂
x∈σ

Bε/2 (x) 6= ;
}

. (5.1)

In other words, the 0-cells of Cε (X ) are the points in X and the 1-cells are edges with

length less than ε. The n-cells are sets of n +1 points that can be enclosed in a ball of

radius ε
2 , or in other words,

Cε (X ) =
{
σ

∣∣∣σ⊂ X , rad(σ) < ε

2

}
. (5.2)
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Example 5.1.3. Figure 5.1.1 illustrates the formation of a Čech complex. We start with a

point cloud (on the left) and form a ball of radius ε
2 around each point (in the center).

Then for every subset S ⊂ X , add S to the simplicial complex if there is a common point

of intersection among all of the ε
2 -balls in S (on the right).

Figure 5.1.1: A Čech complex.

Theorem 5.1.4. The Čech complex is a simplicial complex.

Proof. Let X be a point cloud in a metric space M and let ε be a positive real number.

Suppose that σ is a simplex in the Čech complex Cε (X ). Then for all x ∈σ,

⋂
x∈σ

Bε/2 (x) 6= ;.

Therefore, for every simplex τ⊂σ,

⋂
x∈τ

Bε/2 (x) ⊇ ⋂
x∈σ

Bε/2 (x) .

So τ is also a simplex in Cε (X ) and therefore the Čech complex is a downset.

Now, we would like to know whether the Čech complex Cε (X ) resembles the

inherent structure underlying the point cloud data X . In other words, the point cloud X

was sitting in some metric space M , and the union of the ε
2 -balls forms a topological

space that is close in structure to X . But does the Čech complex have the same
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topological structure as the union of the ε
2 balls? In the following nerve theorem, we

find that indeed they do have the same homotopy types, if certain conditions are met.

Definition 5.1.5. A cover {Ui } of a topological space X is a good cover if it is an open

cover, and if all non-empty finite intersections of cover sets are contractible.

For example, covers by convex sets are good because convex sets are contractible,

and the intersection of convex sets is convex.

Theorem 5.1.6 (The Nerve Theorem). Let X be a point cloud in a metric space M and

let ε be a real number. Let Cε (X ) be the Čech complex and let X (ε) be the ε-cover of X . If

the ε-cover of X is good, then the homotopy types of X (ε) and Cε (X ) are the same.

For the proof of Theorem 5.1.6, see Leray [Ler45] and for further discussion, read De

Silva and Ghrist [DSG07, page 13].

The Čech complex Cε(X ) is beneficial because it approximates the topological

structure underlying the point cloud data X . However, computing the Čech complex is

difficult; in fact, one needs to solve a non-trivial geometric problem exponentially

many times to compute the Čech complex. Therefore, we turn to another simplicial

complex, the Vietoris-Rips complex.

Definition 5.1.7. Given a set of points X in a metric space M and a positive real number

ε, the Vietoris-Rips (VR) complex Rε (X ) is the abstract simplicial complex whose

k-simplices are determined by subsets of k +1 points in X with diameter at most ε:

Rε (X ) = {σ |σ⊂ X ,diam(σ) < ε } . (5.3)

In other words, the 0-cells of Rε (X ) are the points in X and the 1-cells are the edges of

length at most ε. The n-cells are sets of n +1 points with diameter at most ε.
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Example 5.1.8. Figure 5.1.2 illustrates the formation of a Vietoris-Rips complex. We

start with a point cloud (on the left) and form a ball of radius ε
2 around each point (in

the center). Then for every subset S ⊂ X of k +1 points, we add S to the simplicial

complex if its diameter is at most ε (on the right). Note that the Čech complex Cε (X ) is

a subset of the Vietoris-Rips complex Rε (X ), as we will later prove in Theorem 5.1.13.

The VR complex and the Čech complex in Figures 5.1.1 and 5.1.2 are constructed from

the same underlying point cloud X . In this particular example, the VR complex in

Figure 5.1.2 has two additional 1-simplices labeled a and b, and one additional

2-simplex labeled c, when compared with the Čech complex in Figure 5.1.1.

Figure 5.1.2: A Vietoris-Rips complex. The VR complex is a superset of the Čech complex.
Comparing with the Čech complex in Figure 5.1.1, the additional simplices are labeled
a, b and c.

Example 5.1.9. Figure 5.1.3 shows how the Vietoris-Rips and Čech complexes can

differ. Suppose we choose three points whose ε
2 -balls intersect pairwise, but share no

common point of intersection. Then the associated Čech complex has a triangle with

no interior there, while the associated Vietoris-Rips complex also includes the interior

of that 2-simplex. Figure 5.1.3 also illustrates how the VR complex does not always

capture the underlying homology of the ε-cover of the point set X .

Definition 5.1.10. The flag complex F (G) of an undirected graph G is an abstract
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Figure 5.1.3: The difference between a Čech and VR complex. For a set of three points on
the left, with a careful choice of parameter, the Čech (center) and VR (right) complexes
can differ. The Čech complex has the same topology as the cover, but the homology of
the Vietoris Rips complex is different, since it does not contain a hole.
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simplicial complex, formed by the sets of vertices in the cliques of G . Specifically, the

0-cells of F (G) are the vertices of G , the 1-cells of F (G) are the edges of G , and the

n-cells are all cliques of n +1 vertices in G . Observe that F (G) is determined by the

1-skeleton of G .

In order to construct a Vietoris-Rips complex, we can begin by forming the

1-skeleton by adding an edge for every two points whose distance is at most ε. We then

form the flag complex of the 1-skeleton by adding a simplex of dimension k −1 for

every clique of k vertices in the 1-skeleton. This algorithm still requires exponential

time to compute, but is faster than the construction of the Čech complex, and has the

advantage of being defined simply by its 1-skeleton, as shown by Theorem 5.1.12.

Definition 5.1.11. The 1-skeleton of Rε(X ) is the graph whose vertices are points in X

and whose edges are all edges of length at most ε, denoted as Gε (X ).

Theorem 5.1.12. Let X be a point cloud and let ε be a real number. Suppose we form a

graph Gε (X ) by first including an edge for every two points within ε, and then generate

the flag complex F (Gε (X )). Then F (Gε (X )) is Rε (X ) (the Vietoris-Rips complex with

parameter ε).

Proof. Let X be a point cloud and let Gε (X ) be the 1-skeleton of Rε(X ). Let σ be an

n-simplex in F (Gε (X )). Then σ is composed of n +1 vertices and
(n+1

2

)
edges of length

at most ε. So the diameter of σ is at most ε, and therefore σ is a simplex in the

Vietoris-Rips complex Rε (X ). Now suppose σ is an n-simplex in the VR complex

Rε (X ). Then σ is composed of n +1 points with diameter at most ε. Then for all x ∈σ,

d (x1, x2) < ε, so every edge is represented in Gε (X ), so the collection of edges is a

clique. Therefore σ is in the flag complex F (Gε (X )).

Unfortunately, we do not get the benefits of the nerve theorem (Theorem 5.1.6)
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from the VR complex, as shown by Figure 5.1.3, but we can compare the Vietoris-Rips

complex with the Čech complex.

Theorem 5.1.13. Let X be a point cloud in a metric space M and let ε> 0 be a real

number. Let Cε be the Čech complex and let Rε (X ) be the Vietoris-Rips complex. Then

Cε (X ) ⊂Rε (X ) ⊂C2ε (X ) . (5.4)

Proof. Let X be a point cloud in a metric space M and let ε> 0 be a real number.

Suppose σ is a simplex in the Čech complex Cε (X ). Then there is a common point of

intersection between all the ε
2 -balls centered at the 0-cells in σ. So the ε

2 -balls intersect

pairwise and σ is a simplex in the Vietoris-Rips complex Rε (X ). Now suppose τ is a

simplex in Rε (X ). Then the ε
2 -balls centered at the 0-cells of Rε (X ) intersect pairwise,

so by the triangle inequality, if x and z are 0-cells in Rε (X ), and y ∈ Bε/2(x)∩Bε/2(z),

then

d (x, z) < d
(
x, y

)+d
(
y, z

)< ε

2
+ ε

2
= ε.

Therefore, the maximum distance between any two 0-cells is ε. Now form a ball of

radius ε around each 0-cell in τ. Since the maximum distance between any two 0-cells

in τ is ε, τ⊂ Bε (x) for every 0-cell x in τ. So
⋂

Bε (τ) 6= 0. Therefore τ⊂C2ε (X ).

So as long as the Čech complexes for ε and 2ε are good approximations for the

underlying space of the point cloud, then so is the Vietoris-Rips complex for ε. See also

de Silva and Ghrist [DSG07, Theorem 6, page 16], who have strengthened these

inclusions when M =RN .

5.2 The Local Complex

This section contains the first main conceptual ideas contributed in this thesis – viz.

the definition of a new local neighborhood complex, the Local Complex, as well as a
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family of related variations.

The notion of Local Complex that we will define shortly will be shown to be closely

related to the link of a point in the VR complex. Further, we will show that this new idea

tries to capture the role of any particular point in a point cloud’s topological shape, at

some scale.

Definition 5.2.1. Suppose p is an arbitrary vertex in a point cloud X in RN . For α,β> 0,

let G be the graph with vertex set V and edge set E defined by

V = {
x ∈ X , x 6= p

∣∣Nα/2 (x)∩Nβ/2

(
p

) 6= 0
}

=
{

x ∈ X , x 6= p

∣∣∣∣d (
x, p

)< α+β
2

}
,

E = {x1, x2 ∈ X |d (x1, x2) <α } .

