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ABSTRACT 

PREPARATION AND CHARACTERIZATION OF A (VIOLOGEN) CONTAINING 
MAIN CHAIN PEG-CARBON NANOTUBES PHASE FOR HYBRID 

SUPERCAPACITOR APPLICATION 

by Kanishka Rana 

 Supercapacitors (SCs) and batteries are recognized as the two most 

important electrical energy storage devices. SCs have some distinct advantages 

such as high-power density and long cycle life when compared to batteries. 

However, they have yet to match the energy densities of batteries. In an effort to 

improve the energy density of SCs, a hybrid supercapacitor was developed using 

a pair of single-walled carbon nanotube electrodes and two polyethylene glycol 

(PEG400) gel-polymer electrolytes (GPEs) containing redox additives of viologen 

(V) and ferrocene dicarboxylic acid (Fc), respectively. The introduction of V and 

Fc, was expected to improve the energy performance of the SC due to reversible 

Faradaic reactions between them in the corresponding GPEs. The V-PEG 

polymer electrolyte was used in the oxidation half-cell and the Fc-PEG polymer 

electrolyte was used in the reduction-half cell of the SC, which were separated by 

polycarbonate membranes in a sandwich configuration. The electrochemical 

performances of the SC were evaluated by cyclic voltammetry and 

chronoamperometry. The results confirmed V-PEG polymer and Fc-PEG polymer 

as suitable electrolyte materials for their application in a hybrid supercapacitor.
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 1 

 : INTRODUCTION  

1.1 Global Energy Issues 

 At present, the consumption of fossil fuels has dramatically increased due to 

the rapid development of the global economy and the increasing world 

population. It has not only depleted the existing fossil fuel reserves, but also 

adversely impacted the environment, resulting in increased health risks and 

global climate change. To address these concerns, clean, sustainable and 

efficient renewable energy sources as well as new technologies associated with 

energy conversion and storage have become the primary focus in the industrial 

and scientific communities.1  

 Renewable energy is energy that is generated from natural processes, which 

are naturally replenished faster than consumed. This includes hydropower, tidal, 

solar, geothermal, biomass, and wind energies. The fluid flows associated with 

wind, hydroelectric, and tidal energies are utilized to drive a generator. The 

energy from the sun is used to super-heat water to convert it into steam, that 

drives an electricity-generating turbine.2 Geothermal energy helps to create 

electricity by using heat sources from within the earth. Biomass is converted into 

biofuels which are used in the same way as fossil fuels. However, each form of 

renewable energy conversion suffers from its own set of complications and some 

are easier to exploit than others. Renewable energy sources like solar and wind 

are not constant as they depend on the weather or climate to work effectively. In 
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order to effectively implement these intermittent energy sources, it is pivotal to 

develop efficient electrical energy storage systems.2,3 

1.2 Energy Storage   

 The process of converting electrical energy from a power grid into a storable 

form is referred as electrical energy storage (EES).4 EES, is one of the key 

technologies that enables electricity to be produced from intermittent energy 

sources. In addition, it also plays a pivotal role in reducing the electricity costs by 

storing electricity generated at off-peak times when the generation cost is low 

and helps to maintain the power quality and reliability.2  

 In recent decades, a wide variety of EES systems have been developed for 

the effective implementation of renewable energy sources. These systems can 

be classified in a variety of ways, such as response time and useful storage 

durations. In general, these methods differ in the form of energy stored in the 

system.4 They can be grouped into mechanical, thermal, electrical, 

electrochemical, chemical, and thermochemical energy storage systems. They all 

differ in characteristics like efficiency, energy density or power density. The most 

common mechanical storage systems are kinetic energy storage systems like 

flywheels and potential energy storage systems like compressed air energy 

storage (CAES) and pumped hydro storage (PHS).5 Thermal energy storage 

systems include low temperature energy storage (cryogenic energy storage, 

aquiferous cold energy storage) and high temperature energy storage (steam or 

hot water accumulators, hot rocks, latent heat systems such as phase change 
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materials).5 Electrical energy storage systems include electrostatic capacitors, 

supercapacitors, and superconducting magnetic energy storage systems.4 

Electrochemical energy storage systems include lead-acid or lithium-ion 

batteries. Chemical energy storage systems include fuel cells, and 

thermochemical energy storage systems include solar fuel cells.4 

 Among these technologies, electrochemical energy storage systems are 

recognized as the most effective and practical technologies for reversibly storing 

electrical energy.3 Currently, the major commercialized energy storage systems 

available in the market are capacitors, batteries, and supercapacitors. They are 

the focus of current research because of their key role regarding mobile energy. 

The structure, mechanism and performance comparison of these devices are 

discussed in the following sections of this chapter. 

1.3 Electrical Energy Storage Systems 

 1.3.1 Capacitors 

 Conventional capacitors, also known as electrostatic capacitors, are passive 

electrical devices that are capable of directly storing electrical energy, without 

converting it into another form of energy.6 This technology was started by the 

invention of the Leyden jar by Pieter van Musschenbroek in 1746 at the 

University of Leyden in Holland. It was the first device capable of storing 

electrical charge in the form of electrostatic field.7 

 A typical electrostatic capacitor is composed of two parallel conducting plates 

called electrodes separated by an insulating dielectric material, as shown in 
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Figure 1.1. When an external voltage is applied across the conducting parallel 

plates, a charge of –Q on the negative electrode and a charge of +Q on the 

positive electrode are accumulated. These charges are kept apart by the 

insulating dielectric between these electrodes, this produces an electric field. 

This resulting electric field allows the capacitor to store energy.  

 
Figure 1.1 An electrostatic capacitor.  

 An ideal electrostatic capacitor is characterized by a constant parameter 

called the capacitance C. Capacitance reflects the capability of a capacitor to 

store the electric charge and is defined as the ratio of the accumulated charge Q 

to the strength of the applied voltage V: 

                          C	=Q V                                        Equation 1.1                                 
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The capacitance of a conventional parallel-plate capacitor with a dielectric 

medium between the electrodes can be calculated using the following equation: 

                                          	C =	εοεr
A
d
                                         Equation 1.2  

 Where A is the surface area of each electrode, d is the distance between 

them, εο	is the dielectric constant (or “permittivity”) of free space, and εr is the 

dielectric constant of the insulating material between the electrodes.  

 As per above equation, the capacitance of a capacitor can be increased by 

shortening the distance between electrodes, increasing the surface area of 

electrodes, and lastly by using an insulating dielectric material with high 

permittivity.8 For low voltage, single polarity applications, ideal candidates for the 

electrode material are carbon based materials with porous structure and high 

conductivity, like carbon nanotubes, activated carbon or graphene.6 

 The two main attributes of a capacitor or any energy storage device is its 

energy density (specific energy) and power density (specific power). These 

values are calculated as energy or power per unit mass or per unit volume. 

Energy density is expressed in Watt-hours per kilogram (Wh kg-1) and the power 

density in Watt per kilogram (W kg-1).6,8 The energy E stored in a capacitor is 

given by the equation: 

                                             									E	= 1
2

CV2                                    Equation 1.3  

The maximum power is determined by the following equation:    

																																																													Pmax=
V2

4 × ESR
  																																	      Equation 1.4 
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 Here ESR is the equivalent series resistance. This resistance arises due to 

internal components of the capacitor (e.g., electrodes, current collectors and 

dielectric material).8 Generally, electrostatic capacitors have high power density, 

they can be charged and discharged quickly. But they have a very low energy 

density and are unable to store a large amount of charge. These characteristics 

make electrostatic capacitors suitable for those applications in which power 

bursts are required. 

1.3.2 Batteries 

 Batteries are the most widely used electrochemical energy storage devices in 

industry and daily life. They are capable of storing and releasing charge via 

electron flow through oxidation-reduction reactions. This technology was started 

by the invention of the voltaic pile by Alessandro Volta in 1800. It was the first 

electrical battery that could continuously supply electric current to a circuit and 

consisted of pairs of zinc and copper discs piled on top of each other.9 

 A typical battery is composed of one or more electrochemical cells connected 

in series or parallel, which generate electric current with a desired voltage from 

an electrochemical reaction. Each electrochemical cell contains two electrodes 

electronically isolated from each other and an electrolyte that facilitates ionic 

transport between them. One electrode is responsible for the reduction reactions 

and other for oxidation reactions. During operation (charging or discharging), one 

electrode is oxidized and releases electrons to move through an external circuit. 

This electrode is commonly called the anode, or the negative electrode. The 
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other electrode attracts the electrons from the external circuit and gets reduced. 

This electrode is commonly called the cathode or the positive electrode and the 

electrons moving from the anode to the cathode through the external circuit 

produce electric current.10  

 On the basis of charging capabilities of batteries, they are grouped into two 

categories: primary (or disposable) batteries, and secondary (or rechargeable) 

batteries. The primary batteries permit only a single charge-discharge cycle as 

the reactions occurring in them are not reversible in nature (e.g., zinc-carbon 

batteries).9 On the other hand, the rechargeable batteries can be charged and 

discharged multiple times due to the reversible nature of the electrochemical 

reactions occurring in them (e.g., lithium-ion batteries). In a rechargeable battery, 

the electrodes reverse roles during charging and discharging.9 

 Lithium-ion batteries are currently the leading energy storage systems due to 

their fast response time, high energy density, light weight, small dimensions, and 

no memory effect. Since there commercialization by Sony in 1990, they have 

become the most common power source for various applications in industrial and 

consumer electronics.10 In these batteries, the cathode is generally made of 

lithium intercalated metal oxides like cobalt oxide, as they are capable of 

releasing and inserting lithium ions in their lattice. The anode is generally made 

of graphite or other carbon materials that have large interlayer distances to allow 

easy insertion of lithium ions and minimal strain.11  
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During the charging process, the lithium ions are intercalated into the graphite 

anode from the cathode host material. The lithium ions move through the 

electrolyte while the electrons move through the external circuit towards the 

anode. During the discharge process, when the voltage source is removed and 

battery is connected to an external load, the role of electrodes is reversed in the 

sense that the electrode that allowed the insertion of the lithium ions, will now 

give away the lithium ions and these ions are accepted by the other electrode, as 

shown in Figure 1.2.11,12 

 

Figure 1.2 Representation of the commonly used lithium-ion battery based on 
LiCoO2 cathodes and graphite anodes.  

 Lithium-ion batteries exhibit high energy density due to the participation of 

most of the electrode. But still there are certain limitations associated with them. 

