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ABSTRACT

A BOUNDARY-BASED MEASURE FOR GERRYMANDERING

by Carson Sprock

This paper presents a new measure for quantifying legislative gerrymandering

based intuitive observation that in a non-gerrymandered district a randomly placed

observer should be able to walk in a straight line and only cross the boundary of the

district once, when the district is exited. We make this notion precise in terms of

the expected value of such crossings. The result is the Boundary Intersection

Number, or BIN. Properties of the BIN score are proven and its computational

properties discussed.
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CHAPTER 1

INTRODUCTION

The term “gerrymander” originated in 1812 during a feud between the

Republican governor of Massachusetts Elbridge Gerry and the rival Federalist Party.

At the time the Federalists were the minority party and Gerry was trying to

prosecute members of the Federalist press when he signed a controversial districting

plan that favored the Republicans. The Federalists responded by ridiculing Gerry

and the districting plan in the press with a cartoon comparing one of the districts to

a salamander, dubbing it a “gerrymander” [5]. The term has stayed in the

American political lexicon and refers broadly to the “manipulation of district lines

for partisan purposes” [11]. The eponymous gerrymander is shown in Figure 1.

Figure 1.1: The original gerrymander
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The problem of gerrymandering originates with the power of a legislature to

create its own districts and districting plans. This can allow self-interested partisans

to essentially choose their own constituencies and given insufficient restrictions, a

party with a minority in the population can achieve a majority in the legislature

through the creation of cleverly constructed districting plans.

To illustrate how this can be achieved, consider a two-party election contest.

To win, a party needs only 51% of the votes. Any more beyond 51% can be

considered “wasted.” An effective partisan gerrymander attempts to “pack”

opposition voters into a few districts with large majorities and spread their own

voters over many districts with smaller majorities (“cracking”). The goal is to

engineer artificial landslides for the opposition in a few districts while winning

smaller yet secure majorities for their own party in many districts [11].

Figure 1.2 illustrates how gerrymandering works. In this example, 3/5 of

voters belong to the Blue party and 2/5 the Red party. The left-most picture shows

five districts drawn in such a way that each party is represented proportionately,

giving Blue a majority. The right-most picture shows how it is possible to engineer a

Red majority through gerrymandering. Since the partisan distribution of voters over

the geographic area to be gerrymandered is usually conducive to gerrymandering,

gerrymandered districts can look highly irregular as their boundaries are drawn

deliberately to incorporate and avoid certain areas of the map.

In addition to gerrymandering, other legal and constitutional requirements

often result in misshapen districts as legislatures attempt to meet them. Sometimes

districts are required to be geographically contiguous (i.e. topologically connected)

and to have equal populations [11]. This requirement can result in misshapen

figures if the district border follows the borders of other administrative units such as

counties, townships, or the state boundary. The Voting Rights Act of 1965 also
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Figure 1.2: A example of gerrymandering (adapted from [7])

Figure 1.3: Illinois 4th Congressional District, an example of “packing”.
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forbids the dilution of minority districts, which can lead to the creation of oddly

shaped districts such as Illinois’ 4th Congressional District in Figure 3 [11, 6]. This

district provides a good example of packing because it was created to connect to

geographically separated groups of voters. The contiguity requirement is satisfied by

long tails connected by a thin stretch of highway.
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CHAPTER 2

REVIEW OF GERRYMANDERING MEASURES

Beyond “I know it when I see it,” there is no agreed upon standard for

determining if a district or districting plan is gerrymandered and multiple measures

have been proposed for quantifying gerrymandering [15, 11, 9]. Most measures of

gerrymandering are attempts to quantify shape. As “shape” is a rather ambiguous

concept, it is unsurprising there are many competing metrics using different

properties of the geometric figures used to represent districts. There is also

disagreement among scholars over which aspects of shape are the most important

for gerrymandering and some authors do not correctly specify which aspect of shape

is being measured [9].

Taylor [14] identifies four aspects of shape: elongation, indentation, separation

and puncturedness. While he fails to make these four concepts precise, elongation

roughly refers to how “stretched out” the shape is and he uses the example of a

long, thin rectangle such as the one in the right panel of Figure 2.1 . Separation

refers to a shape having two or more disconnected components, and puncturedness

refers to the existence of “holes” in a shape.

Taylor argues that indentations are the most important of these four.

Indentations in districts could result from attempts to avoid including a group of

voters in the district or to pack them into a neighboring one. He hypothesizes the

number of reflex angles (angles whose internal measure is greater than 180◦) is

related to how “indented” a district is, which in turn could be evidence of

gerrymandering.
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Recall that a polygon is a subset of R2 that is bounded by a finite chain of

straight line segments closing in a loop. For a polygonal district P ⊂ R2 let R and

N be the number of reflex and non-reflex angles respectively. Taylor’s indentation

index for district P is

I(P ) =
N −R
N +R

. (2.1)

When P is convex all angles are non-reflexive, so R = 0 and I(P ) = 1. Since

I(P ) ≤ 1, a convex polygon is considered the least gerrymandered by this measure.

