
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Theses Master's Theses and Graduate Research 

Summer 2018 

A Numerical Study of the van Roosbroeck System for A Numerical Study of the van Roosbroeck System for 

Semiconductors Semiconductors 

Alan Ghazarians 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses 

Recommended Citation Recommended Citation 
Ghazarians, Alan, "A Numerical Study of the van Roosbroeck System for Semiconductors" (2018). 
Master's Theses. 4939. 
DOI: https://doi.org/10.31979/etd.k2yb-6c32 
https://scholarworks.sjsu.edu/etd_theses/4939 

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU 
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/4939?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F4939&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


A NUMERICAL STUDY OF THE VAN ROOSBROECK SYSTEM FOR
SEMICONDUCTORS

A Thesis

Presented to

The Faculty of the Department of Mathematics
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ABSTRACT

A NUMERICAL STUDY OF THE VAN ROOSBROECK SYSTEM FOR
SEMICONDUCTORS

by Alan Ghazarians

Since the 1950s, semiconductors have played a significant and daily role in our

lives, as they are the foundation of our computers, phones, and other electronic

devices. Aside from their obvious uses, the equations that govern semiconductors

have peaked the interest of mathematicians and numerical analysts. In 1950, van

Roosbroeck described the fundamental semiconductor device equations as a system

of three nonlinear coupled partial di↵erential equations. The van Roosbroeck

system poses a challenge numerically because of its strong nonlinearity and coupled

equations. Its di�culties lie in simultaneously solving drift-di↵usion equations for

electrons and holes and using their solutions to solve the Poisson equation. To start

o↵, we will numerically solve the one-dimensional drift di↵usion equation with

constant velocity using unwinding techniques and illustrate the results using

MATLAB for a toy model. This attempt will only complicate solving two

drift-di↵usion equations and will not su�ce in solving the full van Roosbroeck

system. Thus, we will analyze the standard finite di↵erence scheme proposed by

Scharfetter and Gummel that deals nicely with the nonlinearity and coupled

equations. Then we will compare and contrast the solutions by the standard finite

di↵erence scheme proposed by Scharfetter and Gummel and direct discretization of

the fluxes in Slotboom variables. We will conclude that the Slotboom discretization

performs better than the Scharfetter-Gummel in cases of large forward bias. We will

also briefly discuss solar cells and their simulations.
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CHAPTER 1

INTRODUCTION

Without mathematics, much of our understanding of the physical world would

be nonexistent. Mathematics is vital to the advent of new technologies, which allow

us to improve our understanding of the world and each other. While some problems

can be solved with pencil, paper, and classical techniques, others require huge

amount of computing power and more sophisticated techniques.

That being said, solutions to partial di↵erential equations (PDEs) are an area in

which it is necessary to implement these sophisticated techniques. While there are

PDEs, such as the wave equation or heat equation, that can be solved analytically,

there are other PDEs, such as the infamous Navier-Stokes, which cannot. This

paper will explore a system of PDEs with certain conditions that require computers

and numerical techniques in order to approximate solutions to the system.

Vasileska and Goodnick [VG06] point out that over the last half of the 20th

century, semiconductors continue to play a significant and daily role in everyday life

as they are found in computers, phones, televisions, solar cells, and other electronic

devices. The development of semiconductor technology is a testament to the

collaboration and interactions between physicists, engineers, and mathematicians.

While mathematical models allow for predications otherwise impossible to observe

experimentally, numerical simulations have led to more innovative and optimal

designs of semiconductor devices without the need to create expensive and

time-consuming prototypes.

Everything we see around the world, all matter, is made up of tiny particles
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called atoms. Within these atoms, there are three subatomic particles called

electrons, protons, and neutrons. Protons and neutrons are of the same size, but

protons have a positive charge while neutrons have neutral charge. The electron is

about 2000 times smaller than the proton and has a negative charge. Protons and

neutrons are at the center of the atom called the nucleus and electrons live in the

electron cloud in orbitals surrounding the nucleus. The atomic number is the

number of protons in an atom and determines the type of element. Silicon, which

will be of relevance throughout this paper, is an element with 14 protons. While

silicon has 14 electrons, it has 4 valence electrons meaning that it has 4 electrons in

its outermost orbitals and can form 4 covalent bonds with 4 other silicon atoms.

When an atom shares its electrons with another atom in order to fill both of their

orbitals it creates a covalent bond.

As seen in Silberberg and Amateis [SA15], semiconductors are made from

molecules of silicon with a diamond cubic crystal structure. In this structure the

atoms are held together by electron-pair bonds formed by electrons in the outermost

shell (valence electrons). This structure is very strong and electrically neutral, but

one can change the structure by adding impurities, which we will discuss later.

Essential to the theory of semiconductors is the notion that electrons can carry

electric current in two di↵erent ways. Shockley [Shi50] states that the first is

conduction by electrons and the other is conduction by holes. An electron that

moves throughout a crystalline structure leaves in its place a hole. Therefore, a hole

is not in and of itself a particle, but the empty space once occupied by an electron.

Later, we will discuss this movement of electrons and holes in a semiconductor that

has elements other than silicon in it.

Semiconductor device modeling started in the 1950s after W.W. van

Roosbroeck [vR50] formulated a system of three nonlinear, coupled partial
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di↵erential equations known as the fundamental semiconductor equations or van

Roosbroeck system while working at Bell Labs in New Jersey. These equations

describe the potential distribution, carrier concentrations, and current flow of

electrons and holes inside a semiconductor device. Mathematically, these equations

consist of a Poisson equation for the electric potential and two drift-di↵usion

equations for electrons and holes. Described further in Farrell, Rotundo, Doan,

Kantner, Fuhrmann, and Koprucki [FRD+16], the semiconductor equations are

derived from Maxwell’s equations, relations from solid-state physics, and knowledge

of semiconductors.

In order to understand the di�culty of the van Roosbroeck system, we must

mathematically and physically understand each PDE. A PDE is an equation that

involves an unknown function of two or more variables and its partial derivatives. A

PDE is considered nonlinear because its output is not proportional to its input.

According to Evans [Eva15], system of PDEs is considered coupled if the solution to

one PDE depends on the solution of another. In the van Roosbroeck system, in

order to solve the nonlinear Poisson equation, one must first solve the two

drift-di↵usion equations. The Poisson equation is the negative Laplacian operator,

which takes the second order partial derivative of each variable, equaling some other

function (��u = f). For the van Roosbroeck system, the Poisson equation is the

negative Laplacian of the electrostatic potential equated to the density of the

system. We will see later that we will solve the Poisson equation to obtain the new

electrostatic potential at each time step. The drift-di↵usion

(convection/advection-di↵usion) equation (ut = aux + buxx) is a combination two

PDEs: the drift (advection) equation (ut = aux) and the di↵usion (heat) equation

(ut = auxx). LeVeque [Lev07] states that the drift equation describes the transport

of a substance over time while the di↵usion equation describes the distribution of a
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substance over time. Farrell, Rotundo, Doan, Kantner, Fuhrmann, and

Koprucki [FRD+16] state that the two drift-di↵usion equations describe the drift of

electrons and holes throughout a semiconductor and the di↵usion of electrons and

holes across the PN junction of a semiconductor. Hence, the drift-di↵usion

equations describe the current flow in semiconductors.

Aside from the practical uses of semiconductors, the equations that govern

semiconductors have peaked the interest of mathematicians and numerical analysts

according to Markowich [Mar86]. In the 1970s, mathematicians focused on proving

existence and uniqueness of solutions using theories of partial di↵erential equations

for the van Roosbroeck system. The increased interest from a mathematical

perspective and the physical understanding of the system led to a development of

better numerical techniques. This interaction between mathematics and physics

allowed analysis and simulation of more complicated, multidimensional devices.

Sometimes, analytically solving a system of PDEs becomes too di�cult as is the

case of the Navier-Stokes equations for incompressible, viscous flow. In these

situations, mathematicians and numerical analysts implement numerical techniques

such as finite di↵erence, finite element, or finite volume methods in order to

approximate solutions. Finite di↵erence methods usually yield solutions that are

just as accurate and useful as analytic solutions. Of course, finite di↵erence methods

are not restricted to solving PDEs that have no analytic solution. In fact, these

methods can give insight and provide e�cient solutions to PDEs. Finite di↵erence

methods assume a grid upon which the derivatives of the PDE are approximated

using a stencil or molecule. Then, in order to approximate the solution at other

points in space, the stencil moves throughout the grid as explained by

Smith [Smi73].

In the beginning stages of semiconductor device modeling, simplified
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one-dimensional models were easily solved analytically, which gave insight and

understanding to improve their designs. As the devices became bigger and more

complicated, numerical simulation techniques such as finite di↵erence methods were

implemented in order to model these devices and create better ones. Soon after, it

was realized that standard finite di↵erence methods and discretizations were no

longer appropriate as they required massive amounts of computational power and

storage. The complications lie in the nonlinearities and coupling of the system itself,

so there was a need for a method that could deal with the nonlinearities and

coupling. Selberherr [Sel84] describes that these issues were overcome in the 1960s

when Scharfetter and Gummel created a nonstandard way of discretizing the van

Roosbroeck system.



6

CHAPTER 2

FINITE DIFFERENCE METHODS

In this chapter we will review the basics of finite di↵erence methods, their

stability, convergence, and consistency, and provide examples of solutions to

di↵erent PDEs.

2.1 Finite Di↵erence Methods Basics

The one-dimensional heat equation with homogenous Dirichlet boundary

conditions given by

8
>>>>>><

>>>>>>:

ut = uxx

u(0, t) = u(L, t)

u(x, 0) = f(x)

(2.1)

has a well-known analytical solution found by using separation of variables as

shown in Burden and Faires [BF11], Evans [Eva15], Larsson and Thomée [LT09],

and LeVeque [Lev07]. The solution is

u(x, t) =
1X

n=1

cn sin

 
n⇡x

L

!
exp

 
� n

2

⇡

2

t

L

2

!
(2.2)

where

cn =
2

L

Z L

0

f(x) sin

 
n⇡x

L

!
dx. (2.3)
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Smith [Smi73] points out that an analytical solution is hard to come by with

most PDEs, so using numerical techniques become necessary. First, we will work on

a uniform grid where the spatial steps are given by xi+1

= xi + i�x and the

temporal steps are given by tj = tj + j�t. The goal of finite di↵erence methods is to

solve the PDE on the entire grid as we approach a steady-state solution.

We now introduce finite di↵erence methods, which use the approximation of the

derivative found using a Taylor series expansion of f(x+�x). Some approximations

are given by the following:

f

0(x) ⇡ f(x+�x)� f(x)

�x

+O(�x) (2.4)

and

f

0(x) ⇡ f(x)� f(x��x)

�x

+O(�x) (2.5)

and

f

0(x) ⇡ f(x+�x)� f(x��x)

2�x

+O(�x

2). (2.6)

In Larsson and Thomée [LT09], these approximations are known as forward,

backward, and central di↵erence formulas, respectively.

We will use the forward di↵erence formula to approximate the value of the

function at a specified grid point xi as

f

0(xi) ⇡ f(xi +�x)� f(xi)

�x

=
f(xi+1

)� f(xi)

�x

. (2.7)

With the heat equation, we have a derivative with respect to time and space, so

we will need to approximate our derivatives at points (xi, tj) using forward

di↵erences. We will denote our approximations as

ut(xi, tj) =
@u

@t

���
(x

i

,t
j

)

=
ui,j+1

� ui,j

�t

(2.8)
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uxx(xi, tj) =
@

2

u

@x

2

���
(x

i

,t
j

)

=
ui+1,j � 2ui,j + ui�1,j

�x

2

. (2.9)

Using these approximations, we can write the heat equation as follows:

ui,j+1

= Rui+1,j + (1� 2R)ui,j +Rui�1,j (2.10)

where R = �t
�x2 .

