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ABSTRACT 

PREPARATION AND THE CHARACTERIZATION OF A FERROCENE 

CONTAINING MAIN-CHAIN PEG-CNT PHASE FOR HYBRID 

SUPERCAPACITOR APPLICATION 

 

by Shalaka Rahangdale 

With the rapid development of the global economy, the depletion of fossil 

fuels, and increasing environmental pollution, there is an urgent need for new 

technologies associated with energy conversion and storage. Supercapacitors 

have attracted tremendous attention and are now extensively used for energy 

storage. They charge and discharge quickly for high power demands but have 

low energy density. The goal of the research was to synthesize electrode and 

electrolyte materials for the fabrication of a hybrid supercapacitor cell with high 

energy density. In this hybrid cell, carbon nanotubes were used as electrodes, 

which contribute to electrostatic capacitance, and redox polymer was used as an 

electrolyte which accounts for redox or faradaic capacitance, thus increasing the 

energy density.  For the reduction half-cell, ferrocene dicarboxylic acid was 

polymerized with polyethylene glycol phase for an electrolyte. The electrolyte for 

oxidation half-cell was viologen-PEG polymer, prepared by a laboratory 

colleague, Rana Kanishka. The hybrid cell using these materials was fabricated 

in a sandwich model configuration. Further, electrochemical experiments were 

employed for assessing the performance of the cell. In conclusion, the electrode 

and electrolyte materials showed excellent electrochemical behavior and were 

appropriate for this type of hybrid cell. 
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Chapter 1 : INTRODUCTION 

1.1 Global Energy Issue 

The topic of energy is a critical technological issue in the 21st century. With 

the rapid development of the global economy, leading to an increase in energy 

demands, the cost of fossil fuels is increasing rapidly. This unchecked use of 

fossil fuels has increased pollution, leading to global warming which is creating a 

crisis in the modern society.1 To mitigate these issues, there is an urgent need to 

develop new energy conversion and storage technologies. There has been a 

growing interest in high energy and power density storage systems which can be 

used to store energy from renewable sources. These systems can achieve long-

term clean energy solutions capable of meeting the ever-increasing needs of the 

world population.2,3  

Conventional methods for energy conversion such as combustion used in 

heat-engine based power plants are pressure-volume processes which result first 

in mechanical and then in electrical energy. However, electrochemical 

technology, including batteries, fuel cells and supercapacitors, is based on 

interfacial energy or charge transfer. The ideal Carnot efficiency of an 

electrochemical cell, for example, a fuel cell, is about 94%, which is much higher 

than the efficiency of a heat engine (40 to 60%).4,5 

Thus, electrical energy storage is the key to increasing the efficiency of 

transportation systems and could replace the powertrains of current 

transportation systems from chemical fuel-based into an electrical one. Among 
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these storage devices, supercapacitors are gaining attention because of their 

high-power density, long shelf life, fast charging/discharging rates, and simple 

operation.  

1.2 Energy Storage Market 

Supercapacitors offer a promising approach to meeting the increasing twenty- 

first century power demands of energy storage systems as they have more than 

a thousand times the power density of lithium ion batteries and more than a 

hundred times the energy density of conventional capacitors. Supercapacitors 

can be used to increase the efficiency of hybrid electric vehicles by using the 

regenerative braking principle, in which energy is stored when the vehicle slows 

down or stops.6,7 For example, supercapacitors from Maxwell Technologies are 

being commercially used in Chinese hybrid buses. Supercapacitors are also 

being used in consumer electronics, memory back-up systems, industrial power, 

and energy management.8 

There are two types of batteries, primary (non-rechargeable batteries) and 

secondary (rechargeable batteries). Primary batteries include alkaline, mercury, 

silver oxide, and zinc carbon batteries. Secondary batteries include lead acid 

batteries, nickel-cadmium (Ni-Cd), nickel-metal hydride (NiMH), and lithium ion 

batteries. Currently, the dominant energy storage devices are secondary lithium-

ion batteries. Rechargeable batteries such as nickel-cadmium and nickel-metal 

hydride cells are fading in popularity because of the performance degradation 

that they experience at low temperatures and high discharge rates. Lithium ion 
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batteries have replaced other rechargeable batteries due to their higher energy 

density and lower weight.9 Worldwide, nearly every portable electronic device 

and electric vehicle (e.g. Tesla, Chevy Volt) is powered by lithium ion batteries.  

Batteries store energy by converting chemical energy into electrical energy 

via redox reactions at the anode and cathode.9 In lithium ion batteries, the 

movement of lithium ions stores energy as illustrated in Figure 1.1.10 In these 

batteries, the intercalation/de-intercalation cycle of Li-ions between two layered 

compounds stores the electrochemical energy.11 During charging, the lithium ions 

flow from cathode to anode through the electrolyte. Correspondingly, electrons 

flow from cathode to anode via the external circuit. The electrons and ions 

combine at the anode and deposit the lithium there. The battery is fully charged 

and ready to use when no more ions flow reversibly. During discharging, the ions 

flow back to cathode through the electrolyte and electrons flow back via the 

external circuit, powering the electronic device. The ions and electrons combine 

at the cathode. When all the lithium ions move back to the cathode, the battery is 

fully discharged. 
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Figure 1.1 Schematic illustration of (a) charge and (b) discharge process of a 
lithium rechargeable battery. 
 

The lithium ion battery has an energy density of 150-190 Wh/kg which is 

much higher than other rechargeable batteries, including lead-acid (30-50 

Wh/kg), Ni-Cd (45-80 Wh/kg), and NiMH (60-120 Wh/kg). The Li-ion battery has 
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longer shelf life when not in use as it self-discharges more slowly than other 

batteries. It is also quicker to charge and can handle thousands of charge-

discharge cycles. However, improvement of the lithium ion battery is crucial for 

improving the technological infrastructure. Chemical degradation inside the 

lithium ion battery results in a slowing of the charge and discharge process, and 

diminished charge retention, thus reducing power density. Finally, such energy 

dense batteries require protection from being charged and discharged too 

quickly. High charge/discharge rates can cause overheating and tend to degrade 

the battery components.7  

A relatively new class of energy storage devices, known as super- or ultra-

capacitors, can store a large amount of charge, deliver it at high power densities, 

and has a longer shelf life than batteries.12 The performance comparison of 

various energy storage devices is shown in the Ragone plot in Figure 1.2.9 This 

plot graphically represents the power density, measured along the vertical axis 

versus the energy density, measured along the horizontal axis. It can be seen 

that the supercapacitor performance lies between that of batteries and that of 

conventional capacitors.13 The energy density of supercapacitors is much higher 

than conventional capacitors, but still lower than batteries. Commercially 

available supercapacitors have specific energy below 10 Wh/kg, which is 3-15 

times lower than batteries (Li-ion batteries have 150 Wh/kg specific energy).14 As 

a result, there is an increase in research interest to enhance the energy 

performance of a supercapacitor as compared to a battery. 
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Figure 1.2 Ragone Plot of the energy storage domains for the various 
electrochemical energy conversion systems.9 Adapted with permission from 
Winter, M.; Brodd, R. J. What are Batteries, Fuel Cells, and Supercapacitors? 
Chem. Rev. 2004, 104, 4245–4269. Copyright 2004 American Chemical Society. 
 
1.3 Historical Background of Supercapacitors  

A supercapacitor is an electrochemical device which stores energy via 

electrostatic charges on the opposite surfaces of the electric double layer which 

is formed between the electrode and electrolyte.15 The first proposed 

supercapacitor was based on a porous carbon material with high surface area 

and a patent was granted to Becker and General Electric Corporation in 1957. In 

1971, the Nippon Electric Company (NEC) produced low-power devices for 

memory backup applications. The Matsushita (Panasonic) released the ‘Gold 

Capacitor’ in 1978 and by 1987 ELNA produced a similar, low-power device 
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called the ‘Dynacap’. The Pinnacle Research Institute (PRI) developed the first 

high-power double-layer capacitor for military applications in 1982.16  

Electrochemical double layer capacitors are now commercially available from 

a range of sources, and all are based on either a high surface area porous 

carbon material or noble metal oxides. The Maxwell Technologies, AVX, and 

Cooper Electronic Technologies in the United States, ELNA and Matsushita in 

Japan, ESMA in Russia, and Cap-XX in Australia all sell various types of double 

layer capacitor devices.16 The performance comparison of a capacitor, battery, 

and supercapacitor is given in Table 1.1.6,9 Supercapacitors are extremely 

efficient and can withstand a large number of charge/discharge cycles. They use 

low cost and environmentally friendly materials, they can store or release energy 

very quickly, and they lose energy heat in very small amounts. Additionally, 

supercapacitors do not contain toxic materials and are safer than batteries.  

Table 1.1 Performance Comparison of Energy Storage Devices.  

Characteristics Capacitor Battery Supercapacitor 

Specific energy (W h kg-1) <0.1 10-100 0.1-10 

Specific power (W kg-1) >100,000 10-1000 50-100,000 

Discharge time 10-6 to 10-3 s 0.3 - 3 h s to min 

Charge time 10-6 to 10-3 s 1 - 5 h s to min 

Efficiency (%) About 100 70 - 85 85 – 98 

Cycle-life Almost 

infinite 

About 1000 >500,000 
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1.4 Energy Storage Mechanism of Supercapacitors 

Supercapacitors can be of two types depending on their energy storage 

mechanisms namely, electrochemical double-layer capacitors and redox based 

supercapacitors. 

 1.4.1 Electrochemical Double-Layer Capacitors 

The electrochemical double-layer capacitors (EDLCs) store charge 

electrostatically (i.e. non-Faradaically), and thus are more like conventional 

electrolytic capacitors. An EDLC consists of two carbon-based electrodes, an 

electrolyte, and a separator. A defining characteristic of the EDLC is that there is 

no transfer of charge between electrodes and the electrolyte. The schematic 

illustration of EDLC is shown in Figure 1.3.17 

 
Figure 1.3 Schematic of electrochemical double-layer capacitor.  
 

In an EDLC, charge is stored electrostatically using reversible adsorption of 

electrolyte ions onto electrochemically stable active materials which have high 

specific surface area.18 When voltage is applied, charge accumulates on the 

electrode surfaces and the oppositely charged electrolyte ions diffuse into the 



9 
 

pores of the electrodes. In an EDLC the porous carbon creates an enormous 

surface area, which, in contact with an electrolyte has a substantial interfacial 

capacitance. These properties allow EDLCs to achieve higher energy densities 

than conventional capacitors.12,17,19 Each electrode/electrolyte interface 

contributes to the capacitance and each represents a capacitor, thus the EDLC is 

equivalent to two capacitors in a series. During charging, the cations move 

towards the negative electrode and anions move towards the positive electrode 

within the electrolyte. The electrons travel from the negative electrode to the 

positive electrode via the external circuit. This electrochemical process for 

charging is expressed as follows. At positive electrode:  

E1 + A
-
 ⟶ E1

+ ∕ ∕ A-
+ e-                                                  

E1 is the positive electrode, A- is the anion, and ∕ ∕ represents the interface of 

electrode and electrolyte. At the negative electrode: 

E2+ C
+
+ e- ⟶ E2

-  ∕ ∕ C+
 

E2 is the negative electrode and C+ is the cation. During discharging, the reverse 

processes occur.   