Young [15] demonstrates several problems with this measure using the example of a

“squeezed” square (see left panel of Figure 2.1). Since a square is convex, it has an

indentation score of one and is considered to be not gerrymandered by the

indentation criteria. But one can obtain a figure with a score of zero by slightly

“pushing” each face towards the interior. The indentations in this polygon are so

mild that the shape should not be considered any more gerrymandered than the

square, but Taylor’s measure gives it a lower score than the long thin rectangle, and

pushing the faces in further has no effect on the score. Young’s example illustrates

the problem with Taylor’s measure, namely that the measure cannot effectively

discriminate between more or less gerrymandered figures since it is unaffected by

the magnitude of the indentations.

The aspect of shape that most measures of gerrymandering attempt to

quantify is that of compactness (as distinct from the topological concept).

Compactness is the notion that the bulk of the shape should be “closely packed”

and its use is advocated by Polsby and Popper [11]. Simple shapes like circles,

squares and hexagons conform to the intuitive notion of compactness [10].

Unfortunately there is no agreed upon definition of compactness either and there

are conflicting definitions in the gerrymandering literature used by different authors.
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Figure 2.1: Left: a “squeezed” square. Right: a long, thin rectangle.

Taylor asserts the four aspects of shape he identifies are in fact aspects of

compactness while others treat compactness as a separate property [9, 11, 15].

Young criticizes Taylor’s measure since shapes that have their area dispersed such

as a long and thin rectangle such as the one shown on the right panel of Figure 2.1,

are compact according to his indentation criteria [15, 14].

Reock [12] argues that compact shapes are those that make efficient use of

perimeter to enclose area and suggests the circle is the ideal shape since it has the

lowest perimeter to area ratio. He proposes using the ratio of the shape’s area to the

area of the smallest circumscribing circle,

Area of circumscribing circle

Area
. (2.2)

However, Young has pointed out that an arbitrarily misshapen district can receive a

high score so long as it is contained within a compact area [15]. The counterexample

Young uses is that of a “coiled snake” that is coiled in a roughly circular area (see

right panel of Figure 2.3). This shape fills in much of the area of its circumscribing

circle yet does not conform to our intuitive notion of gerrymandering. In their
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extensive survey of gerrymandering methods, Polsby and Popper [11] also criticize

the measure for being too sensitive to extreme points and use the example of a

square with a “spike” protruding from one of the square’s corners (see Figure 2.2),

the angular configuration of the spike can have a dramatic effect on the size of the

circumscribing circle. If the spike is parallel along one of the square’s diagonals, the

circumscribing circle will enclose a significant amount of area not covered by the

square. However, “folding” the spike towards the square shrinks the size of the

circle resulting in a higher compactness score. There is no rationale for considering

the “folded spike” to be less gerrymandered than the former configuration [11].

Figure 2.2: Left: square with folded spike. Right: square with protruding spike.

Polsby and Popper [11] argue that perimeter is an aspect of shape important

for gerrymandering since it is directly related to the configuration of the shape and

propose using the area of the circle with the same perimeter instead of the

circumscribing circle,

Area of the circle of equal perimeter

Area
. (2.3)

The incorporation of perimeter into the compactness measure solves the problem
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raised by Young, since an arbitrarily misshapen district like the “coiled snake” will

have a longer perimeter as the district border wanders about a confined area.

The measure created by Boyce and Clark [2] attempts to take the

configuration of the district borders into account directly rather than using a single

related parameter like area or perimeter. Let ri from i = 1, . . . , n be equally spaced

radii originating at the center of the shape and terminating at the farthest

intersection point and let `i be the length of each ri. The index is computed by

C(P ) =
n∑
i=1

∣∣∣∣ `i∑
i `i
− 1

n

∣∣∣∣ (2.4)

which has minimum value of 0 which occurs when all ri are of equal length. For

example, this will occur when P is a circle [9]. The measure is sensitive to the value

of n and MacEachren [9] finds that the measure stabilizes for values of n > 100.

Young points out this measure is susceptible to the same problem as Reock’s

measure (2.2) since it does not take into account the perimeter of the shape.

Another popular measure is the moments of area method which captures how

the points of the shape are distributed about an axis [9]. Let dA be a small piece of

area, then the second moment of area in polar form is∫
P

r2dA

The moments of area ratio is

A2

2π
∫
P
r2 dA

(2.5)

which takes a maximum value of 1 when P is a circle. Like Boyce and Clark’s

measure in equation 2.4, the moments of area method tries to take the whole of the

shape into account. However, this method has the same problem as those described

in [12] and [11] since shapes like the coiled snake would score well on this measure

[15]. Polsby and Popper also points out for that shapes where the bulk of the area is
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concentrated about the center but have distorted and irregular boundaries would

still receive a high compactness score according to 2.5. They use the example of

“sawblade” pictured in Figure 2.3 to illustrate this point.

