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ABSTRACT 

THE DESIGN AND DETAILING OF DISCONTINUOUS TIMBERFRAME 

LATERAL-FORCE-RESISTING SYSTEMS 

 

by Rhett Carlsen 

Discontinuous lateral-force-resisting systems (LFRS) are a type of LFRS in which the 

path of resistance does not continue directly to the foundation. Discontinuous systems are 

defined as either in-plane, where the LRFS shifts in the plane of resistance, or out-of-

plane, where the shift is perpendicular to the plane of resistance. Discontinuous systems 

are especially prevalent in lightweight, woodframe structures. Design penalties exist for 

discontinuous systems, resulting in the specification of larger connections and structural 

elements. This research includes a review of past experiments to identify any 

discontinuous LFRS experiments that have been conducted. Through the identification of 

the existence and design of these systems, critical variables are defined. A hypothetical 

prototype, single-family-residence style, structure has been designed and analyzed to 

exemplify the proper application of ASCE 7-10 ASD load combinations pertinent to in-

plane, vertically irregular discontinuous LFRS, as well as to aide in the design of a full 

scale test specimen built by a 3-semester unit, graduate level, structural engineering 

course at San José State University (SJSU). Connection detail examples are produced 

from the results of the prototype structure analysis. Suggestions for application to 

structural design and connection detailing are made, in addition to suggestions for further 

experimental research. 
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Chapter 1: Introduction 

1.1 Discontinuous Lateral Force Resisting Systems 

Discontinuous lateral-force-resisting systems (LFRS) are a type of LFRS in which the 

path of resistance to lateral forces does not continue directly to the foundation. 

Specifically, a discontinuous LRFS will transfer lateral loading in a vertical element from 

one story to another while also transferring the load to another vertical element which is 

not located directly below the LFRS. Typically, a discontinuous LFRS can be categorized 

as in-plane or out-of-plane. In-plane discontinuous systems are defined as systems where 

the LRFS shifts in the plane of resistance. In an out-of-plane discontinuous LFRS, the 

shift is perpendicular to the plane of resistance. It is possible that an LFRS can be 

discontinuous both in-plane and out-of-plane. 

Discontinuous systems are especially prevalent in lightweight, woodframe 

structures.  These structures often include complex load paths due to the mixed function 

of upper and lower level stories in common single and multiple family residential 

structures. Because LFRS are critical for seismic resistance, several design penalties are 

required to meet the current International Building Code (IBC, 2012). The design 

penalties for discontinuous systems are severe, often requiring significantly larger 

connections and structural elements when designed.  While the current American Society 

of Civil Engineers code (ASCE 7-10) defines when these penalties should be assigned, 

practicing engineers often are unclear about the precise application of such requirements 

when they finalize their structural design.  Lack of transparency of the building code 

mixed with long-held misconceptions about wood design can result in significant 
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variations in the design of a discontinuous LFRS. Significant research into woodframe 

construction over the past twenty years has resulted in much more rigorous data 

collection about these structures. This research includes a detailed review of past 

experiments to identify the extent and variety of discontinuous LFRS experiments that 

have been conducted. Through the identification of the existence and design of these 

systems, critical variables are defined.  A parametric study of these variables is conducted 

to define test specimens for more detailed component-level testing.  

1.2 Problem Statement 

The basis of Capacity Design is that a ductile form of failure, such as shear failure of 

a wood shear wall, will occur if the system ever becomes overloaded.  The rationale is 

that an overloaded system will then fail in a safe, predictable form.  An analogy of this 

exists in home electrical supply design where a fuse/circuit breaker will fail if large 

amperages occur rather than having the potential failure being the overheating of an 

electrical circuit.   

To achieve a Capacity Design failure, it is critical that all parts of the system be 

designed to have strengths larger than the chosen ductile form.  Experience indicates that 

traditional wood shear wall systems are usually designed and built to result in the shear 

failure of the sheathing/nailing as the weak link to ensure ductile failure. 

When considering the case of a discontinuous LFRS, elements of the system beyond 

the sheathing and nailing must resist seismic forces and gravity loads simultaneously, and 

failures may occur in members or components not directly involved in resisting seismic 

forces in manners unforeseen by engineers. These failure scenarios, and design 
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philosophies intended to prevent them, are often not transparent in the writing of building 

codes and thus are easily overlooked by experienced and diligent engineers.  Likewise, it 

is expected that there are municipalities and building departments that issue permits for 

the construction of structures where these discontinuous systems have not fully 

incorporated the building code required design penalties and load combinations. 

Significant research into woodframe construction over the past twenty years has 

resulted in much more rigorous data collection about this category of structures.  Three 

significant research initiatives (CUREe, 2005; NEES, 2013; E~Defense, 2012) have 

utilized several full-scale, complete structure shake table experiments of woodframe 

structures.  While these initiatives were not specifically focused on discontinuous 

systems, it is believed that some form of LFRS discontinuity was present in the tested 

structures. 

In order to identify the extent and variety of discontinuous LFRS experiments that 

have been conducted, a detailed review of past experiments is necessary. Of particular 

interest is the definition of critical variables which define the existence and design of 

these systems.  Upon the identification of these variables, a parametric study can be 

conducted to facilitate the design of test specimens, in addition to more detailed 

component-level testing.   

While much data pertinent to LFRS studies are currently available online in structural 

engineering research repositories, the data are often chaotic and poorly defined.  In 

addition, it is believed that no studies were particularly focused on discontinuous 

systems, so identifying these specimens poses a challenge, as does obtaining component 
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level data for any discontinuous LFRS which is identified.  However, once the 

experiments are identified, test data relevant to any discontinuous LFRS will be 

reviewed.  In addition, this literature review combined with discussion with industry 

personnel should clarify the variables that are considered when these systems are 

designed. When considering the identification of discontinuous lateral force resisting 

systems as a basis of interest for investigating previous projects, initial report reviews 

were limited to those involving multi-story structures. Upon identifying the project 

studies containing testing of multi-story woodframe structures, further investigative 

scrutiny is required to determine whether or not discontinuous LFRS exist in these 

experiments. Finally, determining whether collection of data for the components of the 

discontinuous LFRS occurred is the ultimate point of review of these select project 

studies.  

1.3 Project Goals and Objectives 

The goal of the project is to improve understanding of the state-of-the-art as related to 

discontinuous LFRS of timber shear walls.  Specifically, the project aims to do the 

following: 

1. Collect drawings and technical data related to past full-scale woodframe 

experiments, particularly those conducted on shake tables. 

2. Identify the existence of intended or unintended discontinuities in the LFRS of 

each specimen. 

3. Identify critical variables that define the extent of discontinuity and the potential 

detrimental performance of the structure. 
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4. Conduct parametric studies of the critical variables with the goal of defining up to 

three specimens that can be built and tested in the SJSU research lab. 

5. Generate design examples which exhibit proper detailing of in-plane and out-of-

plane discontinuous woodframe shearwall systems based on the requirements set 

forth in the ASCE 7-10. 

1.4 Scope of Work 

This project is a six semester-credit graduate thesis consisting predominantly of a 

literature review of past research and experiments relating to the study of Lateral Force 

Resisting Systems. This review is performed with the focus of determining whether 

discontinuous LFRS were present in the past experiments, and analyzing any 

experimental results related to the discontinuous systems, if available. In addition, a 

review of pertinent building codes will be performed to ultimately generate design 

examples of discontinuous LFRS based on a prototype two-story residential woodframe 

structure. The aim of the design examples are to provide a point of reference for the 

design and detailing of woodframe shearwalls with an out-of-plane offset horizontal 

irregularity, as well as woodframe shearwalls with an in-plane discontinuous vertical 

lateral force-resisting element irregularity. 
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Chapter 2: Literature Review 

2.1 Building Codes Related to Discontinuous Structural Systems Intended to Resist 

Seismic Events 

 

The California Building Code (CBC) and the affiliated ASCE 7-10 use Capacity 

Design as the basic philosophy for seismic resistant design.  The code significantly 

reduces the expected inertial forces that will develop in a major earthquake by providing 

a response modification factor, known as an R-value. The intrinsic level of damping and 

ductile yielding in a structure varies by type, and higher or lower R-values reflect this, 

with higher R-values being assigned to systems of higher ductility (McEntee, 2013). 