The most commonly used model to explain the principle of the double layer 

capacitance was put forth by Helmholtz in 1853 and is illustrated in Figure 

1.4.15,20 This model consists of three planes: Inner Helmholtz plane (IHP), Outer 

Helmholtz plane (OHP), and Diffuse Layer.21 The IHP comprises of the dielectric 

medium formed by the monolayer of the solvent molecules of an electrolyte 

between the opposite charges. It has the thickness of a single molecule. This 

Equation 1.1 

Equation 1.2 
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layer is formed when the dipoles in the solvent molecules interact with the 

charged electrode surface and orient themselves with the oppositely charged end 

near an electrode surface. There are also partially solvated, specifically adsorbed 

ions of the electrolyte along this layer. The OHP is the second layer at the 

electrode-electrolyte interface. Along the Helmholtz plane there is a linear 

variation of the potential with distance and comprises an excess of solvated ions 

of the complementary charge to that of the electrode. Lastly, the diffuse layer 

forms for a few nanometers into the solution where the variation of the potential 

becomes approximately exponential.22  

 
Figure 1.4 Model illustrating the double layer capacitance.  
 

The electrical representation of an EDLC is shown in Figure 1.522, where the 

electrolyte resistance is in series with the Stern layer and diffuse layer 

capacitances.22 The overall capacitance of an EDLC is given as follows: 
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1

C
 = 

1

Cs

 + 
1

Cd

 

where Cs is the capacitance of the Stern layer and CD is the capacitance of the 

diffuse layer. For any capacitor, the specific capacitance is: 

C = 
ℇr ℇ0 A

d
 

where εr  (dimensionless constant) is the electrolyte dielectric constant, ε0 (Fm-1) 

is the permittivity of a vacuum, A (m2 g-1) is the specific area of the electrode 

accessible to the electrolyte ions, and d (m) is the effective thickness of the 

double layer.23 The energy density E and the power density P of an 

electrochemical supercapacitor is expressed as: 

E = 
1

2
 CV

2
 

P = 
V

2

4Rs

 

where C is the specific capacitance, V is the voltage applied on cell, and Rs is the 

equivalent series resistance (ESR). ESR is the resistance contributed by the 

internal components of the capacitor like current collectors, electrodes, and 

dielectric material.17  

 
Figure 1.5 The electrode resistance along with the Stern and the diffuse layer 
capacitances in series.  

 

Equation 1.3 

Equation 1.4 

Equation 1.5 

 Equation 1.6 
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In EDLCs, generally the carbon electrode material with the higher surface 

area is used. As the surface area is increased, the capacitance is increased 

(from equation 1.4). In summary, EDLCs have higher capacitance as compared 

to conventional capacitors. Different carbon materials that can be used to store 

charge in EDLC electrodes are activated carbon, carbon aerogels, and carbon 

nanotubes.  

1.4.2 Redox-Based Supercapacitors 

The redox capacitor is an electrochemical capacitor which stores charge via 

faradaic process, i.e., reduction and oxidation reactions of the electrode 

material.12 Like an EDLC, it also consists of two electrodes separated by a 

separator and an electrolyte.17  

The faradaic process involves transfer of charge by means of redox 

reactions. When an external potential is applied to a redox capacitor, a fast and 

reversible redox reaction takes place on the electrode. The reactions do not 

propagate into the bulk material and occurs at the electrode/electrolyte 

interface.12 The mechanisms of charge and discharge is similar to that of a 

battery. The theoretical redox capacitance of metal oxide can be calculated as:   

C = 
n × F

M × V
 

where n is the mean number of electrons transferred in the redox reaction, F is 

the Faraday constant, M is the molar mass of metal oxide, and V is the operating 

voltage window.12 In redox capacitors, two types of electrode materials are used 

Equation 1.7 
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to store charge: conducting polymers and metal oxides.17 The redox reaction 

occur in the electroactive material.  

1.5  Materials for Supercapacitors 

The selection of an electrode material is critical in determining the 

electrochemical performance of the supercapacitor. The surface characteristics 

of the electrode greatly affect the capacitance of the cell as capacitive charge 

storage is a surface process. The carbon-based materials are the most widely 

used electrode materials in the EDLC, for their high specific surface area, high 

specific capacitance, good conductivity, and high chemical stability. The redox 

based materials are used in combination with double layer materials for their 

promising electrochemical activity.  

1.5.1 Carbon Based Materials 

Carbon-based materials, from activated carbons (ACs) to carbon nanotubes 

(CNTs) are used in batteries and supercapacitors because of their desirable 

physical and chemical properties. These properties include ease of processing, 

relative electrochemical inertness, low cost, wide temperature range, controllable 

porosity, and electro-catalytic activity for a variety of redox reactions. To ensure a 

good performance of the supercapacitor in terms of both energy and power 

density, requires proper control over the specific surface area and the effective 

pore size and matching to an appropriate type of electrolyte solution.23 Different 

types of carbon based materials used as electrodes are AC, CNTs, graphene, 

carbon aerogel, template carbons, and carbon-based composites. 
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AC has a relatively high specific capacitance compared to other carbon 

materials, but has lower conductivity, whereas CNTs and graphene have low SC 

and higher conductivity. Recent studies have indicated that doping with 

heteroatoms such as N, O, S, and B may improve capacitive performance, 

electrical conductivity, and wettability of the carbon phases. 24  

1.5.2 Redox Based Materials 

The supercapacitor based on redox-active materials are highly desirable as 

the next generation electrochemical supercapacitor because they have an 

effective capacitance 10-100 times greater than the EDLC. They not only store 

charge in the double layer, but also undergo fast and reversible redox reactions. 

Hence, efforts have been made to develop electrode materials with intrinsic 

redox capacitance. The materials used are classified into two types: metal oxides 

and conducting polymers. 

Generally, the metal oxides provide higher energy density for supercapacitors 

than conventional carbon materials. The general requirements for metal oxide in 

supercapacitor applications are: the oxide should be electronically conductive; 

the metal centers should have two or more accessible oxidation states; and 

protons should freely intercalate into the oxide lattice upon reduction.25 Transition 

metal oxides are considered the best electrode material for redox 

supercapacitors because they possess a variety of available oxidation states.20 

The most investigated metal oxides are ruthenium oxide, manganese oxide, 

cobalt oxide, nickel oxide, and vanadium oxide.  
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Conducting polymers (CPs) have many properties that make them suitable 

material for supercapacitor, such as low cost, environmental stability, high 

voltage capability, high redox storage capacity, and an adjustable redox activity 

through chemical modification. The redox capacitance of CP occurs through the 

reversible oxidation and reduction of the conjugated double bonds in a polymer 

network. During oxidation, ions are transferred to the polymer backbone, and 

during reduction, ions are released from this backbone into the electrolyte. The 

most extensively studied conducting polymers are polyaniline (PANI) and 

polypyrrole (PPy).17,20,25  

Research is being carried out in developing materials for supercapacitors to 

increase energy and power density. Redox based materials, such as conducting 

polymers PANI and PPy, have gained tremendous attention. These materials are 

promising in combination with nanostructured carbon and metal oxides.  Such 

composites have shown enhanced energy and power densities, and a good cycle 

life.25  
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Chapter 2 : RESEARCH OBJECTIVE 

2.1 Objective 

The motivation for this research work is to fabricate a hybrid supercapacitor 

cell. The hybrid supercapacitor combines a battery and an electric double-layer 

capacitor. It utilizes both faradaic (electrochemical charge transfer) and non-

faradaic (electrostatic charge storage) processes to store energy. The 

combination of redox and double-layer capacitance modes of energy storage 

should result in an increased energy and power density to fulfill the growing 

demand of applications.17 In general, research has been devoted to develop 

electrode materials with high capacitance and electrolytes with wide potential 

windows to increase the energy density of the two charge storage modes.  

It is especially important to develop an electrolyte with a wide potential 

window because the capacitive energy density (E = 
1

2
CV2) is proportional to the 

square of the cell voltage. Thus, it is more efficient to increase the cell voltage 

than to increase the electrode capacitance to improve energy density. In this 

endeavor, the interaction between the electrolyte and the electrode material 

plays a crucial role.26  

The hybrid approach in this work is facilitated by an incorporation of the 

redox-active charge storage species within the polymer electrolyte backbone. 

The redox species, ferrocene-dicarboxylic acid, is prepared as a copolymer with 

polyethylene glycol (PEG, 400 molecular weight). In this way, a substantial 
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concentration of a redox-active ferrocene can be included in the polymer phase 

without concern for its solubility in either of the Fe2+ or Fe3+ forms.  

In this work, a reduction half-cell was fabricated using the redox-PEG 

copolymer containing ferrocene dicarboxylic acid with carbon nanotubes as an 

electrode. The oxidation half-cell can be constructed with a redox species 

capable of undergoing electrochemical reduction in a potential range significantly 

negative, like viologen polymer species, detailed in the companion thesis by 

Kanishka Rana27. The redox behavior of this cell was studied by cyclic 

voltammetry and chronoamperometry. The energy density of this type of hybrid 

battery is expected to increase due to the combination of both redox and double-

layer capacitances. The materials used for the fabrication of the cell and their 

significance are discussed in later sections. 

2.2 Electrode: Single Walled Carbon Nanotubes (SWCNTs) 

The electrode material plays an important role in determining the capacitance 

and charge storage capacity of a supercapacitor. Of the many electrode 

properties which impact capacitance, the specific surface area of the material 

tends to predominate in determining the capacitance of a supercapacitor. When 

the material is in contact with an electrolyte, the measured interfacial capacitance 

of different materials does not linearly increase with the specific surface area 

because not all available surface area is electrochemically accessible.25 The 

effective pore size of the electrode material plays a vital role in setting the 

electrochemically accessible area. Research has shown that when the effective 
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pore size is very close to the size of the solvated ion, the maximum double-layer 

capacitance is observed.28 Carbon material has the following properties: (1) high 

specific area, (2) good intra- and inter- particle conductivity for porous matrices, 

and (3) good electrolyte accessibility to the interpore space of carbon materials, 

which makes them good electrodes for supercapacitor.1   

In this research, we have chosen to study single-walled carbon nanotubes 

(CNTs). CNTs have significantly advanced the science and engineering of 

carbon materials due to their physical and chemical properties.17 CNTs are rolled 

up graphene sheets as seen in Figure 2.129 and depending upon the number of 

layers, they are classified into single-walled carbon nanotubes (SWCNTs) and 

multi-walled carbon nanotubes (MWCNTs). SWCNTs have proven themselves 

as a promising electrode of choice in electrochemical energy conversions and 

storage because of good electrical conductivity, unique pore structure, good 

thermal stability, relatively low cost, good corrosion resistance, and readily 

accessible surface area30. They are also a good support for active materials due 

to their high mechanical stability and open tubular network.  
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Figure 2.1 Schematic of a portion of a graphene sheet rolled up to a SWCNT.  
 