(5.5)

We define the Local Complex L
(
X , p,α,β

)
to be the flag complex of the graph G . In

other words, the 0-cells of the Local Complex are all the points in X whose ball of

diameter α intersects a ball of diameter β centered at p. The 1-cells are all edges with

length at most α. The n-cells are cliques of n +1 points in the graph G .

Figure 5.2.1: The formation of a Local Complex about point p with parameters α and β.
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In the following theorem, we prove a special case equivalency between the Local

Complex and the VR complex, that helps to further ground intuition regarding their

close relationship.

Theorem 5.2.2. The link of a vertex p in the Vietoris-Rips complex Rε (X ) is precisely the

Local Complex L
(
X , p,ε,ε

)
.

Proof. Suppose X is a point cloud with Vietoris-Rips complex Rε (X ). Let p be an

arbitrary point in X . Recall that the link of p is the set of all faces opposite p for every

simplex containing p. Suppose L
(
X , p,ε,ε

)
is the Local Complex of p (so α=β= ε).

Suppose x is a 0-cell in the link of p in the VR complex Rε (X ). Then x and p are joined

by a 1-cell, so d
(
x, p

)< ε= (
α+β)

/2. Therefore x is also a 0-cell in the Local Complex.

Now suppose x is a 0-cell in the Local Complex. Then d
(
x, p

)< (
α+β)

/2. So

d
(
x, p

)< ε. So there is a 1-cell connecting x and p. So x is a face of a simplex

containing p. Therefore the 0-cells in the link of p in the VR complex with parameter ε

are the same as the 0-cells in the Local Complex L
(
X , p,ε,ε

)
.

Now suppose τ= [x1x2] is a 1-simplex in the link of p in Rε (X ). Then

d (x1, x2) < ε=α. So τ is also a 1-simplex in the Local Complex L
(
X , p,ε,ε

)
.

The converse is true by the same argument. Since both Rε (X ) and L
(
X , p,ε,ε

)
are

flag complexes of the same graph G , we have link
(
p,Rε (X )

)= L
(
X , p,ε,ε

)
.

Theorem 5.2.3. Let X be a point cloud and let p be a point in X . The link of p in F (G),

denoted link
(
p,F (G)

)
, is the flag complex of all points adjacent to p in G.

The proof of Theorem 5.2.3 is discussed in Bridson and Haefliger [BH11, Remarks

5.16, page 210].

5.2.1 Variations on the Local Complex

In this section, we describe a series of variations on the Local Complex idea, each of

which corresponds to a different experimental approach tried in the course of this



71

research.

Definition 5.2.4. Let p be a point in a metric space M . Then

Sε
(
p

)= {
x ∈ M |d (

x, p
)= ε}

is the sphere of radius ε around point p.

The Local Shell Complex allows us to examine the local neighborhood of a vertex p

in our point cloud, while excluding all points very close to p. This is beneficial because

points extremely close to p might introduce distortions into the characterization of the

topology of the local neighborhood of p. Points nearby p could also be considered as

measurement error in the determination of the position of p.

Definition 5.2.5. Suppose p is an arbitrary vertex in a point cloud X in RN . Let G be the

graph with vertex set V and edge set E defined by

V = {
x ∈ X , x 6= p

∣∣Nα/2 (x)∩Sβ/2

(
p

) 6= 0
}

=
{

x ∈ X

∣∣∣∣β−α
2

< d
(
x, p

)< β+α
2

}
,

E = {x1, x2 ∈ X |d (x1, x2) <α } .

(5.6)

We define the Local Shell Complex L0
(
X , p,α,β

)
to be the flag complex of the graph G .

In other words, the 0-cells of the Local Shell Complex are all the points in X whose ball

of diameter α intersects a sphere of diameter β centered at p. The 1-cells are all edges

with length at most α. The n-cells are cliques of n +1 points in the graph G .

The Local Central Hole Complex, defined below, introduces a third parameter, γ,

that serves as a lever to control the size of the central hole, in a manner independent of

α and β.
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Figure 5.2.2: The formation of a Local Shell Complex about point p with parameters α
and β.
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Definition 5.2.6. Suppose p is an arbitrary vertex in a point cloud X in RN . Let G be the

graph composed of vertex set V and edge set E defined by

V =
{

x ∈ X

∣∣∣∣max

(
γ,
β−α

2

)
< d

(
x, p

)< β+α
2

}
,

E = {x1, x2 ∈ X |d (x1, x2) <α } .

(5.7)

We define the Local Central Hole Complex L1
(
X , p,α,β,γ

)
to be the flag complex of

the graph G . In other words, the 0-cells of the Local Shell Complex are all the points in

X whose ball of diameter α intersects a sphere of diameter β centered at p, but

excluding any points of distance less than or equal to γ from p. The 1-cells are all edges

with length at most α. The n-cells are cliques of n +1 points in the graph G .

Figure 5.2.3: The formation of a Local Central Hole Complex about point p with
parameters α, β and γ.

Another way to minimize the bias introduced by points very close to the vertex p, is

to prevent edges from being formed across the central hole. We achieve this variation

with the Acute Local Complex, described below.

Definition 5.2.7. Suppose p is an arbitrary vertex in a point cloud X in RN . Let

L
(
X , p,α,β

)
be a Local Complex, in the sense of Definition 5.2.1, 5.2.5, or 5.2.6. Let x1
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and x2 be points in the point cloud X . Let
(
p −x1

)
and

(
p −x2

)
be the vectors from p to

x1 and p to x2, respectively. Then the Acute Local Complex L∗ (
X , p,α,β

)
selects only

edges in the Local Complex that do not "cross" the p-shell, by stipulating that the dot

product of the vectors formed from p to either end point of the edge x1x2 is positive, or

in other words, (
p −x1

) · (p −x2
)> 0. (5.8)

Figure 5.2.4 gives an example of an edge which would be disallowed under the dot

product constraint in the Acute Local Complex. Such an edge does not represent the

homology of the points surrounding p.

Figure 5.2.4: An edge that would be disallowed in the Acute Local Complex.

Effectively, the complexes and modifications described in Definitions 5.2.5, 5.2.6

and 5.2.7 achieve a similar result, with subtle variations. In practice, and for most of the

experimental results reported in this research, we have used the Local Complex in

Definition 5.2.1 with the acute constraint in Definition 5.2.7.
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CHAPTER 6

APPROXIMATING LOCAL HOMOLOGY

In this chapter, we explore different types of local homologies, characterized using

link homology, that can typically arise in two-dimensional and three-dimensional

point cloud data.

We present a geometric operation on a Local Complex, the simplex arc projection,

that appears to approximate the homology of L fairly well.

This method that will then serve to motivate an intuitive and novel heuristic and

algorithm, presented in the next chapter, that we believe captures the essential

topology of point cloud data.

Remark 6.0.1. It can be shown that the link of a vertex p in a complex embedded in R2

has only H0 and H1 6= 0.

6.1 Simplex arc projection

Definition 6.1.1. Let X be a point cloud and let S be a simplicial complex embedded

in R2. We define the simplex arc projection of the link of a vertex p in the simplicial

complex as follows: take every simplex in the link of vertex p and project it onto a unit

circle centered at p (note that overlapping arcs are automatically merged). More

specifically, given a point x in a simplex in the link of vertex p, the coordinates of the

projected point are given by

f (x) = x −p

|x −p| . (6.1)

Remark 6.1.2. It can be shown that the n-simplices for n > 1 have the same image

under the simplex arc projection as the 1-skeleton.

Example 6.1.3. In general, the simplex arc projection of the link of p in the VR complex

is not homotopy equivalent to the link. A counterexample from actual data is provided
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in Figure 6.1.1. The simplex arc projection is not homotopy equivalent to the link

because the link of p has a hole, labeled a, while the projection, labeled s, has no holes.

Figure 6.1.1: The link of p in the VR complex is not always homotopic to the simplex arc
projection s. In this example, the link has a hole, labeled a, while the arc projection has
no holes.

Remark 6.1.4. Recall that by Theorem 5.2.2, the link of a vertex in the VR complex is

the same as the Local Complex (when ε=α=β). Therefore, the simplex arc projection

operation is automatically applicable to the Local Complex. This forms the basis of the

main algorithm of this thesis (Chapter 7).

We present two examples to illustrate this operation and to establish the

relationship between the simplex arc projections and the local homology of the link of a

vertex in the VR complex. In the first example (Figures 6.1.2 and 6.1.3), we have a link

with five cells (four 0-simplices and one 1-simplex) and a projection with three

connected components. The 0-homology of the link is Z3 and its rank is the number of

components in the projection.
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Figure 6.1.2: An oriented simplicial complex. The star of p is in red and the link of p is
in blue.

Figure 6.1.3: The projection of the simplicial complex in Figure 6.1.2 onto the unit circle.
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Example 6.1.5. We compute the homology of the link (A) of the vertex p for the

simplicial complex illustrated in Figure 6.1.2. The link A is the four vertices

[v1], [v2], [v3], and [v4] and the oriented 1-simplex [v3v4]. The chain complex is

...
∂3−→C2

∂2−→C1
∂1−→C0,

where Cn are the formal sums of singular n-simplices with integer coefficients and ∂n

are the boundary homomorphisms. We begin by describing the specific chain groups

of the link of p, namely, C0 is isomorphic to Z4 with basis [v1], [v2], [v3], and [v4], and C1

is isomorphic to Zwith basis given by the oriented 1-simplex [v3v4]. The chain groups

in other dimensions are zero. The boundary homomorphism ∂1 : C1 →C0 is

∂1 ([v3v4]) = [v4]− [v3].