This finite di↵erence method is considered an explicit scheme, which means we

use the previous time solution to approximate the future time solution. We can also

use an implicit scheme given by

ui,j = �Rui+1,j+1

+ (1 + 2R)ui,j+1

�Rui�1,j+1

. (2.11)

The explicit and implicit finite di↵erence schemes can now be thought of as a

system of equations and, therefore, solved by using a matrix equation given by

~u

j+1 = A~u

j (2.12)

where

A =

2

666666666666666664

1� 2R R 0 . . . . . . 0 0

R 1� 2R R 0 . . . . . . 0

0 R 1� 2R R

. . .
...

...
. . .

R

. . . . . . . . .
...

...
. . . . . . . . . . . . 0

0
. . . . . . . . .

R

0 0 . . . . . . 0 R 1� 2R

3

777777777777777775

. (2.13)

In the case of the implicit finite di↵erence scheme, we are solving
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~u

j = B~u

j+1 (2.14)

where

B =

2

666666666666666664

1 + 2R �R 0 . . . . . . 0 0

�R 1 + 2R �R 0 . . . . . . 0

0 �R 1 + 2R �R

. . .
...

...
. . . �R

. . . . . . . . .
...

...
. . . . . . . . . . . . 0

0
. . . . . . . . . �R

0 0 . . . . . . 0 �R 1 + 2R

3

777777777777777775

. (2.15)

2.2 Stability, Convergence, and Consistency

When using a finite di↵erence scheme, we are concerned with the conditions for

which the scheme will yield reasonably accurate approximations to the solution of

the PDE. According to Smith [Smi73], in order to determine whether or not a finite

di↵erence scheme approximates the solution, we look at the stability, convergence,

and consistency. We will denote the exact analytical solution to a PDE as u(x, t)

and the computed solution from the finite di↵erence scheme as ui,j.

O’Brien and Kaplan [BK50] state say that a finite di↵erence scheme is stable if

the computed solution remains finite (| ui,j |< 1) and does not oscillate

unnecessarily as �x,�t ! 0. The most common procedure to check for stability is

called von Neumann stability analysis in which we assume that the solution is a

finite Fourier series. We denote the solution as up,q = ⇠

q
e

i�ph where ⇠ is known as

the amplification factor. In order for our finite di↵erence scheme to be stable, we

must have | ⇠ | 1..
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Performing a von Neumann stability analysis on the explicit scheme for the heat

equation derived above looks like

⇠

q+1

e

i�ph = R⇠

q
e

i�(p+1)h + (1� 2R)⇠qei�ph +R⇠

q
e

i�(p�1)h (2.16)

⇠ = 2 cos(�h) + (1� 2R), (2.17)

which yields the well-known condition that 0  R  1

2

.

While the explicit scheme is easy to derive and use, it, unfortunately, only

provides accurate solutions for 0 < R  1

2

as found above. Instead of using an

explicit scheme, we can use an implicit time scheme given by:

ui,j = �Rui�1,j+1

+ (1 + 2R)ui,j+1

�Rui�1,j+1

. (2.18)

After performing a von Neumann stability analysis, we can see that implicit

scheme is unconditionally stable unlike the explicit scheme. In order to assess the

stability of a finite di↵erence method, one can also use matrix norms or Gerschgorin

circles as further explained in Smith [Smi73].

While having a finite di↵erence scheme be stable is desirable, we also want it to

converge to the actual solution. We say that a finite di↵erence scheme is convergent

if the computed solution and the exact analytic solution coincide at a point at the

space and time step go to 0:

lim
�x,�t!0

| u(x, t)� ui,j |! 0. (2.19)

In general, determining whether a finite di↵erence scheme is convergent is quite

di�cult because we are usually trying to approximate a solution to a PDE whose

analytical solution does not exist (i.e. Navier-Stokes). We will discuss briefly that
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the convergent criteria can be determined albeit an analytical solution does not

exist.

Another useful measure of whether the finite di↵erence scheme is good or not is

consistency. In order to determine consistency of a finite di↵erent scheme, we need

to calculate the local truncation error, Ti,j, which is the amount by which the exact

solution fails to satisfy the di↵erence equation. In order to calculate Ti,j, one uses

the Taylor expansions of the terms in the finite di↵erence scheme. Thus,

Ti,j =
ui,j+1

� ui,j

�t

� ui+1,j � 2ui,j + ui�1,j

�x

2

(2.20)

where

ui,j+1

= ui,j +�t

@u

@t

+
1

2!
�t

2

@

2

u

@t

2

+
1

3!
�t

3

@

3

u

@t

3

+ . . . , (2.21)

ui+1,j = ui,j +�x

@u

@x

+
1

2!
�x

2

@

2

u

@x

2

+
1

3!
�x

3

@

3

u

@x

3

. . . , (2.22)

ui�1,j = ui,j ��x

@u

@x

+
1

2!
�x

2

@

2

u

@x

2

� 1

3!
�x

3

@

3

u

@x

3

. . . . (2.23)

In general, finding Ti,j is tedious, so we will gloss over the calculation and simply

state that for the explicit scheme of the heat equation is

Ti,j =
1

2
�t

@

2

u

@t

2

� 1

12
�x

2

@

4

u

@x

4

, (2.24)

which can also be stated as

Ti,j = O(�t) +O(�x

2). (2.25)

A finite di↵erence scheme is called consistent if
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lim
�x,�t!0

Ti,j ! 0. (2.26)

We can see that the explicit finite di↵erence scheme for the heat equation is

consistent.

An important theorem which relates stability, convergence, and consistency of a

finite di↵erence scheme is called Lax’s Equivalence Theorem. The theorem states

that for a given properly posed linear initial value problem, a linear finite di↵erence

scheme that is stable and consistent is also convergent. For a detailed and complete

proof of Lax’s Equivalence theorem, refer to Lax and Richtmyer [LR56] and

Richtmyer and Morton [RDM55]. The explicit finite di↵erence scheme is stable

under certain conditions, consistent, and therefore, convergent by Lax’s Equivalence

theorem.

For our future finite di↵erence schemes, we will use implicit schemes. According

to Ascher, Ruuth, and Spiteri [ARS97], although implicit schemes are more complex

to implement and require more computational e↵ort in each step, we can use bigger

time steps. That is, they are stable without having to take the time step to be very

small unlike an explicit scheme.

2.3 Drift-Di↵usion Model

Now we look at a drift-di↵usion equation and its initial value problem on the

interval [0, L] given by

8
>>>>>><

>>>>>>:

ut = Duxx � vux

u(0, t) = u(L, t), ux(0, t) = ux(L, t)

u(x, 0) = f(x)

(2.27)
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where D is the di↵usion coe�cient and v is the velocity. Note that the

drift-di↵usion equation is a combination of a parabolic and hyperbolic PDE. We

discretize the drift-di↵usion equation on a uniform grid with intervals [xi, xi+1

] for

i = 0, 1, 2, . . . N by employing a standard implicit forward time forward space

(FTFS) finite di↵erence scheme to obtain the following:

u

n+1

i � u

n
i

�t

= D

 
u

n+1

i+1

� 2un+1

i + u

n+1

i�1

�x

2

!
� v

 
u

n+1

i+1

� u

n+1

i

�x

!
. (2.28)

Letting R

1

= �t
�x

and R

2

= �t
�x2 we can write the above as:

u

n
i = u

n+1

i+1

(vR
1

�DR

2

) + u

n+1

i (1 + 2DR

2

� vR

1

) + u

n+1

i�1

(�DR

2

). (2.29)

Similarly, we can use an implicit forward time backward space (FTBS) finite

di↵erence scheme to obtain:

u

n+1

i � u

n
i

�t

= D

 
u

n+1

i+1

� 2un+1

i + u

n+1

i�1

�x

2

!
� v

 
u

n+1

i � u

n+1

i�1

�x

!
. (2.30)

Subsequently, we would have

u

n
i = u

n+1

i+1

(�DR

2

) + u

n+1

i (1 + 2DR

2

+ vR

1

) + u

n+1

i�1

(�DR

2

� vR

1

). (2.31)

We can write our implicit FTBS finite di↵erence scheme as

~

u

n = A

~

u

n+1 (2.32)

where
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A =

2

666666666666666664

�

1

�

2

0 . . . . . . 0 �

3

�

3

�

1

�

2

0 . . . . . . 0

0 �

3

�

1

�

2

. . .
...

...
. . .

�

3

. . . . . . . . .
...

...
. . . . . . . . . . . . 0

0
. . . . . . . . .

�

2

�

2

0 . . . . . . 0 �

3

�

1

3

777777777777777775

(2.33)

where �

1

= 1 +DR

2

+ vR

1

, �
2

= �DR

2

, and �

3

= �DR

2

� vR

1

.

For the implicit FTFS finite di↵erence scheme we have the same matrix, but

�

1

= 1 +DR

2

� vR

1

, �
2

= vR

1

�DR

2

, and �

3

= �DR

2

.

The results for the drift-di↵usion initial value problem are illustrated in Figures

2.1-2.4. In the figures, we can see both the drift and di↵usion of our initial condition,

which, in this case, is a Gaussian centered at the midpoint of the interval [0, L].

Figure 2.1: Implicit FTBS scheme with a D = 0.001 and v = 2.
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Figure 2.2: Implicit plots of solution as time increases for FTBS.

Figure 2.3: Implicit FTFS scheme with a D = 0.001 and v = �2.
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Figure 2.4: Implicit plots of solution as time increases for FTFS.

2.4 Crank-Nicholson Method

Normally, one would try to employ an explicit finite di↵erence scheme to a PDE,

however, issues of stability, convergence, and truncation errors arise with respect to

the temporal and spatial step sizes. Instead of using an explicit scheme, we will

focus on using implicit schemes, however, the implicit FTFS and FTBS finite

di↵erence methods are not the only implicit finite di↵erence methods that we can

employ to solve the drift-di↵usion equation. In fact, another popular implicit

method is the Crank-Nicholson method created by Crank and Nicolson [CN47] in

1947, which is unconditionally stable, convergent, and has a small truncation error.

The Crank-Nicholson finite di↵erence method makes use of the midpoint between

two time steps. The Crank-Nicholson finite di↵erence method for the drift-di↵usion

equation is as follows:
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u

n+1

i � u

n
i

�t

=
D

2

 
u

n+1

i+1

� 2un+1

i + u

n+1

i�1

�x

2

+
u

n
i+1

� 2un
i + u

n
i�1

�x

2

!
�v

2

 
u

n+1

i+1

� u

n+1

i

�x

+
u

n
i+1

� u

n
i

�x

!
.

(2.34)

Figures 2.5-2.7 show the solutions to the drift-di↵usion equation using the

Crank-Nicolson finite di↵erence method for di↵erent values of di↵usion and velocity.

Figure 2.5: Crank-Nicholson scheme with D = 0.001 and v = �2.
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Figure 2.6: Crank-Nicholson scheme with D = 0 and v = 0.

Figure 2.7: Crank-Nicholson scheme with D = 0.1 and v = 0.

2.5 Stability

Previously we considered both a forward space and backward space finite

di↵erence scheme. When plotting the results of the system we chose our velocity v,
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spatial, and temporal step carefully in order for the scheme to be stable. However,

once we start simulating semiconductor devices, we will not have the liberty to

chose our parameters in order to ensure stability. We will have to adhere to physical

limitations and constraints such as the length of a typical semiconductor device or

the total time of simulation. As described in LeVeque [Lev07], we perform a von

Neumann stability analysis with u

q
p = ⇠

q
e

i�ph to determine when our FTFS and

FTBS finite di↵erence schemes are stable.

For the implicit FTFS finite di↵erence scheme we obtain the following:

⇠

q+1

e

i�ph�⇠

q
e

i�ph = DR

2

(⇠q+1

e

i�(p+1)h�2⇠q+1

e

i�ph+⇠

q+1

e

i�(p�1)h)�vR

1

(⇠q+1

e

i�(p+1)h�⇠

q+1

e

i�ph).