There are multiple reasons for reducing the inertial forces, but a primary goal is to define 

loads that can be combined with other forms of loads (dead, live, wind, etc) and use 

traditional design procedures such as allowable stress design, which is of common 

practice in the design of woodframe structures.  The justification for this reduction in 

seismic force is the use of Capacity Design failure.  

The ASCE treats the requirements for the seismic design of building structures in 

Chapter 12. Section 12.1.1 defines “basic requirements” pertaining to seismic design. 

Specifically, this section states that “building structures shall include complete lateral and 

vertical force-resisting systems capable of providing adequate strength, stiffness, and 

energy dissipation capacity to withstand the design ground motions within the prescribed 

limits of deformation and strength demand.” As indicated in the code, design engineers 

are to produce a mathematical model of proposed structural systems intended to resist 

seismic forces which can demonstrate the building structures adequacy. Section 12.6 of 
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the ASCE code describes “applicable procedures” by which to evaluate a structure’s 

adequacy. Section 12.1.3 of the ASCE code suggests that a “continuous load path and 

interconnection” should be used to transfer forces between components of a LFRS. 

Although the ideal scenario of a continuous load path is often achieved, the function or 

usage of building structures does not always allow for continuity. Section 12.3 of the 

ASCE considers load path discontinuity as a type of structural configuration irregularity. 

These “configuration irregularities” are categorized as either “horizontal structural 

irregularities” or “vertical structural irregularities.” Horizontal irregularities and vertical 

irregularities are defined in ASCE 7-10 Tables 12.3.1 and 12.3-2, respectively, and are 

shown in Figures 1 and 2.  

 

Figure 1. ASCE 7-10 Table 12.3-1 – Horizontal Structural Irregularities (ASCE) 
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Figure 2. ASCE 7-10 Table 12.3-2 – Vertical Structural Irregularities (ASCE) 

 

Discontinuous LFRS are defined in the code as those lateral force resisting systems 

that do not have a load path continuing directly to the foundation, such as is the case with 

an offset shear wall.  Per McMullin (2016), the assemblies of the in-plane or out of plane 

discontinuous systems (irregularity Type 4 of both ASCE Table 12.3-2 and 12.3-1, 

respectively) can be divided into four categories:  

Item A) - the lateral force resisting system that resists seismic load but does not 

continue directly to the foundation,  

Item B) - the supporting system below that transfers the horizontal shear from the 

discontinuous system to the foundation,  

Item C) - the supporting system below that transfers the vertical effects 

(overturning) of the seismic load to the foundation, and  

Item D) - the connections between Items A and B, as well as between Items A  

and C. 
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The ASCE code does not identify, require or detail any aspects of Items B, C and D 

to ensure that they will have a ductile failure.  Thus from the code perspective, the only 

failure that is ensured to be ductile is the sheathing failure of Item A.  Hence, the only 

way that the system can be ensured to fail in a ductile mode is by requiring items outside 

of Item A to be able to resist the largest forces that may occur before the shear walls fail.  

In the interest of seeking ductile failure, the code uses the omega factor or “overstrength” 

factor (Ωo) to predict the largest amount of inertial force that can be generated in the 

structure in a major earthquake. Figure 3 shown below highlights the McMullin (2016) 

categorization for a Type 4 vertical structural irregularity.

 

Figure 3. ASCE 7-10 Commentary Figure 12.3-5 with McMullin Categorization 

of Vertical Irregularity Type 4 Elements (ASCE, McMullin) 
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The cost of engineering and construction is considered by the committees that write 

and approve the code.  The ASCE Commentary explicitly states that Item D does not 

need to consider this omega factor, likely because these connections are similar to the 

arrangement that would be used if no discontinuity exists.  Likewise, the commentary 

explicitly states that Item B does not need to be designed using the omega factor, likely 

because of the extra capacity and redundancy that is inherent in diaphragms and the 

associated horizontal shear transfer mechanisms.   

With regards to Item C however, the wording of the first paragraph of ASCE 

Commentary section C12.3.3.3 clearly uses the term “vertical load” as being in need of 

the overstrength factor.  The code does not separate the components of Item C from each 

other.  The commentary does not state or imply that only the beam resisting the 

overturning loads be designed with the overstrength factor (Ωo). As noted by S.K. Ghosh 

(2014) in his article concerning the major changes regarding seismic design between the 

ASCE 7-05 code and the current ASCE 7-10, some clarification has been attempted 

regarding vertical structural irregularity type 4. The ASCE 7-05 defined an in-plane 

vertical irregularity or discontinuity in a vertical lateral force resisting element to be 

present when the offset of these elements was larger than the length of the elements, or 

when a reduction in stiffness was present in the resisting element of the story below 

(Ghosh, 2014). According to Ghosh (2014), the length stipulation of the ASCE 7-05 is an 

unconservative one, in addition to the fact that reduced stiffness below a lateral force 

resisting element does not necessarily imply an in plane discontinuity. The ASCE 7-10 

attempts to clarify and simplify the definition of a type 4 vertical structural irregularity. 
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As defined in ASCE 7-10, this irregularity type exists “where there is an in-plane offset 

of a vertical seismic force-resisting element resulting in overturning demands on a 

supporting beam, column, truss, or slab.” 

An example of the criticality of this design feature would be the situation when a 

beam supporting a discontinuous shear wall has enough dead load to barely 

counterbalance the effect of uplift due to design-level forces on the wall.  In this case, no 

additional hardware would be required or likely installed to ensure the beam remains 

seated on the supporting post.  In this scenario, if a moderate earthquake produces inertial 

forces 50% higher than the design load, it is very likely the beam will then break free 

from the post allowing the upper portions of the structure to overturn.  

The treatment of the design penalties for irregular or discontinuous LFRS is contained 

within Chapter 12 of the ASCE 7-10. Specifically, Sections 12.4 and 12.14 provide the 

pertinent details for determining the demand on systems with the irregularities 

established in ASCE 7-10 Tables 12.3-1 and 12.3-2. Section 12.4, titled “Seismic Load 

Effects and Combinations”, provides load combinations to be used in the general design 

of structures for seismic effects.  

Section 12.14, titled “Simplified Alternative Structural Design Criteria for Simple 

Bearing Wall or Building Frame Systems”, is analogous to Section 12.4 but its use is 

limited to specific bearing wall or building frame type structural systems. These 

structures are defined in ASCE 7-10 Table 12.14-1. Referring to this table in conjunction 

with Table 12.2-1, the reader can note the significantly lesser number of structure types 

listed in Table 12.14-1. Table 12.14-1 is further simplified from Table 12.2-1 in that there 
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is no list of specific system overstrength factors (Ωo) based on structure type. 

Additionally, the deflection amplification factor (Cd) seen in Table 12.2-1 is not present 

in 12.14-1. Finally, structural system limitations are listed only by seismic design 

category (SDC) permissibility in 12.14-1, whereas Table 12.2-1 imposes system type 

limitations based on SDC as well as maximum allowable structure heights. The major 

simplification of ASCE 7-10 Section 12.14 lies in the fact that the determination of story 

drift and a modal response spectrum analysis are not required. The reader is directed to 

ASCE 7-10 Sections 12.8.6 and 12.9 for code treatment of story drift determination and 

modal response spectrum analysis. 

2.2 The Overstrength Factor Ωo 

The concept of overstrength in structural design has been a topic of study by 

engineers for decades.  Initial studies of overstrength such as that by Humar and 

Rahgozar (1996) originated as a means to quantify the ability of structures to resist forces 

greater than that for which they were designed. When discussing structural overstrength, 

this generally refers to the resistance of lateral forces imposed on a structure due to 

seismic loading. This perceived overstrength was attributed to the structure as reserve 

strength due to structural ductility not accounted for in typical elastic design 

methodologies, excess strength available in structural connections, and a structures 

inherent ability to dissipate forces through structural and non-structural elements. Early 

studies of overstrength and its sources struggled to make clear how this factor could be 

reliably quantified, and ensuing versions of building codes have directed designers away 

from determining the available overstrength in a structure. Now, current building codes 
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use the term overstrength as a factor to amplify design forces imparted on structural 

elements which serve to resist lateral (seismic) forces. In particular, the overstrength 

factor Ωo, is applied as a design penalty to lateral force resisting elements which contain 

“structural irregularities” defined by the ASCE. 