The homology groups are, by definition,

Hn (A) = ker∂n/im∂n+1.

Then the 0th homology group of the link is

H0 (A) = ker∂0/im∂1.

The kernel of the 0th boundary map ker∂0 is 〈[v1], [v2], [v3], [v4]〉. The image of the first

boundary map im∂1 is 〈[v3], [v4]〉. Therefore the 0th homology group H0 (A) is

isomorphic to Z3 with basis given (for example) by the vertices [v1], [v2], and [v3]. (That

H0 (A) is isomorphic to Z3 indicates that the link is composed of three disconnected

components).

As one can see in Figure 6.1.3, the projection of the link onto the unit circle also has

three components.

The first homology group of the link is

H1 (A) = ker∂1/im∂2

= 0/0 = 0.
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Similarly, all higher homology groups of the link are also 0.

Now we will compute the homology groups of the closed star X of the vertex p. The

closed star is composed of five 0-simplices, five 1-simplices and one 2-simplex. The

boundary homomorphism ∂1 : C1 →C0 is

∂1
(−[p, v1]

)=−(
[v1]− [p]

)= [p]− [v1],

∂1
(−[p, v2]

)= [p]− [v2],

∂1
(
[p, v3]

)= [v3]− [p],

∂1 ([v3, v4]) = [v4]− [v3],

∂1
(−[p, v4]

)= [p]− [v4].

Then the 0th homology group of the closed star is

H0 (X ) = ker∂0/im∂1

= Z 5/Z 5 = Z .

The first homology group of the closed star is

H1 (X ) = ker∂1/im∂2

= 0.

The kernel of the first boundary map (ker∂1) is generated by the cycle([
p, v3

]+ [v3, v4]− [
p, v4

])
. The image of the second boundary map (im∂2) is also

generated by the cycle
([

p, v3
]+ [v3, v4]− [

p, v4
])

. So the first homology group is

isomorphic to 0. This implies that the closed star contains no one-dimensional holes.

We summarize these computations in the long exact sequence in Figure 6.1.4.

We can generalize the definition of simplex arc projection to any dimension.

Definition 6.1.6. Let X be a point cloud and let S be a simplicial complex embedded

in Rn . We define the simplex projection of the link of a vertex p in the complex as
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Hn(A) Hn(X ) Hn(X , A)

0 0 0 n = 2

0 0 Z2 n = 1

Z3 Z 0 0 n = 0

Figure 6.1.4: The long exact sequence of the simplicial complex in Figure 6.1.2.

follows: take every simplex in the link of vertex p and project it onto a unit

(n −1)-sphere centered at p. More specifically, given a point x in a simplex in the link of

vertex p, the coordinates of the projected point are given by

f (x) = x −p

|x −p| .

Computation of the image of the simplex projection is much more complicated

than the simplex arc projection and is a goal of future work.

Example 6.1.7. We illustrate the application of the procedure in three-dimensional

space. Let the complex in Figure 6.1.5 be a simplicial complex in R3. The link of the

vertex p is the eight vertices and four edges colored blue. In Figure 6.1.7, we illustrate

the intersection of the simplicial complex in Figure 6.1.5 with a unit sphere centered at

p. The projection on the unit sphere is the equator and four vertices pictured in Figure

6.1.8. The projection is related to the long exact sequence in 6.1.6. For example, the

long exact sequence has H0 (A) =Z5, which corresponds to the five components on the

projection on the sphere.
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Figure 6.1.5: A fern.

Hn(A) Hn(X ) Hn(X , A)

0 0 Z n = 2

Z 0 Z4 n = 1

Z5 Z 0 0 n = 0

Figure 6.1.6: The long exact sequence of the simplicial complex in Figure 6.1.5.
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Figure 6.1.7: The intersection of the simplicial complex in Figure 6.1.5 with the unit
sphere.

Figure 6.1.8: The projection of the simplicial complex in Figure 6.1.5 onto the unit
sphere.
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CHAPTER 7

THE ALGORITHM

Given a point cloud X , the algorithm assigns to each vertex p ∈ X a color based on

its apparent local dimension.

To do so, we begin by selecting two parameters: α and β. We form what we call an

Acute Local Complex L∗ (
X , p,α,β

)
(Definitions 5.2.1 and 5.2.7). We then project the

Acute Local Complex onto a unit circle centered at p and determine the homology of

the union of the resulting arcs. We then color the whole data set based on the

homologies of the simplex arc projections. Along the way, we speed up the

computations by binning the points. We also consider only the 1-skeleton of the Acute

Local Complex since we are projecting onto the circle and need not compute all the

triangles and higher-dimensional tetrahedra in the complex.

Following this, we get the dataset to instruct the choice of α and β by examining a

wide range of choices of α and β and studying the rate of change of the simplex

projection-based coloring as we vary α and β. The values of α and β with minimal

coloring change are flagged as stable.

7.1 Overview

The main algorithmic contributions of this thesis are two-fold:

(1) Core algorithm: For a fixed parametrized scale, we first construct the Acute

Local Complex, followed by the simplex arc projections, and finally we

determine a heuristic characterization of local homology.

(2) Multiscale iteration: Iteration of step (1) at different scales in order to

understand interesting scales for the data.

The next two sections explain these aspects in depth.
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7.2 Details of the algorithm

Here we describe the algorithm for computing the Local Shell Complex

L0
(
X , p,α,β

)
and the Local Central Hole Complex L1

(
X , p,α,β,γ

)
as described in

Definitions 5.2.5 and 5.2.6.

7.2.1 Binning

We begin by preprocessing the data for more efficient computation by binning the

point cloud data (lines 146–190 of the appendix). Given a set of points, we find its

bounding box (see Figure 7.2.1) and then add a buffer of β+α in all directions. This

ensures that the β+α disc of each point (including, especially, the boundary points) is

contained in the bounding box.

Figure 7.2.1: The bounding box of a vertex set.

We then align the bottom and left sides of the bounding box to the nearest grid cell

(see Figure 7.2.2). The binning procedure divides the bounding box of the data set into

a grid, whose scale is given by the user. It returns the points in association with their

containing cells.
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Figure 7.2.2: The extended bounding box with buffer for the points’ disks, as well as the
binning grid.

7.2.2 Candidate points in the bounding square

For each point, p, in the point cloud data, we return a small, though not exact, set of

candidate points that lie within
(
β+α)

/2 of p (lines 192–209 in the appendix).

Concretely, we return points in a large enough square region that properly contains the(
β+α)

/2 disc around p (see Figure 7.2.3).

Figure 7.2.3: Local Complex candidate points. The candidate points within a
circumscribed square around a neighborhood of radius

(
α+β)

/2 about p.
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7.2.3 Points in the Local Complex

Given the set of candidate points obtained earlier (cf. 7.2.2), we return the points

that are present in the sphere of radius
(
β+α)

/2 (see Figure 7.2.4 and lines 211–220 of

the appendix).

Figure 7.2.4: The Local Complex points. The points that lie in a sphere of radius(
β+α)

/2.

.

7.2.4 Variations on the Local Complex

Here we recall variations of the Local Complex previously discussed in Chapter 5.

The Local Shell Complex If we wish to have our local complex avoid points very

close to p, we use the Local Shell Complex described in Definition 5.2.5. The Local Shell

variation is illustrated in Figure 7.2.5.
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Figure 7.2.5: The Local Shell Complex consists of the points that lie in a shell of inner
radius

(
β−α)

/2 and outer radius
(
β+α)

/2.

The Local Central Hole Complex Sometimes, we would like to set α>β. In this

case, we may use another parameter γ to ensure that points close p are still avoided.

This is done by simply considering points in the modified shell with inner radius

max
(
γ,β−α)

and outer radius as before (β+α). This is the Local Central Hole Complex

described in Definition 5.2.6 and line 215 of the appendix.

The Acute Local Complex This complex, described in Definition 5.2.7 is the main

variation used in most of the experimental work supporting this thesis. The

implementation of this variation will be discussed in detail in the next subsection.
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7.2.5 Computation of Acute Local Complex

For each point p and points in its αβ shell, as constructed above (see 7.2.3), we

obtain the 1-skeleton, i.e. edges and vertices, of the Acute Local Complex. In particular,

we pick edges that are smaller than some parameter ε (see Figure 7.2.6). In practice, we

choose ε to be equal to α. Further, we apply the acute variation described in Definition

5.2.7 by ensuring that the edges do not cross the shell, i.e. we only pick edges such that

the dot product of the vectors formed from p to either end point is positive, implying

that the angle between these vectors is acute (see Figure 5.2.4 and lines 90–102 of the

appendix).

Figure 7.2.6: The Local Complex edges. Construct all edges between vertices at most α
apart.
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7.2.6 Merged simplex projections

We project the simplices obtained onto a unit circle1 centered at p, applying

Definition 6.1.1. The arctan
(

yi
xi

)
of the end points

(
xi , yi

)
of the edge are recorded as θ1

and θ2, with the former being the smaller of the two (see Figure 7.2.7). Note that the

largest possible edge projection subtends π radians (in the case where the edge

contains the point p), and therefore every edge projection is a minor arc on the unit

circle. The projection and merging of edges is described in lines 311–354 of the

appendix.