Figure 2.3: Left: sawblade. Right: coiled snake.

Chambers and Miller [3] introduce a new concept and measure they call

“bizarreness” and demonstrate its use for identifying gerrymanders. They argue

that a key feature of gerrymandered districts is that they are highly non-convex.

Their measure is based on the probability the shortest path connecting two

randomly selected points in the district is itself contained in the district. If the

district boundary follows the state boundary then, irregular shape may not be the

result of gerrymandering, so they adjust their measure to use the probability the

path lies in the state.

Hodge et al. [6] devise a simpler version of the measure in [3] they call the

convexity coefficient. Let P ⊂ R2 be a polygon and A its area. For a point p ∈ P , let

VP (p) ⊆ D be the set of all points q ∈ P such that the line segment pq is contained

in P . VP (p) is called the visible set and its area is denoted by AP (p). For a given

point p, the probability that a point q is visible from p is the ratio of the area of the
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visible set to the total area A, AP (p)
A

. The convexity coefficient χ(P ) is defined as

χ(P ) =

∫
P

AP (p)

A
dp . (2.6)

Like Taylor [14]’s measure, the convexity coefficient assumes that convex shapes are

ideal. Chambers et. al. and Hodge et. al. demonstrate its use on several districts

known for giving misleading results on other measures such as Illinois’ 4th and

Maryland’s 6th districts and conclude the convexity-based approach is the superior

to Reock’s measure among others discussed here [6, 3].

Ansolabehere and Palmer [1] argue for using several measures in conjunction

with each other. To make results comparable across measures, they use the original

gerrymander as the standard to which all other districts are compared. This relative

approach has its appeal in that it allows the ranking of districts into more and less

gerrymandered than some standard. While the choice of the original gerrymander as

the standard may please historians and gerrymandering enthusiasts, it is still

arbitrary. However, the use of multiple measures on a relative scale is likely the best

approach for quantifying and identifying gerrymanders since no single measure

adequately captures all the information relevant to gerrymandering.

Since each measure uses an implicit or explicit comparison to a known shape

(or family of shapes), a simple way to classify measures could be based upon their a

priori assumption of what constitutes an ideal shape or family of shapes. All

measures can be can be categorized according to whether comparisons are made to

a single shape or to a family of shapes. These categories can be further refined by

the specific shape used and by what characteristics define a specific family of

shapes. The measures created by Polsby and Popper [11], Reock [12] and Boyce and

Clark [2] and the moment of area method each assume the circle represents the ideal

shape. However it is impossible to create a districting scheme using circles. The
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measures created by Taylor [14] and Chambers and Miller [3] compare the district

to the family of convex shapes, i.e. all convex shapes are considered ideal and highly

non-convex ones are indicative of gerrymandering. Relaxation of the restriction to a

single impracticable shape such as a circle and enlarging the family of possible

shapes is desirable. Of these family-based measures, Chambers and Miller’s measure

is superior than Taylor’s because it takes the configuration of the boundary into

account.
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CHAPTER 3

THE BOUNDARY INTERSECTION NUMBER

3.1 Definitions and Theorems

Since gerrymandering has no well-defined definition, intuition can serve as a

guide to selecting a good measure or combination of measures. An intuitive

property that a non-gerrymandered district should possess would be what one might

call the “as the crow flies” property, namely, that a person inside the district should

be able to travel in a straight line to any other part of the district without exiting the

district. The convexity coefficient of [3] and [6] exactly quantifies the probability

that a randomly positioned observer can do this for a randomly selected destination

inside the district. Here we introduce a new measure that similarly uses convexity,

but focuses on capturing distortions in the polygon’s boundaries. To be precise, we

define a polygon P ⊂ R2 to be a planar set whose boundary is a collection of n

points v1, . . . , vn and n edges v1v2, . . . , vn−1vn, vnv1 such that no pair of

non-consecutive edges share a point and no edges cross each other.

Another intuitive property of a non-gerrymandered district is that a person

traveling in a straight line should cross the district boundary exactly once on their

way out of the district. To be precise, for a point p in the district a person walking

in the direction θ intersects the boundary k times. Since the person exits the

district, this implies the person crosses the boundary at least once, so we have

k ≥ 1. In a non-gerrymandered district we would expect that k will be small for

many points and many directions. We can formalize this concept and create a

measure of gerrymandering called the boundary intersection number or BIN.
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Definition 3.1.1. Boundary Intersection Number Let P be a polygon and

(p, θ) ∈ P × [0, 2π) a pair of random variables with joint probability distribution

Pr(p, θ). Then the number of boundary intersections is a random variable

k : P × [0, 2π) −→ Z+. We define the BIN to be the expectation of k(p, θ).

γ(P ) =

∫
p

∫
θ

k(p, θ)Pr(p, θ)dθdp (3.1)

Since k ≥ 1, we must also have γ(P ) ≥ 1 for all P ⊂ R2.