Original studies of structural overstrength were attempting to quantify reserve 

strength and the sources of this extra strength (Humar and Rahgozar, 1996). Problems 

with the quantification of this overstrength stemmed from the fact that the sources of this 

extra available strength were unreliable, and not always predictable. Despite the 

difficulties in quantifying this overstrength, the fact that many structures remained 

standing and functional after exposure to lateral forces exceeding those which they were 

designed for made clear that this reserve strength existed. Humar and Rahgozar (1996) 

categorized probable sources of overstrength in four ways:  

1. Factors that involve uncertainty, such as the difference between a structural 

elements actual capacity and that which it was calculated for.  

2. Factors that cannot be accounted for due to lack of knowledge, such as the use of 

conservative calculation procedures.  

3. Factors that can be but are not commonly accounted for in calculating capacity, 

such as code prescribed minimum design loads. 

4. Factors related to simplification in design procedure, including the use of single-

degree-of-freedom design response spectra in conjunction with a multi-degree-of-

freedom structural design.  
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While these factors certainly exist, the way to use the knowledge of them generated 

varying view points on how to apply them, with some varying interpretations and 

applications such as decreasing design loads, or increasing allowable strengths of 

structural elements. The evolution of the term overstrength and its usage in practice 

should steer engineers away from making unruly or unwarranted design decisions, but 

this is not to say that confusion and debate no longer exist as they pertain to the 

application of overstrength in its current capacity. 

The current ASCE code uses the overstrength factor Ωo as a sort of design penalty 

which applies to structural components of systems used to resist lateral forces that 

contain structural irregularities. The code defines many different types of irregularities 

for which this factor should apply in design. An example of a structural irregularity is a 

lateral force resisting element which does not contain a direct load path to the foundation, 

such as exists in a discontinuous shear wall.  

According to the National Earthquake Hazard Reduction Program (NEHRP), a 

majority of structures exhibit greater lateral force resistance than standardized analysis 

procedures would show, by levels of 30 to 100 percent (NEHRP, 2013). Though this 

acknowledgment is made, NEHRP also states that:  

 Most structural systems have some components or limit states that cannot provide 

 reliable inelastic response or energy dissipation. Such components or limit states 

 must be designed considering that the actual forces in the structure will be larger 

 than those at first significant yield. The standard specifies an overstrength factor, 

 Ωo , to amplify the prescribed forces for use in design of such components or limit 

 states. This specified overstrength factor is neither an upper nor a lower bound; it 

 is simply an approximation specified to provide a nominal degree of protection 

 against undesirable behavior. (p.112) 
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One basis of thought in regards to applying the overstrength factor Ωo to irregular 

systems stems from the fact that the “reserve strength” inherent in regular type systems is 

less likely available in an irregular one. The lacking of a clear load path and redundancy 

in such systems implies a lesser capacity to resist inertial forces, and the Ωo factor is 

utilized as a means to make up for this. 

Although the current overstrength paradigm as it pertains to structural design has 

shifted from a more theoretical and difficult-to-quantify phenomena toward a system by 

which to increase the strength of non-ideal (yet not impractical or ineffective) lateral 

force resisting systems, the current design methodologies are not free of flaws or avenues 

for varying interpretations. The ASCE’s treatment of the issue has generated confusion 

and debate amongst industry personnel on how to properly apply the factor, and to what 

extent it needs to be applied to structural systems. With new methods come new 

problems and applications by which to interpret and solve them, and the use of the 

overstrength factor Ωo in current structural engineering practice is no exception. 
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2.3 Woodframe Structures of the CUREe-Caltech Fischer Woodframe Project 

The Consortium of Universities for Research in Earthquake Engineering or CUREe-

Caltech Woodframe Project was a cooperative analytical and empirical study performed 

by engineers and researchers from various academic institutions. The purpose of the 

project was to study topics in earthquake engineering and in turn provide the engineering 

community with methods to increase safety of woodframe structures during seismic 

events and mitigate structural damage due to earthquakes. Also known as The Earthquake 

Hazard Mitigation of Woodframe Construction project, the consortium received funding 

through FEMA and California state grants until its dissolution in 2016.  

A particular study of the CUREe project in W-06: Shake Table Tests of a Two-Story 

Woodframe House (Fischer et al, 2001) was found to contain discontinuous shearwalls 

occuring in multiple instances. This experimental structure was designed and built to be 

in the fashion of current era California style construction for single family residential 

structures. The design intent was to be relatively simple, and not include the use of any 

floor cantilevers or roof offsets. Despite the simplistic nature of this structure, five 

instances of discontinuous LFRS were identified. Two cases of discontinuity exist on the 

second floor level of the experimental structure along grid lines A and C (exterior walls, 

north and south faces) which are symmetrical and make up four of the 5 total instances. 

The fifth instance exists on an interior wall along grid line 5.  These discontinuities come 

in the form of vertical in-plane offsets (ASCE Table 12.3-2, type 4). Figure 4 shows 

framing plan views of the Fischer project structure, as well as framing elevations at the 

locations of the discontinuous LFRS of the structure, respectively. 
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Figure 4. Selected Framing Plans and Elevations for Fischer Report (CUREe) 

In the framing elevations of Figure 4, LFRS discontinuities are evident. In 3/S3, we 

see CS16 straps from end shearwalls attached to window headers below, as well as a hold 

down strap to blocking between floor joists to the left and right of the second story door 

opening shown in the section 4/S3. Both of these arrangements represent in-plane offset, 

vertical irregularities (ASCE 7-10 Table 12.3-2, Type 4). 



18 

 

 

Review of the report produced for this CUREe project by Fischer yielded no mention 

of the discontinuous systems which existed in the experimental test structure. The lack of 

any mention of the present LFRS discontinuities is assumed to be due to the fact that 

studying these types of systems was not the focus of this project, along with the fact that 

the discontinuities are minor in nature. The discontinuities of this project are deemed 

“minor” in that the structural elements below the discontinuities would not likely cause 

total structural failure in the case of a component level failure. Appendices L and M of 

the Fischer report provide collected data for hold down and anchor bolt forces imparted 

during testing phases, and hold down anchor and strap uplift deflections, respectively. 

Reviewing this data with specific attention paid to areas of the LFRS discontinuities 

revealed that maximal uplift forces were not occurring at the discontinuous locations. 

Unfortunately, hold down forces were only measured for ground level devices, and not 

for strap devices used to anchor the discontinuous portions of the structures. Although 

actual force readings weren’t present for these items, uplift deflection values were 

available. This data showed minimal deflections at the discontinuity locations. Maximal 

deflections and hold down forces are seen at the shearwall boundaries of the ground level 

LFRS, and peak values for these items existed at the corners of the structure, where load 

path continuity is fully available from roof level to foundation level. 

What can be concluded from the architectural and structural drawings available in 

Appendix A of the Fischer report is that it appears that the detailing and strapping of the 

discontinuous walls appears to have been done in a manner which can adequately transfer 

loads due to lateral shaking to the foundation. Although indirect, the fact that the load 
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paths are completed likely is responsible for the low uplift deflections measured at 

discontinuity locations. 

2.4 Woodframe Structures of the E-Defense Projects 

Between 2002 and 2007 the Japanese Ministry of Education, Culture, Sports, Science, 

and Technology conducted a five year research project titled, “A Special Project for 

Earthquake Disaster Mitigation in Urban Areas.” The aim of this project was to test wood 

frame residential structures which were built by traditional Japanese construction 

methods before the advent of the current Japanese building code, as well as to test these 

structures with modern seismic retrofits in place (Nakamura, 2008). The tests were to be 

conducted at E-Defense in Japan, a test facility which houses the world’s largest shake 

table used for the simulation of seismic events.  Ultimately, over ten structures were 

tested against the ground motion of the devastating 1995 earthquake in Kobe, Japan. 

The review of the report of the E-Defense tests provided minimal insight into the 

actual current standards of seismic resistant design, but the limited plan views provided 

for retrofitted structures tested generally aligned with practices similar to that of standard 

American woodframe design. Shown in Figure 5, a retrofit plan for Model B of the E-

Defense test structures contains locations of added plywood sheathing, wooden bracing, 

and hold down devices. The hold down device types are not specified, but tension strap 

devices are used to resist overturning forces at the second story level, with hold down 

devices at the foundation level. 
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Figure 5. E-Defense Test Model B Retrofit Plan (E-Defense) 

Utilizing the legend at the right of Figure 5, it appears that there is a discontinuous 

shearwall along the rear of the structure’s second story. Plywood sheathing, wood 

bracing, and hold down devices at each end of the wall are shown. There are no apparent 

walls below the second floor shearwall in question, and no first floor hold down devices 

are shown directly below the upper wall in plan-view.  