Nanotube networks use almost all of their available surface to contact the 

solution. Therefore, SWCNTs have proven to accumulate large amounts of 

interfacial charge and have accessible mesopores formed by their entanglement 

and by the central canal.17 Furthermore, for fully de-aggregated SWCNT 

specimens, there is an easy diffusion of electrolyte ions through the mesoporous 

network. They have very low electronic conductivity, suggesting that SWCNT 

supercapacitors have a very low effective internal resistance (ESR or equivalent 

series resistance). ESR reflects the potential required to transport ions within the 

matrix of the supercapacitor. Thus, if SWCNT supercapacitors are properly 

solubilized and do not aggregate extensively in the solid state, they may exhibit 

high energy and power densities.17,31      

To reduce the ESR and increase the surface area even further, this research 

work has focused on covalent grafting of the polymer electrolyte polyethylene 

glycol to the SWCNTs. It is expected that the covalent attachment of the PEG to 
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the SWCNTs will further increase the ion mobility from the electrolyte to the 

current collector. 

2.3 Electrolyte: Polyethylene Glycol (PEG) – Ferrocene dicarboxylic acid – 
LiClO4 

 
The electrolyte consists of salt and solvent, an essential component of the 

supercapacitor which provides ionic conductivity and enables charge 

compensation between electrodes in the cell. The electrolyte also plays an 

important role in the formation of the electrical double-layer at the interface 

between electrode and electrolyte. The formation of the double-layer is the 

reversible process for charge storage and determines the supercapacitor 

performance.26  

In this research, a polymer electrolyte solvent (Figure 2.2) was prepared, 

based on polymerization of the ferrocene-dicarboxylic acid with polyethylene 

glycol (PEG)-400. The resulting polymer incorporates the redox center into the 

main chain of the polymer electrolyte, and thus ensures the solubility of the redox 

moiety. The electrode (SWCNT) grafted polymer electrolyte should have various 

advantages over the liquid electrolyte such as less leakage, good ionic 

conductivity, good interfacial contact with the electrode material, and even a 

degree of mechanical strength. The pre-requisites for the polymer electrolytes 

are: (1) high ionic conductivity at ambient and sub-ambient temperature, (2) high 

chemical, electrochemical and thermal stability, (3) appreciable transference 

number, (4) compatibility with electrodes, and (5) good cycle life.6,32  
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Figure 2.2 Ferrocene dicarboxylic acid – polyethylene glycol polymer 
 

A conventional (non-surface grafted) polymer electrolyte supercapacitor can 

suffer from a poor electrolyte-electrode contact area. Because of the size of the 

polymer chains, the ion accessibility to the interstitial electrode surface may be 

limited as illustrated in Figure 2.3. This Figure illustrates the poor ionic 

accessibility into the bulk of porous electrode for a polymer electrolyte (Figure 

2.3b), which results in the low capacitance.  

    
Figure 2.3 Schematic electrolyte ionic accessibility of an electrode in (a) liquid 
electrolyte and (b) polymer electrolyte.  

 
Finally, to further enhance the charge storage capacity of the 

supercapacitors, redox active electrochemical species were covalently grafted 

into the polymer electrolytes. This configuration should form a gel-polymer 

electrolyte (GPE).26,33 GPEs possess cohesive properties of solids as well as 

diffusive property of liquids.32 A GPE is generally composed of a polymer matrix 
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(host polymer), and a liquid electrolyte containing conducting salt and a redox 

species. In order to enhance the mobility of electrolyte ions, a small volume 

percentage of acetonitrile was added to the polymer phase. The surface grafted 

GPEs are known to exhibit higher capacitance than the solid-polymer 

electrolytes.26  

In this case, the polymer electrolyte solvent used was polyethylene glycol and 

electrolyte salt was lithium perchlorate. Pure PEG based electrolytes are 

complexed with the lithium salt. The ionic conductivity is provided by the 

transport of salt ions through the polymer as shown in Figure 2.4.26 It was also 

found that the lower molecular weight PEG increased the solubility of the 

crystalline polymer/salt complexes.7         

 
Figure 2.4 Lithium ion complexed in a polymer host. 
 

In this work, redox polymer was made by esterification of the ferrocene 

dicarboxylic acid (Fc-DCA) with PEG-400. The Fc-DCA has a chemically and 

kinetically reversible, one electron oxidation at 0.853 V vs saturated calomel 

electrode (SCE). Two carboxylic acid groups permit Fc-DCA to copolymerize with 
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PEG. Moreover, the redox potential is greater than that of a ferrocene, thus 

permitting a modest increase in the power density of batteries prepared with it. 

The redox reaction is shown in Figure 2.5.34 

 
Figure 2.5 Ferrocene dicarboxylic acid redox couple. 
 

To summarize, the covalent grafting of the PEG plays several important roles: 

(1) to complex with the lithium salts and provide ionic conductivity, (2) to prevent 

the aggregation of CNTs and thus provide a higher surface area for ion 

accessibility, and (3) to covalently attached with redox species, therefore 

reducing their tendency to crystallize, and to become inaccessible 

electrochemically.   

2.4 Separator 

The separator behaves like an ionic bridge and is located between the two 

electrodes in a supercapacitor cell. It prevents electrical contact between the two 

electrodes but is an ion-permeable which allows the ionic charge transfer. The 

critical requirements for the separators are namely, (1) minimal resistance for an 

ion transfer within the electrolyte, (2) strong electronic insulating capability, (3) 

high chemical and electrochemical stability, (4) good mechanical strength to 

provide device durability, and (5) thin and highly porous films or membranes. A 
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porous polycarbonate filter of 0.6µm pore size was used as the separator in this 

research.6,35  

 The synthesis and characterization of the electrode and electrolyte materials 

for supercapacitors mentioned above are discussed in detail in further chapters. 

In the last chapter, the fabrication and performance of the hybrid cell is studied 

and analyzed.  
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Chapter 3 : FUNCTIONALIZATION OF CARBON NANOTUBES 

 3.1 Introduction 

The carbon nanotubes are chemically inert like other carbon-based materials 

such as glassy carbon, graphite, and diamond. Impurities are generated during 

the production of CNTs, such as byproduct carbonaceous species and residue 

from the transition metal catalysts, that are used during the synthesis.36 Due to 

transition metal catalysts, CNTs possess magnetic properties.37 Also, CNTs are 

typically insoluble in all organic solvents and aqueous solution as they form 

bundles, due to the strong van der Waals interaction that tightly holds them 

together.38 The overall yield of the usable material is decreased due to the above 

reasons and this interferes with most of the desired properties.39 So, to modify 

the CNTs, various chemical treatments are performed to give them new chemical 

and physical properties, for example, increased solubility, higher chemical 

reactivity, and greater compatibility with polymers.39  

The CNTs can undergo chemical modifications to enhance their solubility in 

various solvents. There are two main approaches for the functionalization of 

CNTs: (1) the covalent attachment of chemical groups through reactions onto the 

π-conjugated skeleton of CNTs, and (2) the noncovalent wrapping or adsorption 

of various functional molecules on the conjugated CNTs.3 In covalent 

functionalization, functional groups are attached to the ends and sidewalls of the 

tubes. The chemical functionalization/acid treatment shortens the CNTs and 

incorporates oxygenated groups at open ends and along the sidewall. This type 
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of treatment modifies the electronic and structural properties of the CNTs 

dramatically.40 Oxidative chemical treatment covers the ends and sidewalls of the 

CNTs with oxygen-containing groups such as carboxylate groups, hydroxyl 

groups, ether groups, etc. For fundamental research on nanotubes and their 

application in electronic devices, the presence of an oxygenated group on CNTs 

is important.41 

In this work, different types of oxidants were used for functionalization of the 

CNTs. The first acid treatment uses a 3:1 mixture of concentrated H2SO4/HNO3 

as reported by Liu et al.42 to cut the highly tangled long ropes of CNTs into short, 

open-ended pipes and leave carboxylic groups at the open ends. Oxidizing 

reagents such as HNO3, O3, KMnO4, OsO4, and RuO4 were also reported for the 

oxidation of CNTs.41 The reaction for the acid treatment is shown in Scheme 

3.1.42  

Scheme 3.1 Acid treatment of CNTs 

 

A dry method, utilizing ultraviolet (UV) treatment was also investigated by Cai 

et al. 43 for the oxidation of CNTs. UV light produces a more reactive environment 
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by exciting ambient oxygen molecules from their triplet spin-triplet state into a 

spin-singlet state. This facilitates charge transfer from the CNTs to oxygen 

molecules and promotes their chemical reaction. This UV treatment removes the 

end caps of the CNTs and introduces a variety of oxygenated functional 

groups.43  Diels-Alder CNT reactions are also reported wherein the CNTs act as 

dienophile which react with different cyclic dienes, as shown in Scheme 3.2.   

Scheme 3.2 The Diels Alder mechanism. 

 
In this chapter, we demonstrate different experiments for the functionalization 

of CNTs by using, (1) ozone (UV treatment), (2) maleic anhydride (Diels-Alder 

reaction), (3) a concentrated acid mixture of H2SO4 and HNO3, and (4) reflux 

using 13 M HNO3. These reactions are analyzed spectroscopically and are 

shown to dramatically improve the solubility of CNTs in various solvents.   
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3.2 Materials 

The SWCNTs were purchased from Cheaptubes Inc. These SWCNTs had an 

average diameter of 1-2 nm and purity above 90%. The concentrated sulfuric 

acid (98%) and concentrated nitric acid (70%) were obtained from Sigma Aldrich 

Inc.   