The BIN can be interpreted to be the expected number of times that a

randomly placed observer crosses the boundary of the district while walking in a

straight line in a randomly chosen direction. We assume that a perfectly convex

polygon represents the ideal shape class for non-gerrymandered districts and

deviations from convexity are indications of gerrymandering. In the following two

proofs we show that convex polygons have γ(P ) = 1, which establishes that the

lower bound of the BIN corresponds to the least possible amount of gerrymandering.

Lemma 3.1.2. Let P be a polygon. If P is not convex, then γ(P ) > 1.

Proof: Since P is not convex, there exists vertices A, B and C on P such that

the angle formed by the joining of the segments AB and BC has interior angle

greater than 180◦. Let mBA and mBC be the midpoints of these segments. For a

point p define Nε(p) = {q ∈ R2 | |q − p| < ε} be the ε-neighborhood about p and

Qε(p) = P ∩Nε(p).

Let L′ be the line bisecting the angle ABC and let L be the line perpendicular

to L′ passing through B. Define εBA = min`∈L |`−mAB| and εBC similarly. Choose

ε < min{εBA, εBC}. Thus the line segment pq must pass through AB and BC for all

p ∈ Qε(mBA) and q ∈ Qε(mBC) (see Figure 3.1). Therefore k(p, q) > 1 for all

p ∈ Qε(mBA) and q ∈ Qε(mBC), so we have
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γ(P ) =

∫
p∈P

∫
θ

k(p, θ)Pr(p, θ)dθdp ≥
∫
p∈Qε(mBA)

∫
q∈Qε(mBC)

k(p, q)Pr(p, q)dqdp > 1

Figure 3.1: Diagram for Lemma 3.1.2.

Theorem 3.1.3. Let P be a polygon. Then γ(P ) = 1 if and only if P is convex.

Proof: If P is convex, then any ray starting in P will cross the boundary

exactly once while exiting P . Otherwise, if a ray intersected the boundary more

than once, the second intersection would occur while the ray was reentering P .
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Thus there would exist some point q ∈ P such that part of the line segment pq that

lies along the ray would lie outside the polygon, contradicting convexity.

For the other direction, by the contrapositive of the Lemma 3.2, if γ(P ) = 1

then P is convex.

Theorem 3.1.4. If a polygon has P has n faces, then γ(P ) ≤ n− 1.

Proof: In the case where P is convex, γ(P ) = 1 by Theorem 3.3. Since n ≥ 3 (

by definition of a polygon) therefore we have γ(P ) ≤ n− 1.

In the case where P is not convex, we use the fact that the expectation of a

random variable X lies between the minimum and maximum values of said random

variable, i.e. that Xmin ≤ E[X] ≤ Xmax. Denote minp,θ k(p, θ) = kmin and

maxp,θ k(p, θ) = kmax.

It is clear that for any polygon P , there must exist a point p ∈ P and a

direction θ such that k(p, θ) = 1. Thus kmin = 1.

Let p be a point in P and θ a direction. Since P is a polygon, p is enclosed by

the boundary of P . Therefore there must exist at least one edge which the ray in

the direction of θ does not intersect. Therefore k(p, θ) ≤ n− 1 for all p and θ. Thus

kmax ≤ n− 1.

Combining these two results, we have 1 = kmin ≤ γ(P ) ≤ kmax ≤ n− 1.

Therefore γ(P ) ≤ n− 1.

3.2 Estimation and Computation

We use the Law of Large Numbers to estimate γ(P ) using a Monte Carlo

method. The Law of Large Number states that average of n independent identically

distributed random variables converges to the expectation of the distribution as

n→∞ [4]. Our random variable k does not have a known analytic expression for
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its distribution so it must be estimated from the distributions of the constituent

random variables p and θ, whose distributions are assumed to be uniform over their

respective sample spaces. Furthermore, we assume that p and θ are independent, so

each pair (p, θ) has the same probability since Pr(p, θ) = Pr(p)Pr(θ) = 1
A

1
2π

= 1
2πA

.

Let (pi, θi) ∈ P × [0, 2π) for i = 1, . . . , n be n independent random variables

with identical distributions Pr(p, θ). Then the ki = k(pi, θi) are independent and

identically distributed. By the Law of Large Numbers 1
n

∑n
i=1 ki → γ(P ) as n→∞,

so we can estimate 3.1 by the sample mean of the ki, which can be expressed as the

sum

ki(pi, θi) =
∑

e∈E(P )

Ii(e) (3.2)

where Ii(e) is a binary indicator variable indicating whether or not the ray defined

by θi intersects the edge e. In order to compute 3.2 we must solve the problem of

determining I(e) given a point and a direction. Fortunately this can be solved using

some basic linear algebra.

We first make precise our definitions for rays and edges. Let r ∈ R2 be a

direction vector. A ray R in the direction of r can be parameterized as R(t) = tr for

t ∈ R+. Next, let u and v be adjacent vertices in P and let u and v be their

respective coordinate vectors. The edge uv in R2 is the convex set

Euv = {(1− α)u + αv | α ∈ (0, 1)} .

