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ABSTRACT  

CHARACTERIZATION OF FOUR TYPE-C SILICA COLUMNS USING 
RESVERATROL ANALOGUES 

 
by Joshua Charles Topete 

High performance liquid chromatography (HPLC) is an analytical technique used 

to separate, identify and quantify components in a solution based on the affinities 

between analyte, mobile phase and stationary phase. The main goal of my research is 

to characterize four Type-C silica columns by comparing the retention of resveratrol 

analogues. The four columns included are functionalized with either Diamond 

Bidentate C18 (DBC18), Bidentate C18 (BC18), phenyl hydride or diol groups. 

Retention maps displaying mobile phase composition compared to compound 

retention times were compared between columns. In addition to this, two organic 

solvents (acetonitrile and methanol) were compared. Considering that the resveratrol 

analogues are fairly nonpolar, this set of compounds were expected to have slightly 

higher affinity for the DBC18 compared to the BC18.  In comparison, the phenyl 

hydride column was anticipated to interact more with unsaturated compounds while 

the diol was likely to retain those with polar substituents. The data collected 

supported some of the expected trends based on polarity but each column 

demonstrated unique retention mechanisms for specific resveratrol analogues. The 

results determined that the BC18 column gave the highest retention strength while the 

phenyl hydride displayed the most selectivity for the resveratrol derivatives. 
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Chapter 1: Introduction 

1.1 Background 

1.1.1 History of Chromatography 

Chromatography is an analytical technique used to separate a mixture of components 

in a mobile phase based on various molecular interactions between a stationary phase and 

analytes of interest.1 This technique is mainly used qualitatively in the form of identifying 

components but it can also be used in a quantitative manner for determining precise 

amounts of each analyte. The use of chromatography dates back to the 1800s when Drs. 

Friedlieb Runge, Friedrich Goppelsroeder and Lester Reed separated various colored 

mixtures on paper and cloth.2,3 These three scientists are referred to as the pioneers of 

chromatography while the majority of the scientific community consider Dr. Michael 

Tswett as the father of the concept.  

Michael Tswett was a Russian botanist who worked extensively with plant pigments 

such as chlorophyll. During the pigment sample preparation, he utilized calcium 

carbonate to prevent degradation and observed adsorption of all of the pigments except 

for carotene.4  In the early 1900s, these findings motivated Dr. Tswett to develop an 

analytical method for the separation of chlorophyll, xanthophyll and carotene. Tswett 

utilized column chromatography in which calcium carbonate adsorbent was packed into a 

glass column followed by the addition of petroleum ether chlorophyll solution as mobile 

phase. As the mobile phase with chlorophyll passed through the adsorbent phase, the 

pigments would separate based on their affinity to the calcium carbonate, generating a 

chromatogram that showed distinct colored bands.  
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1.1.2 Types of Chromatography 

1.1.2.1 Homogeneous vs. Heterogenous. Since the 1900s, the utilization and 

popularity of chromatographic separations have grown and branched into different 

categories. While there are numerous types of chromatography, the three mentioned here 

depend on: (1) different physical states, (2) types of interaction between analyte and 

mobile/stationary phase and (3) the shape of stationary phase.5 Chromatography 

distinguished by physical states are homogenous (same phases) and heterogenous 

(different phases) chromatography. Homogenous chromatography separates compounds 

through solute distributions between two liquid phases, one mobile and the other 

stationary. Affinity for each phase determines the solute distribution similar to the 

concept of liquid-liquid extraction. Common heterogeneous forms of chromatography are 

gas and liquid chromatographies (GC and LC) which both incorporate a solid stationary 

phase. A column or capillary bed is packed with small solid particles and a gas or liquid 

mobile phase is passed through the stationary phase. Analytes with varying polarity will 

interact less or more strongly with the stationary phase where stronger interactions result 

in longer retention times.  

1.1.2.2 Adsorption vs. Partition. Chromatography can also be categorized according 

to several types of interactions between the solute and mobile/stationary phase where 

partitioning and adsorption are considered the most common. In liquid chromatography, 

an immobilized liquid can act as a stationary phase, allowing for partitioning to occur. 