(2.35)

After solving for ⇠ we obtain:

⇠ =
1

1 + (4DR

2

� 2vR
1

) sin2(�h
2

) + 2ivR
1

sin(�h)
(2.36)

and

⇠ =
1

1 + (4DR

2

+ 2vR
1

) sin2(�h
2

) + 2ivR
1

sin(�h)
(2.37)

for the FTFS and FTBS, respectively.

In order for our scheme to be stable we need

| ⇠ |2= 1
⇣
1 + (4DR

2

⌥ 2vR
1

) sin2(�h
2

)
⌘
2

+
⇣
2vR

1

sin(�h)
⌘
2

 1. (2.38)

We can see that for D > 0, R
1

> 0, R
2

> 0, the FTFS finite di↵erence scheme is

stable when v < 0 and the FTBS finite di↵erence scheme is stable when v > 0. This

justifies our carefully picked v in the previous section when solving the
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drift-di↵usion system. The stability analysis means that we must implement the

following upwinding scheme for our finite di↵erence scheme to be stable:

u

n+1

i � u

n
i

�t

= D

 
u

n+1

i+1

� 2un+1

i + u

n+1

i�1

�x

2

!
� v

 
u

n+1

i+1

� u

n+1

i

�x

!
, v < 0 (2.39)

and

u

n+1

i � u

n
i

�t

= D

 
u

n+1

i+1

� 2un+1

i + u

n+1

i�1

�x

2

!
� v

 
u

n+1

i � u

n+1

i�1

�x

!
, v > 0. (2.40)

2.6 Velocity as a Potential Vector

Up until now, we have assumed that our velocity v is a constant, however, this is

not always the case. In fact, for most semiconductor device modeling we will want

to define our velocity as a potential: v = �rV . Using this definition we will have to

use our upwinding scheme. That is, we must choose to either use a FTFS or FTBS

finite di↵erence scheme depending on the sign of v at each spatial grid point. We

will consider two types of potentials: linear and sinusoidal.

For the linear potential V = ax+ b where a, b 2 R and a 6= 0. We can see that

our velocity is constant at all grid points given a linear potential in x. Thus, we

expect to get the same results as the implicit FTFS or FTBS finite di↵erence

scheme depending on whether velocity is positive or negative, respectively. That is,

our upwinding scheme works. Hence, for a linear potential (constant velocity) our

upwinding scheme performs as we would expect. In fact, the results are exactly the

same as the results for the drift-di↵usion initial value problem explain in Section 2.3.

For a sinusoidal potential V = sin(x) or V (x) = cos(x) we define our velocity

using a forward scheme, which gives us the following:
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v = �rV = �Vi+1

� V i

�x

= �sin(xi+1

)� sin(xi)

�x

. (2.41)

Figures 2.8-2.11 show the solutions to the drift-di↵usion equation using a finite

di↵erence method for sinusoidal potentials.

Figure 2.8: Sinusoidal potential (V = sin(x)).
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Figure 2.9: Implicit solution as time increases for a sinusoidal potential (V = sin(x)).

Figure 2.10: Sinusoidal potential (V = � cos(x)).
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Figure 2.11: Implicit solution as time increases for sinusoidal potential (V = � cos(x))

.
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Note that for the sinusoidal potentials, our solution converges to a steady state

solution. We confirm this by seeing that as n ! 1

kun+1 � u

nk ! 0 (2.42)

for some norm k·k. Thus, we can say that as n ! 1 our numerical solution

converges to some refined solution u

N
.

Although the MATLAB code can account for the change of signs of the velocity

at each gridpoint, it becomes tedious and unnecessary. We will see that the

upwinding scheme can be replaced by the more commonly used Scharfetter-Gummel

finite di↵erence scheme. Before we deriving this scheme, we will introduce the van

Roosbroeck system.
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CHAPTER 3

THE VAN ROOSBROECK SYSTEM

In order to understand and analyze semiconductor structure, we must have a

mathematical model. This model, as stated earlier, can be derived from Maxwell’s

equations, solid-state physics, and some other assumptions. For a full derivation of

the semiconductor equations, refer to Selberherr [Sel84], van Roosbroeck [vR50], or

Vasileska and Goodnick [VG06]. However, the focus of this paper lies in the

numerical methods used to solve the van Roosbroeck system and not the physics

behind these equations.

3.1 The van Roosbroeck System

The drift-di↵usion system, also known as the van Roosbroeck system, consists of

three nonlinear partial di↵erential equations given by:

Jn = qµnnE + qDnrn (3.1)

Jp = qµppE � qDprp (3.2)

@n

@t

=
1

q

r · Jn +R (3.3)

@p

@t

= �1

q

r · Jp +R (3.4)

�r · "rV = q(p� n+ C) (3.5)

where E = �rV.

For our purposes, we will only focus on and solve the one-dimensional system

given by current equations,
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Jn = qµnnE + qDn
dn

dx

(3.6)

Jp = qµppE � qDp
dp

dx

, (3.7)

continuity equations,

dn

dt

=
1

q

dJn

dx

+R (3.8)

dp

dt

= �1

q

dJp

dx

+R, (3.9)

and the Poisson equation,

�"

d

2

V

dx

2

= q(p� n+ C) (3.10)

where E = �dV
dx

and the subscripts n and p represent electrons and holes,

respectively. If the current equations are plugged into the continuity equations, we

can see that the van Roosbroeck system consists of two drift-di↵usion equations and

a Poisson equation. The drift-di↵usion equations describe the drift and di↵usion of

the concentrations of electrons and holes throughout a semiconductor due to the

electric field. The Poisson equation relates the electrostatic potential to a given

charge distribution. Table 3.1 shows the description of all the parameters and

variables used in the van Roosbroeck system.
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Table 3.1: Description of Parameters and Variables in van Roosbroeck system.

Name Symbol Value Units

Electron concentration n

1

m3

Hole concentration p

1

m3

Electron current density Jn
A
m2

Hole current density Jp
A
m2

Doping concentration C

1

m3

Reaction term R

1

m3s

Electrostatic potential V V

Electron di↵usion coe�cient Dn
m2

s

Hole di↵usion coe�cient Dp
m2

s

Electron mobility µn 0.14 m2

V s

Hole mobility µp 0.045 m2

V s

Permittivity of free space "

0

8.854187817 ⇤ 10�12

s4A2

m3kg

Dielectric constant silicon "Si 11.68 dimensionless

Permittivity of silicon " "

0

⇤ "Si s4A2

m3kg

Boltzmann constant kB 1.38064852 ⇤ 10�23

m2kg
Ks2

Elementary charge q 1.602 ⇤ 10�19 C

Temperature T 300 K

Thermal voltage VT = k
B

T
q

0.025854841198502 V

Intrinsic concentration nint 1.5 ⇤ 1016 1

m3
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3.2 No Current van Roosbroeck System

In some cases, we can solve the drift-di↵usion equations analytically for n and p.

One special case is when there is no current for either electrons nor holes

(Jp = Jn = 0) with initial conditions n(0) = nint and p(0) = nint and a given

potential V . The current equation for electrons becomes

Jn = �qµnn
dV

dx

+ qDn
dn

dx

= 0 (3.11)

thus,

dn

dx

=
µnn

Dn

dV

dx

. (3.12)

Using Einstein’s relation D
µ
= k

B

T
q
, we arrive at

dn

dx

=
nq

kBT

dV

dx

(3.13)

which is a ordinary di↵erential equation along with the initial condition that can

be easily solved as

n = nint exp

 
q(V � Vn)

kBT

!
. (3.14)

Similarly, for the holes the solution will be

p = nint exp

 
�q(V � Vp)

kBT

!
(3.15)

where Vn = Vp = V

0

are initial potentials for electrons and holes, respectively.

Note that we have the following:

n · p = nint exp

 
q(V � V

0

)

kBT

!
· nint exp

 
�q(V � V

0

)

kBT

!
= n

2

int. (3.16)
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Vasileska and Goodnick [VG06] state that the solutions to the zero current

problem are often called the Quasi-Fermi level variables denoted by:

n = nint exp

 
q(V � Vn)

kBT

!
(3.17)

p = nint exp

 
�q(V � Vp)

kBT

!
. (3.18)

We can reformulate our solutions by using the Slotboom variables formulated by

Slotboom [Slo73], which are defined as:

�n = nint exp

 
�qVn

kBT

!
(3.19)

�p = nint exp

 
qVp

kBT

!
. (3.20)

3.3 Constant Current van Roosbroeck System

Consider a one-dimensional model of the van Roosbroeck system and solve for n

and p if there is a constant current, Jn and Jp, for both electrons and holes,

respectively. We assume that we do not know what the potential V is (e.g. linear,

exponential, sinusoidal, etc.). The current equation for electrons becomes

qDn
dn

dx

� qµnn
dV

dx

= Jn, (3.21)

which is a first order linear ordinary di↵erential equation with constant

coe�cients that can be solved using an integrating factor as shown in Boyce and

DiParma [BD77].

Rewriting the equation using Einstein’s relation:
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dn

dx

� q

kBT
n

dV

dx

=
Jn

kBT
, (3.22)

we can find the integrating factor:

⌫n(x) = exp

 
�
Z

q

kBT

dV

dx

dx

!
. (3.23)

Thus, our integrating factor becomes

⌫n(x) = exp

 
� q(V (x)� Vn)

kBT

!
. (3.24)

Our equation, thus, becomes

⇣
n(x)⌫n(x)

⌘0
=

Jn

kBT
⌫n(x). (3.25)

Once we integrate both sides we have and letting � = q
k
B

T

n(x) = exp
⇣
�(V (x)� Vn)

⌘
Jn

kBT

Z
exp

⇣
� �(V (x)� Vn)

⌘
dx (3.26)

or

n(x) = exp(�V (x))
Jn

kBT

Z
exp(��V (x))dx. (3.27)

Similarly,

p(x) = exp
⇣
� (�(V (x)� Vn))

⌘
Jp

kBT

Z
exp

⇣
�(V (x)� Vn)

⌘
dx (3.28)

or

p(x) = exp(��V (x))
Jp

kBT

Z
exp(�V (x))dx. (3.29)
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3.4 Constant Current with Linear Potential van Roosbroeck System

Now assume that along with a constant current Jn we have a linear potential

dV
dx

= �E). If we solve the van Roosbroeck system we will get the following:

dn

dx

+
qE

kBT
n =

Jn

kBT
, (3.30)

which is a separable di↵erential equation and is solved by the following

dn

dx

=
1

kBT

 
Jn + qnE

!
, (3.31)

dn

Jn + qnE

=
1

kBT
dx, (3.32)

and solution is:

n(x) =
Jn � exp

⇣
1

k
B

T
x

⌘

qE

. (3.33)

Similarly for the holes,

p(x) =
�Jp + exp

⇣
1

k
B

T
x

⌘

qE

. (3.34)

3.5 Gummel Iteration

Now that we have two formulations for the solutions to the two drift-di↵usion

equations we can use their solutions n and p to solve the Poisson equation. To solve

this we will implement Gummel iteration, which solves the coupled set of

drift-di↵usion equations and Poisson equation using a decoupling procedure. For

Gummel iteration we will utilize Slotboom variables instead of the Quasi-Fermi level

variables. Given some initial V 0 we use Slotboom variables to solve for
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n

0 = nintexp

 
�V 0

k
B

T

!
and p

0 = nintexp

 
qV 0

k
B

T

!
. We can then use n

0 and p

0 to solve

the Poisson equation for V 1 = V

0 +�V .

d

2

V

1

dx

2

= �q

"

 
nintexp

 
�qV

1

kBT

!
� nintexp

 
qV

1

kBT

!
+ C

!
(3.35)

By normalizing and letting C = 0 we can write the linearized system as

d

2(V 0 +�V )

dx

2

= �qnint

"

 
exp(�V

0)exp(��V )� exp(V 0)exp(�V )

!
. (3.36)

Now we use the linearization of exp
⇣
±�V

⌘
= 1±�V to write the Poisson

equation as

d

2

V

0

dx

2

+
d

2�V

dx

2

= �qnint

"

 
exp(�V

0)
⇣
� 1��V

⌘
� exp(V 0)

⇣
1 +�V

⌘!
. (3.37)

In order to solve for V 1, we must now solve for �V by solving the discretized

tridiagonal system below

V

0

i+1

� 2V 0

i + V

0

i�1

�x

2

+
�Vi+1

� 2�Vi +�Vi�1

�x

2

= �qnint

"

 
exp(�V

0)
⇣
� 1��Vi

⌘
�

exp(V 0)
⇣
1 +�Vi

⌘!
. (3.38)

Once the linearized Poisson equation is solved for the potential V 1, it is plugged

back into the drift-di↵usion equations and solved using Slotboom variables. Then

we repeat the procedure by plugging these new Slotboom variables back into the

Poisson equation and solve until our solution converges within a set tolerance.
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In general, for a V

k we can use Slotboom variables to find n

k and p

k. Then use

n

k and p

k to find V

k+1, then find n

k+1 and p

k+1 and repeat the process [Gum64].