2.5 Woodframe Structures of the NEESWood Benchmark and Capstone Projects 

The Network for Earthquake Engineering Simulation (NEES) NEESWood projects 

were a collective effort between the University at Buffalo, State University of New York, 

Colorado State University, University of Delaware, Rensselaer University, and Texas 

A&M University. The goal of the NEESWood projects was to better understand the 

factors which affect the seismic performance of woodframe structures, and to develop a 

“direct displacement based seismic design philosophy.” As current building codes limit 

woodframe structures to be low-rise (four stories or less), NEESWood sought to validate 

efficient woodframe design and construction methods for mid-rise structures in moderate 

to high seismic zones (Christovasilis et al., 2009).  
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The NEESWood Benchmark project test building was the largest woodframe 

structure tested on a shake table at the time of the project (Christovasilis et al., 2009). 

Based on 1980’s through 1990’s California style construction, the Benchmark Project 

structure was designed as a two-story townhouse with 1800 square feet of floor space. 

The NEESWood Benchmark project report is thorough in its treatment of 

architectural and structural plans. Review of these plans in the appendices of the report 

revealed two instances of discontinuous LFRS. One instance can be seen at the second 

story along grid line 1 and between lines C and D of the structural framing plans. This 

discontinuous braced shearwall panel sits above the ends of cantilevered floor framing 

members. This arrangement represents a Type 4 out-of-plane horizontal irregularity. The 

second discontinuous LFRS exists at the opposite end of the structure’s second floor 

along grid line 6. In this case, there are two second story shearwalls which extend beyond 

the shearwalls of the first story below, and have boundaries which sit on the glulam 

garage door opening header member. This arrangement represents a Type 4 in-plane 

vertical irregularity. It should be mentioned that neither of the two cases of discontinuous 

shearwalls which are present contain any hold down devices for the purpose of resisting 

overturning forces. Figure 6 shows roof level framing plans, where the locations of the 

two identified discontinuous LFRS can be seen. 

Unfortunately, no mention of LFRS discontinuity exists throughout the entirety of the 

NEESWood Benchmark project report. Any key words or phrases which would imply the 

treatment of these discontinuous LFRS considered the applicable overstrength factors or 

load combinations are absent. In addition, no gravity or lateral load path analysis in 
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support of the structural design is provided in the report, so it is assumed that 

overstrength analysis was not performed, or was not mentioned due to the project not 

being focused on such analysis. 

 

Figure 6. Roof Level Framing Plan for the NEESWood Benchmark Project (NEES) 

  

The NEESWood Capstone project was the culminating experimental structure of the 

NEESWood series of projects. The Benchmark structure tests served as a basis for the 

experimental procedures used in the testing of the Capstone structure (van de Lindt et al., 

2010).  The Capstone project structure was a six-story, mid-rise woodframe structure, 

designed to mimic a multi-family residential structure, as often seen in mid-rise 

apartment buildings. At the time of experimental testing (and still today), the Capstone 
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structure represented the largest woodframe structure ever tested on a shake table. The 

tests were conducted at the previously mentioned E-Defense facility in Japan. 

Compared to the more complex architectural layout of the Benchmark structure, the 

Capstone structure was more regular in nature. The floorplans on each story level are 

nearly identical, facilitating continuous load paths from the roof level down to the 

foundation level. Bearing wall lines and shearwall lines are coincident with one another. 

No discontinuous LFRS were identified for the NEESWood Capstone structure. 

Although the Capstone project provided a plethora of empirical and visual data related to 

the seismic response of mid-rise woodframe structures, the focus of this project was not 

directed at studying discontinuous LFRS. 
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Chapter 3: Variables of Discontinuous Systems 

3.1 General Variables Related to Systems of Any Material 

Section 3.1 lists variables which are related to discontinuous LFRS, regardless of the 

materials utilized in the construction. Table 1 lists the variables considered. Information 

reported herein is based on allowable stress design (ASD) principles. 

 

 

Table 1 

General Variables Related to LFRS of Any Material 

  

Raw Data Variable Units Notes 

    
Number of stories above discontinuity Na - - 

Height of structure roof Hr mm (ft) Height of roof above 

foundation 

Height of structure above 

discontinuity 

Ha mm (ft) - 

Height of story above discontinuity ha mm (ft) Top of floor to top of 

floor 

Length of structural system above 

discontinuity 

La mm (ft) - 

Structural system above discontinuity Sa - Use ASCE table to 

define 

Structural system below discontinuity Sb - Use ASCE table to 

define 

System Overstrength Factor  Ωo - Use ASCE table to 

define 

Type of discontinuity (in-plane or out-

of-plane or both) 

- - - 

Offset distance (in-plane or out-of-

plane) 

- mm (ft) - 

Other irregularities in structure - - - 

Type of study - - Shake Table, Computer 

model, etc. 

Type of gravity support below 

discontinuity 

- - Bearing wall, 

Cantilever Beam, etc. 
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3.2 Variables Related Specifically to Woodframe Shearwall Structures 

Section 3.2 lists variables which are related specifically to woodframe discontinuous 

LFRS. Table 2 lists the variables considered. Information reported herein is based on 

allowable stress design (ASD) principles.  

Table 2 

Variables Related Specifically to Woodframe Shearwall Structures 

 

 

Raw Data Variable Units Notes 

Strength of wall above 

discontinuity 

qa plf - 

Strength of wall below 

discontinuity 

qb plf - 

Anchorage of wall at 

discontinuity 

-  Type of anchorage hardware 

Anchor strength at discontinuity - lb Allowable strength of anchorage 

hardware 

Overturning resistance load path - - Discontinuous posts are straped to 

beams or to columns 

Orientation of floor framing 

below to discontinuous walls 

- - Parallel or perpendicular or skewed 

Shear strength of diaphragm 

below discontinuous walls 

qd plf Allowable strength 

Support system designed with 

overstrength factor?   

- - Yes or No 

Support system designed with 

omega factor all the way to 

foundation? 

- - Yes or No 

Construction date of structure - Year Date of construction of existing 

structures or for research study the 

estimated date that the structure is 

intended to represent 

Wall type above discontinuity - - Perforated shear wall, shear walls, 

perforated walls  
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3.3 Quantification of Variables Defining Systems Evaluated in Past Studies 

Section 3.3 utilizes the tables from Sections 3.1 and 3.2 in Tables 3 - 10 to quantify the 

variables previously listed for past studies which were evaluated for the existence of 

discontinuous LFRS. Tables for each of the projects discussed in Chapter 2 are included in this 

section. Wall and anchorage strengths listed in the following tables are allowable values, not 

ultimate strength figures. 

Table 3 

 General Variables Related to LFRS of The CUREe Fischer Project 

 

Raw Data Variable Units Notes 

    
Number of stories above 

discontinuity 

Na - 1 

Height of structure roof Hr ft-in 19’-10” 

Height of structure above 

discontinuity 

Ha ft-in 10’-9” 

Height of story above 

discontinuity 

ha ft-in 8’-1” 

Length of structural system above 

discontinuity 

La ft-in 3’-0” 

Structural system above 

discontinuity 

Sa - WSP LFRS 

Structural system below 

discontinuity 

Sb - WSP LFRS 

System Overstrength Factor  Ωo - 2.5 

Type of discontinuity (in-plane or 

out-of-plane or both) 

- - In-plane 

Offset distance (in-plane or out-of-

plane) 

- ft-in 1’-6” 

Other irregularities in structure - - N/A 

Type of study - - Shake Table Experiment 

Type of gravity support below 

discontinuity 

- - Bearing wall 
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Table 4 

 

Variables Related Specifically to Woodframe Shearwalls of the  

CUREe Fischer Report 
 

 

Raw Data Variable Units Notes 

Strength of wall above 

discontinuity 

qa plf 440 (Nominal) 

Strength of wall below 

discontinuity 

qb plf 440 (Nominal) 

Anchorage of wall at 

discontinuity 

  Simpson Strong Tie CS16 Strap 

Anchor strength at discontinuity - lb 1705 

Overturning resistance load path   Discontinuous posts are straped to 

headers 

Orientation of floor framing 

below discontinuous walls 

- - Parallel 

Shear strength of diaphragm 

below discontinuous walls 

qd plf 640 (Nominal) 

Support system designed with 

overstrength factor?   