We next define the visibility cone defined by Euv to be the set

V Cuv = {βe | e ∈ Euv , β > 0} .

It is clear that any ray with a direction vector in a visibility cone will intersect the

edge that defines the cone.
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Theorem 3.2.1. Let R be a ray starting at the origin with direction vector r.

Then R intersects uv if and only if r is a positive linear combination of u and v.

Proof: If R intersects the edge uv, then there exists t > 0 and α ∈ (0, 1) such

that tr = (1− α)u + αv. Thus r = 1−α
t

u + α
t
v is a positive linear combination.

Conversely, let r = au + bv be a positive linear combination of u and v. We show

that r ∈ V Cuv. We choose β = a+ b and α = b
a+b

. Thus,

a = a+ b− b = (a+ b)

(
1− b

a+ b

)
= β(1− α)

and

b = (a+ b)

(
b

a+ b

)
= βα

therefore r = β((1− α)u + αv) which implies that r ∈ V Cuv. Therefore R intersects

the edge uv.

We can determine whether R intersects uv by solving the linear system

Auvx = r where Auv is a 2× 2 matrix whose columns are u and v. The direction

vector r intersects uv if x > 0 (that is, each coordinate is positive).

The pseudo-code on the following page gives the procedure for the

computation of the BIN estimate γ̂(P ) using Lemma 3.1.

3.3 Implementation

We implement Algorithm 1 in Matlab for use with shapefiles compiled by [8].

Shapefiles are geographic information system (GIS) files that store non-topological

geometry and metadata. Shapefiles support point, line and polygonal features [13].

Below we describe the implementation along with the functions created for it, the



19

Algorithm 1 Monte Carlo Procedure for Estimating BIN

Require: Sample of n points pi uniformly from P
for i = 1, . . . , n do

Sample a direction θi uniformly from [0, 2π)
Form vector ri starting at pi with direction θi
Recenter P about pi
for all e ∈ E(P ) do

solve Aex = ri
if x > 0 then
Ii(e)← 1

else
Ii(e)← 0

end if
end for

end for
return γ̂ = 1

n

∑
i

∑
e Ii(e)
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code for which can be found in the appendix. Unless otherwise noted, all functions

were written for this paper.

The main function created for the implementation is estimate_y(), which

computes an estimate of BIN for a user-defined number of sample points and also

contains options for plotting the shape, sample points and sample vectors. This

function calls upon two secondary functions shapesample() and sample_k(). The

shapesample() function samples a user-defined number of points from inside the

inputted shape. It does this by sampling randomly from inside the polygon by

computing randomly selected points from inside the rectangle that encloses the

polygon and discarding points that lie outside the polygon boundary. The

coordinates of the enclosing rectangle are contained in a field in the shapefile, so

they do not need to be computed. The function sample_k() generates a random

intersection number k by computing the number of times a randomly generated

vector centered at a given point p = (x, y) crosses the boundary of the polygon.

The function estimate_y() calls on shapesample() to generate a set of

points and then applies the sample_k() to these points. The average of the

computed k’s is returned as the BIN estimate.

Both shapesample() and sample_k() make use of a helper function called

shapeparts(). Shapefiles store polygons as a list of coordinates. When Matlab

parses the shapefile, disconnected components of a polygon are separated by an

NaN value in the list, which makes it necessary to parse the coordinate list and

separate each component for processing. The shapeparts() function takes a

shapefile and returns a Matlab cell array where each entry contains the list of

coordinates for a single, connected component of the shape. All operations are then

conducted on each component and the results aggregated. See the comments

contained in the code appendix for details of the inner workings.
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3.4 Results

In order to use Algorithm 1 to compute an estimate of the BIN score, an

appropriate value of n must be selected. The central limit theorem tells us to expect

the estimated values γ̂n produced by Algorithm 1 to converge with increasing n, so

we must choose n to be sufficiently large. We do this empirically by computing the

BIN scores over a range of values for n. For each value of n, m BIN scores are

computed using Algorithm 1 and averaged. As n grows large the variance of the m

scores decreases and the distribution of the BIN scores about the mean grows

tighter. Figure 3.2 illustrates this using Illinois’ 4th Congressional district. The

distribution of BIN scores grows tighter as the scores begin to converge as n grows

larger.

The rate of convergence will vary with the complexity of the boundary.

Therefore n must be comparatively large for estimating the BIN of a gerrymandered

district. We have found that n > 1000 tends to be a suitably large for the most

complex districts. In order to reduce the possibility of variation effecting the BIN

estimate, we recommend using the average of m BIN scores for a suitable m. The

average computation time for the set is a little over three minutes when n = 1000

and computing the BIN scores for the entire House of Representatives takes several

hours. This can be accomplished faster by running computations in parallel.
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Figure 3.2: Convergence of BIN score for Illinois 4th District

The BIN scores were computed for all districts in the 114th Congress. The

distribution of scores is shown in Figure 3.3 below which is asymmetrical and

skewed rightward. Some of the outliers are potentially caused by extremely irregular

coastlines or other natural boundaries.