 3.3 Experimental Methods 

3.3.1 UV Ozone Treatment 

The ozone gas was generated in the laboratory using a low-pressure mercury 

UV lamp and was continuously introduced into a 2-port plastic bottle (100 mL) 

which contained 50 mg of SWCNTs. The SWCNTs were exposed to ozone gas 

for 120 minutes at room temperature and the sample bottle was gently agitated 

every 10 minutes to provide uniform exposure. The residual ozone gas was 

scrubbed into a 0.5 M iodide solution. The ozonized SWCNTs were collected and 

characterized.43 

3.3.2 Maleic Anhydride Treatment 

The pristine SWCNTs (30 mg), were added to 20 mL N-methyl-2-pyrolidone 

(NMP) into an oven dried, three-necked flask. Sonication was performed for 1.5 

hours to degas the resulting suspension. To this sonicated mixture, 0.15 g/mL of 

maleic anhydride was slowly added. The subsequent mixture was stirred for 48 

hours at 170°C under a nitrogen atmosphere. The resultant reaction mixture was 

filtered through a 0.6 µm polycarbonate membrane to give a black product.  
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3.3.3 Concentrated Sulfuric/Nitric acid (3:1) Treatment 

The pristine SWCNTs (20 mg), were suspended in 20 mL of 3:1 concentrated 

acid mixture of H2SO4 (98 wt%) and HNO3 (16M) and sonicated for 30 hours in a 

water bath. The resultant suspension was then diluted with 200 mL DI water, 

filtered, and collected on a 0.6 µm polycarbonate membrane filter and washed 

again with DI water. The acid-treated CNTs on the filter membrane were oven 

dried at 80°C for 24 hours.41  

3.3.4 13M HNO3 Treatment 

The pristine SWCNTs (200 mg), were refluxed in a 55 mL of 13 M HNO3 for 

four days. 13 M HNO3 was prepared by diluting 16 M HNO3 with DI water. The 

dried acid treated CNTs were obtained using the same procedure as was used 

for concentrated sulfuric/nitric acid treatment. 41 

3.4 Characterization Techniques 

The most common and effective methods to characterize carbon nanotubes 

are Raman spectroscopy and fourier transform infrared spectroscopy (FTIR). 

3.4.1 Raman Spectroscopy 

Raman spectroscopy is a form of vibrational spectroscopy. It is one of the 

most powerful techniques for characterization of carbon nanotubes. The Raman 

effect is based on an inelastic scattering which occurs when a very small fraction 

(~1 in 107 photons) of incident light is scattered at optical frequencies lower than 

the incident frequency of photons. When electromagnetic radiation is incident on 

the molecule, the energy may be transmitted, absorbed, or scattered. A small 
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fraction of the scattered radiation encodes vibrational information as described 

below. 

When the incident photon interacts with a molecule in the ground vibrational 

state, the molecule absorbs energy and is excited into a very short lived so-called 

virtual state. The molecule immediately decays back to the ground vibrational 

state and emits a scattered photon whose energy and frequency is same as that 

of the incident photon, by a process known as the Rayleigh scattering. Whereas, 

a small proportion of the molecules in the virtual state may decay into an excited 

vibrational energy level. This type of scattering is referred to as Raman 

scattering, and arises due to a change in the polarizability of the molecule during 

the vibration.44 So, the Raman scattered photon in this case has less energy than 

the incident photon. This scattered photon reveals the Stokes-shift which is 

plotted in the Raman spectrum. The other possibility is the interaction between 

the incident photon and a molecule already in a vibrationally excited state. When 

the molecule decays back to the ground vibrational state, energy loss by the 

emitted photon is greater than the incident photon. This photon emission gives 

rise to an anti-Stokes shift in the Raman spectrum. The Raman and Rayleigh 

scattering is illustrated in the Jablonski diagram in Figure 3.1.44  
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Figure 3.1 Energy Level diagram. 

The Raman spectrum is the plot of the intensity of Raman scattered radiation 

as a function of its frequency difference from the incident radiation (in 

wavenumbers or cm-1), and the difference in wavenumber called as the Raman 

shift. The peak positions and relative peak intensities in the Raman spectrum 

provides a unique chemical fingerprint which can be used to identify a molecule. 

The intensity of the spectrum is directly proportional to the concentration of the 

scattering molecule. 

The presence of sp3 hybridization within the CNTs due to the covalent 

attachment of functional groups can be detected by the Raman spectroscopy. 

The characteristic features are the following: (1) a radial breathing mode (RBM) 

typically found between 100 cm-1 and 400 cm-1 is the vibration characteristic of 

CNTs and considered as their fingerprint, (2) a high frequency tangential mode 

(G-band) between 1500 and 1600 cm-1 which is an intrinsic feature of CNTs 
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closely related to vibrations in sp2 hybridized graphitic carbon, and (3) a large 

structure defect mode (D-band) between 1200 and 1350 cm-1 which is 

characteristic of sp3 hybridization due to the covalent attachment of functional 

groups. The ratio of intensities of the D-band and the G-band gives information 

about the covalent functionalization of the sidewalls of CNTs. The higher D/G 

ratio means the more functional groups are attached to the surface of the 

CNTs.45,46 

3.4.2 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR is also a form of vibrational spectroscopy. It is an easy way to identify 

the functional groups in the molecule. Infrared (IR) radiation is passed through 

the sample, where some of the IR radiation is absorbed by a sample and some of 

it is transmitted. IR bands arise from change in the dipole moment of the 

molecule due to the interaction of light with the molecule. The molecular 

transmission and absorption results in the spectrum creating a molecular 

fingerprint of the sample.  

Attenuated total reflectance (ATR) – FTIR is used in this work. ATR is a 

widely used FTIR sampling technique which requires little or no sample 

preparation, thus speeding sample analysis. The main advantage of ATR 

sampling is that it has a very thin sampling path length and depth of penetration 

of the IR beam into the sample. The ATR measures the change that occurs in the 

total internally reflected beam when it is in contact with the sample – this is 

illustrated in Figure 3.2. The ATR crystal is an optically dense medium, in this 
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case ZnSe crystal, with high refractive index was used, on which an infrared 

beam is directed at a certain angle. An evanescent wave is formed due to this 

internal reflectance that extends beyond the surface of the crystal into the 

sample. The evanescent wave is attenuated in the regions of the infrared 

spectrum where the sample absorbs energy. This attenuated evanescent wave is 

passed back to the IR beam which then comes out from the opposite end of the 

crystal and passed to the detector, where the system generates an infrared 

spectrum.47,48  

 
Figure 3.2 A multiple reflection ATR system. 
 
 The FTIR spectrum is the plot of an absorbance or percent transmittance 

versus the frequency between 4000 and 400 cm-1 (wavenumbers). The 

frequencies of the absorption peaks in the IR can directly be correlated to the 

bonds within the compound being analyzed. The IR spectroscopy can identify 

organic functional groups attached on the CNT’s surface by measuring 

characteristic vibrational modes.49 The characteristic stretching frequencies of 

the CNTs on the IR spectra are ~2100 cm-1 related to C=C of CNTs, ~3300 cm-1 

for hydroxyl group and ~1650 cm-1 for C=O functional group.  
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3.5 Results and Discussion 

3.5.1 Ozonolysis 

The unfunctionalized SWCNTs are insoluble in most of the solvents due to 

their strong hydrophobic nature. When SWCNTs are functionalized, the 

oxygenated groups induce polarity into a molecule and stabilize them in the polar 

solvents by hydrogen bonds and polar-polar interactions. Ozone treated 

SWCNTs were expected to be soluble in water due to the increased polarity of 

the molecule. However, the expected result was not seen when they were 

dispersed in water indicating no incorporation of oxidized defects. The possible 

explanations for this may be low reaction time or non-uniform exposure of ozone 

to SWCNTs. To ensure that this was the case, the experiments were repeated 

where SWCNTs were exposed to ozone for prolonged time and were suspended 

in DI water. The same results were obtained, even after four hours of ozone 

exposure with constant stirring. 

3.5.2 Maleic Anhydride 

During the filtration, most of the functionalized SWCNTs product, passed 

through the polycarbonate membrane filter along with the reaction mixture. The 

obtained filtrate was black/brown in color which indicated the shortening of 

SWCNTs due to functionalization. The black colored filtrate suggested that the 

functionalized SWCNTs had improved solubility. To separate this SWCNT 

product from the black filtrate solution, it was again filtered using a 0.45µm nylon 
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membrane filter. Again, the filtration was not successful, and no product was 

retained.  

After several failed filtration attempts, centrifugation was employed as an 

alternative method to extract SWCNTs from the mixture. The reaction mixture 

was centrifuged using a Labnet Mini Centrifuge C-1200 (115 V/60 Hz) at a speed 

of 2000 rpm for 60 minutes. This procedure was repeated multiple times, still the 

SWCNTs did not extract from the supernatant solution. This may be due to the 

low rpm value of the centrifuge instrument, but the reason that tubes were not 

collected is still not clear. 

3.5.3 Concentrated Sulphuric/Nitric acid (3:1) 

The acid treated tubes were expected to be soluble in water, but the expected 

result was not seen. The insolubility of treated SWCNTs in the water suggested 

that no functional groups were attached to the tubes. This may be due to the lack 

of heating which might have reduced the reaction rate. Therefore, a different 

approach, a reflux method described below, was employed to oxidize the 

SWCNTs.  

3.5.4 13M HNO3 

A solubility test was carried out to confirm the functionalization of the 

SWCNTs treated with 13 M HNO3. The acid-refluxed SWCNTs were soluble in 

water after sonication for 5 mins as shown in Figure 3.3. This indicated that the 

reflux nitric acid had incorporated oxygenated groups in the tubes which have 
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increased the hydrophilicity and reactivity of the SWCNTs. Raman and FTIR 

spectroscopies were used to further characterize the SWCNTs. 

 
Figure 3.3 Solubility test in water (1) pristine and (2) refluxed SWCNTs. 

 
The Raman spectra of the pristine SWCNTs and the refluxed SWCNTs were 

recorded on the Enwave Optronics Raman Spectrometer using a 785 nm laser. 

The Raman spectra is shown in Figure 3.4. The spectra for the pristine SWCNTs 

showed prominent G-band at ~1615 cm-1 wavelength attributed to the intrinsic 

feature of the tubes closely related to the sp2 vibrations. In addition, the SWCNTs 

treated with nitric acid showed a distinct D-band at ~1320 cm-1 along with G-

band. This D-band was due to defects on the SWCNTs caused by the acid 

treatment, which breaks the symmetry of SWCNTs. The D/G ratios of pristine 

and refluxed SWCNTs were calculated to be 0.08 and 0.15 respectively. The 

higher D/G ratio of treated SWCNTs suggested successful functionalization as 

the ratio is sensitive to the presence of sp3 carbons on the SWCNTs surface.  
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Figure 3.4 Raman spectra of (a) pristine and (b) refluxed SWCNTs. 
 