- - No 

Support system designed with 

omega factor all the way to 

foundation? 

- - No 

Construction date of structure - Year Mid to Late 1900’s 

Wall type above discontinuity - - WSP Shearwall 
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Table 5 

 

 General Variables Related to LFRS of The E-Defense Report 
 

Raw Data Variable Units Notes 

    
Number of stories above 

discontinuity 

Na - 1 

Height of structure roof Hr mm 5405 

Height of structure above 

discontinuity 

Ha mm 5405 

Height of story above discontinuity ha mm 2645 

Length of structural system above 

discontinuity 

La mm 1940 

Structural system above 

discontinuity 

Sa - WSP LFRS with wooden bracing 

Structural system below 

discontinuity 

Sb - WSP LFRS with wooden bracing 

System Overstrength Factor  Ωo - 2.5 

Type of discontinuity (in-plane or 

out-of-plane or both) 

- - In-plane 

Offset distance (in-plane or out-of-

plane) 

- mm 460 

Seismic coefficient of building - - unknown 

Seismic coefficient at location of 

discontinuity 

- - unknown 

Other irregularities in structure - - N/A 

Type of study - - Shake Table Experiment 

Type of gravity support below 

discontinuity 

- - Bearing wall 
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Table 6 

Variables Related Specifically to Woodframe Shearwalls of the E-Defense Report 

 

Raw Data Variable Units Notes 

Strength of wall above 

discontinuity 

qa plf unknown 

Strength of wall below 

discontinuity 

qb plf unknown 

Anchorage of wall at 

discontinuity 

- - unknown 

Anchor strength at discontinuity - lb unknown 

Overturning resistance load path - - Discontinuous posts are straped to 

framing below 

Orientation of floor framing 

below discontinuous walls 

- - unknown 

Shear strength of diaphragm 

below discontinuous walls 

qd plf unknown 

Support system designed with 

overstrength factor?   

- - No 

Support system designed with 

omega factor all the way to 

foundation? 

- - No 

Construction date of structure - Year 2006, 1974 

Wall type above discontinuity - - Shearwall 
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Table 7 

 

 General Variables Related to LFRS of The NEESWood Benchmark Project 
 

Raw Data Variable Units Notes 

    
Number of stories above 

discontinuity 

Na - 1 

Height of structure roof Hr ft-in 17’-2” (both) 

Height of structure above 

discontinuity 

Ha ft-in 17’-2” (both) 

Height of story above discontinuity ha ft-in 8’-1 (both) 

Length of structural system above 

discontinuity 

La ft-in 7’-4¾”, 6’-9¾” 

Structural system above 

discontinuity 

Sa - WSP Shearwall 

Structural system below 

discontinuity 

Sb - WSP Shearwall 

System Overstrength Factor  Ωo - 2.5 or 3 

Type of discontinuity (in-plane or 

out-of-plane or both) 

- - Both 

Offset distance (in-plane or out-of-

plane) 

- ft-in 6’-8¾”, 3’-5” 

Other irregularities in structure - - Reentrant Corner Irregularity 

Type of study - - Shake Table Experiment 

Type of gravity support below 

discontinuity 

- - Cantilever Floor Framing w/ bearing 

wall, 

Post and Beam over Garage Opening 
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Table 8 

 

Variables Related Specifically to Woodframe Shearwalls of the 

 NEESWood Benchmark Project 
 

Raw Data Variable Units Notes 

Strength of wall above 

discontinuity 

qa plf 260 

Strength of wall below 

discontinuity 

qb plf 380 

Anchorage of wall at 

discontinuity 

-  Sole Plate Nailing 

Anchor strength at discontinuity - lb N/A 

Overturning resistance load path - - First Floor Hold Down Devices 

Orientation of floor framing 

below discontinuous walls 

- - Perpendicular 

Shear strength of diaphragm 

below discontinuous walls 

qd plf 1420 

Support system designed with 

overstrength factor?   

- - Unknown 

Support system designed with 

omega factor all the way to 

foundation? 

- - Unknown 

Construction date of structure - Year 1980’s-1990’s 

Wall type above discontinuity - - Typical wood stud framed, WSP 

bracing 
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Table 9 

 

 General Variables Related to LFRS of The NEESWood Capstone Project 
 

Raw Data Variable Units Notes 

    
Number of stories above 

discontinuity 

Na - N/A 

Height of structure roof Hr mm 20198 

Height of structure above 

discontinuity 

Ha mm N/A 

Height of story above 

discontinuity 

ha mm N/A 

Length of structural system above 

discontinuity 

La mm N/A 

Structural system above 

discontinuity 

Sa - N/A 

Structural system below 

discontinuity 

Sb - N/A 

System Overstrength Factor  Ωo - 3 

Type of discontinuity (in-plane or 

out-of-plane or both) 

- - N/A 

Offset distance (in-plane or out-of-

plane) 

- mm N/A 

Other irregularities in structure - - N/A 

Type of study - - Shake Table Experiment 

Type of gravity support below 

discontinuity 

- - N/A 
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Table 10 

 

Variables Related Specifically to Woodframe Shearwalls of the  

NEESWood Capstone Project 
 

Raw Data Variable Units Notes 

Strength of wall above 

discontinuity 

qa plf N/A 

Strength of wall below 

discontinuity 

qb plf N/A 

Anchorage of wall at 

discontinuity 

  N/A 

Anchor strength at discontinuity - lb N/A 

Overturning resistance load path - - Hold Down Straps and Hold Down 

Devices 

Orientation of floor framing 

below discontinuous walls 

- - N/A 

Shear strength of diaphragm 

below discontinuous walls 

qd plf N/A 

Support system designed with 

overstrength factor?   

- - No 

Support system designed with 

omega factor all the way to 

foundation? 

- - No 

Construction date of structure - Year 2010 

Wall type above discontinuity - - N/A 
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Chapter 4: Prototype Structure Design and Analysis 

4.1 Architectural and Engineering Features 

The prototype structure designed for the purpose of this project is a two-story single 

family residence. The prototype structure is a three bedroom, three bathroom plus office 

home totaling 1800 square feet, with a Dutch gable style roof. In the interest of analytical 

simplicity, the footprint of the structure was chosen to be square with equal length and 

width. 

 As is common in residential floor plans, the layout of second story walls and ground 

floor walls was arranged in a manner that necessitates an in-plane discontinuous LFRS 

along the main center bearing line of the structure. In addition, the second floor is offset 

by two feet from the first floor perimeter walls at grid lines A and A.1, as well as C and 

C.1. These kinds of offsets are occasionally required to meet code enforced setback 

regulations, or to achieve a particular desired architectural appearance. As these offsets 

occur at perimeter walls which are used as braced wall lines, we encounter the situation 

of out-of-plane LFRS discontinuity. While many architects are aware of the extra design 

complexities involved when structural irregularities such as in-plane or out-of-plane 

LFRS discontinuities exist, these code-penalized irregularities often cannot be avoided 

while simultaneously meeting the needs and desires of the client, and the regulations 

imposed by local building codes. 

The chosen structural elements of the prototype home to resist gravity loads are 

typical of modern timber construction for single family type residences. The roof system 

consists of trusses at 24” on-center spacing, with 5/8” CDX plywood sheathing nailed 
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with 10d nails at 6” on-center along panel edges, and 12” on-center field nailing. The 

bearing walls consist of 2x4 studs at 16” on-center, with a plate height of 8’-0”. Headers 

at window or door openings are typically 4x Douglas-Fir No.1 lumber.  

The second story floor system consists of engineered lumber in the form of 11-7/8” I-

joists and ¾” plywood subfloor sheathing. More and more frequently, I-joists are 

specified in timber construction, as they are able to achieve longer spans per unit weight, 

are straighter and more consistent than traditional sawn lumber, and are much lighter and 

more user friendly for workers to install in the field.  

Finally, the foundation is a 5” thick slab on grade with #4 rebar spaced at 16” on-

center in both the transverse and longitudinal directions. The slab is lain over ¾” drain 

rock and vapor barrier. The perimeter footing is a continuous strip footing typical of two 

story residential construction on normal soil conditions, 16” wide and 18” deep below 

grade surface. There is also a central grade beam of the same dimensions coincident with 

the center bearing wall line. The continuous perimeter footing and central grade beam are 

reinforced with two #4 longitudinal bars at the top and bottom of the footing. 