They have limited power density. The charge-discharge rate is limited by the 
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intercalation/deintercalation of lithium ions, which involves the expansion of the 

host lattice to accommodate multiple layers of the lithium ions. In addition, due to 

this process the materials inside the battery degrade overtime and they lose their 

ability to retain charge.11 

1.3.3 Supercapacitors 

 Traditional supercapacitors, also called electric double layer supercapacitors, 

are charge-storing devices that are governed by the same basic principles as 

electrostatic capacitors (discussed in Section 1.3.1). They incorporate electrodes 

with a much higher surface area for more charge storage and much thinner 

dielectric materials to decrease the separation between the electrodes. This 

results in an increased capacitance and energy density. But unlike capacitors, 

the charge does not consist exclusively of electrons or holes in metal electrodes, 

this charge is stored at the interface between the surface of the metal electrodes 

and the electrolytic solution. This technology was discovered by coincidence in 

the early 1950’S, when researchers were experimenting with porous carbon 

electrodes, in the design of capacitors. They discovered that porous activated 

carbon with a high specific surface area can be used for energy storage, and the 

first patent was granted to Becker at General Electric Corp. in 1957. In 1971, 

these devices were successfully commercialized and marketed as 

“supercapacitors” by the Japanese company, NEC corporation.1,13 

 A typical supercapacitor contains two porous conducting electrodes, an 

electrolyte, and a porous ion conducting membrane separator that mechanically 
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separates the two electrodes as shown in Figure 1.3. During the process of 

charging, the electrons move from the negative electrode towards the positive 

electrode through an external circuit. To maintain electrical neutrality, the cations 

diffuse across the separator towards the negative electrode while anions diffuse 

towards the positive electrode within the electrolyte. This results in the 

accumulation of charge at the electrode/electrolyte interface by electrostatic 

means. Opposite charges reside on two different layers; one set resides on the 

electrode and the other of opposite polarity in the electrolyte as shown in Figure 

1.3. These accumulated charges hence form an electric double-layer which is 

separated by a monolayer of solvent molecules, also referred to as the inner 

Helmholtz plane (IHP) and can be idealized as a molecular dielectric. Hence, this 

interface can be treated as a capacitor with an electric double-layer capacitance 

and both the electrodes can be treated as two capacitors in series.14,15  



 11 

 

Figure 1.3 An electric double layer supercapacitor showing charge accumulation 
at the electrode/electrolyte interface.   

 The total capacitance of a supercapacitor (SC) can be described by the 

equation:                       

                                               1/CT =1/C1 + 1/C2                                          Equation 1.5  

 Here CT is the total capacitance and C1, C2 are individual capacitance of each 

electrode.  

 During the discharging process, when the applied voltage is replaced with a 

load, ions diffuse back into the electrolyte and the role of electrodes is reversed. 

In the whole process of charging and discharging, the concentration of electrolyte 

remains constant as no net ion exchange takes place between the electrolyte 

and the electrode, and no charge transfer occurs at the interface.1 The processes 

of charging and discharging can be expressed as equations:  
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At the positive electrode, during charging: 

                                     EX+ A-⟶ EX
+∥ A-+ e-                              Equation 1.6  

At the positive electrode, during discharging: 

                                     EX
+∥ A-+ e-⟶		EX+ A-		                            Equation 1.7 

At the negative electrode, during charging: 

                                    	Ey+ C++ e-⟶ Ey
-∥ C+                              Equation 1.8 

At the negative electrode, during discharging:  

                                     Ey
-∥ C+⟶	E

y
+ C++ e-	                             Equation 1.9 

 Here Ex and Ey denotes the electrodes, A-  and C+ the anions and the cations 

and	∥	the electrode/electrolyte interface. 

Supercapacitors exhibit high-power density, high cycle efficiencies and long 

cycling times. But they still have low energy density and are not able to store a 

large amount of charge. Because of these characteristics, they are considered 

suitable for those applications in which power bursts are needed, but high energy 

storage capacity is not required, like UPS (uninterruptible power supply) systems, 

photographic flashes, regenerative braking, electric vehicle acceleration etc.16  

1.4 Performance Comparison of Energy Storage Systems 

 The two main attributes of any EES system is its energy density and its power 

density. Conventional capacitors have a very high-power density but poor energy 

density, whereas the opposite applies to batteries. Supercapacitors manage to 

obtain a relatively high energy density as compared to conventional capacitors, 

while still maintaining the high-power output found in conventional capacitors. But 
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their energy density is still lower than that supplied by a battery. Hence, 

supercapacitors serve as a gap between conventional capacitors and batteries. 

The variation of energy density versus the power density of these EES systems 

are illustrated using the Ragone plot shown in Figure 1.4. 

 

Figure 1.4 Ragone plot of energy density vs power density for various energy 
storage systems. Adapted with permission from Winter, M.; Brodd, R. J. What 
are Batteries, Fuel cells, and Supercapacitors. Chem. Rev. 2004, 104, 4245-
4269.17 Copyright 2004 American Chemical Society. 

 It is clear from the plot that capacitors have a very high-power density (>106 

W kg-1) compared to batteries and supercapacitors, but relatively low energy 

density. On the other hand, batteries have high energy-density (>50 Wh kg-1) but 

a poor power density, meaning it can store a large amount of energy but cannot 

dissipate it quickly. Supercapacitors occupy an important position in terms of 

power density as well as energy density. The detailed performance differences 

between these devices are revealed in Table 1.1.17,18 
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Table 1.1 Performance Comparison Table.  

Parameters Capacitors Supercapacitors Batteries 

Energy density 
(Wh kg-1) <0.1 0.1-10 10-100 

Power density 
(W kg-1) >100,000 10-100,000 10-1000 

Charge time 10-6 to 10-3 sec 1 sec to 1 min 0.3 to 3 hours 

Discharge time 10-6 to 10-3 sec 1 sec to 1 min 1 to 5 hours 

Cycle-life Almost infinite >500,000 About 1000 

Supercapacitors have more energy density than conventional capacitors 

because they store charge not only at the electrode surfaces but also in the bulk 

near the surface of the electrodes. They have higher power density than batteries 

because the charge-discharge process is not limited by ionic-conduction into the 

electrode bulk. They also exhibit good cycling efficiency, and longer lifetime than 

batteries because their charge storage mechanism does not involve any 

oxidation-reduction reactions. But due to the absence of redox reactions they 

have much lower energy density compared to batteries.19,20  

 The low energy density issue of supercapacitors has limited their widespread 

use. To overcome this major obstacle, many enterprises have invested time and 

money in exploring, researching, and developing supercapacitors with a high 

energy density that is close to currently used rechargeable batteries while 

maintaining their high-power density and extended cycle life.  
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1.5 Research Motivation and Objective 

 To address the issue of low energy density of supercapacitors, intensive 

research is being carried out to develop new electrode materials for 

supercapacitors. Currently, carbon-based materials are mostly used due to their 

high surface area for charge storage and favorable chemical properties. But, in 

spite of these properties, the charges physically stored on them are unfortunately 

limited. To solve this issue, many advanced approaches are being developed. 

The electrode materials are hybridized by adding redox active materials like 

metal oxides (RuO2, MnO2, Co3O4, etc.)21–23, metal hydroxides (Ni(OH)2, 

Co(OH)2, etc.) to carbon-based electrodes or by completely replacing the carbon 

electrodes with redox active materials like conducting polymers (polypyrrole, 

PANI, etc.).24,25 The SCs with redox active materials as electrodes are called 

redox enhanced SCs or hybrid supercapacitors. These hybrid supercapacitors 

have been reported to yield much higher specific capacitance and energy density 

than conventional supercapacitors and are being considered as promising next 

generation energy storage systems.8 

 In recent decades, different electrode materials have been developed to 

enhance the performance of SCs, but only a few materials are explored as redox 

additives in electrolytes for SC applications. In this regard, the objective of this 

research project was to develop an oxidation half-cell of a hybrid supercapacitor 

using a redox additive gel-polymer electrolyte and single-walled carbon nanotube 

(SWCNT) electrodes. N,N-disubstituted-4,4-bipyridinium (also referred to as 
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viologen or V2+) species were used as the redox additives in poly(ethylene glycol) 

MW=400 (PEG)-lithium perchlorate gel-polymer electrolyte. The viologen centers 

were incorporated in the PEG backbone to form a V-PEG copolymer, which was 

then tethered to single-walled carbon nanotube electrodes to enhance the energy 

density via redox reactions at the electrode-electrolyte interface. 

 The oxidation half-cell was then coupled with a reduction half-cell containing 

ferrocene dicarboxylic acid, to form a hybrid supercapacitor. The reduction half-

cell was developed and characterized by Shalaka Rahangdale.26 The 

capacitance and energy density of this hybrid SC is expected to be greater than 

conventional SCs, due to the reversible Faradaic reactions related to viologens 

and ferrocene dicarboxylic acid in the corresponding half-cells. 
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 : MATERIALS FOR THE OXIDATION HALF-CELL OF THE HYBRID 
SUPERCPACITOR 

2.1 Introduction 

 In the oxidation half-cell of the proposed hybrid supercapacitor, viologen-

polyethylene glycol (V-PEG) polymer was used as the cationic polyelectrolyte 

and single-walled carbon nanotubes (SWCNTs) as electrode materials. The 

oxidation half-cell was coupled with a reduction half-cell having ferrocene 

dicarboxylic acid in it, to compensate for electrochemical reductions of viologens 

during charging, as illustrated in Figure 2.1. Porous polycarbonate membranes 

were used as separators, to allow the transfer of ions, but prevent electron flow 

through them.  

 

Figure 2.1 Proposed hybrid supercapacitor in a sandwich-type configuration.  
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 In the oxidation half-cell, the electrode is expected to be the source of double 

layer capacitance and the viologen centers in the gel-polymer electrolyte are 

expected to be the source of redox capacitance. The oxidation-half cell materials 

and their advantages are discussed in detail in the following sections. 

2.2 Electrode Materials 

 The electrode materials for supercapacitors are required to have high 

chemical stability for higher cyclic stability, a high specific surface area for higher 

specific capacitance, and high electronic conductivity for high power density.1,18,27 

In this respect, single-walled carbon nanotubes can be regarded as appealing 

electrode materials, as they possess all the above properties.14,28  

 Carbon nanotubes (CNTs) were discovered in 1993 by Iijima et al. 29 They 

can be defined as one atom thick sheets of graphene rolled up into cylinders with 

a diameter in the order of 3-30 nm, as shown in Fig 2.2. All carbon atoms in 

single-walled CNTs (SWCNTs) are covalently bonded with sp2 geometry to 

neighboring carbon atoms with no unpaired electrons on their surface, due to 

which they show a high level of chemical stability. They also exhibit a good 

thermal conductivity along their axis as they are highly crystalline.28,29 Because of 

these reasons, they were used as electrode materials in this project. 

 

Figure 2.2 Structure of single-walled carbon nanotubes.  
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 Despite all the appealing properties of SWCNTs, there are certain challenges 

associated with them for their application as electrode materials in 

supercapacitors (SCs). They are hydrophobic in nature and tend to aggregate 

into bundles, rafts, and ropes due to extensive van der Waals interaction 

between their sidewalls and the availability of easy packing. This results in their 

poor solubility in most of the organic and aqueous solvents.30 To overcome these 

limitations of SWCNTs, various chemical groups can be attached on their surface 

to improve their solubility by interrupting the van der Waals interaction between 

the tubes.31,32 

  In this project, to improve the solubility of the SWCNTs, they were oxidized 

using 13 M nitric acid. The nitric acid-oxidation process is discussed in detail in 

Chapter 3. Furthermore, in an attempt to improve the exposed surface area of 

oxidized-SWCNTs for enhanced specific capacitance, they were functionalized 

with PEG400. The viologen centers were also covalently incorporated into 

polyethylene networks to increase their co-solubility with the PEG-derivatized 

SWCNTs. The incorporation of viologen species in polyethylene glycol backbone 

to form a V-PEG polymer is discussed in Chapter 4 and the derivatization of 

SWCNTs with V-PEG polymer is discussed in detail in Chapter 5. 