Figure 3.4 shows the BIN scores computed for six districts, increasing in

boundary complexity and BIN score. The top-left tile shows a perfectly

non-gerrymandered district, the state of Wyoming, which is its own congressional

district and has a BIN score of 1. The top-right tile shows Iowa’s 1st District with a

BIN score of 1.46. This indicates a slight gerrymandering, as the state of Iowa is

rather square and has no extremely complex natural boundaries.
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Figure 3.3: Distribution of BIN scores for the 114th Congress

The middle tiles of Figure 3.4 show two cases of gerrymandering. The

middle-left tile shows Illinois’ 4th District, which is a deliberate case of “packing”

two parts of Chicago together to form a single district. The middle-right tile shows

Maryland’s 3rd District with a BIN score of 4.5. It is gerrymandered since only a

very small portion of its boundary in the south-east corresponds to natural contours

of the Chesapeake Bay and it contains disconnected pieces that are not islands.

The bottom two tiles of Figure 3.4 illustrate the disadvantages of the BIN

score. Extremely complex natural boundaries can yield extremely high BIN scores

resulting in a “false positive” for gerrymandering. An example of this is contained

in the bottom-left tile, which shows an example of a district high BIN score but is

not gerrymandered. Maryland’s 4th District’s high BIN score is mainly due to the
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extremely rough coastline along the Chesapeake Bay. As noted by Chamber and

Millers, complex natural boundaries can inflate their convexity coefficient and same

is true of BIN for the same reasons. The bottom-right tile shows Louisiana’s 1st

District which has the highest BIN score of the 114th Congress of 15.98. This

district is gerrymandered since it contains a disconnected component that is not an

island and most of the irregular northern boundaries do not correspond to natural

features. However, the BIN score is so high because of the extremely irregular

Louisiana coastline and its many small islands. Intuitively, this district is no more

gerrymandered than the districts in the middle panels but due to its complex

geography it is given a BIN much higher than is likely appropriate.

One possible way to remedy this would be to ignore all subsequent boundary

intersections after the first intersection for rays that intersect natural boundaries.

Another is to count only intersections of boundaries that are not natural. This

requires that metadata on the district boundary be available which was unavailable

for this set.
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Figure 3.4: Districts of the 114th Congress
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CHAPTER 4

CONCLUSION

The BIN score is a new gerrymander measure that uses boundary distortions

to measure gerrymandering and belongs to the family of measures whose baseline

ideal for a non-gerrymandered shape is convex. The measure represents the average

number of times a randomly placed observer will cross the boundary of the district

while traveling in a randomly chosen direction out of the district.

The BIN score, like Taylor [14], Reock [12] and Boyce and Clark [2] attempts

to measure gerrymandering using the configuration of the district boundary. It has

an advantage over Taylor’s indentation index because BIN accounts for the

magnitude of the boundary distortions because of integration over all points of the

district. A polygon whose boundary distortions are confined to a small section of

the boundary will have a low BIN score because observers starting at points distant

from the distorted section will have a low probability of crossing it relative to

observers starting at nearby points. The BIN score is superior to the measures of

Reock and Boyce and Clark because it is not susceptible to the problem illustrated

by the example of the “coiled snake”, which would receive a very high BIN score.

The BIN score also has disadvantages compared to the convexity coefficient

and the moments of area method in that shapes such as the “sawblade” that have

low area dispersion and relatively low non-convexity but have highly irregular

boundaries will appear more gerrymandered according to the BIN score than may

be appropriate. This problem becomes acute when computing the BIN score of

districts with irregular natural boundaries such as coastlines and rivers and in
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extreme cases may falsely imply a district is gerrymandered when it is not.

We recommend using BIN in conjunction with the convexity coefficient. If a

district has a high coefficient coefficient and a low BIN score, we conclude that the

district is both highly convex with few boundary distortions and is thus to be

considered not gerrymandered. However, if a district has a high BIN score and a

high convexity score, we may be dealing with a shape like the “sawblade” or a

district whose distortions are due to geographic features and we may wish give

weight to the convexity coefficient. A low convexity coefficient and a high BIN score

indicates a probable gerrymander.

There are two directions for future work on the BIN score. The first is to

modify the BIN score and computation procedure to account for natural boundaries.

This will require finding the appropriate data about geographic features and

integrating it with the district boundary data. Another direction is to investigate

the relationship the BIN score has with other measures of gerrymandering and

compare their relative effectiveness at identifying gerrymanders.
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function BIN = estimate_y(N_points , shape , plot_shape ,

plot_arrows , plot_samples)

% This function estimates BIN using the Monte Carlo method

with optional

% plotting. The shapesample () function is called to

generate sample points

% from inside the shape. The sample_k () function is then

applied over the

% list of sample points , returning the number of

intersections of randomly

% choosen direction vectors starting at each sample point.

The estimated BIN

% is the mean of these intersections.