That is, with an initial set of data V

k
, n

k, and p

k we want to find V

k+1 = V

k +�V

by plugging our initial data into the Poisson equation then check for convergence.

We will use Gummel iteration in order to solve the full van Roosbroeck system in

Chapter 5.

3.6 Damping

Another Gummel-related iteration scheme to solve the Poisson equation uses a

linear combination of the newly computed potential, V k+1

, and current potential,

V

k
, as well as a damping constant, ↵. As stated, the scheme follows a Gummel

iteration, but once the new potential V k+1 is calculated we will use

V

k+1 = ↵V

k+1 + (1� ↵)V k (3.39)

as the new potential. In fact, the same can be done for the concentrations of

electrons and holes.

This method can reduce numerical instabilities and converge to thermal

equilibrium quicker. As Brinkman [Bri12] notes, if we consider ↵ = 1, then we are

simply using the Gummel iteration described previously..

3.7 Drift-Di↵usion in van Roosbroeck System

We will now look at the drift-di↵usion equations given in the van Roosbroeck

system with their physical parameters. The drift-di↵usion equation for the

concentration of electrons is given by
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nt =
µnkBT

q

nxx � µnEnx (3.40)

where E = �dV
dx
.

Using a forward finite di↵erence method

n

j+1

i � n

j
i

�t

= µnVT

 
n

j+1

i+1

� 2nj+1

i + n

j+1

i�1

�x

2

!
� µn

 
�(Vi+1

� Vi)

�x

! 
n

j+1

i+1

� n

j+1

i

�x

!
.

(3.41)

Letting ↵

1

= µ
n

V
T

�t
�x2 , ↵

2

= µ
n

�t
�x

, VT = k
B

T
q

the thermal voltage, and

dVi = �V
i+1�V

i

�x
we have the following:

n

j
i = n

j+1

i+1

(�↵

1

+ ↵

2

dVi) + n

j+1

i (1 + 2↵
1

� ↵

2

dVi) + n

j+1

i�1

(�↵

1

) (3.42)

Using a backward finite di↵erence method

n

j+1

i � n

j
i

�t

= µnVT

 
n

j+1

i+1

� 2nj+1

i + n

j+1

i�1

�x

2

!
� µn

 
�(Vi � Vi�1

)

�x

! 
n

j+1

i � n

j+1

i�1

�x

!
.

(3.43)

n

j
i = n

j+1

i+1

(�↵

1

) + n

j+1

i (1 + 2↵
1+

↵

2

dVi) + n

j+1

i�1

(�↵

1

� ↵

2

dVi) (3.44)

Similarly, the drift-di↵usion equation for the concentration of holes we can use a

forward finite di↵erence method

p

j+1

i � p

j
i

�t

= µpVT

 
p

j+1

i+1

� 2pj+1

i + p

j+1

i�1

�x

2

!
+ µp

 
�(Vi+1

� Vi)

�x

! 
p

j+1

i+1

� p

j+1

i

�x

!
.

(3.45)

Letting �

1

= µ
p

V
T

�t

�x2 , �
2

= µ
p

�t

�x
, and dVi = �V

i+1�V
i

�x
we have the following:
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p

j
i = p

j+1

i+1

(��

1

� �

2

dVi) + p

j+1

i (1 + 2�
1

+ �

2

dVi) + p

j+1

i�1

(��

1

). (3.46)

Using a backward finite di↵erence method

p

j+1

i � p

j
i

�t

= µpVT

 
p

j+1

i+1

� 2pj+1

i + p

j+1

i�1

�x

2

!
+ µp

 
�(Vi � Vi�1

)

�x

! 
p

j+1

i � p

j+1

i�1

�x

!
.

(3.47)

p

j
i = p

j+1

i+1

(��

1

) + p

j+1

i (1 + 2�
1

� �

2

dVi) + p

j+1

i�1

(��

1

+ �

2

dVi). (3.48)

If we compare these di↵erence equations with those of Section 1.1, we can see

that these equations are more complex because of the varying potentials. When

programming we would like to avoid this. In order to do so, we will discretize the

current and continuity equations using the Scharfetter-Gummel finite di↵erence

scheme introduced in the next chapter.
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CHAPTER 4

SCHARFETTER-GUMMEL SCHEME

4.1 Scharfetter-Gummel Discretization

Mathematically, the challenge in solving the van Roosbroeck system lies in the

nonlinearities, the boundary conditions, and the necessity to accurately describe the

physical properties of a semiconductor device. The finite di↵erence scheme created

by Scharfetter and Gummel [SG69] in 1969 is used to handle these nonlinearities in

order to model and simulate semiconductor devices as accurately as possible. In the

following sections, we will derive the full Scharfetter-Gummel discretization for the

continuity and current equations of the van Roosbroeck system. We will then solve

the fully discretized van Roosbroeck system with the Poisson equation and

appropriate boundary conditions.

4.1.1 Current and Continuity Equations

We first look at the current equations of electrons and holes. We can

approximate the electron (or hole) current at the midpoint of the intervals

⌦i+1

= [xi, xi+1

] for i = 0, 1, 2, . . . N by the using the electron current equation:

Jn = qµnn(x)

 
� dV

dx

!
+ qDn

 
dn

dx

!
. (4.1)

To simplify the notation, we will drop the subscript n denoting electrons and

reintroduce them as superscripts as to not confuse them with the subscripts, which

are used for the gridpoints. We will also use �x instead of dx because we are using

a finite di↵erence scheme.
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J

n
i+ 1

2
= qµnn(x)

 
� �V

�x

!
+ qDn

 
�n

�x

!
(4.2)

The above equation is a first order linear ordinary di↵erential equation that we

can solve by using an integrating factor � defined as:

�(x) = exp

 Z
1

VT

 
� �V

�x

!
dx

!
= exp

 
� 1

VT

�V

�x

x

!
(4.3)

Multiplying the current equation and integrating over the interval ⌦i+1

we

obtain:

Z

⌦

i+1

Ji+ 1
2

qD

�(x)dx =

Z

⌦

i+1

d

dx

"
�(x)n(x)

#
dx (4.4)

After integrating we have:

�
Ji+ 1

2

qD

VT

�V
�x

h
�(xi+1

)� �(xi)
i
= �(xi+1

)ni+1

� �(xi)ni (4.5)

and solving for Ji+ 1
2
:

Ji+ 1
2
= �qD

VT

�V

�x

"
�(xi+1

)ni+1

� �(xi)ni

�(xi+1

)� �(xi)

#
(4.6)

After some algebraic manipulation and letting �V = Vi+1

� Vi we obtain:

J

n
i+ 1

2
=

qµnVT

�x

"
B

 
Vi+1

� Vi

VT

!
ni+1

�B

 
Vi � Vi+1

VT

!
ni

#
, (4.7)

where B(x) = x
exp(x)�1

is the Bernoulli function. And for the interval ⌦i�1

, we

can easily see that we have:

J

n
i� 1

2
=

qµnVT

�x

"
B

 
Vi � Vi�1

VT

!
ni �B

 
Vi�1

� Vi

VT

!
ni�1

#
(4.8)

Analogously, for the holes we have:
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J

p

i+ 1
2

= �qµpVT

�x

"
B

 
Vi � Vi+1

VT

!
pi+1

�B

 
Vi+1

� Vi

VT

!
pi

#
(4.9)

and

J

p

i� 1
2

= �qµpVT

�x

"
B

 
Vi�1

� Vi

VT

!
pi �B

 
Vi � Vi�1

VT

!
pi�1

#
. (4.10)

These above 4 equations are the Scharfetter-Gummel discretization of the

current equations for electrons and holes. We will now use these discretizations of

the current equations to discretize the continuity equations implicitly as:

ni,j+1

� ni,j

�t

=
J

n
i+ 1

2 ,j+1

� J

n
i� 1

2 ,j+1

q�x

+Ri,j+1

(4.11)

and

pi,j+1

� pi,j

�t

= �
J

p

i+ 1
2 ,j+1

� J

p

i� 1
2 ,j+1

q�x

+Ri,j+1

. (4.12)

In order to solve the above di↵erence equations for n and p, Selberherr [Sel84]

says to create a tridiagonal system and assume that the recombination term R = 0.

Our system becomes:

ni,j = ni,j+1

� µnVT�t

�x

2

"
B

(i+1,i)ni+1,j+1

�
⇣
B

(i,i+1)

+B
(i,i�1)

⌘
ni,j+1

+B
(i�1,i)ni�1,j+1

#

(4.13)

where B
(n,m)

= B
⇣

V
n

�V
m

V
T

⌘
represents the flux across the grid points n and m.

For now, we will assume no specific boundary conditions, but will implement

them later. The discretization above leads to a tridiagonal system for the

concentrations of electrons and holes given by

~nj = (I +N)~nj+1

(4.14)
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where

N =
µnVT�t

�x

2

2

666666666666666666666664

B(1,2) + B(1,0) �B(2,1) 0 . . . . . . 0 0

�B(1,2) B(2,3) + B(2,1) �B(3,2) 0 . . . . . . 0

0 �B(2,3) B(3,4) + B(3,2) �B(4,3)

. . .
.
.
.

.

.

.
. . . �B(3,4)

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . . �B(n,n�1)

0 0 . . . . . . 0 �B(n�1,n) B(n,n+1) + B(n,n�1)

3

777777777777777777777775

(4.15)

Analagously, for p we have

pi,j = pi,j+1

� µpVT�t

�x

2

"
B

(i,i+1)

pi+1,j+1

�
⇣
B

(i+1,i) +B
(i�1,i)

⌘
pi,j+1

+B
(i,i�1)

pi�1,j+1

#

(4.16)

and

~pj = (I + P )~pj+1

(4.17)

where

P =
µpVT�t

�x

2

2

666666666666666666666664

B(2,1) + B(0,1) �B(1,2) 0 . . . . . . 0 0

�B(2,1) B(3,2) + B(1,2) �B(2,3) 0 . . . . . . 0

0 �B(3,2) B(4,3) + B(2,3) �B(3,4)

. . .
.
.
.

.

.

.
. . . �B(4,3)

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . . �B(n�1,n)

0 0 . . . . . . 0 �B(n,n�1) B(n+1,n) + B(n�1,n)

3

777777777777777777777775

.

(4.18)

4.1.2 The Poisson Equation

Finally, we need to discretize the Poisson equation as we did when discussing

Gummel iteration
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� ✏

�x

2

h
Vi+1,j+1

� 2Vi,j+1

+ Vi�1,j+1

i
= q(pi,j � ni,j + Ci,j). (4.19)

Looking at the system we have the following:

PM
~

Vj+1

� ~

BCV j+1

=
q�x

2

✏

(~pj � ~nj + ~

Cj) (4.20)

where

PM =

2

666666666666666664

2 �1 0 . . . . . . 0 0

�1 2 �1 0 . . . . . .