2.3 Electrolyte Materials 

2.3.1 Electrolyte Salt and Solvent 

 Electrodes having a high surface area and high electronic conductivity are 

considered critical to enhance the performance of SCs. But besides the two 
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electrodes, research has revealed that their performance depends on the 

electrolyte as well.33 The electrolyte provides ionic conductivity, and facilitates the 

charge-discharge processes on each electrode. Therefore, it is required to have 

a wide voltage window, high electrochemical stability, high ionic concentration, 

low resistivity, low solvated ionic radius, low viscosity, low toxicity, and low 

volatility.33,34 Three types of electrolytes that are currently used in SC research 

are aqueous, organic, and ionic liquid electrolytes.   

 Aqueous electrolytes such as H2SO4, Na2SO4, and KOH have small ionic radii 

and can provide high ionic concentrations and lower resistance. However, their 

decomposition voltage is about 1.23 V, and this limits the energy density and 

power density of SCs.35 Ionic liquids (ILs) such as N-methyl-N-propyl-

pyrrolidinium bis(fluorosulfonyl)imide have a wide voltage window, high thermal, 

and chemical stability. Despite the difficulties in designing ILs to have a wide 

potential range, their performance metrics such as high conductivity in a wide 

temperature range makes them attractive candidates. Organic electrolytes, such 

as tetraethylammonium tetrafluoroborate (TEABF4) dissolved in acetonitrile or 

propylene carbonate, can provide a wide voltage window as high as 3.5 V as well 

as a wide range of operating temperature.35 

 In this project, lithium perchlorate (LiClO4) was used as the electrolyte salt 

and PEG400 as the electrolyte solvent. Lithium perchlorate was selected because 

of its good solubility and high conductivity in liquid PEG400. Compared with other 

lithium salts, it is less hygroscopic, stable to ambient moisture, economical, and 
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very easy to handle.36 PEG was used not only due to the solubility factor but also 

due to the fact that polymer electrolytes offer a number of advantages compared 

to their liquid counterparts. They offer excellent processability, broad 

electrochemical stability, they are less reactive, and safer due to their low 

flammability.36 In addition, PEG400 is non-toxic, easy to handle, and exhibits ion 

conduction at room temperature. The lithium-ion conduction in PEG is illustrated 

in Scheme 2.1. The lithium ions are coordinated by ether oxygen atoms on the 

segments of PEG chains. They get displaced by the continuous segmental 

rearrangements accompanied by the gradual replacement of ligands in the 

solvation sheath of lithium ions. 

Scheme 2.1 Schematic illustration of lithium-ion conduction in PEG. 

 

2.3.2 Redox Additive 

 In hybrid SCs, redox additives can be incorporated in the electrolyte to 

improve their energy density. Redox additives are directly involved in the electron 

transfer redox reactions and they improve the performance of SCs by their redox 

capacitance contribution at the electrode-electrolyte interface.34 In this regard, 

N,N-disubstituted-4,4-bipyridinium (also referred to as viologen or V2+) species 
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were used as the redox additives for the oxidation half-cell of the proposed hybrid 

SC. They were incorporated into the backbone of the polymer electrolyte 

(PEG400) to form viologen-PEG (V-PEG) polymers. The different V-PEG polymer 

products that can be formed are shown in Figure 2.3. The synthesis of V-PEG 

polymer is discussed in detail in Chapter 4. The PEG400 was used for multiple 

purposes in the oxidation half-cell. It was not only used to incorporate viologen 

species, but also to dissolve lithium perchlorate and functionalize SWCNTs to 

increase their exposed surface area, as discussed in the above sections. 

 

Figure 2.3 Possible structures of V-PEG polymer. 

 The viologen species were selected because they are strong electron 

acceptors, possess three redox states (V0, V+˙, and V2+) states, and exhibit fast 

and reversible rates of electron transfer.37,38 On charging, viologens (V2+) 

undergo one-electron reduction to form the stable but air sensitive cation radicals 



 23 

(V+˙), which further undergo one-electron reduction to form the neutral reduced 

form V0, illustrated in Scheme 2.2. After the introduction of viologen species in 

the polymer electrolyte of the oxidation half-cell, the energy density and 

capacitance value of the proposed hybrid SC is expected to increase due to 

reversible Faradaic reactions between viologen species and ferrocene 

dicarboxylic acid present in the reduction-half cell of the SC. The chemical 

processes involved to store charge in the proposed hybrid supercapacitor are 

discussed in detail in Chapter 6. 

Scheme 2.2 Redox behavior of viologen species. 

 

2.4 Separator 

 The separator is located between the two electrodes in a SC, to prevent the 

conduction of electrons between them, while permitting the facile transfer of 

electrolyte ions. In SCs, the separators are required to have minimum resistance 

for the ion transfer within the electrolyte, strong electronic insulating capability, 

high electrochemical stability in the electrolyte, and good mechanical strength for 

durability.35 Considering all these factors, porous polycarbonate filter membranes 

were used as separators in this project. 
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 : FUNCTIONALIZATION OF SINGLE-WALLED CARBON 
NANOTUBES 

3.1 Introduction 

 Carbon nanotubes (CNTs) are inert and insoluble in most aqueous and 

organic solvents, but their reactivity and solubility can be improved by 

functionalizing them with different chemical groups. The chemical 

functionalization can be done either covalently or non-covalently at the ends, on 

the sidewall, or inside of CNTs. In an effort to increase the reactivity and solubility 

of single-walled carbon nanotubes (SWCNTs), three different approaches were 

attempted to covalently functionalize them with hydrophilic groups. The first 

approach was to use UV-ozone for oxidatively breaking C-C double bonds in 

pristine-SWCNTs and introducing functional groups like carboxylic acids, esters, 

and quinones on their sidewalls. It has been proved that UV light excites oxygen 

molecules from their spin-triplet state to a spin-singlet state and this excitation 

lowers the activation energy of molecular oxygen for chemisorption reactions. 

This results in easy charge transfer from the SWCNTs to oxygen molecules.39–41  

 The second approach was to attach maleic anhydride groups on the surface 

of pristine-SWCNTs via a Diels-Alder reaction, as shown in Scheme 3.1. The 

Diels-Alder reaction is a cycloaddition reaction between a conjugated diene 

(electron rich) and a dienophile (electron poor). The SWCNTs were used as 

dienes in this reaction due to the presence of extensive conjugated double 

bonds. Maleic anhydride (MA) was used as dienophile, due to the presence of 
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two carbonyl groups which are strong electron withdrawing groups and make the 

C=C bond of maleic anhydride electron deficient.42  

Scheme 3.1 Diels-Alder reaction mechanism.  

 

 The third approach was to oxidize SWCNTs using a 3:1 mixture of sulfuric 

acid (98 wt%) and nitric acid (16M), or in a closely related approach, to oxidize 

them using 13 M nitric acid. The acid oxidation has been reported to break the 

carbon-carbon double bonded network of p-SWCNTs allowing the introduction of 

oxygen atoms in the form of carboxylic (-COOH), carbonyl (-CO), and hydroxyl (-

OH) functional groups, as shown in Scheme 3.2.43–45 The experimental 

conditions for all the four methods used to covalently functionalize SWCNTs with 

hydrophilic groups are described in detail in the following section.  
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Scheme 3.2 Acid treatment of SWCNTs.  

 

3.2 Experimental Section 

3.2.1 Materials 

 Single-walled carbon nanotubes were purchased from Cheap Tubes Inc. 

They were used as received without further purification. These SWCNTs have an 

average diameter between 1-2 nm and purity above 90%. All other reagents 

were purchased from Sigma-Aldrich Inc. and were used as received. 

Polycarbonate membranes with 0.6 µm pore size and nylon membranes with 

0.45 µm pore size were purchased from Sigma-Aldrich Inc. as well. 

3.2.2 Experimental Procedures 

3.2.2.1 Ozonolysis 

 50 mg of SWCNTs was treated with ozone gas, which was generated onsite 

using a low-pressure mercury UV lamp. The ozone gas was introduced 

continuously into a two port (with one gas inlet and one gas outlet) 100-mL 

plastic bottle containing the SWCNTs. The ozone treatment was carried out for 2 

hours at room temperature and the bottle was shaken after every 10 minutes to 
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provide a uniform ozone exposure to tubes. The residual ozone gas coming out 

from the outlet was scrubbed into 0.5 M potassium iodide solution before its 

discharge to the atmosphere. The treated tubes were collected from the bottle 

and stored in a glass vial for characterization. 

3.2.2.2 Maleic Anhydride Treatment 

 In an oven dried three-neck flask, 30 mg of SWCNTs was suspended in 20 

mL of N-methyl-2-pyrrolidone. The resulting mixture was stirred for 10 minutes 

and sonicated in a water bath for 90 minutes. After degassing, 0.15 g mL-1 maleic 

anhydride was added to the mixture, which was then stirred for 48 hours at 170 

°C under an inert nitrogen atmosphere. After 48 hours, the reaction mixture was 

first cooled down to room temperature, then diluted with deionized (DI) water for 

its filtration through a 0.6 µm polycarbonate membrane filter. After filtration, no 

product was retained on the membrane filter. 

3.2.2.3 Concentrated H2SO4/HNO3 Mixture (3:1) Treatment 

 In an oven dried 50 mL round bottom flask, 20 mg of SWCNTs was 

suspended in 20 mL of a 3:1 mixture of concentrated H2SO4(98 

wt%)/HNO3(16M). The resulting mixture was sonicated in a water bath for 30 

hours. After 30-hour sonication, the resulting reaction mixture was diluted with 

200 mL of DI water and filtered through a 0.6 µm pore size polycarbonate 

membrane filter. The retained tubes were repeatedly washed with DI water and 

dried at 80 °C overnight in an oven. 
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3.2.2.4 Nitric Acid Oxidation 

 In an oven dried 100 mL round bottom flask, 200 mg of SWCNTs was 

refluxed in 55 mL of 13M nitric acid for four days. The refluxed tubes were 

collected on a 0.6 µm- pore membrane filter and rinsed with DI water. Then the 

tubes were dried at 80 °C overnight in an oven. 

3.3 Characterization Techniques 

3.3.1 Raman Spectroscopy 

 Raman spectroscopy is a non-destructive light scattering technique, which 

allows analysis of a wide variety of opaque, colored, transparent, and translucent 

samples including solutions, suspensions, and solids.46 This technique is named 

in honor of its inventor, C. V. Raman, an Indian scientist, and is based on the 

Raman effect.47 The Raman effect, is the inelastic scattering of incident radiation 

through its interaction with vibrating molecules. The inelastic scattering of light is 

used to identify and interrogate vibrational and rotational modes of molecules.  

 In this technique, when a sample is illuminated with a monochromatic laser 

beam (typically in the UV-NIR range), the laser beam interacts with the 

molecules present in it and is scattered in all directions. The frequency of the 

scattered radiation, is measured, for example, at right angles to the incident 

radiation. If the frequency of the scattered radiation is equal to the frequency of 

the incident radiation, then it’s called Rayleigh scattering, but if the frequency of 

the scattered radiation is different from the frequency of the incident radiation, 

then it may be Raman scattering. The majority of the scattered light follows the 
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Rayleigh scattering mechanism, roughly one in 106 of incident photons, and only 

a much smaller fraction (again, roughly one in 106) shows Raman scattering. The 

scattered light showing Raman scattering is used to construct a Raman 

spectrum. If the frequency of the incident radiation is higher than the frequency of 

the scattered radiation, the radiation is referred to as Stokes lines and if the 

frequency of the incident radiation is lower than the frequency of the scattered 

radiation, then it is termed anti-Stokes. In a Raman spectrum, both Stokes and 

anti-Stokes lines are present. The difference in frequency between the incident 

and scattered radiation is called as the Raman shift. Raman’s insight was to 

predict the existence of these bands, and to assign them to inelastic scattering 

wherein the incident photon mixes with the vibrational energy of the molecule. 