The FTIR spectra of pristine and refluxed SWCNTs were taken on the 

Thermo Nicolet 6700 FT-IR spectrometer as shown in Figure 3.5. Similar 

absorption bands at ~2120 cm-1 were observed for both the refluxed and the 

pristine SWCNTs indicating the C=C vibrational frequency in the SWCNTs 

structure. The additional bands were observed in the acid treated SWCNTs 

spectra at ~3350 cm-1 and ~1640 cm-1, were related to O-H (hydroxyl group) and 

C=O (carboxyl group) respectively, which were consistent with the known 

vibrational values of the functional groups. Thus, the presence of the O-H and 

the C=O stretch modes corresponding to hydroxyl and carboxylic acid groups in 

the acid treated SWCNTs spectra suggested successful functionalization of the 

nanotubes by 13 M HNO3.   
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Figure 3.5 FTIR spectra of (a) pristine and (b) refluxed SWCNTs. 
 
3.6 Conclusions 

Based on the above results, it was found that the reflux with HNO3 was the 

most effective method for functionalization of the CNTs. This suggested that the 

heating and longer time are important factors in functionalizing nanotubes. The 

acid refluxed SWCNTs were soluble in water as compared to the pristine ones. 

The Raman spectra of treated SWCNTs showed distinctive D-band at 1300 cm-1 

which is due to the defects in nanotubes. Additionally, the absorption peaks for 

carboxyl (1640 cm-1) and hydroxyl (3350 cm-1) groups in the FTIR spectra also 

confirmed the attachment of the functional groups. The solubility test, Raman and 

FTIR spectroscopy supported the covalent attachment of carboxylic acid and 

hydroxyl groups on SWCNTs.  
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Chapter 4 : SYNTHESIS OF POLYETHYLENE GLYCOL-FERROCENE 
DICARBOXYLATE (FC-PEG) POLYMER 
 
4.1 Introduction 

 Ferrocene is a well-known organometallic compound with a unique sandwich-

like structure as shown in Figure 4.1. Ferrocene can be oxidized to ferricenium 

cation (Fe+3) with excellent electrochemical kinetics and chemical reversibility. 

Recently, several attempts to use ferrocene-based organic molecules for active 

cathode materials have been reported. Ferrocene groups have been covalently 

incorporated in the polymer for improving the charge transfer between the 

electrode-electrolyte interface. The ferrocene-substituted poly(pyrrole) and 

poly(aniline) are also being investigated in batteries, which has resulted in high 

coulombic efficiencies and low capacity decay within 100 cycles due to the 

reversibility of the ferrocene.50,51 

 
Figure 4.1 Structure of Ferrocene. 
 

In this research, ferrocene-dicarboxylic acid is covalently incorporated in the 

polyethylene glycol (PEG) host polymer, forming a polyester polymer. As 

discussed in Chapter 2, when redox species are introduced in the polymer 

phase, the performance of the supercapacitor may be enhanced. In fact, the 

covalent attachment of the redox species onto the polymer reduces their 
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tendency to crystallize and thereby increases their solubility in the polymer 

solution. The different types of esterification reactions that were attempted for the 

synthesis of the redox additive polymer are acid chloride esterification and 

Steglish esterification method. 

 The first method is the acid chloride esterification. The nucleophilic addition/ 

elimination reaction between acid chloride and alcohol yields an ester. First, the 

carboxylic acid is converted to the respective acid chloride. Different types of 

reagents can be used for this reaction, including phosphorous (V) chloride, 

phosphorous (III) chloride, thionyl chloride, and oxalyl chloride. In this work, 

oxalyl chloride is used as a reagent for the synthesis of the acid chloride in 

presence of dimethylformamide (DMF). The mechanism for acid chloride 

formation is through the Vilsmeier-Haack reagent illustrated in Figure 4.2. Once 

the acid chloride is formed, the second step is the nucleophilic 

addition/elimination reaction between acid chloride and alcohol which involves 

three stages. The first stage, is the nucleophilic attack by oxygen of an alcohol 

molecule on the electropositive carbonyl of an acid chloride, forming a carbon-

oxygen bond. The second stage is the elimination of a chloride ion and 

reformation of a carbon-oxygen double bond. The last stage is the deprotonation 

which forms hydrochloric acid and the desired ester.  



41 
 

 
Figure 4.2 Mechanism of the acid chloride formation. 
  
 The second method is the Steglish esterification which is a mild reaction and 

allows conversion of sterically demanding and labile compounds. First, an O-

acylisourea intermediate is formed from DCC (dicyclohexylcarbodiimide) and 

carboxylic acid. The intermediate offers reactivity similar to the corresponding 

carboxylic acid anhydride. Then the alcohol reacts with an activated carboxylic 

acid to form the stable dicyclohexylurea (DCU) and the ester. The mechanism is 

shown in Figure 4.3.52,53  
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Figure 4.3 Mechanism of the Steglish Esterification. 
 
 In this chapter, several experiments are described. Scheme 4.1 shows the 

acid chloride esterification of PEG and 1,1’-ferrocenedicarboxylic acid with oxalyl 

chloride as chlorinating agent and DMF or dichloromethane (DCM) as solvent. 

Scheme 4.2 shows the Steglish esterification of PEG and 1,1’-ferrocene 

dicarboxylic acid in the presence of DCC or DIC (diisopropylcarbodiimide). The 

catalyst and solvent used in the reaction were TEA (triethylamine) and DCM, 

respectively. In these experiments, the degree of polymerization was not 

monitored. Therefore, different types of Fc-PEG polymer were produced, as 

shown in Figure 4.4.  
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Scheme 4.1 Reaction scheme of the acid chloride esterification. 

 
 
Scheme 4.2 Reaction scheme of the Steglish esterification. 

 
 

 

Figure 4.4 Different types of Fc-PEG polymer. 
 
4.2 Materials 

All the reactions were performed in a three-neck round bottom flask fitted with 

a rubber septum under a nitrogen atmosphere. All liquid reagents and solvents 
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were dried under vacuum and stored over molecular sieves in the refrigerator. 

The glass syringes were used to transfer dried liquid reagents and solvents into 

the reaction mixture.  

4.3 Experimental Methods 

4.3.1 Acid Chloride Esterification 

 Ferrocene-dicarboxylic acid (0.18 mmol, 50 mg), was dissolved in 20 mL of 

DCM in a three-necked flask. Then, oxalyl chloride (30 µL) was added slowly in 

the above solution under a nitrogen atmosphere at 0°C. The reactant mixture 

was stirred at 0°C for 2 hours and then stirred for 8 hours at room temperature. 

PEG-400 (0.5 mL) was added to the above reactant solution and stirred at room 

temperature for 48 hours. The resultant suspension was filtered, and filtrate was 

evaporated to dryness. The precipitation of the ester was done using 10% NaOH 

(10 mL) and DCM (10 mL). The NaOH layer dissolved the unreacted ferrocene-

dicarboxylic acid and the DCM layer was separated out. The DCM layer was then 

evaporated to dryness to get the desired ester product.54 However, this method 

did not give a product, possibly because the solvent was not dried. As a result, 

when oxalyl chloride was reacted with the ferrocene-dicarboxylic acid, instead of 

activating acid groups, oxalic acid was formed. Moreover, the PEG was also not 

dried and water in it might have hydrolyzed ferrocene-diacid chlorides. As the 

oxalyl chloride is very reactive and sensitive to air, a different one pot approach 

was employed for the esterification.   
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4.3.2 Steglish Esterification using Dicyclohexylcarbodiimide (DCC) 

 PEG-400 (1.1 mmol, 0.44 gm), ferrocene-dicarboxylic acid (1 mmol, 0.28 gm) 

and TEA (2 mmol, 0.20 gm) were dissolved in 15 mL of anhydrous DCM under a 

nitrogen atmosphere. A solution of DCC (2 mmol, 0.42 gm) and 5 mL of 

anhydrous DCM was then added dropwise to the flask at 0°C. The reaction was 

then stirred for 48 hours at 25°C under a nitrogen atmosphere. The mixture was 

filtered, and the filtrate was evaporated to dryness. The solid was redissolved in 

20 mL of chloroform. The solution was extracted with the NaOH solution 

(0.00375 M) and washed with DI water to remove unreacted ferrocene-

dicarboxylic acid and water-soluble byproducts. The solution was dried over 

anhydrous sodium sulfate and then evaporated to dryness to yield the brown 

product.53,55,56 But the NMR spectra did not show ferrocene-dicarboxylate peaks. 

This may be due to the NaOH washing step, which might have hydrolyzed the 

polymer, dissolving ferrocene-dicarboxylic acid in the aqueous phase. Therefore, 

in the next synthetic attempt, NaOH washing was not given and DIC was used 

instead of DCC as it is hard to remove a DCU byproduct from the reaction 

mixture. 

4.3.3 Steglish Esterification using Diisopropylcardodiimide (DIC) 

 PEG-400 (1 mmol, 0.4 gm), ferrocene-dicarboxylic acid (1 mmol, 0.28 gm), 

and TEA (1 mmol, 0.1 gm) were dissolved in 10 mL of anhydrous DCM under a 

nitrogen atmosphere. DIC (1 mmol, 0.12 gm) was dissolved in 5 mL of anhydrous 

DCM and the same reaction procedure was followed as mentioned above. The 
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solution was extracted twice with DI water to remove unreacted ferrocene-

dicarboxylic acid and water-soluble byproducts. The solution was then 

evaporated to dryness to give the desired yellow product.53,55,56 This ester 

product was then used for characterization and further experiments. 

4.4 Characterization Techniques 

 Common and effective methods to characterize organic compounds are NMR 

(nuclear magnetic resonance) and FTIR. NMR spectra was recorded on a Varian 

400 MHz spectrometer and FTIR was recorded on a Thermo Nicolet 6700 FT-IR 

spectrometer. To judge the electrochemical behavior of the redox-PEG 

copolymer or Fc-PEG polymer, an electrochemical technique - cyclic 

voltammetry was employed using the CH660 Electrochemical Analyzer. The 

techniques are briefly described in later sections.   

4.4.1 Nuclear Magnetic Resonance (NMR) 

 NMR is the preeminent technique for determining the structure of organic 

compounds. It identifies the carbon-hydrogen framework of an organic 

compound. NMR deals with the nucleus of an atom that possess a magnetic 

moment. When external magnetic field is applied, nuclei align themselves into 

two spin states: +1/2 spin state is aligned with the magnetic field which is in a 

lower energy state and -1/2 spin state is opposed to the magnetic field which is in 

a higher energy state. The energy difference between the two states is ΔE which 

is dependent on the applied magnetic field. When radiation with an energy ΔE is 

incident on the sample, the nuclei undergo relaxation. During this process, they 
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emit electromagnetic signals which are read by an NMR spectrometer and 

plotted on the graph of signal frequency versus intensity.57 

4.4.1.1 1H-NMR 

 Each group of chemically equivalent proton gives rise to a unique signal. 