...

0 �1 2 �1
. . .

...
. . . �1

. . . . . . . . .
...

. . . . . . . . . . . . 0

...
. . . . . . . . . �1

0 0 . . . . . . 0 �1 2

3

777777777777777775

(4.21)

and

~

BCV j+1

=

2

666666666666666664

V

0,j+1

0

...

...

...

0

VN+1,j+1

3

777777777777777775

. (4.22)

Now we can use a Gummel iteration to solve our Poisson equation alongside the

Scharfetter-Gummel finite di↵erence scheme. For now, we have not assumed any
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boundary conditions for V , but in the next section we will impose more realistic

boundary conditions.

4.2 Boundary Conditions

Previously, we assumed periodic boundary conditions for the concentration of

electrons and holes, but for more realistic modeling and simulation we use Ohmic

contacts, which, once implemented, amount to finding Dirichlet boundary

conditions. Unfortunately, implementing the boundary conditions for a system of

partial di↵erential equations is much more di�cult than discretizing the system

itself. As Selberherr [Sel84] points out, we have to find three sets of boundary

conditions corresponding to each equation in the van Roosbroeck system: one for

the electrons, holes, and potential. To find the boundary conditions for the electrons

and holes, we assume thermal equilibrium:

np� n

2

int = 0 (4.23)

n� p� C = 0. (4.24)

These two equations can be solved to yield Dirichlet boundary conditions for the

concentration of electrons and holes:

n =

p
C

2 + 4n2

int + C

2
(4.25)

p =

p
C

2 + 4n2

int � C

2
. (4.26)

The Dirichlet boundary conditions can be discretized as:

ni,j =

q
C

2

i,j + 4n2

int + Ci,j

2
(4.27)
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and

pi,j =

q
C

2

i,j + 4n2

int � Ci,j

2
. (4.28)

Looking at the Scharfetter-Gummel discretization of the continuity equation for

electrons, we can now implement the Dirichlet boundary conditions given by

n

0,j =

q
C

2

0,j + 4n2

int + C

0,j

2
(4.29)

nN+1,j =

q
C

2

N+1,j + 4n2

int + CN+1,j

2
. (4.30)

For our first grid point i = 1 and last grid point i = N we have:

n

1,j = n

1,j+1

� µnVT�t

�x

2

"
B

(2,1)n2,j+1

�
⇣
B

(1,2) +B
(1,0)

⌘
n

1,j+1

+B
(0,1)n0,j+1

#
(4.31)

nN,j = nN,j+1

�µnVT�t

�x

2

"
B

(N+1,N)

nN+1,j+1

�
⇣
B

(N,N+1)

+B
(N,N�1)

⌘
nN,j+1

+B
(N�1,N)

nN�1,j+1

#

(4.32)

In these discretizations, we can the substitution to include the boundary

conditions defined previously. It is easy to see that we can now write a system of

the form (still assuming R = 0):

(I +N)~nj+1

+ ~

BCnj+1

= ~nj (4.33)

where
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~

BCnj+1

= �µnVT�t

�x

2

2

666666666666666664

B
(0,1)n0,j+1

0

...

...

...

0

B
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3

777777777777777775

. (4.34)

Similarly, for holes we obtain the following system:

(I +N)~pj+1

+ ~

BCpj+1

= ~pj (4.35)

where

~

BCpj+1

= �µpVT�t

�x

2

2

666666666666666664

B
(1,0)p0,j+1

0

...

...

...

0

B
(N,N+1)

pN+1,j+1

3

777777777777777775

. (4.36)

Now to find the boundary conditions for the potential. Again, we assume

thermal equilibrium and solve the Poisson equation for a homogeneously doped

semiconductor with no external forces (V = 0). This amounts to solving for the

built-in potential denoted by Vbi. We use the Quasi-Fermi formulation

n = nint exp

 
Vbi

VT

!
(4.37)
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p = nint exp

 
� Vbi

VT

!
(4.38)

to solve for Vbi. The calculation is as follows

0 = nint exp

 
Vbi

VT

!
� nint exp

 
� Vbi

VT

!
� C (4.39)

0 =

"
exp

 
Vbi

VT

!#
2

� C

nint

exp

 
Vbi

VT

!
� nint. (4.40)

The quadratic equation can be solved to yield

Vbi = VT ln

"
C +

p
C

2 + 4n2

int

2nint

#
. (4.41)

We will use the built-in potential as our Dirichlet boundary conditions for the

potential. Thus,

V

0,j+1

= VN+1,j+1

= Vbi. (4.42)

4.3 Slotboom Discretization

The Scharfetter-Gummel finite di↵erence scheme discretized the current

equations and yielded a flux function which we denoted as B = x
exp(x)�1

. This paper

is concerned with the solutions to the van Roosbroeck system using a di↵erent flux

function, which will be derived in this section. Using an integrating factor, the

current equation

Jn = qµnnE + qDn

 
dn

dx

!
(4.43)

can be rewritten as
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Jn = qDn exp

 
� E

VT

!
d

dx

"
exp

 
E

VT

!
n

#
. (4.44)

As in the Scharfetter-Gummel discretization, we can discretize the equation

above at the midpoint of the intervals ⌦i+1

= [xi, xi+1

] and remember that

E = �dV
dx
. However, a problem arises when we try to discretize E which appears

outside the di↵erentiation. We can either discretize at xi using Vi or xi+1

using Vi+1

.

In order to deal with this, we will use an average given by V
i+1+V

i

2

. Using an average

of the potential will give

Ji+ 1
2
=

qµnVT

�x

exp

 
� Vi+1

+ Vi

2VT

!"
exp

 
Vi+1

VT

!
ni+1

� exp

 
Vi

VT

!
ni

#
(4.45)

which leads to

Ji+ 1
2
=

qµnVT

�x

"
exp

 
Vi+1

� Vi

2VT

!
ni+1

� exp

 
Vi � Vi+1

2VT

!
ni

#
. (4.46)

The equation above looks identical to the Scharfetter-Gummel discretization,

but instead of using what we will call the Scharfetter-Gummel flux function
⇣
BSG(x) =

x
exp(x)�1

⌘
we have the Slotboom flux function

⇣
BSB(x) = exp(�x

2

)
⌘
.

Figure 4.1 compares the two flux functions.
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Figure 4.1: Plots of Slotboom and Scharfetter-Gummel flux functions .

We can observe that the two functions start to deviate from each other as

x ! ±1. We can also show that the Taylor approximation of

BSB(x) ⇡ 1� x
2

+ x2

8

� x3

18

and BSG(x) ⇡ 1� x
2

+ x2

12

� x4

720

have the same first order

approximation. Ultimately, we will compare the Scharfetter-Gummel flux to the

Slotboom flux and note the di↵erences in solutions to the van Roosbroeck system.
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CHAPTER 5

SEMICONDUCTOR SIMULATIONS

In this chapter, we will introduce some of the physical parameters of the

semiconductors necessary to have meaningful and realistic simulations. We will then

present the results of the simulations and interpret them.

5.1 Generation and Recombination

Up until now, we have assumed that there are no recombination or generation,

so R = 0. We shall now introduce R into our finite di↵erence scheme. Colinge and

Colinge [CC06] describe that semiconductors have a crystalline structure and have

electrons occupying the valence band and no electrons occupying the conduction

band. However, electrons can ”jump” from the valence band into ”vacancies” in the

conduction band at high temperatures. This process is called the generation of an

electron-hole pair, i.e. an electron is generated in the conduction band and a hole in

the valence band. The inverse process, that is, the transfer of an electron in the

conduction band into the lower energy valence band, is called recombination of an

electron-hole pair. Generation requires energy and recombination releases energy.

During thermal equilibrium, the numbers of generations and recombinations are

equal; therefore equilibrium concentrations of electrons and holes are constant over

time. Once an external voltage is applied, one can change the concentration of

electrons and holes. This applied external bias disturbs thermal equilibrium and

causes the concentrations of electrons and holes to stray away from their

equilibrium concentrations. The generation and recombination processes attempt to
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restore these equilibrium concentrations. Markowich, Ringhofer, and

Schmeiser [MRS90] state that the most basic and standard

generation-recombination process is described by the Shockley-Read-Hall model.

5.2 Shockley-Read-Hall Model

For the Shockley-Read-Hall generation-recombination term, we have

R =
n

2

int � np

⌧p(n+ n

1

) + ⌧n(p+ p

1

)
(5.1)

where ⌧n, ⌧p, n1

and p

1

are all material-dependent parameters. In particular, ⌧n

and ⌧p are the electron and hole lifetimes, respectively. For our simulations, we will

assume that n
1

= p

1

= nint.

In order to implement this in our finite di↵erence scheme, we discretize using a

nonlinear partially implicit scheme

Ri,j+1

=
n

2

int � ni,j+1

pi,j

⌧p(ni,j + n

1

) + ⌧n(pi,j + p

1

)
. (5.2)

Now if we look at our continuity equations with our generation-recombination

term, we have the following:

ni,j+1

� ni,j

�t

=
J

n
i+ 1

2 ,j+1

� J

n
i� 1

2 ,j+1

q�x

+
n

2

int � ni,j+1

pi,j

⌧p(ni,j + n

1

) + ⌧n(pi,j + p

1

)
(5.3)

which can be put into a tridiagonal system as

ni,j = ni,j+1

"
1 +

pi,j�t

⌧p(ni,j + n

1

) + ⌧n(pi,j + p

1

)

#
� µnVT�t

�x

2

"
B
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�

⇣
B

(i,i+1)

+B
(i,i�1)

⌘
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+B
(i�1,i)ni�1,j+1

#
� n

2

int�t

⌧p(ni,j + n

1

) + ⌧n(pi,j + p

1

)
.

(5.4)
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So we have our system

~nj =
⇣
(1 + ~cp)I +N

⌘
~nj+1

+ ~

BCnj+1

+ ~cint (5.5)

where ~cint = � n2
int

�t

⌧
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i,j

+n1)+⌧
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and ~cp =
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Similarly for holes,
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and

~pj =
⇣
(1 + ~cn)I + P

⌘
~pj+1

+ ~

BCpj+1

+ ~cint (5.7)

where ~cint is defined as before and ~cn = n
i,j

�t

⌧
p

(n
i,j

+n1)+⌧
n

(p
i,j

+p1)
. The matrices P and

N are the same as defined previously.

5.3 Doping

We now turn to another term that we have, up until now, ignored in the Poisson

equation, the doping concentration C. Before implementing the doping

concentration in our simulation, we discuss what doping is. According to Colinge

and Colinge [CC06], in most semiconductors, the silicon used is of the highest purity

(99.9999999%). However, impurities can be injected into the silicon that can change

the properties of the semiconductor by increasing electron and hole concentrations.

The most common elements that are used are boron, phosphorus, and arsenic. In

the crystalline structure itself, the addition of these (dopant) atoms either adds
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electrons or subtracts electrons (adds holes). For example, arsenic atoms are called

donor atoms because they ”donate” an extra electron to the crystal. Boron atoms

are called acceptor atoms because they ”accept” electrons because they are adding

holes to the crystal. Inserting these extra electrons and holes into the crystal

contributes to electrical conduction. Another name for these donor and acceptor

atoms is doping impurities or dopants and, therefore, we may dope a semiconductor

with these impurities.

5.4 PN Junction

There are two types of semiconductors that we can consider: P-type and N-type.

A P-type semiconductor is one with acceptor atoms as it has more positive charge

(more holes). A N-type semiconductor is one with donor atoms as it has more

negative charge (more electrons). When we dope half of our silicon semiconductor

with donor atoms and the other half with acceptor atoms, we have a doped

semiconductor. Thus, our semiconductor looks like a P-type and N-type silicon

semiconductor are in contact. The region of contact is known as a PN junction.

For our simulations, we will consider a doped semiconductor at thermal

equilibrium with no external voltage (Vext = 0). Once we introduce doping, we add

donors to the P-region and add acceptors to the N-region. This corresponds to

having two di↵erent doping concentrations for each side of the semiconductor:

NA < 0 and ND > 0.