For example, water can form hydrogen bonds with a silica support which forms an 

immobilized liquid monolayer covering the stationary surface. As the mobile phase 
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carries analyte through the column or capillary, the analyte will tend to stay in the liquid 

phase that shares a higher affinity. If the immobilized liquid is more polar than the mobile 

phase, then polar analytes with retain longer during the run. The simplest example of 

partitioning chromatography would be performing a liquid-liquid extraction where two 

immiscible liquids are forcefully mixed to separate polar and nonpolar solutes. The polar 

solutes would distribute in the aqueous phase while the nonpolar would distribute into the 

organic phase based on their partition coefficient. 

The concept of adsorption also depends on affinity and polarity similarly to 

partitioning. The analytes in the mobile phase will interact with the solid stationary phase 

strongly or weakly depending on the polarity of the solid support. If the solid stationary 

phase is more polar than the mobile phase, then polar analytes will adsorb and be retained 

longer than less polar analytes.6 Functionalization of the columns and capillaries with 

moieties that vary in polarity will alter the partitioning and adsorption effects during 

chromatographic separations. For example, carbon chains with increasing length will 

decrease the polarity of the solid support while the addition of alcohols or carboxylic 

acids will increase the polarity. 

1.1.2.3 Columnar vs. Planar. Another way to distinguish types of chromatography is 

based on the shape of the stationary phase. Columnar and planar chromatography are the 

most commonly shaped solid supports. In column chromatography, the stationary phase 

is cylindrically shaped and packed with adsorptive material. On the other hand, planar 

chromatography utilizes flat stationary phases that are either entirely made up of 

adsorbent or layered onto an inert flat surface. Examples of column chromatography are 
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GC and LC/high-performance LC (HPLC) while planar includes paper, thin-layer 

chromatography (TLC) and high-performance TLC (HPTLC).7,8   

1.1.3 Main Chromatographic Modes 

As mentioned before, the stationary phase in chromatography can be modified to 

establish control over the desired separation. This control allows scientists to operate 

under different modes of retention. For the sake of this research project, the four main 

modes that will be distinguished and discussed are: (1) normal phase (NP), (2) 

hydrophilic interaction (HILIC), (3) reversed-phase (RP) and (4) aqueous-normal phase 

(ANP) chromatography. Each mode can be distinguished by the type of stationary phase 

and mobile phase used, along with their interaction with analytes of interest. 

1.1.3.1 Normal Phase. NP chromatography incorporates a polar stationary phase and 

a non-polar mobile phase in order to retain and separate polar compounds. Examples of 

polar stationary phases would be bare silica (Si-OH) and functionalized solid support 

with polar moieties such as alcohols, carboxylic acids, amino and cyano groups. 

Examples of non-polar mobile phases used in NP mode would be hexane and 

tetrahydrofuran (THF). The mobile phase may be mixed with other moderately non-polar 

solvents such as chloroform, isopropanol and ethyl acetate to alter the retention of the 

non-polar analytes. In this mode of chromatography, non-polar compounds would elute 

first, followed by moderately non-polar and finally polar compounds.  

1.1.3.2 Hydrophilic Interaction (HILIC). HILIC is named based on the hydrophilic or 

“water loving” interaction between the analytes and the mobile/stationary phase. This 

technique is used to separate polar and ionic species in a mixture. The HILIC 
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chromatographic mechanism operates in the same manner as NP mode where non-polar 

compounds elute first followed by polar ones but differs in mobile phases. While HILIC 

uses polar solid supports, similarly to NP chromatography, the mobile phase differs by 

incorporating a mixture of organic and aqueous solvents. The organic mobile phases used 

in HILIC are more polar than hexane, typically used in NP and are miscible with water. 

Typical solvents used are methanol, acetonitrile and isopropanol. HILIC separations 

differ from NP by utilizing partitioning effects to separate analytes in a mixture.  

1.1.3.3 Reversed Phase. The next mode is referred to as reversed-phase 

chromatography and is currently the most popular mode of separation. Named for 

operating in an opposing manner to NP chromatography, this technique retains non-polar 

compounds and elutes the polar ones. RP stationary phases typically incorporate 

hydrocarbon chains and rings such as C8, C18 and phenyl. Increasing the length of the 

carbon chain will increase the hydrophobicity of the column such that C18 columns 

demonstrate more retention of non-polar solutes than C8 columns. The mobile phases 

used in RP chromatography are like HILIC where water soluble organics are used, albeit 

higher proportions of water is used to elute the polar compounds earlier during analysis. 