The LFRS of the prototype structure consists of plywood braced shear wall panels. As 

noted previously, in-plane and out-of-plane discontinuities are present at interior and 

exterior braced wall lines, respectively. The shear wall sheathing considered for the 

prototype structure is ½” Struct. 1. While ½” gypsum board has been considered in 

determining the gravity and seismic weights of the structure, the gypsum board is 

neglected for the purpose of determining the LFRS’s load resisting capacity. The 

architecture of the prototype structure was approached from the standpoint of maximizing 
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lateral forces imparted on the LFRS without exceeding the capacity of ½” Struct. 1 

plywood and restricting nail spacing to a minimum of 3” on center at panel edges. This 

approach was desirable for the purpose of developing a two-story full scale model similar 

to the in-plane discontinuous LFRS of grid line B, which could be feasibly constructed 

and tested in the Structural Engineering Lab of SJSU.  

4.2 Gravity Load Path Analysis 

The gravity load path analysis of the prototype structure generally follows from 

ASCE 7-10, with basic load combinations for allowable stress design (ASD) provided in 

Chapter 2, section 4 (2.4.1 Basic Combinations) with dead loads as defined in Chapter 3, 

and live loads per Chapter 4, section 3. The reader is directed to Appendix B for the 

gravity load path analysis for the prototype structure. 

Load combinations prescribed in ASCE 7-10 2.4.1 used in the gravity analysis 

include dead loads (D), live loads (L) and roof live loads (Lr). Load combination (LC) 1, 

2, 3, and 4 from section 2.4.1 are considered in this gravity analysis. LC1 considers only 

D, LC2 considers D + L, LC3 considers D + Lr, while LC4 considers D + 0.75L +0.75 Lr. 

The rationale is to consider all applicable load combinations, and to apply the 

combination which imparts the most unfavorable effect on the member being analyzed. It 

is convenient to analyze the effects of each load source separately, so the loads can be 

applied to each load combination independently of one another. The benefits of this 

approach become apparent when more complex load combinations are required for 

special design scenarios (such as those for discontinuous LFRS).  Some of the 

combinations such as LC4 take into consideration the probability or likelihood that 
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maximal live loading across all levels of the structure is low. For this reason, reduction 

factors may be applied by the engineer when using such load combinations. 

 The remaining load combinations (5-8) are not considered, as snow (S), wind (W), or 

earthquake (E) loads are not considered in this gravity analysis, and these load sources 

are included in those remaining load combinations. In Chapter 4, section 4 (4.4) of this 

report, basic combinations for ASD with overstrength factor include both D, L, and E 

loads are considered. The reader is directed to 4.4 for more information regarding these 

combinations. In Chapter 4, section 3 (4.3) of this report, only D and E loads are 

considered as part of the lateral load path analysis for the prototype structure. Table 11 

below summarizes the gravity loads utilized in the analysis of the prototype structure. 

The reader is directed to Appendix B for a list of material unit weights used to compile 

the loads of Table 11. 

 

Table 11 

Summary of Prototype Structure Gravity Design Loads 

       Dead Load 

 

         Live Load   

Roof        12 psf             20 psf   

Exterior Walls        10 psf             N/A   

Interior Walls          8 psf             N/A   

Floor        14 psf             40 psf   
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4.3 Lateral Load Path Analysis for Seismic Loads  

The procedure used to laterally analyze the prototype structure follows the equivalent 

lateral force method. The equivalent lateral force method, which is outlined in          

ASCE 7-10 Section 12.8, involves distributing the design seismic forces by floor or story 

level, and analyzing the effects of these forces by applying them to the structure as static 

loads. The portion of the overall seismic force applied at a certain floor is determined by 

considering the height of each floor relative to the base of the structure and its overall 

weight contribution to the structure. Because the effects of seismic forces are typically 

most severe at the higher points of a structure, the equivalent lateral force method takes 

this into consideration, and requires the designer to apply larger forces to the higher floor 

levels. The diaphragm that exists at each floor level in the form of sheathed roof or floor 

framing are used in the analysis to apply the lateral seismic forces to the vertical elements 

intended to resist these forces. These vertical elements may also be diaphragms such as a 

woodframe shearwall, or individual structural members such as a beam support post. 

Determining the design seismic forces for a structure with the equivalent lateral force 

method allows a designer to quickly and relatively easily demonstrate the demand of a 

structure to resist earthquake forces and exhibit ductility in the event of failure. Structures 

meeting specific criteria may be analyzed using the simplified analysis procedure. ASCE 

7-10 Section 12.14.1 illustrates the criteria for using the simplified procedure. With the 

convenience of this method comes a lesser degree of precision, and as such, building 

codes limit the types of structures for which the method may be used. Structures 
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containing irregularity, high occupancy risk category, or those with more than three story 

levels are not generally permitted to be analyzed using the simplified procedure.  

In the case of the project prototype structure, the simplified procedure is an 

acceptable form of analysis despite the fact that the structure contains multiple system 

irregularities. The in-plane and out-of-plane shearwall offsets which exist in the prototype 

would typically disqualify a structure from being analyzed using the simplified 

procedure, but an exception in the ASCE code allows simplification when the structure in 

question is of light-frame construction and does not exceed two stories in height. The 

code stipulates that any framing member which supports the upper wall of an irregular or 

discontinuous LFRS must be designed for seismic force effects due to overturning 

amplified by a factor which varies by structure type, and in this case is equal to 2.5. The 

reader is directed to Chapter 4, Section 4 (4.4) of this document for discussion of this 

amplification factor and the related load combinations using overstrength. 

Critical steps in determining the design seismic forces for the prototype structure 

include determining the seismic base shear, V, the seismic response coefficient of the 

structure, Cs, and the vertical distribution factor, Cvx. These three critical values facilitate 

the usage of the equivalent lateral force procedure. The base shear is calculated as 

follows: 

𝑉 = 𝐶𝑠 𝑊      (ASCE eqn. 12.8-1)  

where  

W = the effective seismic weight of the structure per ASCE 7-10 12.7.2. 
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The minimum seismic response coefficient Cs , is determined by ASCE 7-10 equation 

12.8.6: 

𝐶𝑠 =
0.5𝑆1

(
𝑅
𝐼 )

 

 where 

S1 = the spectral response acceleration parameter at a period of 1 second as defined in 

ASCE 7-10 Section 11.4.1, 

R = the response modification factor from ASCE 7-10 Table 12.2-1, and 

I = the occupancy importance factor determined in accordance with ASCE 7-10 

Section 11.5.1. 

The vertical distribution factor, Cvx, is given by: 

𝐶𝑣𝑥 =  
𝑤𝑥ℎ𝑥

𝑘

∑ 𝑤𝑖ℎ𝑖
𝑘𝑛

𝑖=1

 

 where 

wi and wx = the portion of the total effective seismic weight of the structure (W) 

located or assigned to Level i or x, 

hi and hx = the height from the base to Level i or x, 

k = an exponent related to the structure period. 

With these three values defined and determined, the lateral force induced at any level 

is determined as: 

𝐹𝑥 =  𝐶𝑣𝑥𝑉 

 where 
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V = total design lateral force or shear at the base of the structure. 

Using Fx, the unit load applied statically across the appropriate story level diaphragm 

in pounds per square foot can be determined. 

𝑢𝑛𝑖𝑡 𝑙𝑜𝑎𝑑 = (
𝐹𝑥

𝐴⁄ ) × 1000 

 where  

A = the story plan area in ft
2
. 

Once the unit story load is determined, this load may be applied uniformly along the 

length of the structure, either in the longitudinal or transverse direction, to determine the 

magnitude of force which must be resisted by the lateral force resisting elements of each 

respective story.  

In light-frame wooden structures such as that of the prototype structure considered in 

this report, floor or roof diaphragms may exhibit considerable levels of in-plane 

deformation. For computational convenience, these membranes are often idealized as 

flexible diaphragms. The calculation of design shear forces imparted on lateral force 

resisting elements becomes analogous to calculating support reactions of uniformly 

loaded simply supported beams when a flexible diaphragm approach is utilized. The 

lateral loads imparted uniformly across the horizontal diaphragm (floor or roof) are 

simply distributed to the vertical resisting elements by tributary area. The ASCE 7-10 

permits the use of rigid or flexible diaphragm idealization for diaphragms of wood 

structural panels (WSP) in one- and two-family light-frame construction.  
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Section 12.3.1.1 of the ASCE 7-10 provides conditions for which flexible diaphragm 

analysis is acceptable. Items b and c of 12.3.1.1 state that “one- and two-family 

dwellings” (item b) and structures of light frame construction where there are no concrete 

(or similar material) panels placed over WSP diaphragms that are greater than 1 ½” 

(38mm) in thickness, as well as the requirement for “each line of vertical elements of the 

seismic force resisting system to comply with the allowable story drift of Table 12.12-1 

(item c). The prototype structure for this project meets these requirements, and therefore 

the analysis of the prototype structure utilizes a flexible diaphragm approach. The reader 

is directed to Appendix B for the full lateral load path analysis.  