5.5 Depletion Region

Colinge and Colinge [CC06] describe that as the semiconductor approaches

thermal equilibrium, electrons and holes near the PN junction start to di↵use from
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one region to the other. As electrons di↵use from the N-type region to the P-type

region, they leave positive donor ions behind in the N-type region. As holes di↵use

from the P-type region to the N-type region, they leave negative acceptor ions

behind in the P-type region. This creates a small area near the PN junction where

there are no charge carriers known as the depletion region. Since there are no

charge carriers in the depletion region, it prevents the flow of current. Thus, we

have something that acts as an insulator.

5.6 External Voltage and Forward/Reverse Bias

We can take our P-type region and N-type region and hook each side to a

battery. To start, we will hook the P-type region up to the positive terminal of the

battery and the N-type region to the negative terminal of the battery. Our battery

will produce electrons flowing out of the negative terminal into the N-type region.

As electrons enter the N-type region, they will repel the electrons to the P-type

region and vice versa in the P-type region. This will cause the depletion region of

the PN junction to shrink, thereby letting current flow across the semiconductor.

This setup of a PN junction is known as forward bias. We can also have the

opposite configuration where the P-type region is hooked up to the negative

terminal of the battery and the N-type region to the positive terminal of the

battery. In this setup, we will see that the electrons in the N-type region will be

attracted to the positive terminal of the battery and vice versa in the P-type region.

This will cause the depletion region to expand, thereby disallowing current to flow

across the semiconductor. Colinge and Colinge [CC06] refer to this setup of a PN

junction as reverse bias.

For our simulations, we will be applying an external voltage to the right side
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(N-type region) of our PN junction. The sign of Vext will correspond to which bias

we are considering. If Vext < 0, we will have a forward bias and if Vext > 0, we will

have a reverse bias. Again, by doping our semiconductor with impurities such at

boron or phosphorus, we can change the number of electrons and holes in the

semiconductor. This allows electrons to cross into the P-type region from the

N-type region.

5.7 Simulation Results

We now illustrate the results of the simulation of a semiconductor. For our

simulations, we will simulate using a 10 µm semiconductor with 100 spatial points

and a spatial step of dx ⇡ 10�7. We will run our simulation for a total time of 10�8

seconds with 500 time steps and a temporal step of dt ⇡ 10�11. In order to solve the

full discretized van Roosbroeck system, we will use Gummel iteration as described

in Section 3.5. The programming code is provided in Appendix A.

For the first set of simulations we will have zero doping (NA = ND = 0), zero

initial potential, varying external voltages, and an initial profile of

nint = 1.5 ⇤ 1016m�3 for both electrons and holes. Also, we will use the Slotboom

flux function BSB because for these preliminary results, both BSB and BSG agree up

to first order. Later we will compute our solutions with the Scharfetter-Gummel

flux function BSG and compare the two. These following plots verify what we

expect to see for a semiconductor in thermal equilibrium with these characteristics.

In Figure 5.1, we can see in the case that Vext < 0 (forward bias) the electrons

will move to the left of the device and for Vext > 0 (reverse bias) they will move to

the right of the device.
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Figure 5.1: Electron concentration of semiconductor at thermal equilibrium with zero

doping.

In Figure 5.2, we can see in the case that Vext < 0 (forward bias) the holes will

move to the right of the device and for Vext > 0 (reverse bias) they will move to the

left of the device.
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Figure 5.2: Hole concentration of semiconductor at thermal equilibrium.

In both figures, we can see that in the case where Vext = 0 that the electron and

hole concentrations remain constant at nint throughout the device (no movement).

In Figure 5.3, we can see in the case where Vext = 0 the product of the electron

and hole concentration is n2

int as we expect at thermal equilibrium.
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Figure 5.3: Product of electron and hole concentration of semiconductor at thermal

equilibrium with zero doping.

In Figure 5.4, we can see in the case where Vext = 0 that we have zero potential.

Clearly if we apply Vext > 0 we will have a positive potential at thermal equilibrium

and if we apply Vext < 0 we will have a negative potential at thermal equilibrium.



56

Figure 5.4: Potential of semiconductor at thermal equilibrium with zero doping.

In Figure 5.5, we see the plots of the density, which is the right-hand side of the

Poisson equation.

Figure 5.5: The density of semiconductor at thermal equilibrium with zero doping.
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In Figure 5.6, we see that the currents for all cases of forward and reverse bias

are constant.

Figure 5.6: The currents of semiconductor at thermal equilibrium with zero doping.

In Figure 5.7, when Vext = 0 (no battery hooked up) there should not be any

current flowing through the semiconductor, which is confirmed by the simulation.
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Figure 5.7: The current-voltage plot for di↵erent external voltages with zero doping.

5.8 Current-Voltage (IV) Characteristics

As stated before, we are interested in the IV characteristics of doped

semiconductors with an external voltage applied. These IV curves will be important

when we look at solar cells and their e�ciency. We now illustrate the results of a

simulation of a semiconductor with an equal amount doping in the P-type and

N-type region, zero initial potential, and varying external voltage. Note that since

we are adding doping concentrations our initial profile and boundary conditions will

change. Our initial profile will follow from the boundary conditions on the

concentrations of electrons and holes in Section 4.2. In the P-type region we have

NA = �1018m�3 to represent acceptors and in the N-type region we have

ND = 1018m�3 to represent donors.

In Figure 5.8, we can see in the case that Vext < 0 (forward bias), the depletion

region will shrink, which creates a current through the semiconductor. While for
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Vext > 0 (reverse bias) the electrons will move to the right of the device, thereby

increasing the depletion region.

Figure 5.8: Electron concentration of an equally doped semiconductor at thermal

equilibrium.

In Figure 5.9, we can see in the case that Vext < 0 (forward bias), the depletion

region will shrink, which creates a current through the semiconductor. While for

Vext > 0 (reverse bias) the holes will move to the left of the device, thereby

increasing the depletion region.
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Figure 5.9: Hole concentration of an equally doped semiconductor at thermal equi-

librium.

In Figure 5.10, we can see the product of the electron and hole concentration

strays away from n

2

int.
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Figure 5.10: Product of electron and hole concentration of an equally doped semi-

conductor at thermal equilibrium.

In Figure 5.11, one can see that if we apply Vext > 0 we will have a positive

potential at thermal equilibrium and if we apply Vext < 0 we will have a negative

potential at thermal equilibrium.
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Figure 5.11: Potential of an equally doped semiconductor at thermal equilibrium.

In Figure 5.12, we see the plots of the density, which is the right-hand side of the

Poisson equation.

Figure 5.12: The density of an equally doped semiconductor at thermal equilibrium.
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In Figure 5.13, when we have Vext > 0 (reverse bias) there should not be any

current flowing through the semiconductor, which is confirmed by the simulation.

When we have Vext < 0 (forward bias) there should be current flowing through the

semiconductor, which is confirmed by the simulation.

Figure 5.13: The currents of an equally doped semiconductor at thermal equilibrium.

Figure 5.14 verifies the fact that when we have our PN junction in a forward

bias setup (Vext < 0), there is little to no current. However, when we have our PN

junction in a reverse bias set up (Vext > 0), there is current running through the

device.
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Figure 5.14: The current-voltage plot for di↵erent external voltages of equally doped

semiconductor at thermal equilibrium.

We now illustrate the results of the simulation of a semiconductor with more

doping in the P-type region (NA = �1018, ND = 1016), zero initial potential, and

varying external voltage.

In Figure 5.15, we can see in the case that Vext < 0 (forward bias), the depletion

region will shrink, which creates a current through the semiconductor. While for

Vext > 0 (reverse bias) the electrons will move to the right of the device, thereby

increasing the depletion region.
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Figure 5.15: Electron concentration of doped semiconductor at thermal equilibrium

with higher doping in the P-type region.

In Figure 5.16, we can see in the case that Vext < 0 (forward bias), the depletion

region will shrink, which creates a current through the semiconductor. While for

Vext > 0 (reverse bias) the holes will move to the left of the device, thereby

increasing the depletion region.
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Figure 5.16: Hole concentration of doped semiconductor at thermal equilibrium with

higher doping in the P-type region.

In Figure 5.17, we can see the product of the electron and hole concentration

strays away from n

2

int.
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Figure 5.17: Product of electron and hole concentration of doped semiconductor at

thermal equilibrium with higher doping in the P-type region.

In Figure 5.18, one can see that if we apply Vext > 0 we will have a positive

potential at thermal equilibrium and if we apply Vext < 0 we will have a negative

potential at thermal equilibrium.
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Figure 5.18: Potential of doped semiconductor at thermal equilibrium with higher

doping in the P-type region.

In Figure 5.19, we see the plots of the density, which is the right-hand side of the

Poisson equation.
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Figure 5.19: The density of doped semiconductor at thermal equilibrium with higher

doping in the P-type region.

In Figure 5.20, when we have Vext > 0 (reverse bias) there should not be any

current flowing through the semiconductor, which is confirmed by the simulation.

When we have Vext < 0 (forward bias) there should be current flowing through the

semiconductor, which is confirmed by the simulation.
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Figure 5.20: The current of doped semiconductor at thermal equilibrium with higher

doping in the P-type region.

Figure 5.21 verifies the fact that when we have our PN junction in a forward

bias setup (Vext < 0), there is little to no current. However, when we have our PN

junction in a reverse bias set up (Vext > 0), there is current running through the

device.
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Figure 5.21: The current-voltage plot for di↵erent external voltages of doped semi-

conductor at thermal equilibrium with higher doping in the P-type region.

We now illustrate the results of the simulation of a semiconductor with more

doping in the N-type region (NA = �1016, ND = 1018), zero initial potential, and

varying external voltage.

Figures 5.22-5.28 are very similar to Figures 5.8-5.14 and Figures 5.15-5.21.
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Figure 5.22: Electron concentration of doped semiconductor at thermal equilibrium

with higher doping in the N-type region.

Figure 5.23: Hole concentration of doped semiconductor at thermal equilibrium with

higher doping in the N-type region.
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Figure 5.24: Product of electron and hole concentration of doped semiconductor at

thermal equilibrium with higher doping in the N-type region.

Figure 5.25: Potential of doped semiconductor at thermal equilibrium with higher

doping in the N-type region.
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Figure 5.26: The density of doped semiconductor at thermal equilibrium with higher

doping in the N-type region.

Figure 5.27: The current of doped semiconductor at thermal equilibrium with higher

doping in the N-type region.
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Figure 5.28: The current-voltage plot for di↵erent external voltages of doped semi-

conductor at thermal equilibrium with higher doping in the N-type region.

Focusing on the IV plots in Figures 5.14, 5.21, and 5.28 we confirm that when

our PN junction is hooked up with forward bias (Vext < 0), we have current flow and

when our PN junction is hooked up with a reverse bias (Vext > 0), we have no

current flow. In order words, under forward bias our depletion region shrinks and

under reverse bias our depletion region expands.
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CHAPTER 6

SLOTBOOM AND SCHARFETTER-GUMMEL

The ultimate goal of this paper is to compare and constrast Slotboom and the

Scharfetter-Gummel flux functions given by BSB(x) = exp(�x
2

) and

BSG(x) =
x

exp(x)�1

, respectively. In order to compare these two functions and their

solutions, we will consider the IV curves with varying amounts of spatial points. We

will only consider and analyze the case in which we have zero doping and equal

amounts of doping.

6.1 Zero Doping

Figures 6.1 and 6.2 show IV curves using di↵erent numbers of spatial points

using the Slotboom and Scharfetter-Gummel flux functions for a semiconductor

with zero doping.
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Figure 6.1: Slotboom with zero doping using di↵erent numbers of spatial points.
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Figure 6.2: Scharfetter-Gummel with zero doping using di↵erent numbers of spatial

points.