% get sample points using shapesample ()

shape_samples = shapesample(N_points ,shape ,plot_samples);

disp('Sampling Complete. Computing BIN...')

% compute boundary intersections k

[k, vec] = arrayfun (@(x,y) sample_k(x,y,1,shape),
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shape_samples (:,1), shape_samples (:,2),'un' ,0);

% convert k from cell to array

temp = zeros(length(k) ,1);

for i = 1: length(k)

temp(i,1) = k{i};

end

BIN = mean(temp); % compute BIN estimate

msg = strcat('Estimated BIN = ',num2str(BIN));

disp(ms)

% plot shape with direction arrows

if (plot_arrows == 1 && plot_shape == 1)

figure

axis([ shape.BoundingBox (1,1) shape.BoundingBox (1,2)

shape.BoundingBox (2,1) shape.BoundingBox (2,2)])

plot(shape.X,shape.Y, 'black ')

hold on

P1 = [shape.BoundingBox (1,1); shape.BoundingBox (1,2)];

P2 = [shape.BoundingBox (2,1); shape.BoundingBox (1,2)];

d = sqrt (((P1(1) - P2(1))^2 + (P1(2) - P2(2))^2));
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s = 0.1*d; %set direction arrow magnitude

% plot direction arrows

for i=1: N_points

p0 = [shape_samples(i,1), shape_samples(i,2)]';

p1 = [s*vec{i}(1)+shape_samples(i,1), s*vec{i

}(2)+shape_samples(i,2)]';

x0 = p0(1);

y0 = p0(2);

x1 = p1(1);

y1 = p1(2);

plot([x0;x1],[y0;y1]); % Draw a line between

p0 and p1

p = p1 -p0;

alpha = 0.3; % Size of arrow head relative to

the length of the vector

beta = 0.2; % Width of the base of the arrow

head relative to the length

hu = [x1-alpha*(p(1)+beta*(p(2)+eps)); x1; x1-

alpha*(p(1)-beta*(p(2)+eps))];

hv = [y1-alpha*(p(2)-beta*(p(1)+eps)); y1; y1-

alpha*(p(2)+beta*(p(1)+eps))];
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hold on

plot(hu(:) ',hv(:) ')

hold on

end

title(strcat(shape.STATENAME , ' District No',shape.

DISTRICT , ', N = ',num2str(N_points), ', BIN = ',

num2str(BIN)), 'FontSize ' ,12)

axis off

% plot shape shape only

elseif (plot_arrows == 0 && plot_shape == 1)

figure

axis([ shape.BoundingBox (1,1) shape.BoundingBox (1,2)

shape.BoundingBox (2,1) shape.BoundingBox (2,2)])

plot(shape.X,shape.Y, 'black ')

axis off

title(strcat(shape.STATENAME , ' District No',shape.

DISTRICT , ', BIN = ',num2str(BIN)), 'FontSize ' ,12)

else

%%%%%%%%

end

end

function [k , rvec]= sample_k(x,y,N,shape)

% Takes a point (x,y), the number of desired number of
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random vectors per

% point N (set to 1 by default when called by estimate_y),

and a shape

% (in shapefile) and computes k (number for boundary

% intersections). This is done by translating the shape to

be centered on

% the point (x,y) which becomes the origin of a coordinate

system whence

% random vector(s) generated and the number of boundary

intersections by

% computed by solving a linear system for each edge of the

polygon.

% translates shape to be centered at (x,y)

newShape = translateToOrigin(x,y, shape.X, shape.Y);

% stores X and Y coordinates of new shape as struct array

newShape = struct('X',newShape (:,1) ', 'Y', newShape (:,2) ')

;

% apply shapeparts () to newShape

[shape_parts ,~] = shapeparts(newShape);

% generate N random unit vectors

rvec = randomUnitVector(N);

% apply comp_k () function to compute boundary

intersections of each vector

k = arrayfun (@(x,y) comp_k(x,y, shape_parts),rvec (:,1),
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rvec (:,2));

% return total number of intersection

k = sum(k);

end

function k = comp_k(x,y, shape_parts)

% applies the edgeIntersect () function to each component

of shape_parts

vec = [x,y];

temp = cellfun (@( shapes) edgeIntersect(vec , shapes),

shape_parts);

k = sum(temp);

end

function vrand = randomUnitVector(n)

% returns n random unit vectors centered at the origin

theta_rand = 2*pi*rand([n,1]);

vrand = zeros(n,2);

vrand (:,1) = cos(theta_rand);

vrand (:,2) = sin(theta_rand);

end
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%% translateToOrigin ()

function[newCoords] = translateToOrigin(x0, y0, X,Y)

%translates the coordinates (X,Y) about (x0,y0)

newCoords = [X - x0; Y - y0]';

end

%% edgeIntersect ()

function Y = edgeIntersect(vec , shape)

% Checks how many times the vector vec intersects the

boundary of shape

% by applying checkEdge () to each pair of vertices that

define an edge

n = size(shape ,1);

temp = zeros(n,1);

for i=1:(n-1)

temp(i) = checkEdge(vec , shape(i:(i+1) ,:));

end

Y = sum(temp);

end
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%% checkEdge ()

function k = checkEdge(vec , A)

% Determines if the vector vec is a positive linear

combination of the

% rows of the 2x2 matrix A. To save computational time ,

vectors that lie

% in a quadrant different than either of the rows of A are

ignored.