This results in Stokes/anti-Stokes bands appearing at a frequency shift equal to 

the vibrational frequency of the bond in question. Stokes bands are more intense 

than anti-Stokes bands because they involve transitions from lower to higher 

energy vibrational levels and hence are measured in conventional Raman 

spectroscopy.47,48 The different types of transitions involved in Rayleigh and 

Raman scattering are demonstrated in Figure 3.1. 
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Figure 3.1 A schematic view of the energy transitions involved in (a) Rayleigh 
scattering, (b) Raman scattering (stokes scattering) and (c) Raman scattering 
(anti-stokes). 

 This technique is used for both quantitative and qualitative analysis and is 

well known for its minimum requirement for sample preparation and handling. A 

Raman spectrum is presented as intensity vs wavelength. Qualitative analysis 

can be done by measuring the frequency of scattered radiations while 

quantitative analysis can be done by measuring the intensity of scattered 

radiations.49 The magnitude of wavelength shifts (frequency values) is 

independent of the wavelength of incident radiation, but the intensity of Raman 

scattering depends on the wavelength of incident radiation.47  

 Over the last four decades. Raman spectroscopy has played an important 

role in the characterization of carbon nanotubes and identifying the covalent 
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functionalization of SWCNTs. It is used to detect the presence of any defects or 

sp3 hybridization within the CNTs. Typically, three types of modes are often 

observed with CNTs, referred to as radial breathing mode (RBM), disorder mode 

(D band), and tangential mode (G-band). The radial breathing mode between 

100-300 cm-1 is dependent on CNT’s diameter. This region shows much variation 

with different samples. The tangential mode or the G-band is characteristic of sp2 

hybridized carbon atoms present in p-SWCNTs. This band indicates the 

presence of highly ordered CNT sidewalls and it appears between 1500-

1600 cm-1. The disorder mode or the D band is characteristic of sp3 hybridized 

carbon atoms. It appears between 1200-1350 cm-1, indicating the presence of 

some disorder in sp2-hybridized p-CNTS. It is correlated with the extent of 

sidewall functionalization of CNTs. The intensity of the D band relative to the 

intensity of the G band is expressed as ID/IG. It provides information regarding the 

structural changes as a result of covalent functionalization of the SWCNTs. The 

higher ID/IG ratio indicates higher degree of covalent functionalization.50,51 

However, the Raman spectroscopy does not help in studying the chemistry of 

sidewalls of CNTs. The functional groups present on the tube walls cannot be 

identified using this technique. To identify the functional groups, present on the 

tube walls, infrared spectroscopy is used, which is discussed in the following 

section.  
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3.3.2 Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) 
Spectroscopy 

 Fourier-transform infrared spectroscopy is a fast, non-destructive analytical 

technique which helps to indicate the presence or absence of specific functional 

groups in a sample. It is based on triggering molecular vibrations through 

irradiation with infrared (IR) light and detecting the absorption of light by the 

sample. It commonly utilizes the mid IR region (4000 cm-1 to 400 cm-1). In this 

technique, when a sample is illuminated with a beam of IR light, the bonds 

present in the molecules absorb the energy of IR radiation. The absorption of IR 

light only occurs if the frequency of the incident IR radiation is identical to the 

vibrational frequency of the mode in question, i.e. of the specific functional 

groups in the molecule. The wavelengths at which the sample absorbs IR light is 

characteristic of its molecular structure. For the radiation measured in infrared 

frequencies, an interferometer is typically used for spectral dispersion, hence the 

need for a Fourier to convert from the time to frequency domain. Thus, from an 

FTIR spectrum, the chemical components present in the sample can be 

determined.52 

 In FTIR spectroscopy, the transmission of light is typically used, and IR light is 

passed through a sample sandwiched between two IR transparent windows. In 

this approach, it is crucial to adjust the sample thickness because the longer path 

lengths result in more absorption of incident IR radiation, and potentially none 

reaching the detector. The attenuated total reflection (ATR) offers an alternative 

sampling technique to overcome the sample thickness limitation of transmission. 



 33 

ATR is a surface sensitive technique, and generally it prevents strong attenuation 

of the IR signal in highly absorbing media. In this method, a beam of IR light is 

passed through a crystal made of IR transparent material with high refractive 

index. The IR beam is totally internally reflected as it passes through the crystal, 

reflected at an angle of incidence greater than the critical angle for the crystal 

material-organic material interface. This reflection forms the evanescent wave 

which extends into the sample and decays exponentially with distance from the 

surface as shown in Figure 3.2. It protrudes only a few microns beyond the 

crystal surface and interacts with the sample on the top surface of the prism or 

ATR crystal. In the regions of the IR spectrum where the sample absorbs energy, 

the evanescent wave is attenuated and the attenuated beam is recorded by the 

detector to generate a IR spectrum.53 Additionally, this technique allows samples 

to be directly deposited onto the ATR crystal with very little sample preparation.  

 

Figure 3.2 Schematic representation of infrared beam path length through the 
ATR crystal. 
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 ATR-FTIR plays an important role in studying the sidewall chemistry of 

nanotubes. It can help to identify functional groups like –COOH, -OH, and other 

oxygen containing groups attached on the sidewalls of CNTs after their 

functionalization. In a typical ATR-FTIR spectra, bands due to C=O stretch are 

observed in the range ~1700 cm-1 for the carboxylated SWCNTs. The bands due 

to O-H stretch are observed in the range ~3300 cm-1 for the hydroxylated 

SWCNTs.54 The presence of these bands can indicate successful 

functionalization of SWCNTs with hydroxyl and carboxyl groups. 

3.4 Results and Discussion 

3.4.1 Ozonolysis 

 The unfunctionalized SWCNTs are expected to aggregate and be completely 

insoluble in water due to their hydrophobic nature. But, the SWCNTs 

functionalized with hydrophilic groups through ozonolysis are expected to be 

soluble in water. But, when the treated SWCNTs were dispersed in DI water, 

they still showed aggregation, indicating their unsuccessful functionalization. The 

unsuccessful functionalization can be attributed to a paucity of reaction time or 

non-uniform ozone exposure to tubes. To ensure this was the case, the ozone 

treatment time was increased and the SWCNTs were suspended in DI water for 

uniform ozone exposure. Even after four hours of ozone exposure and constant 

stirring, similar results were obtained, and this method was abandoned. 
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3.4.2 Maleic Anhydride Treatment 

 The maleic anhydride treatment described above yielded SWCNTs that were 

difficult to filter through a 0.6 µm polycarbonate membrane filter. During filtration, 

most of the tubes passed through the filter membrane along with the reaction 

mixture indicating excessive shortening of SWCNTs due to maleic anhydride 

treatment. The filtrate obtained was black in color, which suggested improved 

solubility of the tubes due to functionalization. In an effort to separate the tubes 

from the reaction mixture, the obtained black solution was again filtered through 

a 0.45 µm pore size nylon membrane. But filtration was again not successful and 

no product was retained on the membrane filter.  

 After failed filtration attempts, centrifugation was used as an alternative 

approach to separate the tubes from the reaction mixture. Small volumes of the 

reaction mixture were centrifuged using a Labnet mini centrifuge C-1200 

(115V/60 Hz) at a speed of 2000 rpm for an hour, but no two distinct phases 

were obtained. This procedure was repeated multiple times and still tubes did not 

settle and stayed dispersed in the reaction mixture. This failure may be 

attributable to the low rpm value of the instrument.  

3.4.3 Concentrated H2SO4/HNO3 Mixture (3:1) Treatment 

 The acid treated SWCNTs were expected to have improved solubility but 

when they were dispersed in DI water, the expected result was not observed. 

Even after sonicating the SWCNT-water suspension, the tubes still aggregated in 

the aqueous environment. This indicated that this method did not incorporate 
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much hydrophilic functional groups on the CNT surface. This may be due to lack 

of heating during sonication which could have lowered the reaction rate. So, 

considering all these factors a reflux method was developed to oxidize SWCNTs. 

3.4.4 Nitric Acid Oxidation 

 To check the solubility of acid refluxed tubes, they were dispersed in water 

and sonicated for five minutes. After sonication, they were found to be soluble in 

water resulting in a black colored solution illustrated in Figure 3.3. This indicated 

successful functionalization of SWCNTs. 

 
 
Figure 3.3 Solubility test of CNTs, (1) p-SWCNTs in water and (2) acid treated 
SWCNTs in water. 

 After obtaining positive results from the solubility test, the refluxed tubes were 

further characterized using FTIR and Raman spectroscopy. The Raman spectra 

of p-SWCNTs and acid treated SWCNTs were recorded at room temperature on 

an Enwave Optronics Raman spectrometer using a laser beam of the wavelength 

of 785 nm. These spectra are overlapped for comparison, as illustrated in Figure 

3.4. In the Raman spectrum of p-SWCNTs (Fig 3.4a), a prominent G-band at 
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1615 cm-1 and a very small D-band at 1300 cm-1 is observed, indicating the 

presence of mostly sp2 hybridized carbon-atoms and very few sp3 hybridized 

carbon-atoms. However, in the Raman spectrum of acid treated SWCNTs (Fig 

3.4b), a distinct D-band is observed at 1316 cm-1, indicating the presence of 

some defects caused by acid treatment. The ID/IG ratio of p-SWCNTs and acid 

treated were calculated to be 0.08 and 0.15. The higher ID/IG ratio of acid treated 

SWCNTs indicated successful activation of tubes as ID/IG ratio is sensitive to sp3 

hybridized carbon atoms. 

 

Figure 3.4 Raman spectra of (a) p-SWCNTs and (b) acid treated SWCNTs. 
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 The FTIR spectra of acid treated and pristine tubes were taken using Thermo 

Nicolet 6700 FT-IR spectrometer, to further confirm the functionalization of 

SWCNTs. These spectra are overlapped for comparison, as illustrated in Figure 

3.5. In FTIR spectra of both p-SWCNTs and acid treated tubes, a sharp 

absorption band at 2100cm-1 is observed, which arises due to C=C stretch mode 

in the SWCNTs. However, in the FTIR spectrum of acid treated SWCNTs (Fig 

3.5b), additional absorption bands at 3300 cm-1 (O-H, hydroxyl group) and 1650 

cm-1 (carboxyl group) are observed, which are consistent with the known 

vibrational frequencies of the hydroxyl and carboxyl functional groups. 

Consequently, due the presence of these absorption bands (O-H and C=O) in the 

FTIR spectrum of acid treated SWNTs, it can be confirmed that the tubes were 

successfully oxidized or activated by nitric acid treatment. 