The results obtained through the lateral load path analysis are critical for the design of 

the structure’s LFRS. Accurately determining the demand on the LFRS facilitates the 

safest and most efficient design decisions. As is the case for the prototype structure which 

contains various system irregularities, the code imparts design penalties on elements of 

these systems. These design penalties typically come at the cost of more robust structural 

elements, and more usage of costly hardware. A discussion of these code penalties 

follows in Chapter 4 Section 4 (4.4). 

4.4 Influence of the Code Penalties on Hardware Required for Discontinuous 

Systems  

 

In order to best discuss the influence of code penalties on structural elements, 

including framing members and connecting hardware, it is useful to discuss applicable 

load combinations which are used to determine the code prescribed demand used to 
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design these items. The ASCE provides two sets of load combinations based on different 

design methodologies: “Strength Design” and “Allowable Stress Design” (ASD).  

In practice, woodframe structure design typically employs ASD. The following 

discussion is based on the load combinations for the ASD approach. 

While basic load combinations for ASD are treated in ASCE 7-10 Section 2.4, 

Sections 12.4.3.3 and 12.14.3.2 of ASCE 7-10 treat load combinations in which 

overstrength (Ωo) is applied. Comparing the load combinations of Section 2.4 and 

12.4.3.3 which contain earthquake loads offers initial insight as to the extent of the code 

penalties on systems designed with the overstrength factor. Basic ASD load combinations 

5, 6b, and 8 of Section 2.4 are as follows: 

5. 𝐷 + (0.6𝑊 𝑜𝑟 0.7𝐸) 

6b. 𝐷 + 0.75𝐿 + 0.75(0.7𝐸) + 0.75𝑆 

8. 0.6𝐷 + 0.7𝐸 

It is immediately noticeable that each of these load combinations offers a reduction of 

earthquake loads (E), as well as the other load sources. These loads or load effects, which 

are determined through a gravity and lateral load path analysis, are allowed to be reduced 

when combined using ASD load combinations as mentioned in Section 2.1 of this 

document. These reduction factors included in the load combinations above consider the 

likelihood of loading scenarios. For example, in the above load combination 6b, it is 

unlikely that maximal design live loading, earthquake loading, and snow loading will 

simultaneously occur, therefore, these load cases are allowed a reduction.   
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ASCE Section 12.4.3.2 offers the following ASD load combinations with the 

overstrength factor, which follow from the basic ASD load combinations above: 

 5. (1.0 + 0.14𝑆𝐷𝑆)𝐷 + 𝐻 + 𝐹 + 0.7Ω𝑜𝑄𝐸 

 6. (1.0 + 0.105𝑆𝐷𝑆)𝐷 + 𝐻 + 𝐹 + 0.525Ω𝑜𝑄𝐸 + 0.75𝐿 + 0.75(𝐿𝑟 𝑜𝑟 𝑆 𝑜𝑟 𝑅) 

since  𝐸 = Ω𝑜𝑄𝐸 + 0.2𝑆𝐷𝑆𝐷, and  

 8. (0.6 − 0.14𝑆𝐷𝑆)𝐷 + 0.7Ω𝑜𝑄𝐸 + 𝐻 

  since  𝐸 = Ω𝑜𝑄𝐸 − 0.2𝑆𝐷𝑆𝐷 

These load combinations simultaneously account for horizontal and vertical effects of 

earthquake forces. This is achieved by increasing the dead load factor D to consider 

vertically downward earthquake effects as seen in combinations 5 and 6 (Ghosh 2014). 

The opposite scenario is considered in combination 8 to simulate vertical earthquake 

forces through the reduction of the dead load factor (Ghosh 2014). The inclusion of SDS  

intends to make the increase or reduction of the dead load a function of the seismicity of 

the structure site (Ghosh 2014). The magnitude of SDS , which is the short period design 

spectral acceleration for a site, varies by location. A higher value indicates greater site 

seismicity. These additive and counteractive load combinations both hold implications 

for the structural members which support discontinuous systems, and the hardware which 

makes the connections between these members. The additive combinations typically have 

the most influence on the structural members in support of the discontinuous system 

(Item C of Chapter 2 Section 1). For example, the demand on a beam or column which 

typically serves to support vertical gravity loads may greatly increase if overturning 

effects impart vertical downward force on the beam or column. Considering the 
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counteractive load combination, hardware used for resisting uplift forces is influenced 

(Item D of Chapter 2 Section 1) As mentioned in Chapter 2 the scenario of a beam to 

column connection experiencing considerable uplift due to overturning could be at risk of 

separation in cases of large seismic events. Care must be taken by designers to follow the 

amplified loads in both the additive and counteractive cases all the way to the foundation 

of a structure to ensure the capacity of all vertical support members and connecting 

hardware below a discontinuity are adequate.  The adequacy of these components is 

critical for the prevention of non-ductile failures of the structure (McEntee 2013). 

In the case of a light-frame timber structure which utilizes WSP as the form of lateral 

bracing, the overstrength factor Ωo is equal to 3. When a structure contains flexible 

diaphragms such as that of the project prototype structure, footnote “g” of ASCE 7-10 

Table 12.2-1 states that “where the tabulated value of the overstrength factor, Ωo, is 

greater than or equal to 2½, Ωo is permitted to be reduced by subtracting the value of ½ 

for structures with flexible diaphragms.” This offers a slight break in regards to the 

imposed design penalties for structures like that of the project prototype, and gives an 

overstrength factor Ωo equal to 2½. Diaphragms of irregular systems and their 

connections are prescribed a 25% increase in design forces, although this is not required 

when designing using overstrength load combinations of ASCE 7-10 Section 12.4.3 

(Malone, 2016).  
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Where design loads are determined using amplified seismic forces, the code allows 

the designer to apply a 20% increase in the allowable stress a given member may undergo 

when considering the overstrength load combinations. This increase in allowable stress 

may also be applied to devices which connect members, such as hold down devices and 

connector straps. Furthermore, in the design of woodframe structures based on the 

National Design Specification (NDS), a load duration factor of 1.6 can be applied to 

members and connectors of systems when their design load combinations include seismic 

forces. This 60% increase in allowable stress takes into consideration the fact that the 

time of application (load duration) of the loads or forces is short, and as a building 

material, wood has relatively high strength under short duration loading. 

Utilizing the ASD load combinations with overstrength for the project prototype 

structure produces a factor of 1.75 increase on seismic forces for combinations 5 and 8 of 

Section 12.4.3.2 of the ASCE 7-10, and a 1.3125 increase factor for combination 6. 

Where the assumption of SDS  is equal to unity, as is made for the prototype structure, 

dead load effects are increased by a factor of 1.14 for combination 5, and a factor of 

1.105 for combination 6. In the case of combination 8, the dead load sees a reduction 

factor of 0.46. Combining these factors with the allowable stress increase of 20% for 

connector allowable loads still produces the net effect of a higher demand, but the 

increased demand is not as severe as simply multiplying the non-overstrength loads by 

Ωo. Table 12 contains maximum uplift, download, and bending values for the in-plane, 

vertically discontinuous LFRS of the project prototype structure. These results highlight 
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the implications of applying overstrength load combinations for the design of LFRS 

elements and connections versus the basic ASD load combinations. 

Table 12 

 

Summary of Maximal Support Reactions, Uplift Forces, and Beam Forces of  

Prototype Structure Type 4 Vertically Irregular LFRS 

 

 

 

 

 

As shown in Table 12, each critical force for the design of connections and selection 

of framing members are significantly affected by applying load combinations which 

contain the overstrength factor. In the case of the system analyzed for the prototype 

structure, the most significant demand increases come in the form of uplift forces and 

beam bending moment. Demand increases of this magnitude would result in the 

specification of more robust connection hardware, stronger supportive framing members, 

and higher constructed costs. The extent of the demand increase will vary based on the 

seismicity of the project location in actual practice. 