In Figure 6.1, it can be seen that in the case of a large forward bias (Vext = �1)

and small number of spatial points, the Slotboom flux function is far from the

solutions with larger amounts of spatial points. If we look at the

Scharfetter-Gummel flux function, the solutions for di↵erent numbers of spatial

points converge as the spatial points increase. That is to say, the Slotboom flux

function discretization starts to diverge in cases of large forward and reverse bias

when using a small number of grid points. This phenomenon is related to how BSB

deviates from BSG in Figure 4.1. For our purposes, we will call the IV curve with
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1280 points the refined solution. We can conclude that in this case, the

Scharfetter-Gummel flux function better approximates the solution in cases of large

forward and reverse bias where the Slotboom flux function diverges from a refined

solution. It is important to point out that using a small numbers of spatial points,

such as 5 or 10, is extremely uncommon. As we increase the number of spatial

points, the IV curves using Scharfetter-Gummel and Slotboom flux functions begin

to converge to the refined solution as expected. Figures 6.3-6.6 show the di↵erences

in using the Scharfetter-Gummel and Slotboom flux functions compared to the

refined solution.

Figure 6.3: Scharfetter-Gummel vs. Slotboom with zero doping using 5 spatial points.
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Figure 6.4: Scharfetter-Gummel vs. Slotboom with zero doping using 20 spatial

points.
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Figure 6.5: Scharfetter-Gummel vs. Slotboom with zero doping using 80 spatial

points.
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Figure 6.6: Scharfetter-Gummel vs. Slotboom with zero doping using 320 spatial

points.

6.2 Equal Doping

Similar to the previous section, now we will look at the case where we have an

equal amount of doping (1018 m

�3) and compare the Scharfetter-Gummel and

Slotboom flux functions. Figures 6.7 and 6.8 show IV curves using di↵erent

numbers of spatial points using the Slotboom and Scharfetter-Gummel flux

functions for an equally doped semiconductor.
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Figure 6.7: Slotboom with an equal amount of doping using di↵erent number of

spatial points.



84

Figure 6.8: Scharfetter-Gummel with an equal amount of doping using di↵erent num-

ber of spatial points.

Figures 6.9-6.12 show the di↵erences in using the Scharfetter-Gummel and

Slotboom flux functions compared to the refined solution.
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Figure 6.9: Scharfetter-Gummel vs. Slotboom with equal doping using 5 spatial

points.
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Figure 6.10: Scharfetter-Gummel vs. Slotboom with equal doping using 20 spatial

points.
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Figure 6.11: Scharfetter-Gummel vs. Slotboom with equal doping using 80 spatial

points.



88

Figure 6.12: Scharfetter-Gummel vs. Slotboom with equal doping using 320 spatial

points.

We can see that both functions BSG and BSB converge towards this refined

solution as we increase the number of spatial points used. However, BSB converges

quicker to the solution. We can also see regardless of which function we use, in the

case of reverse bias for an equal amount of doping; our approximations are very

close to zero. This reflects that there is no current through the semiconductor in

reverse bias. In that case, Scharfetter-Gummel and Slotboom give very accurate

approximations to that of the refined solution. The only discrepancies arise are in

the case of forward bias when we have current in the semiconductor.
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CHAPTER 7

SOLAR CELL

The e↵ects of global climate change become increase every year. The use of

fossil fuels releases large amounts of carbon dioxide into the atmosphere, leading to

detrimental e↵ects on the environment. Judkins and Fulkerson [JF93] point out that

a popular alternative to using fossil fuels to power electronic devices is solar energy.

A solar cell is a PN junction in which sunlight acts as an external source of energy

in order to generate electrical power. Designs of solar cells can be complex, so we

will briefly discuss an application of semiconductors and the Scharfetter-Gummel

finite di↵erence scheme.

7.1 Fill Factor

De Vos [Vos83] defines the fill factor as a measure of the quality of a solar cell

that is defined as the ratio of the optimal obtainable power to the product of the

open-circuit voltage and short-circuit current

FF =
Popt

VSCVOC

=
IoptVopt

VSCVOC

(7.1)

Engineers seek to maximize the fill factor through di↵erent designs and

parameters. As stated by Colinge and Colinge [CC06], the larger the fill factor, the

larger the energy conversion rate of the solar cell.

In order to find the fill factor of a solar cell, we will make use of the IV curves in

Chapter 6. To simulate light generation, we will shift our refined IV curve down for

the equal doping case by some constant. There are more rigorous ways to include a
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light generation term, G, but we will not consider them for this paper. In order to

find Popt, VSC , and VOC we will use interpolation and an intersection technique

found in Burden and Faires [BF11] and Stoer and Bulirsch [SB80], which can be

found in Appendix A.

Figures 7.1 and 7.2 show graphs of shifted IV curves.

Figure 7.1: IV curve and power curve of a solar cell with a shift of 100.
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Figure 7.2: IV curve and power curve of a solar cell with a shift of 1000.

7.2 Future Work

We will not conclude that the fill factor is accurate for a silicon solar cell with

our parameters, but will note that Figures 7.1 and 7.2 agree with what one would

expect. Calculating the fill factor for the two scenarios above, we obtain 0.4898 and

0.4147, respectively, while typical fill factors range from 0.5 to 0.8 [Fil12]. Both flux

functions calculate these fill factors with small relative error. The above only sets

up a framework of what can be done using the Scharfetter-Gummel finite di↵erence

scheme and di↵erent flux functions. Future work will consist of using better

parameters to model a realistic solar cell with a fill factor > 80%.
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APPENDIX A

MATLAB CODE

A.1 Implicit Drift-Di↵usion Equation Solver

%Dri f t�Di f f u s i o n Equation 1 in one dimension u t = Du xx � vu x

%Forward time forward space (FTBS) with Pe r i od i c Boundary Condit ions

%Imp l i c i t Scheme

%S inu so i da l p o t e n t i a l

k = 0 . 1 ; %time s i z e

h = 0 . 1 ; %step s i z e

J = 101 ; %number o f s t ep s

I = 200 ; %number o f time s t ep s

R2 = k . / h ˆ2 ;

R1 = k . / h ;

D = 0 . 1 ; %d i f f u s i o n c o e f f i c i e n t

N = 2⇤ pi /(J�1)/h ; %Normal izat ion f a c t o r

x = [ 0 : h : ( J�1)⇤h ] ; %vec to r

V = (1/N) . ⇤ d i f f ( cos (N. ⇤ ( x�5)) ) ./h ; %de l p o t e n t i a l vec to r

V(J ) = V( 1 ) ;

%Boundary cond i t i on s
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a = 0 ;

u o r i g i n a l ( 1 , 1 ) = a ;

u o r i g i n a l (J , 1 ) = a ;

u o r i g i n a l ( : , 1 ) = exp(�(x�5) . ˆ2 ) ;

u new ( 1 , : ) = u o r i g i n a l ;

f o r k = 1 : I

%Find a l l v e l o c i t i e s in each s p a t i a l p o s i t i o n

f o r l = 1 : J

v o r i g i n a l ( l , : ) = �V;

end

%Creat ing the matrix A

i f v o r i g i n a l ( 1 , 1 ) > 0

A(1 , 1 ) = 1+2.⇤D.⇤R2 + v o r i g i n a l ( 1 , 1 ) ;

e l s e

A(1 , 1 ) = 1+2.⇤D.⇤R2 � v o r i g i n a l ( 1 , 1 ) ;

end

i f v o r i g i n a l ( 1 , 2 ) > 0

A(1 , 2 ) = �D.⇤R2 ;
e l s e

A(1 , 2 ) = v o r i g i n a l ( 1 , 2 ) . ⇤R1 � D.⇤R2 ;
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end

f o r i = 2 : J�1
i f v o r i g i n a l ( i , i �1) > 0

A( i , i �1) = �v o r i g i n a l ( i , i �1).⇤R1 � D.⇤R2 ;
e l s e

A( i , i �1) = �D.⇤R2 ;
end

i f v o r i g i n a l ( i , i ) > 0

A( i , i ) = 1+2.⇤D.⇤R2 + v o r i g i n a l ( i , i ) ;

e l s e

A( i , i ) = 1+2.⇤D.⇤R2 � v o r i g i n a l ( i , i ) ;

end

i f v o r i g i n a l ( i , i +1) > 0

A( i , i +1) = �D.⇤R2 ;
e l s e

A( i , i +1) = v o r i g i n a l ( i , i +1).⇤R1 � D.⇤R2 ;
end

end

i f v o r i g i n a l ( J , J�1) > 0

A(J , J�1) = �v o r i g i n a l (J , J�1).⇤R1 � D.⇤R2 ;
e l s e

A(J , J�1) = �D.⇤R2 ;
end
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i f v o r i g i n a l ( J , J ) > 0

A(J , J ) = 1+2.⇤D.⇤R2 + v o r i g i n a l (J , J ) ;

e l s e

A(J , J ) = 1+2.⇤D.⇤R2 � v o r i g i n a l (J , J ) ;

end

%Boundary cond i t i on s

i f v o r i g i n a l (1 , J ) > 0

A(1 , J ) = �v o r i g i n a l (1 , J ) � D.⇤R2 ;

e l s e

A(1 , J ) = �D.⇤R2 ;
end

i f v o r i g i n a l ( J , 1 ) > 0

A(J , 1 ) = �D.⇤R2 ;

e l s e

A(J , 1 ) = v o r i g i n a l (J ,1)�D.⇤R2 ;
end

u new (k+1 , : ) = A\u new (k , : ) ’ ;

end
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A.2 Scharfetter-Gummel Finite Di↵erence Scheme

% Scha r f e t t e r�Gummel F in i t e D i f f e r e n c e Scheme

%Phys i ca l cons tant s

mu n = 0 . 1 4 ; %e l e c t r o n mob l i l i t y

mu p = 0 . 0 4 5 ; %ho le mob l i l i t y

k B = 1.38064852 e�23; %Boltzmann constant

temp = 300 ; %temperature

q = 1.602 e�19; %elementary charge

V T = k B ⇤ temp / q ; %thermal vo l t age

eps 0 = 8.854187817 e�12; %pe rm i t t i v i t y o f f r e e space

ep s s = 11 . 8 6 ; %d i e l e c t r i c constant o f s i l i c o n

eps = ep s s ⇤ eps 0 ; %pe rm i t t i v i t y o f s i l i c o n

n i = 1 .5 e16 ; %i n s t r i n s i c concent ra t i on

N D = 1e18 ; %donor concent ra t i on

N A = �1e18 ; %acceptor concent ra t i on

tau n = 1e�6; %e l e c t r o n l i f e time

tau p = 1e�5; %ho le l i f e time

%F in i t e d i f f e r e n c e s

L = 100 ; %L s p a t i a l po in t s

LL = 1e�5; %length o f dev i c e

T = 500 ; %number o f time i t e r a t i o n s

TT = 1e�8; %t o t a l time e lapsed

dx = LL/(L�1); %s p a t i a l s tep
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dt = TT/T; %temporal s tep

x = [ 0 : dx :LL ] ; %s p a t i a l vec to r

%Doping p r o f i l e

CC = [N A⇤ones (1 , f l o o r (L/2) ) N D⇤ones (1 , c e i l (L / 2 ) ) ] ;

con n = dt⇤V T⇤mu n/dx ˆ2 ;

con p = dt⇤V T⇤mu p/dx ˆ2 ;

%Poisson Matrix

d = [�1 0 1 ] ’ ;

m = [�ones (1 ,L) ; 2⇤ ones (1 ,L);� ones (1 ,L ) ] ’ ;

PM = spd iags (m, d , L ,L ) ;