 

Figure 3.5 FTIR spectra of (a) p-SWCNTs and (b) acid treated SWCNTs. 
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3.5 Conclusions 

 On the basis of above results, it can be concluded that the most simple and 

effective method to introduce hydrophilic groups on the surface of p-SWCNTs is 

the nitric acid treatment. The data from Raman spectroscopy confirmed that nitric 

acid treatment successfully oxidized them by creating some defects in their 

structure. The presence of hydroxyl and carboxylic acid groups on the walls of 

SWCNTs, was confirmed by the data from FTIR spectroscopy. The oxidized 

SWCNTs also revealed good solubility in water. To sum up, CNTs possess 

limited solubility and are inert to most of the chemicals, but can be activated by 

treating them with nitric acid for a prolonged period of time. These activated 

tubes were further functionalized with a V-PEG polymer to increase their 

exposed surface area. The functionalization of activated SWCNTs with V-PEG 

polymer is discussed in Chapter 5. 
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 : SYNTHESIS OF VIOLOGEN-POLYETHYLENE GLYCOL (V-PEG) 
POLYMER 

4.1 Introduction 

 The salts of 1,1’-disubstituted-4,4’-bipyridinium are commonly known as 

viologens. They were discovered in 1993 and since then they have been widely 

investigated due to their electrochemical properties.55 These properties include 

two reductions corresponding to the three redox forms (V2+,V+, and V0), fast 

electron response, and good chemical reversibility. Because of these unique 

electrochemical properties, they were originally investigated as redox indicators 

in biological studies. Subsequently, they were used as herbicides (paraquat).38 

Recently, viologen-based polymers have received much attention as electrode 

materials for batteries.37,56 

 Viologen moieties can be incorporated along the backbone of a polymer chain 

to form main-chain viologen polymers.57 This improves the solubility of the 

viologen moieties and prevents their crystallization. In 1974, the first viologen 

polymer was synthesized using a dihaloarylalkane and 4,4’-bipyridine. Since 

then, different polymers with viologen moieties as a part of the polymer backbone 

have been studied.57 Because of the presence of viologens, they exhibit a wide 

range of properties like electrical conductivity, electrochromism, photochromism, 

thermochromism, and photomechanical behavior.58,59 In this project, viologen 

moieties were incorporated in the polymer backbone of polyethylene glycol 

(PEG-400), to form a cationic polyelectrolyte (V-PEG) for the proposed hybrid 

supercapacitor. V-PEG polymer was synthesized by reacting tosylated 
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polyethylene glycol (PEG-400) with 4,4’-bipyridine. First, the tosylation was 

carried out to convert the two hydroxyl groups at the end positions of PEG into 

tosylates, as illustrated in Scheme 4.1. This step is carried out because tosylates 

are excellent leaving groups compared to hydroxyl groups and can be used as 

precursors for nucleophilic substitution reactions.59–61 

Scheme 4.1 Tosylation of (a) PEG-400 using (b) p-toluenesulfonyl chloride. 

 

 The reaction conditions for the tosylation reaction are discussed in detail in 

the following section. After this step, the ditosylated PEG chains were used as 

prepolymers for the preparation of the corresponding main-chain viologen co-

polymers, V-PEG. The ditosylated PEG chains were reacted with 4,4’-bipyridine 

for about 48 hours. These two species react in a SN2 fashion, 4,4’-bipyridine acts 

as a nucleophile and replaces the two tosylate groups at the end positions of 

PEG, as demonstrated in Scheme 4.2. The departure of tosylate groups occurs 

simultaneously with the backside attack of 4,4’-bipyridine, one bond is broken 

and one bond is formed synchronously.58,62 
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Scheme 4.2 Synthesis of viologen-polyethylene glycol polymer using (a) 
ditosylated PEG and (b) 4,4-bipyridine. 

 

 

4.2 Experimental Section 

4.2.1 Materials 

 All the chemicals and solvents were purchased from Sigma-Aldrich Inc. All 

reactions were carried out under an inert N2 (nitrogen) atmosphere in oven-dried 

glassware fitted with rubber septa. Teflon-coated magnetic stir bars were used 

for stirring and the dry liquid reagents and solvents were transferred using glass 

syringes. 

4.2.2 Experimental Procedures 

4.2.2.1 Tosylation of PEG-400 

 For tosylating PEG, two different approaches were attempted. In the first 

approach, p-toluenesulfonyl chloride was used as the tosylating agent and 

triethylamine as the base. In tosylation, usually a non-nucleophilic base is used 

because it can readily react with p-toluenesulfonyl chloride instead of removing 
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HCl formed during the reaction. In the second approach, triethylamine was 

switched with pyridine, and all the liquid solvents and reagents were dried under 

vacuum and stored over molecular sieves before using them. 

4.2.2.1.1 Tosylation of PEG using Triethylamine 

 PEG-400 (1 eq, 2 g, 1.77 mL, 5 mmol) was first dissolved in 20 mL of 

dichloromethane (DCM). This solution was mechanically stirred and cooled in an 

ice bath. Then p-toluenesulfonyl chloride (1.8 eq, 1.72 g, 9 mmol) and 2 mL of 

triethylamine were added to it under continuous stirring. The resulting mixture 

was stirred in an ice bath for two hours and then stirred for 6 hours at room 

temperature. To obtain the product, the reaction mixture was added dropwise 

into 100 mL of cold diethyl ether, but no precipitates were obtained indicating 

unsuccessful tosylation of PEG.  

4.2.2.1.2 Tosylation of PEG using Pyridine 

 In a three-necked N2-flushed flask, p-toluenesulfonyl chloride (1.8 eq, 1.72 g, 

9 mmol) was first dissolved in 10 mL of dry DCM and then 0.5 mL of pyridine 

(previously dried by vacuum distillation and stored over molecular sieves) was 

added to it. This solution was mechanically stirred and cooled in an ice bath. To 

this rapidly stirred solution, PEG-400 (1 eq, 2 g, 1.77 mL, 5 mmol, dried by 

vacuum distillation and stored over molecular sieves) was added very slowly 

dropwise. The reaction mixture was kept in the ice bath for 3 hours and then 

stirred at room temperature for 12 hours. After 12 hours, a white polymer was 

obtained by pouring the reaction mixture into cold diethyl ether. The ditosylated 
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polymers were purified by reprecipitation from dichloromethane and cold diethyl 

ether. The purified polymers were dried under vacuum and then stored at -30 ºC 

for later use. 

4.2.2.2 Synthesis of Viologen-Polyethylene Glycol Polymer 

 A mixture of ditosylated PEG (3.10 g, 4.38 mmol) and 4,4’-bipyridine (0.68 g, 

4.38 mmol) was heated at 60-70 ºC in 50 mL of N,N-dimethylformamide (DMF) 

for 48 hours. After 48 hours, the reaction mixture was stirred at room temperature 

for two more days. Unreacted 4,4’-bipyridine, excess polyethylene glycol and 

partially reacted 4,4’-bipyridine were removed by extractions with cold diethyl 

ether and DCM. After drying under the vacuum, light brown highly viscous liquid 

polymer was obtained. 

4.3 Characterization Techniques 

 The structures of tosylated PEG and novel viologen-polyethylene glycol 

polymer were identified using 1H-NMR, 13C-NMR, and FTIR spectroscopy. The 

1H-NMR and 13C-NMR spectra were recorded on Varian 400 MHz spectrometer 

and the solvent (DMSO-d6) signal was used as the internal standard. FTIR 

spectra were measured on Nicolet 6700 FT-IR spectrometer. The 

electrochemical properties of the V-PEG polymer were investigated by the 

method of cyclic voltammetry (CV). All the CV experiments were performed using 

a CH 660 or PAR 263A electrochemical analyzer. The basic principles and 

advantages of NMR and cyclic voltammetry are discussed briefly in sections 

below. 
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4.3.1 Nuclear Magnetic Resonance Spectroscopy (NMR)  

 NMR is a non-destructive analytical technique which exploits the magnetic 

properties of atomic nuclei to determine the chemical structure of different 

molecules. This technique is based on the interaction of radio frequency pulses 

with unpaired nuclear spins (NMR active nuclei) in an external magnetic field. 

The NMR active nuclei are first exposed to a strong and constant magnetic field, 

then they are excited by a radiofrequency pulse sequence. After the excitation, 

the nuclei undergo relaxation and emit electromagnetic signals. These signals 

are recorded and converted into a frequency spectrum. From the spectrum, 

parameters like chemical shift, splitting pattern, the number of signals, and the 

area under each signal provide structural information about a given sample.63–65 

 In 1H-NMR, the signals arise due to the interaction of radio frequency pulses 

with different protons in a sample under study, as a function of chemical shift. 

The chemical shift values or position of the signals gives information regarding 

the chemical environment of protons. If two or more protons are in an equivalent 

environment, then they will have the same chemical shift and will appear as one 

signal. The number of signals provide information about the number of 

chemically inequivalent protons and the area under each signal gives information 

about the relative number of protons that are giving rise to that signal. Integration 

can be used for the measurement of the area under each signal. For a given 

peak, the splitting pattern provides information about the number of neighboring 

inequivalent protons. Splitting of signals is caused by protons bonded to adjacent 
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carbon atoms, and it follows the so called (N+1) rule, where N is the number of 

equivalent protons that are bonded to the adjacent carbon atoms.63–65 For 

example, if a proton has no neighboring proton, it manifests a single NMR peak 

and if it has two neighboring protons, it yields a triplet. 

 Similar to 1H-NMR, the 13C-NMR the signals arise due to the interaction of 

radio frequency pulses with different carbon atoms in a sample under study. It 

relies on the magnetic properties of 13C nuclei. The number of signals gives 

information about the different carbon atoms or sets of equivalent carbon atoms 

present in the sample. The chemical shift values provide information regarding 

the chemical environment and hybridization of carbon atoms (sp3, sp2 or sp). 

However, in 13C spectra, C-C splitting is rarely observed because only about 

1.1% of naturally occurring carbon is 13C and the chances of two 13C next to each 

other is very rare. Integration is also not useful in13C NMR because the carbon 

intensities don’t accurately reflect the relative number of C-atoms.65 But the 

signals are spread over a much wider range (0-250 ppm) compared to 1H NMR 

spectra, making it easier to identify and count the different types of nuclei.  

4.3.2 Electrochemical Analysis 

 Cyclic voltammetry is a versatile and widely used electrochemical analysis 

technique. It is used for the characterization of electroactive chemical species. It 

can provide information about the number and stability of redox states, kinetics of 

electron transfers, and diffusion properties. In CV, the voltage is swept at a 
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constant rate, positively and negatively relative to a reference electrode while 

monitoring the resulting electrochemical current.66 

 CV experiments are mostly conducted in a three-electrode electrochemical 

cell. These cells are required to have provisions for an inert gas purge, a working 

electrode (WE), a reference electrode (RE), and a counter (auxiliary) electrode 

(AE). The electrodes are connected to a potentiostat that controls the potential of 

the WE and determines resulting current. The working electrode is the critical 

component of the cell, as it is where the key reaction under study takes place. It 

can act as the anode or cathode, depending on the direction of current flow. This 

electrode is usually made of an inert material, that has good conductivity and 

good thermodynamic stability, such as platinum, gold, and glassy carbon. The 

counter electrode is the AE, it functions as a cathode when the working electrode 

is operating as an anode and vice versa. The potential of the AE in an active 

feedback loop provides the programmed potential at RE, and therefore drives 

current at the WE. Platinum wires are mostly used as counter electrodes due to 

their inert nature. The RE is used as a half cell, to measure the potential of the 