Figure 7.2.7: Projection of an edge, v1v2, onto an arc on the unit circle.

Recall that the range of the arc tangent is −π to π. There are four cases for θ1 and θ2:

(a) both positive (Figure 7.2.8a),

(b) both negative (Figure 7.2.8b),

(c) θ1 < 0 and θ2 > 0 and θ2 −θ1 ≤π (Figure 7.2.8c), and

1 In principle, any circle will do and the unit circle is only required for concreteness, since, in this case,
the lengths of the arcs yielded by the projections will be in radians.
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(d) θ1 < 0 and θ2 > 0 and θ2 −θ1 >π (Figure 7.2.8d).

(a) Case one: both angles are positive. (b) Case two: both angles are negative.

(c) Case three: one angle is positive,
one angle is negative,
and they form a minor arc.

(d) Case four: one angle is positive,
one angle is negative,
and they form a major arc.

Figure 7.2.8: The four possible cases for the configuration of two angles, θ1 and θ2, on
the unit circle.

In all but the last case, we have that the arc Úθ1θ2 is a minor arc. In case (d), however, the

arc Úθ1θ2 is major. We fix this by breaking this arc into two pieces: an arc Ùθ2π and an arc

Û−πθ1 (Figure 7.2.9). These two arcs are both minor (cases (a) and (b), respectively). This

process effectively transforms the arcs on the unit circle to line segments in the interval

[−π,π], which enables the merging procedure described next.
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Figure 7.2.9: Case (d): replace the major arc with two minor arcs, one from θ2 to π and
the other from −π to θ1.
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We sort our arcs by the smaller angle θ1, to yield a list of arcs in order. Overlapping

arcs are then merged to yield a list of disjoint arcs, as described in the method in lines

332–354 of the code in the appendix. Finally, we correct for any fix that we applied

earlier for case (d), by combining any arcs of the form Øφπ and Ú−πψ. The arcs used for

the combination are deleted and the combined arc is placed at the head (i.e., as the

greatest element) of the merged disjoint list.

Example 7.2.1 (Merging the Arc Projections). We discuss the process of merging the arc

projections by computing the merged arcs for the collection of arcs in Figure 7.2.10. We

begin with a list of arcs, where Úθ1θ2 is written (θ1,θ2), and order them by the smaller

angle θ1.

Figure 7.2.10: The collection of arc projections followed by the result of merging the arcs.

In the following, the angles are expressed in degrees instead of radians for

readability:

L0 = [(−180,−165) , (−175,−105) , (−75,10) , (−45,−35) , (95,120) , (110,135) , (170,180)] .

We automatically include the first arc of L0 in the merged list M1 and create L1 by
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removing the first arc from L0.

M1 =
[

(−180,−165)
]

,

L1 =
[

(−175,−105) , (−75,10) , (−45,−35) , (95,120) , (110,135) , (170,180)
]

.

In the following iteration, we take the first arc in the list L1 and, if the θ1-value of the

first arc in L1 is smaller than the θ2-value of the last arc in M1, we replace the θ2-value

of the last arc in M1 with the maximum of the θ2-values of the first arc of L1 and the last

arc of M1 to get

M2 =
[

(−180,−105)
]

,

L2 =
[

(−75,10) , (−45,−35) , (95,120) , (110,135) , (170,180)
]

.

In the next iteration, since the θ1-value of the first arc in L2 is greater than the θ2-value

of the last arc in M2, we include the first arc of L2 in M2 as a new entry:

M3 =
[
(−180,−105) , (−75,10)

]
,

L3 =
[

(−45,−35) , (95,120) , (110,135) , (170,180)
]

.

In the next iteration, since the θ1-value of the first arc in L3 is less than the θ2-value of

the last arc in M3, we merge the first arc of L3 with the last arc of M3, replacing the

θ2-value of the last arc in M3 with the maximum of the θ2-values of the two merged

arcs:

M4 =
[
(−180,−105) , (−75,10)

]
,

L4 =
[

(95,120) , (110,135) , (170,180)
]

.

Continuing this process, we find

M5 =
[
(−180,−105) , (−75,10) , (95,120)

]
,

L5 =
[

(110,135) , (170,180)
]

,
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M6 =
[
(−180,−105) , (−75,10) , (95,135)

]
,

L6 =
[

(170,180)
]

,

M7 = [(−180,−105) , (−75,10) , (95,135) , (170,180)] ,

L7 = [] .

The last step involves merging any arcs of the form (θ1,180) and (−180,θ2) (noting that,

after the main procedure, we are left with at most one of each type), so our final list of

merged arcs becomes

M8 = [(170,−105) , (−75,10) , (95,135)] .

7.2.7 Simplex projection-based coloring

Finally, we color each of the points in the original vertex set based on the number of

components in the merged arcs, according to the following scheme (lines 356–372 in

the appendix). The simplex projection-based coloring scheme is illustrated in Figure

7.2.11.

• Pink, if the merged components contains only the arc Ú−ππ, indicating a point

surrounded by points in its local neighborhood, i.e. a point in the interior of a

two-dimensional region (H1 (A) =Z and H0 (A) =Z, as in Figure 4.5.10).

• Blue, if the merged components contains a single arc, indicating a point on a

boundary of a two-dimensional region (H0 (A) =Z, as in Figure 4.5.2).

• Light green, if there are two components, indicating a point in a region

homeomorphic to a line (H0 (A) =Z2, as in Figure 4.5.4).

• Red, if there are three components (H0 (A) =Z3 , as in Figure 4.5.6).

• Light blue, if there are no components, indicating an isolated point (H0 (A) = 0).
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• In every other case, the point is yellow (typically H0 (A) >Z3, as in Figure 4.5.8).

7.3 Stable points ofα and β

In the previous section, we discussed an algorithm to construct the Acute Local

Complex L∗ (
X , p,α,β

)
. Now the question is: How can we choose α and β in such a way

that the simplex projection-based colorings approximate the local homology of the

underlying space meaningfully and not by some accident of parameters? We look to the

data set to instruct our choice of α and β. In order to do so, we examine all choices of α

and β and compare how much the simplex projection-based colorings change from

one choice of α and β to the next, giving an algorithm for determining "interesting" α

and β for any point cloud data set and, therefore, a scale-free characterization of the

data set’s shape.

We first simplify the discussion by examining the case where α=β. Under this

setting, the approach involves examining the simplex projection-based colorings of a

range of α from zero, scanned up by a fixed increment, to some upper-bound. For each

successive value of α, we determine the percentage of points whose color changed,

compared to the previous value. The local and global minima of this sequence of

percentage changes will indicate the values of α that are locally stable, i.e. those

producing structures that do not change too much in the local neighborhood of a given

α under consideration.

Definition 7.3.1. Let X be a point cloud data set of N points. Let α be the parameter in

the Acute Local Complex L∗ (
X , p,α,α

)
described in Definitions 5.2.1 and 5.2.7, and let

us examine the sequence of simplex projection-based colorings of X as α varies from

α0 to αn . Consider

min
({

Nα1 /N , Nα2 /N , ..., Nαn /N
})

,
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(a) Whole circle. (b) One component. (c) Two components.

(d) Three components. (e) No components. (f) Many components.

Figure 7.2.11: Simplex projection-based coloring scheme.
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where Nαk is the number of points whose simplex projection-based color changes from

the labeling at αk−1 to the labeling at αk . Then the set of αk such that Nαk /N are local

minima, represents the stableα points. For a dataset X , we denote this set as STBα (X ),

or, simply, STBα, if the dataset is clear from the context.

Example 7.3.2 (Example: Multiscale Square). This is a synthetic point cloud data set

with rectangular "holes" at two different scales (4 at a small scale and 1 big one at a

larger scale). The point cloud is uniformly randomly sampled from a square with

vertices (0,0) , (0,10) , (10,10) and (10,0). Then points within the black regions in Figure

7.3.1 are removed using the methods in lines 27–42 of the code in the appendix. The

resulting point cloud is pictured below in Figure 7.3.2.

Figure 7.3.1: The Multiscale Square dataset is uniformly randomly sampled from the
blue region.

Here, we vary α from 0 to 1.4 by an increment of 0.1 and compute the simplex

projection-based colorings. To enable better visualization, we plot the logarithm of the

percentage changes versus α in the graph pictured in Figure 7.3.3.

We note that, for this example, STBα = {0.2,0.9,1.3}. Their simplex projection-based

colorings are shown in Figures 7.3.5, 7.3.6 and 7.3.7.

In Figure 7.3.4 we show the colorings for all the values of α. The interesting ones are
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Figure 7.3.2: The point cloud data set Multiscale Square has structure at two interesting
scales.
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Figure 7.3.3: The logarithm of the percentage of points that changed their simplex
projection-based coloring in successive α, versus α.
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sub-figures 7.3.4b, 7.3.4f and 7.3.4h. In the context of the full sweep of α, we may better

appreciate the usefulness of this algorithm, in that it picks out the scales at which the

structures characterized by the Local Complexes are also intuitively interesting in a

visual sense.