Chemically equivalent protons are protons in the same environment – i.e. protons 

on carbons with identical bonds. Hence, the number of signals in the NMR 

spectrum determines the number of non-equivalent protons in a molecule. The 

chemical shift is the position of a signal in a NMR spectrum (with respect to a 

reference compound) and is measured in ppm (parts per million). The reference 

compound used usually is tetramethylsilane (TMS), and TMS protons are given a 

zero position at the far right of the spectrum, and ppm becomes larger as it 

moves towards left. The formula for the chemical shift is: 

Chemical Shift (δ) = 
ϑsample - ϑreference

ϑreference

 

where 𝜗𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is frequency of TMS and 𝜗𝑠𝑎𝑚𝑝𝑙𝑒 is frequency of sample. 

 NMR gives information on the relative number of protons and the types of 

protons in a molecule. The peak integration is proportional to the number of 

protons that give rise to the signal. The splitting of the proton signals tells the 

number of protons bonded to adjacent carbons. And the overall chemical shift of 

a proton gives information about the type of carbon (or another atom) that it is 

bonded to. Proton splitting follows the N+1 rule where N is the number of 

Equation 4.1 
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equivalent protons that are bonded to adjacent carbons. The number of signals in 

the spectrum is one more than the number of equivalent protons.57,58  

4.4.1.2 13C-NMR 

 13C-NMR is used, when significant portions of a molecule lack C-H bonds and 

no information can be interpreted with the 1H-NMR. In the 13C-NMR, also each 

structurally distinct carbon displays a single sharp peak. Unlike 1H-NMR, there is 

no splitting of peaks in 13C-NMR. This is because the relative abundance of 13C 

is only 1.1%, so the probability of having two 13C atoms right next to each other is 

only 0.012%.59  

 To confirm the chemical structure of Fc-PEG polymer, 1H-NMR, and 13C-NMR 

were used. The chemical shifts (δ) were reported in ppm relative to the residual 

solvent deuterated dimethyl sulfoxide (DMSO).   

4.4.2 Electrochemical Analysis 

 Cyclic voltammetry (CV) is an electrochemical technique for investigating the 

electrochemical behavior of analytes which can be electrochemically oxidized or 

reduced. In this technique, the potential applied to the working electrode is varied 

and the current is measured as a function of potential. The cyclic voltammogram 

is a plot of current versus potential and indicates the potential at which redox 

process occurs. To carry out a reduction process, the potential is scanned 

negatively, and electroactive species gain an electron giving rise to a cathodic 

peak current (ipc) and corresponding peak potential is cathodic peak potential 

(Epc). When all the substrate at the surface of the electrode has been reduced, 
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the current falls and the potential is reversed and scanned positively leading to 

an oxidation process. This gives an oxidation peak at anodic peak current (ipa) 

and anodic peak potential (Epa).60  

 A three-electrode cell was used to perform the cyclic voltammetric 

experiments and potentiostat for making the measurements. Three-electrode 

configuration measures only the properties of the working electrode, and the 

resistance of reference and auxiliary are cancelled. The principle of the 

potentiostat is to maintain the constant potential difference between the working 

electrode and the sum of a programmed potential and the reference electrode 

potential.61  

The working electrode is the electrode under study, where the potential is 

controlled, and the current is measured. The potential is measured against a 

reference electrode, which maintains a constant potential. The working electrode 

should neither oxidize nor reduce solvent or supporting electrolyte in a wide 

potential range. The size and shape of the electrode surface affects the 

voltammetric response of the electrode. There are two types of electrodes, 

microelectrodes and ultramicroelectrodes. Microelectrodes are electrodes with a 

diameter greater than 100 µm and less than about 1 cm and produce currents in 

microamp to milliamp range. The mass transport within the diffusion layer at a 

microelectrode occurs mostly perpendicular to the surface (planar diffusion). The 

peak current follows Randles-Sevcik equation which is as follows: 
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ip = 0.4463 nFAC (
nFvD

RT
)

1
2

 

 where ip is the maximum current in amperes, n is the number of electrons 

transferred in the redox event, F is the Faraday constant, C is the bulk 

concentration of electroactive substance, A is the electrode area in cm2, D is the 

diffusion coefficient in cm2/s, and v is the scan rate in V/s. According to this 

equation, the peak current (ip) is proportional to the square root of scan rate (v) 

and concentration of electroactive species.62,63 Whereas, electrodes with 

dimension less than 100 µm are known as ultramicroelectrodes, which produce 

currents typically in the picoamp to nanoamp range. The mass transport at an 

ultramicroelectrode occurs via radial diffusion. This results into a sigmoidal, 

steady-state voltammogram. The limiting plateau current from CV is given by 

ilim=4nFrDC 

where ilim is the limiting current in amperes, n is the number of electrons 

transferred in the redox event, F is the Faraday constant, r is the electrode radius 

in cm, D is the diffusion coefficient in cm2/s, and C is the bulk concentration of 

electroactive substance. It is possible to measure current reliably in a resistive 

media with ultramicroelectrodes because the current is very small, and the 

hemispherical nature of the charge transport makes the effective voltage drop 

much less significant.62,63,64 Examples of different types of working electrodes 

include mercury, carbon, platinum and gold. 

Equation 4.2 

Equation 4.3 
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 The reference electrode serves as a stable potential against which the 

potential of a working electrode may be varied. The electronics of a potentiostat 

holds the cell potential at programmed value measurements. Examples of 

reference electrodes include silver/silver chloride, saturated calomel, 

mercury/mercurous oxide, and mercury/mercury sulfate electrodes. In addition, a 

simple, bare silver wire is often used as a quasi-reference in non-aqueous 

environment. The silver wire potential is reasonably stable and can be internally 

standardized using the ferrocene/ferricenium.64 

 The auxiliary electrode completes the current path in the three-electrode 

system. This electrode is introduced in the electrochemical cell to prevent the 

flow of current through the reference electrode. The most commonly used 

auxiliary electrode is the platinum wire.64  

 A CH 660 Electrochemical analyzer was employed for the CV experiments. In 

all the experiments performed, 0.1 M lithium perchlorate in anhydrous acetonitrile 

was used as an electrolyte. The working electrodes were polished first with 1, 

0.3, and 0.05-micron size alpha alumina paste to expose the electrode tip. The 

CV experiments were performed in solution and semi-solid phases. 

4.4.2.1 Solution Phase Electrochemistry 

 In this method, the ferrocene-dicarboxylic (3 mM) was dissolved in 0.1 M 

LiClO4 in anhydrous acetonitrile (CH3CN) electrolyte and was analyzed using a 

conventional microelectrode as well as an ultramicroelectrode. The platinum 

micro (3 mm) and ultramicro (10 µm) working electrodes, the Ag/AgCl reference 
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electrode and the platinum wire as an auxiliary electrode were used for the 

measurements. The electrolyte solution being investigated was purged with 

helium gas to make the environment oxygen free. The experimental setup is 

shown in Figure 4.5. 

 
Figure 4.5 Experimental setup of liquid phase electrochemistry. 

A different approach was performed to investigate the electrochemical 

behavior of the redox polymer. In this approach, the redox polymer (Fc-PEG) 

was deposited on the tip of the working electrode surface, which was wrapped 

with a polycarbonate membrane filter (0.6 µm) using an O-ring. The working 

electrode wrapped with a polymer, reference and auxiliary electrodes were then 

dipped in the electrolyte solution for electrochemical measurements. Here the 

same electrodes were used for measurements as mentioned previously. The 

experimental setup for this approach is shown in Figure 4.6.  
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Figure 4.6 (a) Polymer deposited on microelectrode, (b) Experimental setup. 

4.4.2.2 Semi-Solid Phase Electrochemistry 

This method was used to analyze the redox additive polymer in semi-solid 

phase using the platinum ultramicroelectrode. The Fc-PEG polymer was mixed 

with few drops of an electrolyte and deposited on the ultramicroelectrode. A 

teflon block was made with a 3 mm hole through it, in which the platinum ultra 

microelectrode was inserted. This assembly was then placed on a silver plate 

which acted as reference and auxiliary electrodes. The coated ultramicro- 

electrode was then put through the teflon block for support and placed on a silver 

plate for electrical contact as shown in Figure 4.7. 
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Figure 4.7 Experimental setup for semi-solid phase ultramicroelectrode 
voltammetry. 
 
4.5 Results and Discussion 

The following characterization techniques were used to confirm the product 

synthesized by the Steglish esterification with DIC reagent.   

4.5.1 NMR Spectroscopy 

The 1H-NMR and 13C-NMR spectra of PEG-ferrocene dicarboxylate polymer 

is shown in Figure 4.8 and 4.9 respectively. 1H-NMR (400 MHz, DMSO) δ: 

4.23,4.53 (s, 8H, cyclopentyl), 3.45 (m, 32H, -OCH2-CH2-O-), 3.18 (s, 2H, -OH). 

13C-NMR (400 MHz, DMSO) δ: 72.96, 72.43, 71.71 (cyclopentyl), 70.42 (-OCH2-

CH2O-), 60.86 (-COO-CH2CH2O-). The spectra was consistent with previously 

published work.56 The unmarked peaks are probably the impurities or byproducts 

from the reaction. 
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Figure 4.8 1H-NMR spectrum of Fc-PEG polymer. 

 
Figure 4.9 13C-NMR spectrum of Fc-PEG polymer. 
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4.5.2 Electrochemical Analysis 

4.5.2.1 Solution Phase Electrochemistry 

The cyclic voltammograms of ferrocene-dicarboxylic acid using a 

microelectrode and an ultramicroelectrode are shown in Figure 4.10 and Figure 

4.11 respectively. For microelectrode, the potential was swept from -0.2 to 1.0 V 

at 0.1 V/s scan rate. It can be seen from Figure 4.10 that the ferrocene-

dicarboxylic acid has one redox peak corresponding to the Fc/Fc+ redox couple 

with redox potential of 0.853 V and peak splitting ΔE = 93 mV, suggesting that it 

is reversible. For an ultramicroelectrode, the potential was swept from 0.6 to 1.2 

V at a scan rate of 0.01 V/s. The shape of voltammogram was sigmoidal as 

shown in Figure 4.11 which is as expected for the ultramicroelectrodes.  

 
Figure 4.10 Cyclic Voltammogram of Ferrocene-dicarboxylic acid in acetonitrile 
with microelectrode.  
 