WE. The potentiostat isolates the RE and does not allow any current to pass 

through it. The most common reference electrodes used in the laboratories are 

silver-silver chloride electrodes and saturated calomel electrodes (SCE).67,68  

 In CV experiments, an initial potential is applied to the cell and then a linear 

voltage ramp (at a fixed sweep rate, V s-1) is applied first toward one cusp 

potential, and then toward the final potential. During the potential sweep, the 
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current response is measured. The current that flows through the working 

electrode is plotted against the applied voltage to give a cyclic voltammogram, as 

shown in Figure 4.1. In the forward scan, a Faradic current peak is observed for 

any analyte that can be reduced within the initial and final potential range. As the 

potential applied to the WE approach the reduction potential of the analyte, the 

current increases. But then tails off due to the depletion of the analyte at or near 

the WE’s surface. In the reverse scan, the applied potential reaches a value 

where the product formed in the first reduction reaction gets re-oxidized. This 

produces a Faradic current of reverse polarity from the forward scan. This 

oxidation peak has similar shape to the reduction peak, and from these peaks, 

redox potentials and electrochemical reaction rates of the analytes can be 

obtained. The reversibility of any electroactive chemical species can be 

measured by changing the scan direction and its stability can be characterized by 

repeating the CV scans continuously.67,68 

 

Figure 4.1 A cyclic voltammogram. 
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 The room temperature voltammetric peak current for a reversible process is 

given by the Randles-Sevcik equation: 

                                       ip=	 2.69 × 105 n
3

2 AD
1

2Cv
1

2             Equation 1.10 

 Where ip is the peak current, n is the number of electrons transferred in the 

redox event, A is the area of the microelectrode (cm2), D is the diffusion 

coefficient (cm2 sec-1), C is the concentration (mol cm-3), and v is the scan rate (V 

sec-1). As per this equation, a reaction may be considered kinetically reversible if 

the peak current (ip) increases linearly as a function of square root of the scan 

rate.66 

 To study the redox behavior of V-PEG polymer in the liquid and semi-solid 

phases, CV experiments were performed using both micro- (3mm diameter) and 

ultramicro- (10 µm) working electrodes. The ultramicroelectrodes were used 

because they are suitable to perform electrochemical investigations on 

polyelectrolytes because their low current defeats the high electrical resistance of 

polymers. In addition, they permit measurements on limited quantities and exhibit 

relatively faster response time.69 The CV graphs obtained with a microelectrode 

is very different from the one obtained with a ultramicroelectrode. This is due to 

the differences in mass transport at the electrode surface. At larger electrodes, 

mass transport occurs mostly perpendicular to the surface, resulting in a typical 

peak-shaped voltammogram. But at ultramicroelectrodes, mass transport takes 

on a hemispherical profile, resulting in a sigmoidal, steady state voltammogram. 

Unlike microelectrodes, current generated at ultramicroelectrodes are dependent 
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on their geometry. The limiting plateau current from ultramicroelectrodes is given 

by Equation (1.11), shown below.62,69  

                                                       	ilim=	4nFrDC                          Equation 1.11 

 Where ilim is the limiting current (amps), F is Faraday’s constant (C mol-1), and 

r is electrode radius (cm). The experimental details of both liquid and semi-solid 

phase characterization are discussed below. 

4.3.2.1 Liquid Phase Characterization 

 The liquid phase experiments were performed to analyze the electrochemical 

behavior of 4,4’-bipyridine (starting material) and synthesized viologen-PEG 

polymer. In all the experiments, a high surface area Pt wire was used as the AE 

and silver/silver chloride was used as the RE. The analysis of 4,4’-bipyridine was 

first carried out using a Pt microelectrode of diameter 3 mm and then using a Pt 

ultramicroelectrode of diameter 10 µm. The apparatus setup for analysis of 4,4’-

bipyridine is depicted in Figure 4.2. All the electrodes were dipped in a cell 

containing an electrolyte. The cell lid had holes for the insertion of electrodes and 

for nitrogen gas to be bubbled through the solution. Before every experiment, the 

working electrode was polished using 1.0, 0.3 and 0.05-micron alumina powder. 

A nylon polishing pad was used for the 1.0 and 0.3-micron alumina and a 

microcloth polishing pad was used for 0.05-micron alumina powder. The 

electrolyte solution was also purged off oxygen by bubbling solvent-saturated 

nitrogen in the jar for 5 minutes and a nitrogen blanket was maintained 

throughout all electrochemical measurements.  
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Figure 4.2 Three-electrode electrochemical cell setup for analysis of 4,4’-
bipyridine. 

 Similarly, the viologen polymer was analyzed using both Pt micro- and 

ultramicroelectrode. For the analysis, a thin layer of the polymer was deposited 

on the surface of the WE due to its poor solubility in the electrolyte. The working 

electrode was also wrapped with a polycarbonate membrane (of diameter 0.45 

µm) to prevent the polymer from leaking. The apparatus setup for analysis of the 

viologen polymer is depicted in Figure 4.3.  
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Figure 4.3 Three-electrode electrochemical cell setup for analysis of viologen 
polymer. 

4.3.2.2 Semi-Solid Phase Characterization 

 In addition to liquid phase characterization, semi-solid phase characterization 

of the viologen polymer was also performed using a 10 µm Pt ultramicroelectrode 

(WE) and a thin silver plate as both AE and RE. The experimental setup is 

depicted in Figure 4.4. A Teflon block was used to hold the WE on top of the 

silver plate with the polymer between them. A few drops of electrolyte were also 

added to the polymer before conducting CV experiments. 
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Figure 4.4 Semi-solid phase characterization setup for viologen polymer. 

4.4 Results and Discussion 

4.4.1 Nuclear Magnetic Resonance Spectroscopy (NMR) Results 

 The molecular structures of ditosylated PEG and viologen polymer were 

identified using both 1H and 13C NMR. The chemical shifts (δ) are reported in 

ppm relative to the residual solvent signal (DMSO: δ = 2.2 for 1H NMR and δ = 

40.0 for 13C NMR). The abbreviations used are as follows: s (singlet), d (doublet), 

t (triplet), m (multiplet). 

4.4.1.1 Ditosylated PEG 

  The 1H NMR spectrum of ditosylated PEG in DMSO, including peak 

assignments is shown in Figure 4.5. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 36 
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(s, 6H, -CH3), 3.35~3.69 (m, 32 H, -CH2-O-), 4.05 (t, 4H, -CH2-OTs-), 7.45 and 

7.99 (m, 8H, -C6H4-). The spectrum was consistent with previously published 

work.62 It can be noticed that there is a small amount of impurity detected, 

corresponding to the unassigned peaks.  

 

Figure 4.5 1H NMR spectrum of ditosylated PEG in DMSO and structural 
identification. 

 The 13C NMR of ditosylated PEG in DMSO, is shown in Figure 4.6. 13C NMR 

(400 MHz, DMSO-d6): δ (ppm) 21.72, 60.84, 68.51, 70.64, 72.96, 126.14, 

128.75, 130.78, 146.24. The C-atoms giving rise to peaks at 60.84 ppm and 

72.96 ppm are not labelled because these peaks arise from the C-atoms of non-

tosylated polymer ends. This spectrum was consistent with previously published 

work.70 
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Figure 4.6 13C NMR spectrum of ditosylated PEG in DMSO and structural 
identification. 

4.4.1.2 Viologen Polymer: 

  The 1H NMR spectrum of viologen polymer in DMSO is shown in Figure 4.7. 

1H NMR (400 MHz, DMSO-d6): δ (ppm) 2.43 (s, 6H, CH3-Ph), 3.6-3.84 (m, 32H, -

CH2O-), 4.79 (m, 4H, -CH2-N+-), 7.06 and 7.4 (m, 8H, -C6H4-), 8.6 and 8.9 (m, 

8H, -N+C5H4-). These chemical shift values were consistent with previously 

published work.62  
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Figure 4.7 1H NMR spectrum of viologen polymer in DMSO and structural 
identification. 

 The 13C NMR of viologen polymer in DMSO is shown in Figure 4.8. 13C NMR 

(400 MHz, DMSO-d6): δ (ppm) 21.39, 31.29, 44.28, 61.01, 70.41, 124.37, 

126.14, 128.75, 138.48, 142.604,145.89. The δ = 61.01-72.9 ppm signals are 

due to the inner C-atoms of the polymer. This spectrum was consistent with 

previously published work.58 
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Figure 4.8 13C NMR spectrum of viologen polymer in DMSO and structural 
identification. 

4.4.2 Cyclic Voltammetry Results 

4.4.2.1 Liquid Phase Characterization 

4.4.2.1.1 Analysis of 4,4’-bipyridine using Micro- and Ultramicroelectrode 

 Cyclic voltammetry of nitrogen-degassed solution of 4,4’-bipyridine in 0.1 M 

lithium perchlorate/acetonitrile (ACN) was done using a platinum (Pt) 

microelectrode. The potential of the Pt microelectrode was swept between -0.2 V 

and -1.2 V vs Ag/AgCl at a scan rate of 0.1 V s-1. The resulting cyclic 

voltammogram did not show any redox peaks, as shown in Figure 4.9. The 

absence of redox peaks indicated that 4,4-bipyridine is not electroactive. A 

similar result was obtained when the cyclic voltammetry analysis of 4,4-bipyridine 

was done using a platinum ultramicroelectrode. The potential of the Pt 
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ultramicroelectrode was swept between -0.2 V and -1.0 V vs Ag/AgCl at a scan 

rate of 0.03 V s-1. Figure 4.10 shows the resulting voltammogram with no redox 

peaks. 

 

Figure 4.9 Cyclic voltammogram of 4,4’-bipyridine using Pt microelectrode. 

 

Figure 4.10 Cyclic voltammogram of 4,4’-bipyridine using Pt ultramicroelectrode. 
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4.4.2.1.2 Analysis of Viologen Polymer using Micro- and 
Ultramicroelectrode 

 Cyclic voltammetry of viologen polymer, deposited on the surface of a Pt 

microelectrode and dipped in 0.1 M LiClO4/ACN was done at room temperature. 

The potential of the Pt electrode was swept between -0.2 V and -1.0 V vs 

Ag/AgCl at a scan rate of 0.25 V s-1. In the resulting CV graph (Fig.4.11), two 

distinct peaks both on the reduction and oxidation cycles were observed, 

corresponding to redox couples V2+/V+• and V+•/V0. The redox potential (E0) or 

midpoint potential for V2+/V+• was -0.42 V and E0 for V+•/V0 was -0.76 V. This 

confirmed the quaternization of nitrogen atoms of 4,4’-bipyridine by its covalent 

linkage to PEG chains, hence making it electroactive. The peak separations of 

these two redox couples was approximately 0.1 V for V2+/V+• and 0.12 V for 

V+•/V0, indicating that V2+/V+• is a more reversible redox couple than V+•/V0. 

Figure 4.11 Cyclic voltammogram of viologen polymer using Pt microelectrode. 
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 Similarly, the potential of the Pt ultramicroelectrode was swept between -0.2 

V and -1.0 V vs Ag/AgCl at a scan rate of 0.03 V s-1. The CV graph showed two 

sigmoidal curves corresponding to V2+/V+• and V+•/V0, as shown in Figure 4.12. 

The results obtained using both micro- and ultramicroelectrodes were consistent 

with previously published work.56,71 

 

Figure 4.12 Cyclic voltammogram of viologen polymer using Pt 
ultramicroelectrode. 

4.4.2.2 Semi-Solid Phase Characterization 

  Cyclic voltammetry of the viologen polymer deposited over the silver plate 

with few drops of 0.1 M LiClO4/ACN in it, was performed at room temperature. 