7.3.1 Two-dimensional analysis of stableα and β

We now describe the algorithm for identifying stable values of α and β when α and

β are not necessarily equal. As described in the simplified case above, we examine the

percentage of points whose simplex-projection based coloring changed from one

choice of α to the next, while keeping β fixed. This results in a matrix (array of arrays),

where one array corresponds, as in the simple case, to some fixed value of β, with α

varying. Similarly, we examine the percentage of points whose coloring changes from

one choice of β to the next, while keeping α fixed. We vary both α and β from 0 to some

pre-selected fixed value.

As in the simplified situation, here we are interested in values of α that serve as local

minima, separately, for each array of the first matrix, corresponding to different fixed

values of β, and, similarly, the set of β that serve as local minima, separately, for each

array of the second matrix, corresponding to different fixed values of α.

Finally, any pair of α and β that characterize local minima in both variables are

identified as special interesting values. In other words:

Definition 7.3.3. Let X be a point cloud data set of N points. Let β be the parameter in

the Acute Local Complex L∗ (
X , p,αi ,β

)
described in Definitions 5.2.1 and 5.2.7, and let

us examine the sequence of simplex projection-based colorings of X as β varies from

β0 to βn . Consider

min
({

Nβ1 /N , Nβ2 /N , ..., Nβn /N
}
αi

)
,

where Nβk is the number of points whose simplex projection-based color changed
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(a) α= 0.1 (b) α= 0.2

(c) α= 0.3 (d) α= 0.5

(e) α= 0.7 (f) α= 0.9

(g) α= 1.1 (h) α= 1.3

Figure 7.3.4: Simplex projection-based colorings of the Multiscale Square.
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Figure 7.3.5: The homology-based coloring of the Multiscale Square at α= 0.2.

Figure 7.3.6: The homology-based coloring of the Multiscale Square at α= 0.9.
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Figure 7.3.7: The homology-based coloring of the Multiscale Square at α= 1.3.
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from the labeling at βk−1 to the labeling at βk , for a fixed value of αi . Then, the set of βk

such that Nβk /N are local minima, represents the β-stable points for a fixed αi . For a

dataset X , we denote this set as STBβ (X ,αi ), or, simply, STBβ (αi ), if the dataset is clear

from the context. We can similarly determine theα-stable points STBα
(
X ,βi

)
.

The special interesting choices of both α and β,αβ-stable points, are then defined

to be

STBα,β (X ) = {(
α,β

) |α is stable for fixed β and β is stable for fixed α
}

.
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CHAPTER 8

RESULTS AND ANALYSIS

8.1 Introduction

We apply the algorithm described in Chapter 7, in particular, the Local Complex in

Definition 5.2.1 with the constraint in Definition 5.2.7, to both artificial and real-world

data sets. First, we consider three artificial sets: a capital letter A with a thick central

bar, a capital letter A with a thin central bar, and a set of three balls joined by two thin

lines.

8.2 A synthetic dataset: capital A

To construct the capital A with a thick central bar, we sample points uniformly

randomly from a trapezoidal region with vertices (0,0) , (1,4) , (3,4) and (4,0), using the

functions detailed in lines 24–47 of the Python code in the appendix. We then remove

any points sampled from the two smaller black trapezoids pictured in Figure 8.2.1,

using the function described in lines 33–39 of the code in the appendix. After

determining the stable values of α and β by computing STBα,β (X ) from Definition

7.3.3, we find that one of the combinations of αβ-stable points (where α= 0.21 and

β= 0.21) correctly identifies points which lie in two-dimensional regions and points

which are on the boundary of two-dimensional regions (see Figure 8.2.2 in color).
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Figure 8.2.1: The capital A dataset with a thick central bar is randomly uniformly

sampled from the blue region.

Figure 8.2.2: The resulting homology-based coloring of the thick A with α = 0.21 and

β= 0.21.
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8.3 A synthetic dataset: capital A with thin central bar

The capital letter A with a thin central bar introduces a new challenge to correctly

distinguish between points of the boundary of a two-dimensional region and points in

a one-dimensional region. To construct the capital A with a thick central bar, we

sample points uniformly randomly from a trapezoidal region with vertices

(0,0) , (1,4) , (3,4) and (4,0). We then remove any points sampled from the two smaller

black trapezoids pictured in Figure 8.3.1. As one can see in a color rendering of Figure

8.3.2, for one combination of αβ-stable points (where α= 0.21 and β= 0.21), the

central bar is distinguished from the boundary of the A.

Figure 8.3.1: The capital A dataset with a thin central bar is randomly uniformly sampled

from the blue region.
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Figure 8.3.2: The resulting homology-based coloring of the thin A with α = 0.21 and

β= 0.21, as well as seven representative Acute Local Complexes.

8.4 A synthetic dataset: a flowchart

The flowchart dataset is constructed by uniformly randomly selecting points from

the union of three octogons and two thin rectangles, illustrated in Figure 8.4.1. For the

flowchart of three balls and two bars, the simplex projection-based homology coloring

algorithm correctly identifies the centres of the balls as two-dimensional regions and

can determine the points which form the boundary of the two-dimensional balls. It

also establishes that the bars are formed of both boundary points and points which lie

along a one-dimensional line (see Figure 8.4.2 in color). The values α= 0.9 and β= 0.7

in Figure 8.4.2 are in the set of αβ-stable points for the flowchart.
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Figure 8.4.1: The flowchart dataset is randomly uniformly sampled from the blue region.

Figure 8.4.2: The resulting homology-based coloring of the flowchart with α = 0.9 and

β= 0.7, as well as five representative Acute Local Complexes.



110

8.5 A synthetic dataset: a uniformly random sample from a rectangle

In contrast, for a set of points randomly selected from a rectangular region, the

stable α and β algorithm outputs choices of α and β that do not find any structure in

the random data set. To construct the random dataset, we sample points uniformly

randomly from a rectangular region with vertices (0,0) , (0,4) , (4,4) and (4,0) As one can

see in a colored version of Figure 8.5.1, the randomly selected points are all identified

as points on the interior of a two-dimensional region, except the boundary of the

rectangle, which is colored blue.

Figure 8.5.1: The resulting homology-based coloring of a random point set withα= 0.27

and β= 0.25.

8.6 Real dataset: the SDSS galaxy data

We also consider a real-world application of the algorithm to the distribution of

galaxies in the universe. For the data set, we analyze a thin slice of a Sloan Digital Sky

Survey (SDSS) (described in Section 1.1.1). We project a thin three-dimensional slice of
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the SDSS dataset, composed of 3357 galaxies, down to two dimensions and then apply

the algorithm to determine the stable values of α and β.

A color rendering of Figure 8.6.1 depicts one choice of stable α and β. Note that the

simplex projection-based coloring of the SDSS data varies greatly from the random

dataset in Section 8.5 and Figure 8.5.1. The SDSS data is clearly not a random

distribution of galaxies. The pink points indicate two-dimensional regions and are

located in dense clusters. The blue points are boundaries of the two-dimensional

regions and can perhaps outline voids. The green points lie on one-dimensional

structures and may indicate filamentary regions.

Figure 8.6.1: The resulting homology-based coloring of a slice of the SDSS galaxy survey

with α= 0.002 and β= 0.0004.
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CHAPTER 9

FUTURE DIRECTIONS

Here we summarize the results and suggest areas of further research. The first two

sections involve extending and strengthening the current results. The last section

opens up an entirely new direction of research.

9.1 Higher dimensions

We wish to extend this work to higher dimensional analysis, primarily

three-dimensional distributions. To do so, we could form the Acute Local Complex in

three dimensions about each vertex p, and then project the 2-skeleton of the complex

(triangles, edges and vertices) onto the unit sphere centered at p. In Example 9.1.1, we

motivate how this technique could be applied in higher dimensions.

Example 9.1.1. Let U be the interior of a simplex, and U be the closure. Then the

boundary Bd(U ) is the closure set minus the interior. Take the following Figure 9.1.1 as

an example.

Figure 9.1.1: Extension of simplex arc projection to three dimensions. A set U on the left,
and the result of the intersection of U with the surface of a sphere on the right.

If we intersect U with the surface of a sphere, the result is Bd(U ). Then

H0 (Bd(U )) =Z⊕
Z and H1 (Bd(U )) =Z. If this represented the galaxy data, it could
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indicate that X is at the intersection of a two-dimensional wall and a one-dimensional

filament.

9.2 Theory

Referring back to Figure 1.2.1, the local homology of the VR complex and the

heuristic local homology of the simplex arc projections are related in a tenuous

manner. In particular, we show two positive examples of their equivalency (see

Examples 6.1.5 and 6.1.7), but we also show one counterexample (Example 6.1.3).

An important theoretical strengthening of this work involves the characterization of

conditions under which exact equivalency holds.

9.3 Simplicial complex reconstruction

Throughout this thesis, we work under the assumption that the given point cloud is

a sample of some true underlying space (which could be discrete, e.g. the galactic

distribution, or continuous, e.g. the synthetic data sets used in this thesis, like the

’multiscale square’).

A natural question then is: given the heuristic local dimension characterization of

all points in the point cloud, recover a simplicial complex that fully represents the

underlying space.