-1

1

3

5

7

0 0.2 0.4 0.6 0.8 1
Potential / V

C
u
rr

e
n

t
/ 

1
e

-6
A

Fc/Fc+



57 
 

 
Figure 4.11 Cyclic Voltammogram of Ferrocene-dicarboxylic acid in acetonitrile 
with ultramicroelectrode. 
 
 The CVs of Fc-PEG polymer were recorded for both micro- and ultramicro-  

electrodes as shown in Figure 4.12 and 4.13 respectively. The potential was 

swept from -0.2 to 1.0 V at a scan rate of 0.1 V/s for microelectrode. The CV 

graph showed one redox couple which corresponds to the Fc/Fc+ redox couple 

and is consistent with the formation of an ester linkage between PEG and 

ferrocene-dicarboxylic acid. The redox potential for polymer is 0.74 V and ΔE = 

95 mV which is slightly shifted from ferrocene-dicarboxylic acid, as seen in Figure 

4.12. This shift in the redox potential may be due to a quasi-reference electrode. 

For an ultramicroelectrode, the potential was swept from 0.0 to 1.0 V at 0.05 V/s. 

The CV was sigmoidal in shape as expected for an ultramicroelectrode (Figure 

4.13). 
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Figure 4.12 Cyclic Voltammogram of Fc-PEG polymer with microelectrode. 
 

 
Figure 4.13 Cyclic Voltammogram of Fc-PEG polymer with ultramicroelectrode. 
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4.5.2.2 Semi-Solid Phase Electrochemistry 

 The CV of Fc-PEG polymer was performed with an ultramicroelectrode as 

shown in Figure 4.14. The potential was swept between 0.5 to 1.2 V at 0.01 V/s 

scan rate. The redox potential for the Fc/Fc+ redox couple is 0.89 V and ΔE = 

0.44 V. The solid phase electrochemistry showed sigmoidal graph due to an 

ultramicroelectrode.  

 
Figure 4.14 Cyclic Voltammogram of Fc-PEG polymer using silver plate. 
 
4.5.3 Fourier Transform Infrared Spectroscopy 

 The stacked FTIR spectra of Fc-PEG polymer, ferrocene dicarboxylic acid, 

and PEG are shown in Figure 4.15 (a), (b), and (c), respectively. Sharp peaks at 

1660 cm-1 and 1169 cm-1 corresponds to the C=O and C-O stretching modes 
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respectively of the carboxylic acid groups of ferrocene-dicarboxylic acid (Figure 

4.15 (b)). The broad peaks at 2645 cm-1 and 2980 cm-1 are related to the O-H 

vibration of the carboxylic acid group and the C-H stretching mode of the 

cyclopentyl rings of ferrocene. In the PEG spectrum (Figure 4.15 (c)), a sharp 

peak at 1098 cm-1 corresponds to the C-O ether linkage and 2888 cm-1 peak is 

related to the sp3 hybridized carbon. The Fc-PEG polymer spectra (Figure 4.15 

(a)) showed common peaks with starting compounds and an additional ester 

linkage absorption band. The peaks between 1600 - 1700 cm-1 and a band at 

1180 cm-1 frequency corresponds to C=O and C-O ester linkage respectively 

between the PEG and ferrocene-dicarboxylic acid. The broad peak at 2985 cm-1 

is related to the C-H vibrational frequency of the cyclopentyl rings and absorption 

band at 2891 cm-1 corresponds to the sp3 hybridized C-H bond of PEG chain. 

The other common peak is at 1060 cm-1 corresponds to the C-O ether bond of 

PEG. Therefore, the ester linkage absorption band in the Fc-PEG polymer 

spectrum confirms the covalent attachment of PEG and ferrocene-dicarboxylic 

acid. 
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Figure 4.15 FTIR spectra of (a) Fc-PEG polymer, (b) ferrocene-dicarboxylic acid, 
and (c) PEG. 
 
4.6 Conclusions 

 The Steglish esterification method using the DIC reagent proved to be the 

best method for the synthesis of Fc-PEG polymer. Both 1H and 13C NMR spectra 

showed an ester linkage peak. The CV of the Fc-PEG polymer resulted in Fc/Fc+ 

redox peaks which confirmed the covalent attachment of PEG and ferrocene-

dicarboxylic acid as PEG is electrochemically inactive. The FTIR spectrum also 

showed ester absorption peaks at 1688 cm-1 and 1188 cm-1 corresponding to 

C=O and C-O stretch modes which confirmed the ester formation. This Fc-PEG 

polymer will act as polyelectrolyte in the cell and will be grafted to functionalized 

SWCNTs which is discussed in Chapter 5.  
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Chapter 5 : GRAFTING OF CARBON NANOTUBES WITH FERROCENE-
POLYEHTYLENE GLYCOL POLYMER 

5.1 Introduction 

 The grafting of nanotubes to the Fc-PEG polymer increases the solvent 

accessible surface area of SWCNTs, and thus increases the ion mobility from the 

electrolyte to the current collector as discussed in Chapter 2. The SWCNT-

Ferrocene (Fc) polymer was synthesized in two steps: the first step was to 

activate refluxed nanotubes (mentioned in Chapter 3) using acyl chlorination and 

the second step was to react Fc-PEG polymer (synthesized in Chapter 4) with 

the activated nanotubes. The reaction is shown in Scheme 5.1 and the 

mechanism for the acyl chlorination is discussed in detail in Chapter 4. 

Scheme 5.1 Scheme of (a) acyl chlorination of SWCNTs and (b) formation of 
SWCNT-Fc polymer composite.   
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5.2 Materials 

Acetonitrile, dimethyl formamide (DMF) and oxalyl chloride were obtained 

from Sigma Aldrich Corporation and were used as received. All liquid solvents 

and solid reactants were dried using molecular sieves and stored in the 

refrigerator. Glass syringes were used to transfer dried liquid reagents and 

solvents into the reaction mixture. All reactions were performed in a three-neck 

round bottom flask fitted with a rubber septum under an inert nitrogen 

atmosphere. 

5.3 Experimental Methods 

 Refluxed SWCNTs (50 mg), were sonicated in 20 mL DMF for 30 minutes to 

make a homogenous suspension. This solution was then stirred for 30 minutes in 

an ice bath. The oxalyl chloride (4 mL) was added dropwise to the resultant 

suspension and stirred for 2 hours in an ice bath. After the oxalyl chloride 

addition, the reaction mixture was stirred for an hour at room temperature and 

was then increased to 70°C for 8 hours to remove any unreacted oxalyl chloride.  

 Fc-PEG polymer (0.08 mmol, 50 mg) was dissolved in 5 mL DMF and added 

to the above reaction mixture. The reaction mixture was stirred for 5 days at 

100°C. It was then cooled to room temperature and the solvent was evaporated 

to dryness, to obtain the resulting black color grafted SWCNT- ferrocene (Fc) 

polymer. The product was then dried under vacuum and used without further 

purification.65,66,67 
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5.4 Characterization Techniques 

 FTIR is one of the few analytical techniques suitable for the identification of 

organic compounds in these materials. The molecule responsible for IR 

absorption vibrates at a frequency characteristic of the functional groups, e.g. 

amides, esters, carbonyls, etc. The FTIR spectrum of SWCNT-Fc polymer was 

recorded on the Thermo Nicolet 6700 FT-IR spectrometer.  

Electrochemical analysis was done on CH 660 Electrochemical Analyzer, and 

cyclic voltammetry (CV) was used to investigate the redox behavior of SWCNT-

Fc polymer.  

5.5 Results and Discussion 

5.5.1 Fourier Transform Infrared Spectroscopy 

 The stacked FTIR spectra of SWCNT-Fc polymer, refluxed SWCNTs, and Fc-

PEG polymer in an inset are shown in Figure 5.1. The absorption band at 

2150 cm-1 corresponds to the sp2 hybridized carbon stretching mode of carbon 

nanotubes in SWCNT-Fc polymer (Figure 5.1 (a)). This vibrational frequency 

coincides with that of the refluxed SWCNTs. The additional sharp peaks in the 

600 - 1700 cm-1 and 1150 - 1173 cm-1 corresponds to the C=O and C-O 

stretching modes respectively. These groups are from the ester linkage between 

Fc-PEG and SWCNTs, and within the Fc-PEG. The other prominent bands seen 

in Figure 5.1 (a) are common with the Fc-PEG polymer, at 2766 cm-1 

corresponding to the C-H alkane stretching mode of the PEG chain, and at about 

2960 cm-1 related to the C-H alkene stretching mode of the cyclopentyl ferrocene 



65 
 

rings as discussed in Chapter 4. The SWCNT-Fc polymer spectra can be 

compared with the FTIR spectra of Fc-PEG polymer, shown in an inset of Figure 

5.1. The FTIR spectra of the SWCNT-Fc polymer was not conclusive because of 

the presence of multiple ester groups. Therefore, the FTIR spectra did not 

confirm the covalent attachment of Fc-PEG polymer and SWCNTs. In contrast, 

the common absorption bands confirmed the formation of SWCNTs and polymer 

composite.   

 
Figure 5.1 FTIR spectra of (a) SWCNT-Fc polymer and (b) refluxed SWCNTs. 
Inset (c) shows the FTIR spectrum of Fc-PEG polymer. 
  
5.5.2 Electrochemical Analysis 

 The cyclic voltammogram of the SWCNT-Fc polymer was recorded using a 

semi-solid phase ultramicroelectrode voltammetry as discussed in Chapter 4. In 

this cell, the silver plate acted as a reference and an auxiliary electrode and a 10 
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µm platinum ultramicroelectrode was used as the working electrode. The 

potential was swept between 0 to 0.7 V with a scan rate of 0.03 V/s. Figure 5.2 

shows the cyclic voltammogram exhibiting a plateau corresponding to the Fc/Fc+ 

redox couple at 0.37 V. This general peak shape corresponds clearly to the 

effective hemispherical diffusion and attests to the good charge transfer rates in 

this matrix of SWCNTs and polymer. The apparent diffusion coefficient of Fc/Fc+ 

assuming a 1 M concentration of redox sites was 3.0 x 10-8 cm2/s, which was 

calculated using a radial diffusion equation discussed in Chapter 4 (Equation 

4.3). The shape of the graph is broad because of capacitance due to nanotubes.  

 
Figure 5.2 Cyclic Voltammogram of SWCNT-Fc polymer. 
 