Qv = checkQuadrant(vec); %get quadrant of input vector

%get quadrants of rows of A

A1=checkQuadrant(A(1,:));

A2=checkQuadrant(A(2,:));

if (A1 == Qv || A2 == Qv)

%either row of A lies in the same quadrant as the

input vector , check

%the sign of the coefficients of Av = b

b = linsolve(A',vec ');

if (b(1) >=0 && b(2) >=0)

k = 1;

else
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k = 0;

end

else

k = 0;

end

end

%% checkQuadrant ()

function quadrant = checkQuadrant(vec)

% Finds the quadrant of a 2D vector

x = vec(1); y = vec(2);

if (x >= 0 && y >= 0)

quadrant = 1;

elseif (x < 0 && y >= 0)

quadrant = 2;

elseif (x < 0 && y < 0)

quadrant = 3;

else

quadrant = 4;

end

end
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function D_sample = shapesample(N, shape , plt)

% This function computes N uniform samples from inside the

polygon in the shapefile

% record with optional plotting. Sampling is done by

sampling points from

% inside the bounding box of the shape using sampleBox ().

The function inshape ()

% determines if the point is contained in the polygon.

Sample points falling outside the

% polygon and discarded. This process is repeated until

enough samples

% inside the polygon have been found.

sample_points = sampleBox(N, shape);

%

sampleBox ()

parts = shapeparts(shape);

% shapeparts ()

q = arrayfun (@(x,y) inshape(x,y,parts), sample_points (:,1)

, sample_points (:,2)); % apply inshape ()

D_sample = [sample_points(q == 1,1), sample_points(q ==

1,2)];
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% continue generating samples until N samples is reached.

k = sum(q); %while number of samples inside polygon < N,

continue sampling

while k < N

sample_points = sampleBox(N,shape);

q = arrayfun (@(x,y) inshape(x,y,parts), sample_points

(:,1), sample_points (:,2));

k = k + sum(q);

newSample = [sample_points(q == 1,1), sample_points(q

== 1,2)];

if k < N

D_sample = [D_sample; newSample ];

else

D_sample = [D_sample; newSample ];

i = randsample(k, N);

D_sample = D_sample(i,:);

end

end

% plot shape and sample points

if plt == 1

figure
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axis([ shape.BoundingBox (1,1) shape.BoundingBox (1,2)

shape.BoundingBox (2,1) shape.BoundingBox (2,2)])

scatter(D_sample (:,1),D_sample (:,2),'.', 'r')

hold on

plot(shape.X,shape.Y,'black ')

title(strcat(shape.STATENAME , ' ',shape.DISTRICT , ', N

=',num2str(N)))

axis off

end

end

%% inshape ()

function IN = inshape(x,y, shape_parts)

% Binary indicator variable for whether a given point (x,y

) lies in the given

% shape_parts variable. Applies built -in function

inpolygon () over polygons

% defined by the parts of shape_parts.

IN = cellfun (@(xv) inpolygon(x,y,xv(:,1),xv(:,2)),

shape_parts);

IN = sum(IN);

end
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%% sampleBox ()

function sample_points = sampleBox(N, shape)

%This function returns N points sampled uniformly at

random from inside the

%bounding box of shape.

Xrand = shape.BoundingBox (1,1) + (shape.BoundingBox (2,1) -

shape.BoundingBox (1,1))*rand(N,1);

Yrand = shape.BoundingBox (1,2) + (shape.BoundingBox (2,2) -

shape.BoundingBox (1,2))*rand(N,1);

sample_points = [Xrand , Yrand];

end

function [coords , indices] = shapeparts(shape)

% This function creates a coordinate matrix for each

disconnected polygon

% in the given shapefile record. The output D_parts is a #

components -by -1

% cell where each entry contains the coordinate matrix for

that component.

%create coordinate list
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D = [shape.X', shape.Y'];

%components separated by NaN in shapefile coordinate list

NaNs = isnan(D(:,1));

separators = find(NaNs == 1);

%add 1 as the first coordinate to the separator index

vector

separators = [1 separators ']';

%initialize output cells

m = length(separators);

coords = cell(m-1,1);

indices = cell(m-1,1);

%gets coordinates contained between separator indices and

stores each

%componant in cell of 'coords '

for t = 1:(m-1);

%indices of consecutive component separators

i_min = separators(t);

i_max = separators(t+1);

%interval in list corresponding to component

%all values between i_min and i_max
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interval = (i_min +1) :1:( i_max -1);

indices{t,1} = interval;

coords{t,1} = D(interval ,:);

end

end
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