An important modern application of this line of work is the reconstruction of

buildings, cars, street furniture and other urban artifacts from LIDAR point cloud data

generated by autonomous self-driving cars.
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APPENDIX

1 # Imports and function definitions
2

3 import array
4 import csv
5 import matplotlib.pyplot as plt
6 import matplotlib
7 import numpy
8 import pprint
9 import random

10 import time
11 from datetime import datetime
12

13 from matplotlib.collections import LineCollection
14 from sage.plot.circle import Circle
15 from scipy.spatial import Delaunay
16 from sets import Set
17 from shapely.geometry import Point, Polygon
18

19 sage_server.MAX_OUTPUT_MESSAGES = 100000
20 sage_server.MAX_OUTPUT = 1000000
21

22 #
23 # General methods for polygons & points
24 # Used to create synthetic data sets
25 #
26

27 # Given a polygon poly and an integer n, return a set of n points
contained within poly,→

28 def get_n_random_points_in_polygon(poly,n):
29 i = n
30 pts = []
31 while i > 0:
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32 pts.append(get_random_point_in_polygon(poly))
33 i-=1
34 return pts
35

36 # Given a set of points pts and a polygon poly, remove from pts all
the points contained within poly and return the result,→

37 def remove_polygon_from_points(poly, pts):
38 good_pts = []
39 for p in pts:
40 if not poly.contains(Point(p)):
41 good_pts.append(p)
42 return good_pts
43

44 # Given a polygon poly, return a random point contained within poly
45 def get_random_point_in_polygon(poly):
46 (minx, miny, maxx, maxy) = poly.bounds
47 while True:
48 p = Point(random.uniform(minx, maxx), random.uniform(miny,

maxy)),→

49 if poly.contains(p):
50 return (p.x, p.y)
51

52 # Given a radius, return a random point contained within a sphere of
that radius,→

53 def generate_random_point_in_sphere(radius):
54 phi = uniform(0, 2*math.pi)
55 costheta = uniform(-1, 1)
56 u = uniform(0, 1)
57 theta = arccos(costheta)
58 r = radius * (u)^(1/3)
59 x = r * sin(theta) * cos(phi)
60 y = r * sin(theta) * sin(phi)
61 z = r * costheta
62 return (x, y, z)
63
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64 # export points to csv
65 def export_points_csv(points, filename):
66 L = open(filename, "w", 0)
67 for p in points:
68 L.write(str(p[0]) + "," + str(p[1]) + "\n")
69 L.close()
70

71 #
72 # Compute the Vietoris-Rips Complex of a set of vertices, given a

scale factor epsilon, based on Zomorodian's incremental algorithm,→

73 # First approach is to compute the entire VR complex and then find the
homologies of the star of a vertex relative to the link,→

74 # and then color the points based on homology. This is
computationally expensive.,→

75 #
76

77 # Define Scale-based Edge Creation (Brute force O(n^2))
78 def FormEpsilonNearEdges(V,epsilon):
79 edges = {}
80 for v1 in V:
81 edges[v1]=Set()
82 for v1 in V:
83 for v2 in V:
84 if (v1 != v2):
85 if sqrt((v2[1]-v1[1])^2+(v2[0]-v1[0])^2) < epsilon:
86 edges[v1].add(v2)
87 edges[v2].add(v1)
88 return edges
89

90 # Acute Local Complex: same as above; but, avoid edges crossing
p-shell,→

91 def FormEpsilonNearEdges_NotCrossingPShell(p, V, epsilon):
92 edges = {}
93 for v1 in V:
94 edges[v1]=Set()
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95 for v1 in V:
96 for v2 in V:
97 if (v1 != v2):
98 dot_product = (v1[0] - p[0])*(v2[0] - p[0]) + (v1[1] -

p[1])*(v2[1] - p[1]),→

99 if (dot_product > 0) and
(sqrt((v2[1]-v1[1])^2+(v2[0]-v1[0])^2) <=
epsilon):

,→

,→

100 edges[v1].add(v2)
101 edges[v2].add(v1)
102 return edges
103

104 # Define LowerNeighbors
105 def LowerNeighbors(E,V,u,OV):
106 N = Set()
107 for v in V[0:OV[u]]:
108 if (v in E[u]):
109 N.add(v)
110 return N
111

112 # Define AddCofaces
113 def AddCofaces(Edges, VertexSet, OrderedVertexSet, _V, tau, N, k):
114 _V.add(tau)
115 if len(tau)-1 >= k:
116 return
117 else:
118 for v in N:
119 sigma = tau | frozenset([v])
120 M = N & LowerNeighbors(Edges,VertexSet,v,OrderedVertexSet)
121 AddCofaces(Edges,VertexSet,OrderedVertexSet,_V,sigma,M,k)
122

123 # INCREMENTAL-VR Main Algorithm
124 def IncrementalVR(p, VertexSet, epsilon):
125 # For the Acute Local Complex, use

FormEpsilonEdges_NotCrossingPShell,→
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126 #Edges = FormEpsilonNearEdges(VertexSet, epsilon)
127 Edges = FormEpsilonNearEdges_NotCrossingPShell(p, VertexSet,

epsilon),→

128 # Totally order the vertex set
129 i = 0
130 OrderedVertexSet = {}
131 for v in VertexSet:
132 OrderedVertexSet[v] = i
133 i += 1
134 # Initialize VR complex to null
135 _V = Set()
136 for u in VertexSet:
137 N = LowerNeighbors(Edges,VertexSet,u,OrderedVertexSet)
138

AddCofaces(Edges,VertexSet,OrderedVertexSet,_V,frozenset([u]),N,3),→

139 return _V
140

141 #
142 # Local Shell Complex: find the VR complex of an annulus of points

between beta - alpha and beta + alpha,→

143 # Alpha-beta shells & localized VR complexes
144 #
145

146 def Bin(VertexSet, beta, alpha, GridLength):
147 # find bounding box
148 low_x = float('inf')
149 low_y = float('inf')
150 high_x = 0
151 high_y = 0
152 for p in VertexSet:
153 if (p[0] < low_x):
154 low_x = p[0]
155 if (p[0] > high_x):
156 high_x = p[0]
157 if (p[1] < low_y):
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158 low_y = p[1]
159 if (p[1] > high_y):
160 high_y = p[1]
161

162 # add buffer to bounding box
163 d = (beta + alpha)
164 low_x -= d
165 low_y -= d
166 high_x += d
167 high_y += d
168 # print "here"
169

170 #align low_x and low_y to a GridLength grid
171 low_x = math.floor((low_x) / GridLength) * GridLength
172 low_y = math.floor((low_y) / GridLength) * GridLength
173

174 # initialize bins
175 binning = {}
176 y = low_y
177 while y <= high_y:
178 x = low_x
179 while x <= high_x:
180 binning[('%.2f' % x,'%.2f' % y)] = []
181 x += GridLength
182 y += GridLength
183

184 # fill the bins
185 for p in VertexSet:
186 gridX = (math.floor((p[0]) / GridLength) * GridLength)
187 gridY = (math.floor((p[1]) / GridLength) * GridLength)
188 binning[('%.2f' % gridX,'%.2f' % gridY)].append(p)
189

190 return binning
191
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192 # Given a binning and a point, return all "neighboring" points in grid
cells that contain the beta+alpha disc,→

193 def AlphaBetaCandidatePoints(binning, p, beta, alpha, GridLength):
194 d = (beta + alpha)
195 # determine lower left grid cell
196 g_ll = (math.floor((p[0] - d) / GridLength) * GridLength,

math.floor((p[1] - d) / GridLength) * GridLength),→

197 # determine upper right grid cell
198 g_ur = (math.floor((p[0] + d) / GridLength) * GridLength,

math.floor((p[1] + d) / GridLength) * GridLength),→

199

200 # get all points in all containing grids
201 neighbors = []
202 y = g_ll[1]
203 while y <= g_ur[1]:
204 x = g_ll[0]
205 while x <= g_ur[0]:
206 neighbors.extend(binning[('%.2f' % x,'%.2f' % y)])
207 x += GridLength
208 y += GridLength
209 return neighbors
210

211 def GetAlphaBetaShell(VertexSet, v, beta, alpha, gamma):
212 Shell = []
213 for p in VertexSet:
214 dist = sqrt((p[1]-v[1])^2+(p[0]-v[0])^2)
215 #For the Local Complex, use the first of the next two lines
216 #For the Local Shell Complex and the Local Central Hole

Complex, use the second of the next two lines,→

217 if (dist <= beta/2 + alpha/2) and (dist > 0):
218 # if ((dist <= beta/2 + alpha/2) and (dist >= max(gamma,

beta/2 - alpha/2))):,→

219 Shell.append(p)
220 return Shell
221



123

222 def GetLinkVRHomologies(VertexSet, beta, alpha, gamma, GridLength, L,
interesting_points):,→

223 homologies = {}
224 binning = Bin(VertexSet, beta, alpha, GridLength)
225 L.write("Number of points : " + str(len(VertexSet)) + "\n")
226 L.write("beta : " + str(beta) + "\n")
227 L.write("alpha : " + str(alpha) + "\n")
228 L.write("gamma : " + str(gamma) + "\n")
229 L.write("GridLength : " + str(GridLength) + "\n")
230 L.write("#bins : " + str(len(binning)) + "\n")
231 G = Graphics()
232 for p in VertexSet:
233 pShell = GetAlphaBetaShell(AlphaBetaCandidatePoints(binning,

p, beta, alpha, GridLength), p, beta, alpha, gamma),→

234 pVR = IncrementalVR(p, pShell, alpha)
235 L.write("Size of VR complex : " + str(len(pVR)) + "\n")
236 pVR_SC = SimplicialComplex(pVR)
237 L.write("|\n")
238 if p in interesting_points:
239 G += point(p, color = "purple", size = 3)
240 for simplex in pVR:
241 if (len(simplex) == 2):
242 G += line(simplex, color="orange")
243 L.write("\n")
244 return (homologies,G)
245