1.1.3.4 Aqueous-Normal Phase. Last to be discussed is aqueous-normal phase 

chromatography (ANP) which is unique to the former modes mentioned. ANP is a 

technique that requires the use of a special variety of silica particle, known as Type-C. 

The surface of Type-B silica particles is made up of Si-OH groups while Type-C silica 

particles incorporate silica hydride (Si-H). More information regarding these particles 

will be discussed in Section 4. The mobile phases used in ANP mode are similar to those 
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used in HILIC mode. While the mechanism of ANP has not been fully understood, this 

type of chromatography has demonstrated both NP-like and RP modes of separation.9  

Given two compounds, one with hydrophilic characteristics and the other with 

hydrophobic ones, both can be retained and separated by altering the mobile phase 

composition from high to low organic or vice versa. Figure 1 below shows a retention 

map for an ANP compound and a RP compound on an ANP column. These stationary 

materials allow for more flexible analysis of hydrophilic and hydrophobic mixtures 

where at higher organic content non-polar solutes will elute first leaving polar solutes 

last. The opposite occurs when higher aqueous solvent is used to elute polar compounds 

before the non-polar ones. Another unique ability of the ANP mode is when a compound 

has both hydrophilic and hydrophobic properties the retention map at varying mobile 

phase compositions forms a “U” shape (Figure 2). 

 
Figure 1. Dual retention of an ANP compound and a RP compound. The ANP compound 
retains as organic mobile phase composition increases while the RP compound retains at 
lower organic percentages. 
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Figure 2. A “U” shaped retention map of a hybrid hydrophilic/hydrophobic compound 
using an ANP stationary phase. This graph demonstrates the effect of ANP mode on 
compounds with hybrid hydrophobicity such as peptides. Retaining strongly at low 
organic, weakly at 50% and strongly again at high organic. 

1.1.3.5 Other Modes of Separation. There are many other forms of chromatography 

such as ion exchange (IEC) and size exclusion (SEC). The former focuses on separating 

charged species while the latter is based on molecular size. Ion exchange can be 

separated into three categories: 1. cation-exchange, 2. anion-exchange and 3. 

zwitterionic-exchange. The concept of ion exchange is based on weakly bound ions in 

solution trading places with stronger ionic species. Stationary phases for this 

chromatography incorporate covalently bound polymers with ionic groups. Mobile 

phases contain buffers dependent on the stationary phase used such that cation-exchange 

supports will require cationic buffers. The cations in solution will bind to the covalently 

bound anions and once a stronger cation approaches; coulombic forces will dictate the 

exchange of ions. This same phenomenon will occur with anions and zwitterions 

differing only with stationary and mobile phases used. The example below shows the 

exchange between the weak ions (B+/-) and the strong ions (C+/-). 
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1. 𝑅𝑅 − 𝐴𝐴+/− −  𝐵𝐵+/−  +  𝐶𝐶+/−  (Before ion exchange occurs) 

2. 𝑅𝑅 − 𝐴𝐴+/− −  𝐶𝐶+/−  +  𝐵𝐵+/− (After ion exchange occurs) 

(“R” is the polymer bound to solid support and “A+/-” is the permanent ion attached to the 
polymer.) 

 SEC has several different forms but the two most common in this field are gel 

filtration (GFC) and gel permeation (GPC). This type of chromatography is typically 

used for macromolecule separation. Both GFC and GPC operate in a similar manner 

where the mobile phase, aqueous for GFC and organic for GPC, carries analytes of 

various sizes through a column with porous particles. Analytes that are smaller than the 

pores of the stationary phase will spend more time traversing through the numerous 

pathways than larger molecules. Since the larger molecules bypass the pores, their overall 

pathlength is shorter leading to earlier elution.  

1.2 High Performance Liquid Chromatography 

Liquid chromatography has undergone vast improvements since its discovery. In the 

early 1940s, Drs. Martin and Synge proposed the idea that to increase efficiency of 

separations smaller particles and higher pressures needed to be implemented.10 This idea 

continued to gather support and lead to the birth of high pressure liquid chromatography. 