The potential of the Pt ultramicroelectrode was swept between -0.2 V and -1.0 V 
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distinct peaks both on the reduction and oxidation cycles were observed, 

corresponding to redox couples V2+/V+• and V+•/V0. The redox potential (E0) for 

V2+/V+• was -0.37 V and E0
 for V+•/V0 was -0.73 V. This again confirmed the 

quaternization of nitrogen atoms of 4,4’-bipyridine by its covalent linkage to PEG 

chains. The peak separations for these two redox couples were approximately 

0.09 V for V2+/V+• and 0.11 V for V+•/V0, indicating that V2+/V+• is a more 

reversible redox couple than V+•/V0. The potential values obtained for both redox 

couples were consistent with the previously published work.71  

 

Figure 4.13 Cyclic voltammogram of viologen polymer using Ag plate as AE and 
RE, and Pt as the working electrode. 
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4.4.3 FTIR Spectroscopy Results 

 The structure of the viologen-PEG polymer was also determined by FTIR 

spectroscopy. The overlapped FTIR spectra of 4,4’-bipyridine, PEG-400, and 

viologen polymer are shown in Figure 4.14. The spectra of both PEG (Fig. 4.14a, 

b) and viologen polymer show absorption bands at 1094 cm-1 and at 2865 cm-1. 

The band at 1094 cm-1 corresponds to the C-O stretch mode of the ether group of 

PEG and band at 2865 cm-1 corresponds to sp3 hybridized C-H symmetric bond 

stretch of PEG backbone. The FTIR spectra of both viologen polymer and 4,4’-

bipyridine (Fig. 4.14b, c) show absorption band at 3024 cm-1 corresponding to 

sp2 hybridized C-H bond stretch due to pyridine rings. In addition, the FTIR 

spectrum of viologen polymer (Fig 4.14b) shows absorption bands at 1192 (R-N+) 

and 1008 cm-1 (S-O), corresponding to R-N stretch mode of the linkage (between 

PEG and viologen moieties) and sulfonate group of tosylates. All these values 

were consistent with previously published work.58,62,72 Consequently, it was 

confirmed that the viologen moieties were covalently attached to PEG chains. 
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Figure 4.14 FTIR spectra of (a) PEG-400, (b) viologen polymer and (c) 4,4’-
bipyridine. 

4.5 Conclusions 

 The viologen-polyethylene glycol polymer was successfully synthesized using 

tosylated PEG and 4,4’-bipyridine. It was observed that the tosylation reaction is 

the most sensitive and critical step in the synthesis of viologen polymer. The 

tosylation was only achieved using pyridine and dry chemical reagents, indicating 

that tosylation step is moisture sensitive and requires a weaker base. The 
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moisture can lead to the hydrolysis of p-toluenesulfonyl chloride and any strong 

base, including water and hydroxide can readily react with p-toluenesulfonyl 

chloride. 

 The redox properties of the V-PEG polymer were also successfully analyzed 

using cyclic voltammetry, as CV graphs showed clear two sets of 

oxidation/reduction peaks. Based on these results, this polymer was used as a 

redox additive polyelectrolyte in the proposed oxidation-half cell of the hybrid 

supercapacitor. It was also tethered to the oxidized-SWCNTs, to increase their 

exposed surface area. The functionalization of oxidized-SWCNTs with V-PEG 

polymer is discussed in the following chapter. 
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  : FUNCTIONALIZATION OF OXIDIZED SINGLE-WALLED 
CARBON NANOTUES WITH V-PEG POLYMER 

5.1 Introduction 

 As discussed in Chapter 2, carbon nanotubes (CNTs) possess limited 

solubility and processability due to their association in bundles, which is caused 

by the van der Waals interactions between their sidewalls. To circumvent these 

issues, the CNTs are commonly functionalized with different chemical groups. 

Grafting polymers on the surface of CNTs not only improves their solubility, but 

also increases their exposed surface area, even at a low degree of 

functionalization.73,74 So, in an effort to increase the exposed surface area of the 

oxidized single-walled carbon nanotubes (o-SWCNTs), they were covalently 

functionalized with V-PEG polymer.  

 To carry out this functionalization, the surface-bound carboxylic groups on 

oxidized-SWCNTs were first modified into reactive acyl chlorides using oxalyl 

chloride and N,N-Dimethylformamide (DMF), as shown in Scheme 5.1.75,76 This 

reaction is critical because acyl chlorides are very reactive and can be used to 

form ester linkages between oxidized-SWCNTs and V-PEG polymer. The 

mechanism of acyl chloride formation using oxalyl chloride is shown in Scheme 

5.2. In this reaction, DMF (5.20) reacts with oxalyl chloride (5.21) to give an 

iminium intermediate (5.22), which in turn reacts with the carboxylic acid to form 

an acyl chloride (5.23).77  
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Scheme 5.1 Acyl chlorination of oxidized-SWCNTs. 

 

Scheme 5.2 Mechanism of acyl chloride formation using oxalyl chloride. 

 
 

 
After the acyl chlorination, the oxidized-SWCNTs were mixed with V-PEG 

polymer, so that the acyl groups can react with the end hydroxyl groups (-OH) of 

V-PEG polymer, to form ester linkages, as shown in Scheme 5.3. The 

experimental conditions for these reactions are discussed in detail in the 

following section. 
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Scheme 5.3 Grafting of viologen polymer to acyl-chlorinated SWCNTs. 

 

5.2 Experimental Section 

5.2.1 Materials 

 Oxalyl chloride and DMF were purchased from Sigma-Aldrich Inc. All 

reactions were carried out under an inert nitrogen atmosphere in an oven-dried 

three-neck glassware fitted with rubber septa. Teflon-coated magnetic stir bars 

were used for stirring and dry liquid reagents and solvents were transferred using 

glass syringes 

5.2.2 Experimental Procedures 

5.2.2.1 Grafting SWCNTs with V-PEG Polymer 

 70 mg of oxidized-SWCNTs was first dispersed in 30 mL of 

dimethylformamide (DMF) by a 15-minute sonication treatment. Then the 

resulting mixture was stirred in an ice-bath for 30 minutes. Next, 2 ml of oxalyl 

chloride was added dropwise to the dispersion of oxidized-SWCNTs. The 

reaction mixture was stirred in an ice bath for 3 hours and then at room 

temperature for 12 hours. Finally, the temperature was raised to 80 ºC and the 

mixture was stirred overnight to remove excess oxalyl chloride. Next, the 

Ester linkage 
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previously prepared V-PEG polymer (0.08 mmol, 70 mg) was dissolved in DMF 

and added to the SWCNT suspension. The mixture was stirred at 100 ºC for 5 

days. After cooling to room temperature, the solvent was evaporated using a 

rotary evaporator. The remaining black solid was dried under vacuum and used 

without further purification. 

5.3 Characterization Techniques  

 The presence of ester linkages between SWCNTs and V-PEG polymer was 

analyzed using FTIR spectroscopy. The FTIR spectrum was measured on a 

Nicolet 6700 FT-IR spectrometer. The electrochemical behavior of the obtained 

product was investigated using cyclic voltammetry (CV). CV experiments were 

performed using CH 660 or PAR 263A electrochemical analyzer. The apparatus 

setup for CV analysis is depicted in Figure 5.1. Analysis was done using a 10 µm 

Pt working electrode (WE) and a thin silver plate as both auxiliary and reference 

electrode (AE, RE). A Teflon block was used to hold the WE on top of the silver 

plate with the V-PEG polymer/SWCNTs composite between them. A few drops of 

electrolyte were also added to the SWCNT-polymer matrix before conducting CV 

experiments. 
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Figure 5.1 CV setup for analysis of the SWCNTs/V-PEG polymer composite. 

5.4 Results and Discussion 

5.4.1 Cyclic Voltammetry Results 

 Cyclic voltammetry of SWCNTs/ V-PEG polymer composite, prepared with a 

few drops of 0.1 M LiClO4/Acetonitrile (ACN), was performed at room 

temperature. The potential of the Pt ultramicroelectrode (10 µm) was swept 

between -0.2 V and -1.0 V, at a scan rate of 0.01 V s-1, versus an Ag quasi-

reference plane to which both reference and auxiliary electrodes were 

connected. This two-electrode experiment is possible because of the low 

currents at the 10 µm working electrode. In the resulting CV graph (Fig. 5.2), one 

sigmoidal and one half-sigmoidal curve was observed, corresponding to redox 
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couples V+•/V0 and V2+/V+•.  The apparent diffusion coefficients of V+•/V0 and 

V2+/V+• were calculated to be 1.72	×10-6 cm2 s-1 and 5.6	×10-7 cm2 s-1 using radial 

diffusion equation (Equation 1.11 in Chapter 4). This redox behavior strongly 

suggests a continuous SWCNTs/V-PEG composite phase with good ionic and 

electronic conductivity.  

 

Figure 5.2 Cyclic voltammogram of SWCNTs/V-PEG polymer composite using 
Pt ultramicroelectrode. 

5.4.2 FTIR Spectroscopy Results 

 FTIR spectroscopy was used to confirm the presence of ester linkages 

between V-PEG polymer and oxidized-SWCNTs. The overlapped FTIR spectra 

of oxidized-SWCNTs (Figure 5.3a), SWCNT/V-PEG polymer composite (Fig 

5.3b), and V-PEG polymer (Fig 5.3c, in the inset) are shown in Figure 5.3. The 
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spectrum of oxidized-SWCNTs shows absorption bands at 1650 cm-1 (carboxyl 

functional group), near ~2100 cm-1 (C=C stretch mode of carbon nanotubes) and 

near 3000 cm-1 (O-H, hydroxyl functional group). The spectrum SWCNTs/V-PEG 

polymer shows absorption bands near ~2100 cm-1 and ~3000 cm-1, similar to 

oxidized-SWCNTs. In addition, it shows an absorption band at 1666 cm-1 which 

might be due to the ester linkages between SWCNTs and V-PEG polymer (C=O 

stretch of ester bonding). But the spectrum of V-PEG polymer also shows an 

absorption band at 1632 cm-1, which might have blue-shifted in the spectrum of 

the SWCNTs/V-PEG polymer composite, as shown in the inset (Fig. 5.3b, c). 

Based on these results, it was difficult to confirm the presence of ester bonds 

between V-PEG polymer and oxidized-SWCNTs. 
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Figure 5.3 FTIR spectra of (a) o-SWCNTs, (b) SWCNTs/V-PEG polymer 
composite, and (c) V-PEG polymer. 

5.5 Conclusions 

 The results obtained from FTIR spectroscopy were ambiguous with respect to 

confirming the final polymer structure, but the CV graphs showed two sets of 

oxidation/reduction peaks. Based on these results, the composite of o-SWCNTs 

and V-PEG polymer was used as such in the oxidation half-cell of the proposed 

hybrid supercapacitor, without further characterization. As the absence or 

presence of ester linkages between SWCNTs and V-PEG polymer is not 

expected to affect the performance of the cell. 
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 : CELL FABRICATION AND CHARACTERIZATION  

6.1 Introduction 

 In an attempt to develop a hybrid supercapacitor, the SWCNTs/V-PEG 

polymer composite was combined with a SWCNTs/ Fc-PEG polymer composite. 

The SWCNTs/ Fc-PEG polymer composite was synthesized and characterized 

by Shalaka Rahangdale. In this composite, ferrocene dicarboxylic acid centers 

were covalently incorporated in the polymer backbone of poly(ethylene glycol) 

(MW=400) through ester linkages to increase their solubility.26 Both of these 

polymer composites were combined in a sandwich configuration with 19 porous 

polycarbonate membranes between them to form a two-electrode cell, as shown 

in Figure 6.1.  