246

247 #
248 # Homology coloring : Color the points based on their homology
249 #
250

251 # 0:Z is blue, 0:ZxZ is light green, 0:Z^3 is red, 0:Z^n is yellow and
1:Z is pink, default is light blue,→

252 def HomologyBasedColoring(homology):
253 # default color is light blue
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254 _color = 'lightblue'
255 if (0 not in homology):
256 _color = 'lightblue'
257 elif ((str(homology[0]) == 'Z') and ((1 not in homology) or

(str(homology[1]) == '0'))):,→

258 _color = 'blue'
259 elif ((str(homology[0]) == 'Z^2' or str(homology[0]) == 'Z x Z')

and ((1 not in homology) or (str(homology[1]) == '0'))):,→

260 _color = 'lightgreen'
261 elif ((str(homology[0]) == 'Z^3' or str(homology[0]) == 'Z x Z x

Z') and ((1 not in homology) or (str(homology[1]) == '0'))):,→

262 _color = 'red'
263 elif ((str(homology[0]) != 'Z' and str(homology[0]) != 'Z x Z' and

str(homology[0]) != 'Z^2') and ((1 not in homology) or
(str(homology[1]) == '0'))):

,→

,→

264 _color = 'yellow'
265 elif (str(homology[1] == 'Z')):
266 _color = 'pink'
267 return _color
268

269 def ColorHomologies(VertexSet, homologies):
270 # define colorings
271 G = Graphics()
272 for p in VertexSet:
273 G += point(p, color = HomologyBasedColoring(homologies[p]),

size = 2),→

274 G.show()
275 return G
276

277 # Plot alpha balls of varying radius around each point
278 def DrawAlphaBalls(VertexSet, alpha):
279 G = Graphics()
280 G += points(VertexSet)
281 for p in VertexSet:
282 G += circle((p), alpha/2, facecolor='pink', fill=True)
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283 return G
284

285

286 def GetLinkVRHomologiesPlot(VertexSet, beta, alpha, gamma, GridLength,
L, interesting_points):,→

287

288 Binning = Bin(VertexSet, beta, alpha, GridLength)
289 L.write("Number of points : " + str(len(VertexSet)) + "\n")
290 L.write("beta : " + str(beta) + "\n")
291 L.write("alpha : " + str(alpha) + "\n")
292 L.write("gamma : " + str(gamma) + "\n")
293 L.write("GridLength : " + str(GridLength) + "\n")
294 L.write("#bins : " + str(len(binning)) + "\n")
295 G = Graphics()
296 for p in VertexSet:
297 pShell = GetAlphaBetaShell(AlphaBetaCandidatePoints(binning,

p, beta, alpha, GridLength), p, beta, alpha, gamma),→

298 pVR = IncrementalVR(pShell, alpha)
299 L.write("Size of VR complex : " + str(len(pVR)) + "\n")
300 pVR_SC = SimplicialComplex(pVR)
301 G += point(p, color =

HomologyBasedColoring(pVR_SC._homology_()), size = 3),→

302 L.write("|\n")
303 if p in interesting_points:
304 G += point(p, color = "purple", size = 2)
305 for simplex in pVR:
306 if (len(simplex) == 2):
307 G += line(simplex, color="orange")
308 L.write("\n\n\n")
309 return G
310

311 # Simplex projection: project edges and vertices in pShell onto circle
centered at p and merge overlapping components,,→

312 # taking into account, (a) projections onto minor arcs only, and (b)
the fact that arcs wrap around,→
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313 def ComponentsBySimplexProjection(p, pShell, Edges):
314 components = set()
315 for v1 in pShell:
316 angle1 = atan2(float(v1[1] - p[1]), float(v1[0] - p[0]))
317 if v1 not in Edges or (len(Edges[v1]) == 0):
318 components.add((angle1, angle1))
319 elif v1 in Edges:
320 for v2 in Edges[v1]:
321 angle2 = atan2(float(v2[1] - p[1]), float(v2[0] -

p[0])),→

322 if angle2 < angle1:
323 temp = angle1
324 angle1 = angle2
325 angle2 = temp
326 if (angle2 - angle1) > math.pi:
327 components.add((angle2, math.pi))
328 components.add((-math.pi, angle1))
329 else:
330 components.add((angle1, angle2))
331 sorted_components = sorted(components, key=lambda tup: tup[0])
332 merged = []
333 for higher in sorted_components:
334 if not merged:
335 merged.append(higher)
336 else:
337 lower = merged[-1]
338 if higher[0] <= lower[1]:
339 upper_bound = max(lower[1],higher[1])
340 merged[-1] = (lower[0], upper_bound)
341 else:
342 merged.append(higher)
343 minus_pi_index = -1
344 plus_pi_index = -1
345 for i in range(len(merged)):
346 if merged[i][0] == -math.pi:
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347 minus_pi_index = i
348 elif merged[i][1] == math.pi:
349 plus_pi_index = i
350 if (minus_pi_index != -1 and plus_pi_index != -1):
351

merged.append((merged[plus_pi_index][0],merged[minus_pi_index][1])),→

352 del merged[minus_pi_index]
353 del merged[plus_pi_index - 1]
354 return merged
355

356 # circle is pink, 0 components is light blue, 1 component is blue, 2
components is green, 3 components is red, more is yellow,→

357 def SimplexArcProjectionsBasedColoring(components):
358 # default color is red
359 _color = 'red'
360 if (len(components) == 1 and components[0] == (-math.pi,

math.pi)):,→

361 _color = 'pink'
362 elif (len(components) == 1):
363 _color = 'blue'
364 elif (len(components) == 2):
365 _color = 'lightgreen'
366 elif (len(components) == 3):
367 _color = 'red'
368 elif (len(components) == 0):
369 _color = 'lightblue'
370 else:
371 _color = 'yellow'
372 return _color
373

374 def GetVRSimplexArcProjections(VertexSet, beta, alpha, gamma,
GridLength, L, interesting_points):,→

375 binning = Bin(VertexSet, beta, alpha, GridLength)
376 L.write("Number of points : " + str(len(VertexSet)) + "\n")
377 L.write("beta : " + str(beta) + "\n")
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378 L.write("alpha : " + str(alpha) + "\n")
379 L.write("gamma : " + str(gamma) + "\n")
380 L.write("GridLength : " + str(GridLength) + "\n")
381 L.write("#bins : " + str(len(binning)) + "\n")
382 G = Graphics()
383 ColoringsByVertex = {}
384 for p in VertexSet:
385 disc_candidate_points = AlphaBetaCandidatePoints(binning, p,

beta, alpha, GridLength),→

386 pShell = GetAlphaBetaShell(disc_candidate_points, p, beta,
alpha, gamma),→

387 # For the Acute Local Complex, use the second of the next two
lines,→

388 #edges = FormEpsilonNearEdges(pShell, alpha)
389 edges = FormEpsilonNearEdges_NotCrossingPShell(p, pShell,

alpha),→

390 components = ComponentsBySimplexProjection(p, pShell, edges)
391 ColoringsByVertex[p] =

SimplexArcProjectionsBasedColoring(components),→

392 if p in interesting_points:
393 G += point(p, color = "purple", size = 3)
394 for p1 in pShell:
395 if p1 in edges:
396 for p2 in edges[p1]:
397 G += line([p1, p2], color="orange", thickness

= 1),→

398 G += point(p, color = ColoringsByVertex[p], size = 4)
399 L.write("|\n")
400 L.write("\n\n\n")
401 L.write("DONE GetVRSimplexArcProjections!\n")
402 return (G, ColoringsByVertex)
403

404 # Library of methods implementing the search for stable alpha and
beta,→

405
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406 # Compute the percentage of points whose colorings changed
407 def GetRelativeChange(OldColoringsMap, NewColoringsMap):
408 diff = 0
409 for k in OldColoringsMap.keys():
410 if OldColoringsMap[k] != NewColoringsMap[k]:
411 diff += 1
412 return float(diff)/float(len(OldColoringsMap))
413

414 # Compute the matrix of relative changes in alpha, with fixed beta,
and then changes in beta with fixed alpha,→

415 # Note that the alpha_start, alpha_end, alpha_change, beta_start,
beta_end, beta_change variables are all scaled down by 100. This
may need to be adjusted depending on the data set.