The word “pressure” in the name of this technique was later changed to “performance” as 

the first HPLC systems were commercialized in the late 1960s.11 To date, modern HPLC 

has advanced to ultra-performance liquid chromatography (UPLC or UHPLC) which 

allows stable analysis at pressures greater than 1000 bar.12 This analytical technique 

offers advantages such as improved qualitative/quantitative analyses, reproducibility, 

high sensitivity, high resolution of molecular mixtures and increased cost efficiency. The 
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rapid growth of HPLC has made it one of the most popularly used analytical techniques 

and covers a wide range of applications. 

1.2.1 Applications in Modern HPLC 

 Of many applications, five frequently utilize the efficiency and precision of HPLC. 

The first are pharmaceutical and bioanalytical separations such as quality control (QC) 

and compound purification. The advantages mentioned before, allow QC analysts to 

separate and verify precise concentrations of compounds in compliance with FDA 

guidelines and regulations. For example, separation of metabolites in medicinal plants is 

necessary for Good Manufacturing Practices and requires robust separation techniques to 

quantify specific compounds.13,14 Next is within the field of forensic science, where 

HPLC’s specificity and sensitivity are used to solve a variety of criminal cases. Examples 

of applications in forensics include detection of squalene from fingerprints, 

distinguishing ballpoint pen ink and detection of illegal substances in biological fluids 

such as narcotics and amphetamines.15,16  

 Food science is another popular area due to society’s interest in determining both 

health beneficial and detrimental substances in consumable goods. HPLC allows food 

scientists to quantify favorable compounds such as flavonoids, polyphenols, antioxidants, 

minerals and amino acids rapidly and efficiently. On the other hand, they can also 

monitor carcinogens, pesticides and steroids with extremely high sensitivity 

(femtomoles).17-19 The fourth useful application of HPLC is in environmental analysis of 

soil and water samples. Similar to the pharmaceutical and forensic fields, the sensitivity 

of this analytical technique allows for proper regulation of neurotoxins, herbicides and 
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other environmental/ecological contaminants.20-22 Last but not least, is the utilization of 

HPLC in research and development. Whether it be for qualitative or quantitative 

information, HPLC is essential for most laboratories because of the precision, accuracy, 

reproducibility and sensitivity that it boasts. Technological and engineering 

advancements of the HPLC system and components has impacted the speed, efficiency 

and cost of sample analysis worldwide. 

1.2.2 Instrument Components 

 There are five major components to an HPLC system: 1. Solvent Manager, 2. 

Injector, 3. Column/Column Oven, 4. Detectors and 5. Computer/Software. 

1.2.2.1 Solvent Manager. The solvent manager consists of a solvent reservoir to hold 

several reagent bottles and pumps to force mobile phase to flow from the bottles 

throughout the system. Additionally, solvent managers may incorporate degassing to 

remove dissolved oxygen, pulse dampeners to absorb pump pressure fluctuations and 

solvent mixers allow the use of gradient methods. The most common solvents used in 

HPLC are deionized water, acetonitrile, methanol, tetrahydrofuran, isopropanol and 

ethanol. Factors to consider when choosing a particular solvent are the viscosity, 

inertness and miscibility with other solvents. Highly viscous solvents require more 

pressure to pass through the system which may lead to pump failure, system leaks, 

column damage, inconsistent peak shape or false peaks. Inert solvents will not interact 

with dissolved solutes preventing interference between them and the stationary phase. 

Solvents that are miscible with each other allow for consistent elution during analysis. 

Additionally, the ultraviolet (UV) cut off range is important because UV detectors 
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(mentioned later) are common in HPLC practice. The UV cutoff is important because 

solvent that absorbs UV light will interfere with samples analyzed at specific 

wavelengths. For example, the UV cut off for acetonitrile and methanol is 210 nm while 

ethyl acetate’s is 260 nm making acetonitrile/methanol a better solvent choice when 

analyzing compounds between 210-260 nm. The ideal solvent manager is capable of 

delivering solvent at a variety of flow rates (0.1 – 5 mL/min), operating at high pressures 

and generating a stable baseline. 