%Ohmic boundary cond i t i on ve c t o r s

nBCleft = 0 .5 ⇤ ( s q r t (N Aˆ2 +4⇤n i ˆ2) + N A) ; %BC f o r e l e c t r o n s

nBCright = 0 .5 ⇤ ( s q r t (N Dˆ2 +4⇤n i ˆ2) + N D) ; %BC f o r e l e c t r o n s

pBCleft = 0 .5 ⇤ ( s q r t (N Aˆ2 +4⇤n i ˆ2) � N A) ; %BC f o r ho l e s

pBCright = 0 .5 ⇤ ( s q r t (N Dˆ2 +4⇤n i ˆ2) � N D) ; %BC f o r ho l e s

%E l e c t r i c Po t en t i a l Vector I n i t i a l i z a t i o n

V = 0.⇤ x ;

%Re a l i s t i c i n i t i a l c ond i t i on s

n ( 1 , : ) = [ nBCleft⇤ones (1 , f l o o r (L/2) ) nBCright⇤ones (1 , c e i l (L / 2 ) ) ] ;

p ( 1 , : ) = [ pBCleft⇤ones (1 , f l o o r (L/2) ) pBCright⇤ones (1 , c e i l (L / 2 ) ) ] ;
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%Externa l Voltage

V ext = [ � 1 : 0 . 1 : 1 ] ;

f o r h = 1 : l ength ( V ext )

%Bui l t in Po t en t i a l

V b i l e f t = V T⇤ l og ( (N A + sq r t (N Aˆ2 + 4⇤ n i ˆ2) ) / (2⇤ n i ) ) ;

V b i r i gh t = V T⇤ l og ( (N D + sq r t (N Dˆ2 + 4⇤ n i ˆ2) ) / (2⇤ n i ))+V ext (h ) ;

dV = [ (V(1) � V b i l e f t ) , d i f f (V) . /V T , ( V b i r i gh t � V(L ) ) ] ;

% Scha r f e t t e r�Gummel I t e r a t i o n s

f o r k = 1 :T

%Gummel Loop

f o r l = 1 :10

%Boundary cond i t i on updates

BCn(1) = �con n⇤bernfun(�dV(1 ) )⇤ nBCleft ;

BCn(L) = �con n⇤bernfun (dV(L))⇤ nBCright ;

BCp(1) = �con p⇤bernfun (dV(1 ) )⇤ pBCleft ;

BCp(L) = �con p⇤bernfun(�dV(L))⇤ pBCright ;

BCV(1) = V b i l e f t ; BCV(L) = V b i r i gh t ;

%F i r s t row e l e c t r o n s and ho l e s
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N(1 , 1 ) = bernfun(�dV(2 ) ) + bernfun (dV( 1 ) ) ;

N(1 , 2 ) = �bernfun (dV( 2 ) ) ;

P(1 , 1 ) = bernfun (dV(2 ) ) + bernfun(�dV( 1 ) ) ;

P(1 , 2 ) = �bernfun(�dV( 2 ) ) ;

%React ion terms Shockley�Read�Hal l

IN (1 , 1 ) = 1 + mm⇤( dt .⇤p(k , 1 ) ) . / ( tau n . ⇤ ( n(k ,1)+ n i ) +

tau p . ⇤ ( p(k ,1)+ n i ) ) ;

IP (1 , 1 ) = 1 + mm⇤( dt .⇤n(k , 1 ) ) . / ( tau n . ⇤ ( n(k ,1)+ n i ) +

tau p . ⇤ ( p(k ,1)+ n i ) ) ;

c i n t (1 ) = (�n i ˆ2 .⇤ dt ) . / ( tau n . ⇤ ( n(k ,1)+ n i ) + tau p . ⇤ ( p(k ,1)+ n i ) ) ;

%Current

J n (k , 1 ) = (q⇤mu n⇤V T/dx ) . ⇤ ( bernfun (dV(1 ) )⇤n(k , 1 ) �
bernfun(�dV(1 ) )⇤ nBCleft ) ;

J p (k , 1 ) = (q⇤mu p⇤V T/dx ) . ⇤ ( bernfun(�dV(1 ) )⇤p(k , 1 ) �
bernfun (dV(1 ) )⇤ pBCleft ) ;

f o r j = 2 :L

J n (k , j ) = (q⇤mu n⇤V T/dx ) . ⇤ ( bernfun (dV( j ) )⇤n(k , j ) �
bernfun(�dV( j ) )⇤n(k , j �1)) ;

J p (k , j ) = (q⇤mu p⇤V T/dx ) . ⇤ ( bernfun(�dV( j ) )⇤p(k , j ) �
bernfun (dV( j ) )⇤p(k , j �1)) ;

end

%I t e r a t e through rows ( 2 :L) e l e c t r o n s and ho l e s
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f o r j = 2 :L�1
N( j , j�1) = �bernfun(�dV( j ) ) ;

N( j , j ) = bernfun(�dV( j +1)) + bernfun (dV( j ) ) ;

N( j , j +1) = �bernfun (dV( j +1)) ;

P( j , j�1) = �bernfun (dV( j ) ) ;

P( j , j ) = bernfun (dV( j +1)) + bernfun(�dV( j ) ) ;

P( j , j +1) = �bernfun(�dV( j +1)) ;

IN( j , j ) = 1 + mm⇤( dt .⇤n(k , j ) ) . / ( tau n . ⇤ ( n(k , j )+n i ) +

tau p . ⇤ ( p(k , j )+n i ) ) ;

IP ( j , j ) = 1 + mm⇤( dt .⇤p(k , j ) ) . / ( tau n . ⇤ ( n(k , j )+n i ) +

tau p . ⇤ ( p(k , j )+n i ) ) ;

c i n t ( j ) = (�n i . ˆ 2 . ⇤ dt ) . / ( tau n . ⇤ ( n(k , j )+n i ) + tau p . ⇤ ( p(k , j )+n i ) ) ;

end

%Last row (L) e l e c t r o n s and ho l e s

N(L ,L�1) = �bernfun(�dV(L ) ) ;

N(L ,L) = bernfun (dV(L+1)) + bernfun (dV(L ) ) ;

P(L ,L�1) = �bernfun (dV(L ) ) ;

P(L ,L) = bernfun(�dV(L+1)) + bernfun(�dV(L ) ) ;

%React ion terms Shockley�Read�Hal l

IN(L ,L) = 1 + mm⇤( dt .⇤p(k ,L ) ) . / ( tau n . ⇤ ( n(k ,L)+n i ) +

tau p . ⇤ ( p(k ,L)+n i ) ) ;

IP (L ,L) = 1 + mm⇤( dt .⇤n(k ,L ) ) . / ( tau n . ⇤ ( n(k ,L)+n i ) +

tau p . ⇤ ( p(k ,L)+n i ) ) ;
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c i n t (L) = (�n i . ˆ 2 . ⇤ dt ) . / ( tau n . ⇤ ( n(k ,L)+n i ) + tau p . ⇤ ( p(k ,L)+n i ) ) ;

N = con n .⇤N;

P = con p .⇤P;

n(k+1 , : ) = ( IN + N)\ ( n(k , : ) � BCn � c i n t ) ’ ;

p ( k+1 , : ) = ( IP + P)\ ( p(k , : ) � BCp � c i n t ) ’ ;

U = (dx ˆ2 .⇤ q . / eps ) . ⇤ ( p(k+1 , : ) � n(k+1 , : ) + CC) + BCV;

V new = (PM\U’ ) ’ ;

V = V new ;

dV = [ (V(1) � V b i l e f t ) , d i f f (V) . /V T , ( V b i r i gh t � V(L ) ) ] ;

end

end

J = J n ( end , : ) � J p ( end , : ) ;

cu r r ent (h , : ) = J ;

MJ(h) = min ( J ) ;

p o t e n t i a l (h , : ) = V new ;

dens i ty (h , : ) = CC + p( end , : ) � n( end , : ) ;

e l e c t r o n s (h , : ) = n( end , : ) ;

ho l e s (h , : ) = p( end , : ) ;

end
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A.3 Flux Functions

% The Flux Function

func t i on B = bernfun (x )

t o l = 1e�10;

% Slotboom

B = exp(�x . / 2 ) ;

%Scha r f e t t e r�Gummel

i f abs ( x ) <= to l

B = 1 ;

e l s e

B = x . / ( exp (x ) � 1 ) ;

end
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A.4 Solar Cell and Fill Factor

%Post Proce s s ing graphs o f SB and SG

%F i l l Factor o f s o l a r c e l l

load ( ’ Pos tProce s s ingAl l 3 .mat ’ )

s h i f t = 100 ; %Light gene ra t i on

l in V = [ � 1 : 0 . 0 0 1 : 1 ] ;

f i g u r e

f o r i = 1 : s i z e (SBPP, 1 )

interSBPP = int e rp1 ( V ext ,SGPP( i , : ) , l i n V ) ;

interSGPP = in t e rp1 ( V ext ,SBPP( i , : ) , l i n V ) ;

p l o t ( l in V , interSGPP , l in V , interSBPP )

t i t l e ( ’ S cha r f e t t e r�Gummel vs . Slotboom Zero Doping ’ )

x l ab e l ( ’ Voltage (V) ’ )

y l ab e l ( ’ Current ( I ) ’ )

l egend ( ’ S cha r f e t t e r�Gummel ’ , ’ Slotboom ’ )

hold o f f

end

f o r i = 1 : s i z e (SBPP18)

f i g u r e

s c a t t e r ( V ext , SGPP18( i , : ) , ’+ ’)

hold on
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s c a t t e r ( V ext , SBPP18( i , : ) , ’+ ’)

hold on

p lo t ( l in V , interSGPP18 ( end , : ) )

t i t l e ( ’ S cha r f e t t e r�Gummel vs . Slotboom Equal Doping 1e18 ’ )

x l ab e l ( ’ Voltage (V) ’ )

y l ab e l ( ’ Current ( I ) ’ )

l egend ( ’ S cha r f e t t e r�Gummel ’ , ’ Slotboom ’ , ’ Ref ined So lut ion ’ )

end

%Sh i f t i n t e r p o l a t e d IV p lo t down

in t e r s o l a rSB = interSBPP18 ( end , : ) � s h i f t ;

i n t e r so l a rSG = interSGPP18 ( end , : ) � s h i f t ;

%Optimal Power max Power = IV

[ opt powSB , idxpowSB ] = max( l in V .⇤ i n t e r s o l a rSB ) ;

[ opt powSG , idxpowSG ] = max( l in V .⇤ i n t e r so l a rSG ) ;

%Short C i r cu i t at V ext = 0

SC SB = in t e r s o l a rSB (1001 ) ;

SC SG = inte r so l a rSG (1001 ) ;

%Open C i ru i t

y = ze ro s (1 , l ength ( l in V ) ) ;

idxSBPP18 = f i nd ( in t e r so l a rSB�y<eps , 1 ) ;

idxSGPP18 = f i nd ( inte r so la rSG�y<eps , 1 ) ;
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OC SB = l in V ( idxSBPP18 ) ;

OC SG = l in V ( idxSGPP18 ) ;

f i g u r e

p l o t ( l in V , inte r so la rSG , l in V , l i n V .⇤ i n t e r so l a rSG )

g r id on

hold on

s c a t t e r ( l i n V (1001) , i n t e r so l a rSG (1001 ) , ’⇤ ’ , ’ b ’ )

hold on

s c a t t e r ( l i n V ( idxSGPP18 ) , i n t e r so l a rSG ( idxSBPP18 ) , ’⇤ ’ , ’ r ’ )

hold on

s c a t t e r ( l i n V ( idxpowSG ) , i n t e r so l a rSG ( ( idxpowSB ) ) , ’⇤ ’ , ’ k ’ )

hold on

t i t l e ( ’ So la r Ce l l IV Curve ’ )

x l ab e l ( ’ Voltage (V) ’ )

y l ab e l ( ’ Current ( I ) ’ )

l egend ( ’ Ref ined so lu t i on ’ , ’ Power ’ , ’ Short Ci r cu i t ’ , ’ Open Ci rcu i t ’ ,

’ Optimal Power ’ )

%F i l l Factor

FF SB = opt powSB / (SC SB ⇤ OC SB)

FF SG = opt powSG / (SC SG ⇤ OC SG)
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