5.6 Conclusions 

 The CV showed reversible Fc/Fc+ redox peaks which indicated the 

esterification between Fc-PEG and SWCNT was in part successful, despite the 

ambiguity of the FTIR spectra.  FTIR spectra showed common absorption peaks 

at 2766 cm-1 and 2960 cm-1 corresponding to the Fc-PEG polymer. However, the 
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frequencies corresponding to the ester linkage were not conclusive in confirming 

the covalent linkage between SWCNTs and Fc-PEG polymer because of the 

large number of ester groups present in the polymer backbone. This SWCNT-Fc 

polymer composite was further used in the fabrication of the hybrid cell discussed 

in the next chapter.  
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Chapter 6 : FABRICATION OF PROTOTYPE CELL 

6.1 Background 

 The prototype hybrid supercapacitor cell is fabricated using the SWCNT-Fc 

polymer (discussed in Chapter 5), which acts as a reduction half-cell and the 

SWCNT-viologen polymer that was synthesized by laboratory colleague 

Kanishka Rana27 was used as an oxidation half-cell. When a potential is applied, 

the ferrocene species gets oxidized first to ferricenium (Fe+3) ion and electrons 

flow from the positive to the negative electrode via an external circuit because of 

a higher redox potential than the viologen species. The electrons at the negative 

electrode, reduce the V+2 to V+. Along with this, there is also formation of an 

electric double layer at the interface between SWCNTs and electrolyte at both 

electrodes. The perchlorate ions in the electrolyte flow towards the positive 

electrode via a separator, whereas lithium ions flow towards the negative 

electrode. Once all of the electrons and ions are transferred, the cell is fully 

charged and ready to use.  

During discharging, the ions flow towards the opposite electrode and 

electrons flow from the negative to the positive electrode through the outer 

circuit. Once all the ferricenium ions are reduced to ferrocene and V+ is oxidized 

to V2+, the battery is fully discharged and needs re-charging. The redox reaction 

contributes to the faradaic capacitance and the electrical double layer contributes 

to the non-faradaic capacitance. The faradaic and non-faradaic processes are 

expected to increase the energy density of the hybrid cell. The mechanism of the 
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hybrid cell is illustrated in Figure 6.1. The redox reactions during charging and 

discharging at both the positive and negative electrodes are depicted below from 

equations 6.1 – 6.4. 

During charging: 

At positive electrode: 

EX + A- → EX
+  ∕∕ A- + e- 

Fc + ClO4
-  → Fc

+ ∕∕ ClO4
-  + e- 

At negative electrode: 

Ey + C+ + e- → Ey
-  ∕ ∕ C+ 

V
2+ + Li

+ + e- → V+ ∕ ∕ Li
+ 

During discharging: 

At positive electrode: 

EX
+   ∕ ∕ A- + e- → EX + A- 

Fc
+ ∕ ∕ ClO4

-  + e- → Fc + ClO4
-  

At negative electrode: 

Ey
-  ∕ ∕ C+ → Ey + C+ + e- 

V
+ ∕ ∕ Li

+ → V2+ + Li
+ + e- 

where Ex is the SWCNT-Fc electrode, Ey is the SWCNT-V electrode, A- is the 

perchlorate ion, C+ is the lithium ion and ∕ ∕ represents the interface of electrode 

and electrolyte.   

Equation 6.1 

Equation 6.2 

Equation 6.3 

Equation 6.4 
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Figure 6.1 Mechanism of a hybrid supercapacitor cell during charging. 
 
 The electrochemical performance of the cell was analyzed by cyclic 

voltammetry (CV) and chronoamperometry (CA) techniques. CV is used to 

investigate the electrochemical behavior of the analytes which can be 

electrochemically oxidized or reduced. This technique is explained in detail in 

Chapter 4. CA is another electrochemical technique which investigates the 

kinetics of chemical reactions and diffusion processes. The current is measured 

as a function of time with response to the applied step potential. The recorded 

current can be of two types depending on the run time of the experiment: for a 

short time scale, the capacitive current is dominant while the faradaic current is 

dominant for a longer time. Initially, the potential of the working electrode is held 

at Ei and at t=0, then it is changed instantaneously to a new value E1 (Figure 6.2 
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(a)). The corresponding current vs time response is recorded as shown in Figure 

6.2 (b).68,69  

 
Figure 6.2  The chronoamperometric experiment. (a) The potential-time profile 
applied during experiment, Ei is initial value and E1 is the final value. (b) The 
corresponding response of the current due to changes of the potential. 
 

For the diffusion-controlled or faradaic process, the current follows the Cottrell 

equation as shown: 

i = 
nFAcj

0√Dj

√π t
 

where i is the current in amperes, n is the number of electrons in the redox 

reaction, F is the Faraday constant, A is the area of the electrode in cm2, cj
0 is the 

initial concentration of analyte j in mol/cm3, Dj is the diffusion coefficient for 

species j in cm2/s, and t is the time in s.69  

 The current is largely non-faradaic at short time scales due to the charging of 

the double-layer capacitance. The non-faradaic current decays exponentially with 

time constant RC as shown: 

i=
E

R
e-t/RC 

Equation 6.5 

Equation 6.6 
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where E is the potential applied, R is the resistance, and C is the double-layer 

capacitance.69  

6.2. Cell Fabrication Procedure 

 The materials used to assemble the hybrid supercapacitor cell are aluminum 

C-clamp, aluminum current collectors, platinum foils, silicone gaskets, SWCNT-

Fc composite, viologen grafted SWCNTs, and a polycarbonate membrane 

separator. The electrolyte used was 0.1 M lithium perchlorate in dry acetonitrile. 

 In this work, the current collectors were polished to remove any impurities and 

platinum foil was placed at the center. Silicone gaskets were pasted over 

aluminum current collectors to prevent short circuiting and with platinum cavity 

for sample deposition. This configuration is illustrated in Figure 6.3. 

 
Figure 6.3 Aluminum current collectors with silicon gaskets and platinum foils. 
 
 The paste of the SWCNT-Fc composite (3 mg) with an electrolyte was 

deposited on the platinum which acted as the working electrode and the viologen 

grafted SWCNTs (3 mg) and electrolyte paste was deposited on the other 

platinum foil which was used as the reference and auxiliary electrode. Once the 

sample was deposited, 19 polycarbonate separator membranes were placed in 
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between the two electrodes and were clamped together with a C-clamp in 

sandwich model configuration as shown in Figure 6.4. While clamping a Teflon 

sheet was placed on the reference electrode side to avoid short circuiting of the 

cell. The configuration of the cell for experiments is illustrated in Figure 6.5. In all 

the CV and CA experiments, the configuration of the cell was kept the same.  

 
Figure 6.4 Aluminum current collectors with (a) analyte and (b) separator. 
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Figure 6.5 Configuration of the prototype cell in sandwich configuration. 
 
6.3 Performance Analysis 

6.3.1 Cyclic Voltammetry Analysis 

CVs were recorded using CH 660 Electrochemical Analyzer/Workstation and 

the potential of the working electrode was swept between 0 to 2 V at scan rates 

of (a) 0.005 V/s, (b) 0.01 V/s, and (c) 0.1 V/s as shown in Figure 6.6. In all the 

cyclic voltammograms, similar responses were obtained. In the forward scan, 

anodic current was observed due to the oxidation of ferrocene dicarboxylic acid. 

Whereas, during the reverse scan, no cathodic peak current was seen 

suggesting leakage through separator membranes between the oxidation and 

reduction half-cells.  
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Figure 6.6 Cyclic Voltammograms of the prototype cell at scan rates (a) 0.005 
V/s, (b) 0.01 V/s, and (c) 0.1 V/s. 
 
6.3.2 Chronoamperometry Analysis 

To investigate the charging and discharging currents of the prototype cell, 

chronoamperometry (CA) was done using Princeton Applied Research / EG&G 

263A Potentiostat. Before recording CA, the cell was equilibrated for 500 s at 0 

V. Once the current reached zero, the applied potential was stepped from 0 to 1 

V and the cell was held for 500 s to record response. Then the applied potential 

was stepped down from 1 to 0 V for 500 s. Similar double pulse CA experiments 

were performed for 0.5 s, 5 s and 50 s in the same potential range. The resulting 

CA graphs are shown in Figure 6.7 (a) 0.5 s, (b) 5 s, (c) 50 s, and (d) 500 s. 
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Figure 6.7 Chronoamperometry graphs of the prototype cell at (a) 0.5 s, (b) 5 s, 
(c) 50 s, and (d) 500 s. 
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In all the CA graphs, the current decreased gradually with increasing time 

intervals from 0.5 s to 500 s. At longer time scales (50 s, 500 s) the battery 

showed less relative capacitive current as compared to the shorter time scales 

(0.5 s, 5 s). This is because the capacitive current decays exponentially with 

time, as compared to faradaic current, according to Equation 6.6. Therefore, at 

larger time scales (500 s), mostly faradaic current is observed. Unfortunately, 

charging and discharging currents in all the CA graphs were unequal, as shown 

in Table 6.1. This unequal current means that the current is not being stored fully. 

One possibility is that there is a leakage of current, possibly due to penetration of 

SWCNTs through the separator membrane. 

Table 6.1 Charging and discharging currents.  

Time (s) Charging Current (10-4 A)  Discharging Current (10-4 A) 

0.5 1.97 -1.07 

5 1.36 -0.81 

50 0.92 -0.72 

500 0.68 -0.58 

 

6.4 Conclusions and Future Work 

 In this work, the battery material, a SWCNT-Fc polymer composite was 

successfully synthesized. This material showed an excellent redox behavior and 

electrochemical properties and an appropriate material for a reduction half-cell in 

a prototype cell. The material for the oxidation half-cell was a SWCNT-viologen 

(V) polymer composite which showed promising electrochemical behavior and 

was synthesized by my laboratory colleague Kanishka Rana.27 SWCNT-Fc 

polymer and SWCNT-V polymer composites were used in the fabrication of the 
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prototype cell. The CV and CA results for the hybrid cell were not conclusive in 

showing the desired charging and discharging curves. The CV responses 

exhibited an anodic current in the forward scan whereas no cathodic current 

plateau was seen in the reverse scan. Similarly, CA graphs showed charging 

current, but the discharging current was much lower than that. Both CV and CA 

responses suggested the leakage of current and short circuiting of the SWCNT-

polymer composites through the separator membrane.  

 The battery materials used in the prototype cell showed promising 

electrochemical responses. But the charging-discharging behavior of the hybrid 

prototype cell is yet to be fully understood. Further study could focus on using the 

different types of separator membranes such as nylon membranes of smaller 

pore size to avoid leakage of carbon nanotubes and short circuiting of the cell. 

Another type of gasket could be used instead of silicone as it swells by absorbing 

acetonitrile leading to low conductivity and diffusivity of electrolyte ions in the 

electrode. A non-volatile alternative solvent could be used because acetonitrile 

being volatile might be drying up the sample, resulting in low diffusivity and 

mobility of electrolyte ions through the separator. 
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