1.2.2.2 Injector. The injector component incorporates a sample plate or tray, a fine 

needle and an injection loop. An ideal injector unit is capable of picking up precise 

amounts of sample and introducing that sample to the mobile phase in an accurate and 

highly reproducible manner. Typical HPLC systems use sample plates or trays that hold 

vials (removable) or wells (fixed) containing small volumes of sample solution. The 

needle or syringe picks up a precise amount of solution from the vial/well, usually 1 to 

100 uL, which is then transferred (manually or automated) to an injection loop that holds 

the sample prior to introduction into the mobile phase. Two common types of injection 

loops are fixed loops where an exact amount of sample completely fills the loop, and 

partial loops hold a small amount of sample with the remaining volume consisting of the 

mobile phase. The sample held in the loop is then introduced to the mobile phase as a 

rectangular “plug” by a switching valve and flows in a laminar fashion. Ideal resolution 

of the plug gives a perfect Gaussian profile; although viscosity of sample/solvent, 

pressure variance and injection of large sample volumes may be detrimental to the peak 

shape. 
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1.2.2.3 Column. A typical chromatographic column is made up of an outer cylindrical 

tube, frits and solid packing material. The tube is made of inert material such as stainless 

steel or chemically/physically strong plastic such as polyetheretherketone (PEEK). 

Dimensions of an HPLC column range from 30 – 250 mm in length and 0.05 – 10 mm 

for internal diameter. Analytical columns can be classified based on the size of internal 

diameter from standard (3 – 4.6 mm) to nanoscale (0.05 - 0.2 mm). Modern HPLC 

advancements are moving towards smaller columns due to the use of smaller packing 

material. Reasons for developing smaller particles will be discussed in the parameters 

section below. The column frits are small porous disks made with similar inert material 

as the cylindrical tube but are positioned between the packing material and the entrance 

and exit of the column. Frits are designed to allow mobile phase to pass through the 

column and prevent the stationary phase from leaving. The most important part of the 

column is the packing material which is often composed of small spherical and inert 

particles (Si-OH, Si-H, Polymer). The two main physical features of these particles are 

surface area and particle size which both contribute to the retention ability of the column. 

There are two types of particles, porous and core-shell (solid core and porous outer layer) 

which typically vary in size from 3 – 5 um. An active phase can be chemically or 

physically bound to the bare particles generating a variety of columns such as the C8, 

C18, phenyl, amino, etc. Different active phases will demonstrate varying stability, 

chemical nature and surface reactivity making their effect on molecular separations 

unique to each other. Additional components can be coupled to enhance or protect a 
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column such as a column oven (allowing temperature control) and guard columns (block 

highly retaining particles).  

1.2.2.4 Detectors. Sample detection is necessary in all fields of analytical chemistry 

to exploit physical/chemical properties presenting qualitative and quantitative 

information of analytes. Ideal detectors should be extremely sensitive, give reproducible 

response, cause minimal peak broadening and maintain robust stability under 

flow/pressure variance. Detectors used to measure analyte concentration in HPLC 

convert an electrical signal into a chromatogram. The chromatogram below (Figure 3) 

displays an intensity (arbitrary units) against time, resulting in a peak unique to the 

analyte in question.  

 
Figure 3. Example of a Chromatogram. 

Area under the Gaussian curve is then calculated and compared to oscillating 

electrical output, also known as a signal to noise ratio (acceptable when signal/noise > 3). 

There are numerous detectors used in HPLC analysis but this paper will focus on UV-

visible and MS detectors. UV-vis detectors utilize a light source that produces 

monochromatic light (200 – 600 nm) directed through a flow cell. The light is then split, 

where one portion interacts with sample in solution and the second goes directly to a 

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 1 2 3 4 5 6 7 8 9 10

Si
gn

al
 (m

AU
)

Retention Time (Min)



14 
 

reference detector. Interaction between specific wavelengths (λ) of light and sample in 

solution can be measured based on transmittance (T) and absorbance (A). Transmittance 

is the relation between intensity of light passing through a blank solution (no analyte) vs. 

intensity transmitted through a sample solution (Equation 1). Absorbance is the logarithm 

(log10) of the inverse of transmittance (Equation 2) and is necessary to calculate the molar 

concentration (χ) according to the Lambert-Beer law (Equation 3). By rearranging the 

Lambert-Beer law and utilizing calibration and/or standard addition curves quantification 

of light absorbing compounds is possible. Variable-wavelength detectors such as 

photodiode array detectors (PDA) or diode array detectors (DAD) allow for analysis at 

multiple wavelengths at one given time. PDA/DADs are extremely useful in determining 

optimal wavelengths in unknown sample solutions but are considerably more costly than 

single wavelength detectors. 