,→

,→

416 def AlphaBetaGradient(VertexSet, interesting_points, GridLength,
alpha_start, alpha_end, alpha_change, beta_start, beta_end,
beta_change):

,→

,→

417 alpha_count = (alpha_end - alpha_start) / alpha_change
418 beta_count = (beta_end - beta_start) / beta_change
419 RelativeChanges_alpha = {}
420 for alpha_idx in range(0, alpha_count):
421 RelativeChanges_alpha[alpha_idx] = {}
422 for beta_idx in range(0, beta_count):
423 RelativeChanges_alpha[0][beta_idx] = 1.0
424

425 RelativeChanges_beta = {}
426 for alpha_idx in range(0, alpha_count):
427 RelativeChanges_beta[alpha_idx] = {}
428 for alpha_idx in range(0, alpha_count):
429 RelativeChanges_beta[alpha_idx][0] = 1.0
430

431 ColoringsByVertexByAlphaBeta = {}
432 for alpha_idx in range(0, alpha_count):
433 ColoringsByVertexByAlphaBeta[alpha_idx] = {}
434

435 first_alpha = float(alpha_start)/float(10000)
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436 for beta_idx in range(0, beta_count):
437 beta = float(beta_start + float(beta_idx) *

beta_change)/float(10000),→

438 _s = "alpha_" + str(first_alpha) + "_beta_" + str(beta)
439 L = open("log_" + _s + ".txt", "w", 0)
440 (G, ColoringsByVertex) = GetVRSimplexArcProjections(VertexSet,

beta, first_alpha, 0, GridLength, L, interesting_points),→

441 L.close()
442 G.save(_s + "_Combined_" + dataset + ".pdf")
443 ColoringsByVertexByAlphaBeta[0][beta_idx] = ColoringsByVertex
444 # print("done beta : ", beta)
445 # print("done alpha : ", first_alpha)
446

447 first_beta = float(beta_start)/float(10000)
448 for alpha_idx in range(0, alpha_count):
449 alpha = float(alpha_start + float(alpha_idx) *

alpha_change)/float(10000),→

450 _s = "alpha_" + str(alpha) + "_beta_" + str(first_beta)
451 L = open("log_" + _s + ".txt", "w", 0)
452 (G, ColoringsByVertex) = GetVRSimplexArcProjections(VertexSet,

first_beta, alpha, 0, GridLength, L, interesting_points),→

453 L.close()
454 G.save(_s + "_Combined_" + dataset + ".pdf")
455 ColoringsByVertexByAlphaBeta[alpha_idx][0] = ColoringsByVertex
456 # print("done beta : ", first_beta)
457 # print("done alpha : ", alpha)
458

459 for alpha_idx in range(1, alpha_count):
460 alpha = float(alpha_start + float(alpha_idx) *

alpha_change)/float(10000),→

461 beta_idx = 0
462 beta = float(beta_start + float(beta_idx) *

beta_change)/float(10000),→

463 _s = "alpha_" + str(alpha) + "_beta_" + str(beta)
464 L = open("log_" + _s + ".txt", "w", 0)
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465 (G, ColoringsByVertex) = GetVRSimplexArcProjections(VertexSet,
beta, alpha, 0, GridLength, L, interesting_points),→

466 L.close()
467 G.save(_s + "_Combined_" + dataset + ".pdf")
468 ColoringsByVertexByAlphaBeta[alpha_idx][beta_idx] =

ColoringsByVertex,→

469 RelativeChanges_alpha[alpha_idx][beta_idx] =
GetRelativeChange(ColoringsByVertexByAlphaBeta[alpha_idx -
1][beta_idx], ColoringsByVertex)

,→

,→

470 # print("done beta : ", beta)
471 # print("done alpha : ", alpha)
472

473 for beta_idx in range(1, beta_count):
474 beta = float(beta_start + float(beta_idx) *

beta_change)/float(10000),→

475 alpha_idx = 0
476 alpha = float(alpha_start + float(alpha_idx) *

alpha_change)/float(10000),→

477 _s = "alpha_" + str(alpha) + "_beta_" + str(beta)
478 L = open("log_" + _s + ".txt", "w", 0)
479 (G, ColoringsByVertex) = GetVRSimplexArcProjections(VertexSet,

beta, alpha, 0, GridLength, L, interesting_points),→

480 L.close()
481 G.save(_s + "_Combined_" + dataset + ".pdf")
482 ColoringsByVertexByAlphaBeta[alpha_idx][beta_idx] =

ColoringsByVertex,→

483 RelativeChanges_beta[alpha_idx][beta_idx] =
GetRelativeChange(ColoringsByVertexByAlphaBeta[alpha_idx][beta_idx
- 1], ColoringsByVertex)

,→

,→

484 # print("done beta : ", beta)
485 # print("done alpha : ", alpha)
486

487 print("Finished edge cases!")
488

489 for alpha_idx in range(1, alpha_count):
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490 alpha = float(alpha_start + float(alpha_idx) *
alpha_change)/float(10000),→

491 for beta_idx in range(1, beta_count):
492 beta = float(beta_start + float(beta_idx) *

beta_change)/float(10000),→

493 _s = "alpha_" + str(alpha) + "_beta_" + str(beta)
494 L = open("log_" + _s + ".txt", "w", 0)
495 (G, ColoringsByVertex) =

GetVRSimplexArcProjections(VertexSet, beta, alpha, 0,
GridLength, L, interesting_points)

,→

,→

496 L.close()
497 G.save(_s + "_Combined_" + dataset + ".pdf")
498 ColoringsByVertexByAlphaBeta[alpha_idx][beta_idx] =

ColoringsByVertex,→

499 RelativeChanges_alpha[alpha_idx][beta_idx] =
GetRelativeChange(ColoringsByVertexByAlphaBeta[alpha_idx
- 1][beta_idx], ColoringsByVertex)

,→

,→

500 RelativeChanges_beta[alpha_idx][beta_idx] =
GetRelativeChange(ColoringsByVertexByAlphaBeta[alpha_idx][beta_idx
- 1], ColoringsByVertex)

,→

,→

501 # print("done beta : ", beta)
502 # print("done alpha : ", alpha)
503

504

505 print("Alpha gradient")
506 for alpha_idx in range(0, alpha_count):
507 print(RelativeChanges_alpha[alpha_idx].values())
508

509 print("Alpha gradient - transpose")
510 for beta_idx in range(0, beta_count):
511 print([x[beta_idx] for x in RelativeChanges_alpha.values()])
512

513 print("Beta gradient")
514 for alpha_idx in range(0, alpha_count):
515 print(RelativeChanges_beta[alpha_idx].values())
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516

517 return (RelativeChanges_alpha, RelativeChanges_beta)
518

519

520 # Given a 1d vector of relative changes, return stable indices,
defined as the local minima,→

521 def GetStableIndices(RelativeChanges):
522 stable_idxs = []
523 i = 1
524 while true:
525 if i == len(RelativeChanges)-1:
526 break
527 if (RelativeChanges[i] <= RelativeChanges[i-1] and

RelativeChanges[i] <= RelativeChanges[i+1]):,→

528 stable_idxs.append(i)
529 i += 1
530 if RelativeChanges[i] == min(RelativeChanges):
531 stable_idxs.append(i)
532 return stable_idxs
533

534 def GetStableAlphas(stable_idxs, alpha_start, alpha_change):
535 stable_alphas = []
536 for x in stable_idxs:
537 stable_alphas.append((x + 1)*(alpha_change) + alpha_start)
538 return stable_alphas
539

540 # Given two 2d matrices representing, respectively, relative changes
in the alpha and beta dimension,,→

541 # compute and print the stable indices and their corresponding alpha
and beta values.,→

542 def GetStableIndices_AlphaBeta(RelativeChanges_alpha,
RelativeChanges_beta, label):,→

543 print("Stable indices in the alpha gradient")
544 stable_alpha_indices = Set([])
545 for beta_idx in range(0, len(RelativeChanges_beta)):
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546 print("Main loop beta_idx = ", beta_idx)
547 alpha_grad = [x[beta_idx] for x in

RelativeChanges_alpha.values()],→

548 stable_indices = GetStableIndices(alpha_grad)
549 for alpha_idx in stable_indices:
550 print("alpha_idx = ", alpha_idx)
551 print("beta_idx = ", beta_idx)
552 stable_alpha_indices.add(tuple([alpha_idx, beta_idx]))
553 print("RelativeChanges_alpha[alpha_idx, beta_idx] = ",

RelativeChanges_alpha[alpha_idx][beta_idx]),→

554

555 print("Stable indices in the beta gradient")
556 stable_beta_indices = Set([])
557 for alpha_idx in range(0, len(RelativeChanges_alpha)):
558 beta_grad = RelativeChanges_beta[alpha_idx].values()
559 stable_indices = GetStableIndices(beta_grad)
560 for beta_idx in stable_indices:
561 print("alpha_idx = ", alpha_idx)
562 print("beta_idx = ", beta_idx)
563 stable_beta_indices.add(tuple([alpha_idx, beta_idx]))
564 print("RelativeChanges_beta[alpha_idx, beta_idx] = ",

RelativeChanges_beta[alpha_idx][beta_idx]),→

565

566 print("Stable indices in alpha beta")
567 print(stable_alpha_indices & stable_beta_indices)
568 with open(label + "_Interesting_alpha_beta.csv", "wb") as f:
569 writer = csv.writer(f)
570 writer.writerows(stable_alpha_indices & stable_beta_indices)
571

572 def Main(dataset, interesting_points, GridLength, alpha_start,
alpha_end, alpha_change, beta_start, beta_end, beta_change):,→

573 label = dataset + '_a' + str(alpha_start)+ '_b' + str(beta_start)
574 data = list(csv.reader(open(dataset + ".csv", 'rU')))
575 VertexSet = map(lambda x: (float(x[0]), float(x[1])), data)
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576 (RelativeChanges_alpha, RelativeChanges_beta) =
AlphaBetaGradient(VertexSet, interesting_points, GridLength,
alpha_start, alpha_end, alpha_change, beta_start, beta_end,
beta_change)

,→

,→

,→

577 GetStableIndices_AlphaBeta(RelativeChanges_alpha,
RelativeChanges_beta, label),→
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