   

 

 

 

 

Load Combination: Basic ASD 

 

ASD with 

Overstrength 

% Increase 

Support Reaction 7520 lbs 9932 lbs 32% 

Uplift Force 2599 lbs 5934 lbs 128% 

Beam Bending 

Moment 

7588 lb-ft 11835 lb-ft 56% 

Beam Shear Force 4060 lbs 5844 lbs 44% 
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Chapter 5: Conclusions and Recommendations 

5.1 Results of Original Research Objectives 

The goal at the outset of the project was to improve understanding of the state-of-the-

art as related to discontinuous LFRS of timber shear walls.  Through the collection and 

review of past projects containing full-scale woodframe structure shake table 

experiments, drawings and technical data (where available), various instances of LFRS 

discontinuity were discovered. Unfortunately, practically no discussion of these 

discontinuities existed in the writing of the project reports. The author believes that this is 

due to the discontinuities being unintentionally included in the designs of the respective 

test structures. Additionally, the general design philosophy of the test structures typically 

utilized conventional bracing arrangements due to the relatively low complexity of the 

structures. 

Under the guidance of Kurt McMullin, critical variables were determined and used to 

assist in the evaluation of reviewed experimental structures. These variables were broken 

down into categories applicable to structures of any material, as well as those specific to 

woodframe construction methods. These variables were considered in the design and 

evaluation of a hypothetical prototype structure. This prototype structure was designed 

under the guidance of Kurt McMullin for the purpose of analyzing a structure which 

contains various types of discontinuous LFRS, as well as to provide examples of 

connection details for the discontinuous LFRS of interest. Additionally, the prototype 

structure design served as a basis for the design of a full-scale two story shearwall test 

specimen. This specimen was built and had tests conducted on it in various 
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configurations in the San Jose State Structures Laboratory as part of a 3-unit semester, 

graduate studies course civil engineering course (CE 269). The experimental work and 

results are detailed in a paper by McMullin titled “Experimental Evaluation of 

Discontinuous Timber Shear Walls” (2018).  

5.2 Conclusions 

Due to the current lack of full-scale woodframe-structure shake table experiments 

performed to analyze discontinuous LFRS, obtaining experimental data for such LFRS 

was difficult, if not impossible, for past experiments evaluated for the literature review. 

Despite this fact, careful evaluation of current building codes along with review of 

literature produced by industry personnel facilitated the design and detailing approach 

utilized in this document.  

Design of discontinuous LFRS which utilizes ASD load combinations with 

overstrength imposes demand increases on components of the discontinuous LFRS when 

compared with the basic ASD load combinations. In the case of the prototype structure 

designed for this project, downward support reaction forces were increased by 32%, 

uplift forces were increased by 128%, and beam bending moment and shear force were 

increased by 56% and 44%, respectively. These percentages are specific to the LFRS of 

this project, as site seismicity (SDS) varies in actual practice. 
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5.3 Recommendations for Engineering Practice 

Chapter 2, Section 1 of this report should serve as a point of reference for determining 

when to apply the overstrength factor to a discontinuous WSP LFRS. In addition, the 

detailing of connections of discontinuous WSP LFRS should ensure a load path is 

completed to the foundation level of the structure, such as shown in the structural details 

in Appendix A.  

5.4 Recommendations for Continuation of Research 

In order to best research the effects of in-plane offset vertical structural irregularities 

and out-of-plane offset horizontal structural irregularities on the seismic performance of a 

structure, full-scale shake table tests such as those reviewed for this report should be 

performed on structures designed to intentionally contain these types of irregularities. 

Testing structures containing these irregularities will facilitate the understanding of how 

such irregularities affect the performance of the structure locally (in the immediate 

vicinity of the discontinuity) and globally (of the structure as a whole). Furthermore, such 

experimentation would allow for more clarity as well as an empirical point of reference in 

building code treatments of irregular or discontinuous LFRS. Ideally, discontinuous 

LFRS experimentation on full-scale structures would include component level data 

acquisition for all elements of the discontinuous systems, to best address questions 

regarding structural elements which should or should not be designed with the 

overstrength factor (Ωo). 
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Appendices 

 

Appendix A: Blueprints of Prototype Structure 

 

 

 
 

Figure A1. Architectural Ground Floor Plan 
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Figure A2. Architectural Second Floor Plan 
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Figure A3. Architectural Roof Plan 



56 

 

 

 
 

Figure A4. Roof Framing Plan 
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Figure A5. Second Floor Framing Plan 
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Figure A6. Foundation Plan 
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Figure A7. Framing Elevation at Grid Line B Type 4 Vertically Irregular LFRS 
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Appendix B: Load Path Analysis of Prototype Structure 

 

Figure B1. Design Loads for Concept/Prototype Structure 
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Figure B2: Determination of Seismic Coefficient, Cs 
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Figure B3: Lateral Analysis Height Distribution 
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Figure B4: Determination of Seismic Weight as prescribed by  

ASCE 7-05/10 Section 12.8.3 
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Figure B5: Roof Level Shear Force Diagram 
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Figure B6: Second Floor Shear Force Diagram 
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Figure B7: Shearwall lengths and forces 
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Figure B8. Selected Gravity Calculations for Prototype Structure 
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Appendix C: RISA Software Analysis Results for Prototype Structure In-Plane 

Type 4 Vertically Irregular LFRS 

 

Figure C1. Load Combinations used for RISA Software Analysis 

Notes regarding load combinations of Figure C1: 

 Beginning with the ASD load combination with overstrength factor, 

 5. (1.0 + 0.14𝑆𝐷𝑆)𝐷 + 𝐻 + 𝐹 + 0.7Ω𝑜𝑄𝐸 

 We apply the value of SDS (in this case, 1) and Ω𝑜 (2.5). We have not considered 

 H or F loads in this analysis. The resulting load combination becomes, 

 1.14𝐷 + 1.75𝑄𝐸. 

 The same process applies to load combinations 6 and 8, with SDS = 1 and Ω𝑜=2.5. 

 6. (1.0 + 0.105𝑆𝐷𝑆)𝐷 + 𝐻 + 𝐹 + 0.525Ω𝑜𝑄𝐸 + 0.75𝐿 + 0.75(𝐿𝑟 𝑜𝑟 𝑆 𝑜𝑟 𝑅) 

 becomes 

 1.105𝐷 + 1.313𝑄𝐸 + 0.75𝐿 + 0.75𝐿𝑟 , and 

 8. (0.6 − 0.14𝑆𝐷𝑆)𝐷 + 0.7Ω𝑜𝑄𝐸 + 𝐻  becomes 

 0.46𝐷 − 1.75𝑄𝐸. 

 We note that 𝑄𝐸 is now subtracted, to indicate that the earthquake loading is 

 counteracting the dead loads. 
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Figure C2. RISA Model Diagram – ASD Basic Load Combination 5 



75 

 

 

 
Figure C3. RISA Software Analysis Results – ASD Basic Load Combination 5 
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Figure C4. RISA Model Diagram – ASD Basic Load Combination 6
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Figure C5. RISA Software Analysis Results for Beam Below Discontinuity:  

ASD Basic Load Combination 6 
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 Figure C6. RISA Model Diagram – ASD Basic Load Combination 8
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Figure C7. RISA Software Analysis Results for Beam Below Discontinuity:  

ASD Basic Load Combination 8 
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Figure C8. RISA Model Diagram – ASD Load Combination 5 with Overstrength
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Figure C9. RISA Software Analysis for Beam Below Discontinuity: 

ASD Load Combination 5 with Overstrength 
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Figure C10. RISA Model Diagram – ASD Load Combination 6 with Overstrength 
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Figure C11. RISA Software Analysis for Beam Below Discontinuity: 

ASD Load Combination 6 with Overstrength 
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Figure C12. RISA Model Diagram – ASD Load Combination 8 with Overstrength 
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Figure C13. RISA Software Analysis for Beam Below Discontinuity: 

ASD Load Combination 8 with Overstrength 
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Figure C14. RISA Software Analysis Results for Shearwall Above Discontinuity: 

ASD Basic Load Combination 5 
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Figure C15. RISA Software Analysis Results for Shearwall Above Discontinuity: 

ASD Basic Load Combination 5 Continued 
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Figure C16. RISA Software Detailing for Shearwall Above Discontinuity 
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