Eq. 1.  T = I1/I0 

Eq. 2.  A = log10(1/T) 

Eq. 3.  A = ελ[χ]L 

Mass spectrometers are another form of detectors that continue to grow in popularity 

and common practice due to their high sensitivity and selectivity. MS detectors are used 

to distinguish molecules based on their mass to charge ratio (m/z) and do not necessarily 

need to resolve a set of peaks to do so. By focusing on a precise m/z, one can differentiate 

between compounds that coelute. The ionization of molecules is of utmost importance for 

MS detection. In LC-MS, soft ionization techniques such as electrospray ionization (ESI) 

and atmospheric pressure chemical ionization (APCI) are employed. Both techniques 
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seek to ionize molecules of interest while leaving solvent molecules uncharged but each 

form ions differently. ESI incorporates an electrically charged (3-5 kV) capillary carrying 

mobile phase and analyte which is nebulized into fine droplets. The droplets are then 

vaporized by heated gas, evaporating most of the solvent and eventually ionic repulsion 

leads to the formation of individual ions. APCI operates with a heated capillary which 

vaporizes the mobile phase and analytes before inducing charge. The gas formed after 

heating is then mixed with N2 or O2 gas and forced to pass a corona discharge 

electrode/needle (3-5 kV). Charges on vaporized solvent and added N2/O2 migrate to the 

analytes based on differences in polarity. The molecules can be positively or negatively 

charged depending on their gas phased basicity (GPB) or acidity (GPA). The tendency 

for molecules to gain a proton (amines) follows the GPB phenomenon and the tendency 

to lose a proton (carboxylic acids, carbohydrates) coincides with GPA.  These concepts 

can be characterized by free enthalpy change where ΔG0
GPB < ΔG0

GPA (most molecules) 

and supports that positive ions form more easily in comparison to negative ones. The 

individual ions are then funneled to a mass analyzer such as a quadrupole, ion trap or 

time of flight (TOF). Resolution of m/z is lower with single mass analyzers because the 

molecular ions formed do not tend to fragment. Coupling mass analyzers together allows 

for tandem MS analysis (LC-MS/MS) where parent ions are first isolated, fragmented in 

a collision cell and finally analyzed based on daughter ions. Various LC-MS/MS systems 

demonstrate high resolving power also known as the ability to distinguish between two 

peaks. 
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1.2.2.5 Computer and Software. The last component to be discussed is the computer 

and software which convert the electric signal produced from the detector into a 

chromatogram. The data is collected and saved for further analysis depending on the 

needs of the chemist. Software is proprietary and usually distributed with similar branded 

instrumentation but some software may be compatible with varying manufactured 

instruments. Typical software allows an analyst to prepare methods and sequences, adjust 

system parameters (temperature, flow rate, mobile phase composition, injection volume, 

etc.) and analyze data. Data analysis generates information such as retention time, peak 

width, peak height, peak area and S/N ratios. Modern programs offer auto-integration of 

peak areas but also allow the user to manually integrate when necessary.  

1.3 HPLC Parameters 

1.3.1 Resolution 

Of the many equations that are associated with HPLC, there are two main ones, 

resolution (R) and the Van Deemter equation. The former calculates the ability to 

distinguish between any two peaks during a run, while the latter accounts for peak 

broadening. Resolution consists of three parameters which are: retention factor (k), 

selectivity (α) and efficiency (N). Equation 4 shows the simplest way to define the 

resolution where only retention time and peak width are taken into account while 

Equation 5 incorporates retention factor, selectivity and efficiency. Good resolution is 

associated with complete peak separation, where R > 1 and can be controlled by altering 

the other parameters. 