 

Figure 6.1 The schematic representation of the supercapacitor cell with 
SWCNTs/Fc-PEG polymer and SWCNTs/V-PEG polymer composites. 
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 A few drops of 0.1 M solution of lithium perchlorate in dry acetonitrile were 

also added to both half-cells to ensure sufficient conductivity. During charging, 

the ferrocene dicarboxylic acid (Fc) centers in the PEG backbone get oxidized 

and release electrons. These electrons move through an external circuit towards 

the other half-cell containing viologen species. The SWCNTs conduct these 

electrons towards the viologen centers, resulting in their reduction. In addition, 

the charge is also stored at the interface of SWCNTs and polymer electrolytes by 

electrostatic means, as discussed in Chapter 1. Opposite charges reside on two 

different layers. In the oxidation half-cell, a positive set resides on the SWCNTs 

and a negative set of charge due to perchlorate ions in the electrolyte. In the 

reduction half-cell, a negative set of charge resides on the SWCNTs and a 

positive set of charge due to lithium ions in the electrolyte as shown in Figure 6.1. 

 During the discharge process, when the voltage source is removed and the 

cell is connected to an external load, the role of viologen and Fc gets reversed in 

the sense that viologen gives up electrons and Fc gets reduced. The process of 

charging and discharging can be expressed as equations, 

During charging, at the positive electrode: 

	EX+	A-⟶	EX
+∥	A-+	e-	 

Fc ⟶ Fc++ e- 

During discharging, at the positive electrode: 

 EX
+∥ A-+ e-⟶	EX+ A- 

 Fc++ e-⟶ Fc   
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During charging, at the negative electrode: 

Ey+ C++ e-⟶	Ey
-∥ C+ 

 V2++ e-⟶ V
+   

During discharging, at the negative electrode: 

 Ey
-∥ C+⟶	E

y
+ C++ e- 

 V+⟶ V2++ e-
      		 

 Here Ex and Ey denotes the SWCNTs, A-  and C+ the perchlorate and the 

lithium ions and ∥ indicates an intimate association between ion and SWCNT-

electrode at the electrode/electrolyte interface. 

6.2 Cell Fabrication Procedure 

6.2.1 Cell Fabrication Materials 

 The materials used to assemble the cell included a SWCNTs/V-PEG polymer 

composite, a SWCNTs/Fc-PEG polymer composite, aluminium current collectors, 

platinum foil, polycarbonate membrane separators of pore size 0.6 µm, silicon 

gaskets, an aluminium C-clamp and a 0.1 M solution of lithium perchlorate in dry 

acetonitrile. 

6.2.2 Cell Assembly 

 To assemble the cell, two square-shaped aluminium current collectors with 

platinum cavities in the center were used to hold the SWCNTs/V-PEG and 

SWCNTs/Fc-PEG polymer composites. The platinum cavities were formed by 

first attaching the silicon gaskets (with square cutouts in the center) to the 
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surface of aluminum current collectors, and then inserting platinum foil pieces 

inside the obtained cavities, as shown in Figure 6.2. 

 

Figure 6.2 Aluminum current collector with a platinum cavity. 

 The SWCNTs/V-PEG and SWCNTs/Fc-PEG polymer composites were mixed 

with few drops of 0.1 M solution of lithium perchlorate in dry acetonitrile 

separately to form two homogeneous mixtures. These two mixtures were 

deposited in the platinum cavities of two separate aluminum current collectors. 

These current collectors were then combined in a sandwich configuration with 19 

porous polycarbonate membranes between them (pore size 0.6 µm). They were 

tightly clamped using a C-clamp to form a prototype cell. The whole process of 

fabrication is demonstrated in Figure 6.3. 
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Figure 6.3 Schematic of prototype cell fabrication procedure. 

6.3 Cell Characterization 

 The electrochemical characterization of the prototype cell was done using 

cyclic voltammetry (CV) and chronoamperometry (CA). All the CV experiments 

were performed using CH 660 electrochemical analyzer and all the CA 

experiments were performed using EG&G 263A potentiostat/Galvanostat. The 

apparatus setup for both the CV and CA analysis is depicted in Figure 6.4. In all 

the experiments, the current collector with SWCNTs/Fc-PEG polymer composite 

in its Pt cavity was connected with the working electrode and the current collector 

with SWCNTs/V-PEG polymer composite in its Pt cavity was connected to both 

the auxiliary and reference electrodes. The theoretical aspects of CA are also 

discussed briefly in the following section. 
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Figure 6.4 Electrochemical setup for analysis of the prototype cell. 

6.3.1Chronoamperometry 

 Chronoamperometry can be defined as the study of the variation of current 

response with time under potentiostatic control. It is a commonly used 

electroanalytical technique, useful for determining diffusion coefficients, reaction 

kinetics and mechanisms. In this technique, the applied potential remains 

constant over a period of time and afterwards the applied potential is set to a 

different constant value, either in the potential range of the Faradaic reaction 

under study or outside this range to recover initial equilibrium conditions. Based 

on the number of potential pulses applied before recovering the equilibrium 
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conditions, this technique is classified as single-, double-, and triple-pulse 

chronoamperometry.78,79 The corresponding current response is recorded at the 

end of these potential pulses as a function of time, as shown in Figure 6.5. 

 

Figure 6.5 (a) Potential waveform and (b) the signal for double pulse 
chronoamperometry. 

 From the current vs the time graph, the concentration gradient at the 

electrode surface can be studied. A large current is initially observed which then 

gradually decrease due to the depletion of electroactive species at the electrode 

surface. This change in current with respect to time is governed by the Cottrell 

equation: 

                                                    i = nFAC D
πt

                                  Equation 1.12 

 Where i is the current, n is the number of electrons involved in the redox 

reaction, F is Faraday's constant, A is the surface area of the (planar) electrode, 

C is the concentration of the electroactive species, t is time, and D is the diffusion 

coefficient. As per this equation, the current falls as t-1/2. But there is always some 
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capacitive or non-Faradaic current flowing when the potential of an electrode is 

changing and it is dominant at short times.79,80 The capacitive current decay with 

respect to time at a constant applied potential is governed by the equation: 

                                                    i	= E
Ru

e
-t

RuCd                              Equation 1.13 

 Where Ru is an uncompensated resistance, Cd is the double layer 

capacitance. As per this equation, the capacitive current decays exponentially.80 

6.4 Results and Discussion 

6.4.1 CV Analysis 

 During CV analysis of the cell, the potential of the working electrode was 

swept between 0 Volts to 2 Volts at scan rates of 0.1, 0.01, and 0.005 V s-1. The 

resulting voltammograms are shown in Figure 6.6. From all the CV graphs, 

similar results were obtained. In the forward scan, a large current was observed, 

consistent with the charging (oxidation of ferrocene dicarboxylic acid and 

reduction of viologen sites). However, no reverse, discharging current was 

observed in the reverse scan. The most likely contribution to this include leakage 

of electrons through separator membranes between oxidation half-cell and 

reduction half-cell of the prototype cell. It is also possible that irreversible redox 

reactions were occurring at the aluminum electrodes, and that they dominated 

the current response. 
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Figure 6.6 Cyclic voltammograms of the prototype cell at scan rate (a) 0.1 V s-1, 
(b) 0.01 V s-1 and (c) 0.05 V s-1. 

6.4.2 Chronoamperometry Analysis 

 To investigate the charging and discharging currents of the prototype cell, 

four double pulse CA experiments were conducted. During the analysis, two sets 

of potential pulses were applied to the prototype cell, an anodic pulse set and a 

cathodic pulse set. In the first experiment, the cell was equilibrated for 0.5 

seconds at 0 Volts. After the current reached zero, the applied potential was 

stepped from 0 V to 1 V and was held there for 0.5 seconds. Then the applied 

potential was stepped down from 1 V to 0 V and was held there for 0.5 seconds 
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(0.5 seconds for cathodic pulse and 0.5 seconds for anodic pulse). Similarly, 

three other double pulse CA experiments were performed in the same potential 

range for 5s, 50 s, and 500 second time intervals. The resulting CA graphs are 

shown in Table 6.1 

Table 6.1 Chronoamperometry Graphs of the Prototype Cell. 

Time 
Interval (s) 

Chronoamperommetry graphs 

0.5 

 

 

5 
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50 

 

 

 

 

 

500 

 

 

In the resulting CA graphs, the current decreased gradually with increasing 

time intervals. The CA graph obtained at a time interval of 500 seconds (500 s of 

cathodic pulse and 500 s of anodic pulse) shows minimum capacitive current 

compared to the CA graphs obtained at shorter time intervals (0.5 s, 5 s, and 50 

s), as shown in Table 6.1. This occurs because the capacitive current decays 

exponentially with time as compared to Faradaic current, as discussed in Section 

6.3.1. Therefore, at longer time intervals mostly Faradaic current is observed. In 
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addition, the charging and discharging currents in all the CA graphs were also 

observed to be unequal, as tabulated in Table 6.2. This suggested the leakage of 

electrons through the separator membranes between oxidation half-cell and 

reduction half-cell of the prototype cell. Also, it’s possible that there is leakage of 

polymer material onto the aluminum current collectors, and that is yielding 

irreversible currents. 

Table 6.2 Charging-Discharging Currents of the Prototype Cell. 

Time interval 
(seconds) 

Charging current 
(Amperes) 

Discharging current 
(Amperes) 

0.5 1.97 × 10-4 1.07	× 10-4 
5 1.36 ×10-4 0.81	× 10-4 

50 0.92	×10-4 0.72	× 10-4 
500 0.68	× 10-4 0.58	× 10-4 

 
6.4 Conclusions and Future Work 

 The viologen moieties were successfully covalently incorporated in the 

poly(ethylene glycol) backbone to form a V-PEG polymer. Cyclic voltammetry 

analysis of the V-PEG polymer revealed that it has redox potentials at 0.37 V (vs 

Ag/AgCl) and at 0.73 V (vs Ag/AgCl) corresponding to V2+/V+• and V+•/V0 redox 

couples, rendering it as a suitable redox additive polyelectrolyte material for a 

hybrid supercapacitor. Cyclic voltammetry analysis of the composite of single-

walled carbon nanotubes/V-PEG polymer revealed one sigmoidal and one half-

sigmoidal curves corresponding to V+•/V0 and V2+/V+• redox couples, strongly 

suggesting a continuous SWCNTs/V-PEG polymer composite phase with good 

ionic and electronic conductivity. Based on all these results, the composite of 
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SWCNTS/V-PEG polymer proves to be a suitable electrode/electrolyte phase for 

its application in the oxidation half-cell of a hybrid supercapacitor. 

 The SWCNTs/Fc-PEG polymer was also reported to exhibit similar reversible 

redox behavior as SWCNTS/V-PEG polymer. However, after the coupling of 

SWCNTS/V-PEG polymer composite with a SWCNTs/Fc-PEG polymer 

composite to form a prototype cell, expected electrochemical results were not 

obtained. This failure may be attributable to the leakage of electrons through the 

separator membranes between the half-cells of the hybrid SC. This can occur 

because CNTs get shortened after prolonged acid treatment and can pass 

through the separator membranes, resulting in a short circuit. To prevent this 

leakage, different separator membranes with smaller pore sizes can be tested in 

the future work. If the issue of leakage between both the half-cells is eliminated, 

the energy density of the resulting cell is expected to be greater than 

conventional supercapacitors, which do not have any redox-active species in 

them.  
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