Eq. 4. 𝑅𝑅 =  2[𝑡𝑡𝑅𝑅(𝐴𝐴) − 𝑡𝑡𝑅𝑅(𝐵𝐵)]
𝑊𝑊𝑏𝑏(𝐴𝐴)+ 𝑊𝑊𝑏𝑏(𝐵𝐵)
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Eq. 5. 𝑅𝑅 =  1
4

(𝛼𝛼−1
𝛼𝛼

)( 𝑘𝑘
1+𝑘𝑘

)√𝑁𝑁 

1.3.1.1 Retention Factor. The retention factor “k”, also known as capacity factor, is 

needed to characterize specific peak retention and is independent of flow rates and 

column dimensions. One way to describe the retention factor is as a ratio between 

reduced retention time (tR – t0) and the dead time (t0), shown in Equation 6. The retention 

time corresponds to the analyte of interest while the dead time refers to an analyte that 

has no affinity for the stationary phase. For example, KNO3, a polar inorganic salt, will 

not retain on nonpolar stationary phases such as C8 or C18 functionalized columns. Dead 

time can also be related to dead volume which is described as the volume of mobile phase 

that passes through a column from the beginning of an injection. Retention factors are 

positioned between 2 and 10, where compounds that demonstrate a value less than 2 

indicate poor retention and a value above 10 shows that the compound is too strongly 

retained. 

Eq. 6. 𝑘𝑘 =  𝑡𝑡𝑅𝑅−𝑡𝑡0
𝑡𝑡0

 

1.3.1.2 Selectivity. The selectivity parameter “α” compares the retention of multiple 

analytes in solution. Selectivity can be controlled by altering mobile and stationary 

phases but is also specific to the nature of the solute. Consider two analytes A and B in 

solution are injected into an HPLC system and separated by a chromatographic column. 

The selectivity of these two analytes is dependent on the ratio of their retention times 

where a higher α value indicates greater separation (Eq. 7 below). Since selectivity is 

observed from the apex of peaks, regardless of how high α is determined to be, peak 

broadening may be large enough to prevent full separation.  
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Eq. 7. 𝛼𝛼 =  
𝑡𝑡𝑅𝑅𝐵𝐵
𝑡𝑡𝑅𝑅𝐴𝐴

  (Assumes tRB > tRA) 

1.3.1.3 Efficiency. The last characteristic parameter in controlling resolution is 

efficiency which can be expressed as a number of theoretical plates “N”. A theoretical 

plate can be described as a fraction of column where an equilibration event occurs 

between the mobile and stationary phases. N is directly related to peak broadening and is 

used to determine a column’s efficiency where high values for N give narrower peaks. 

The plate number is derived from the height equivalent of a theoretical plate (HETP) 

which relates peak variance to the length of the analytical column. Two ways to solve for 

N are shown below in association with column length or retention time.  

Eq. 8. 𝑁𝑁 = 𝐿𝐿/𝐻𝐻   or 𝑁𝑁 = 16� 𝑡𝑡𝑅𝑅
𝑊𝑊𝑏𝑏

 

1.3.2 Van Deemter Equation 

Even though HPLC systems utilize high pressure pumps to push mobile phase 

through the column at constant flow rates, diffusion and the kinetics related to the process 

still transpire. The Van Deemter equation accounts for all possible forms of diffusion 

occurring within the column and stationary phase, consisting of five types: longitudinal, 

eddy, lateral movement due to convection, mass transfer in/out of the stationary and 

stagnant mobile phase diffusions. Equation 9 below shows how each form of diffusion 

contributes to the height of a theoretical plate.  

Eq. 9. 𝐻𝐻 =  𝐻𝐻𝐿𝐿 + 𝐻𝐻𝐸𝐸 + 𝐻𝐻𝐶𝐶 + 𝐻𝐻𝑇𝑇 + 𝐻𝐻𝑆𝑆 

The first and most common form in HPLC is longitudinal diffusion which occurs 

when a concentrated region (in liquid or gas) disperses to equally fill the surrounding area 
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over time. Longitudinal diffusion through the column depends on several factors such as 

particle obstruction (silica bed), the linear flow rate, the nature of solvent and the 

dimensions of the column/packing material. Second, is eddy diffusion which takes place 

due to the groups of molecules spreading out within the stationary phase and following 

different paths. This type of diffusion is directly related to how well the column is packed 

and how uniform the particles are. The main factors in determining the effects of eddy 

diffusion on plate height are column packing and average particle diameter.  

The next form is the first of three mass transfer diffusions and refers to the lateral 

movement of material caused by convection of the mobile phase. The convection of 

molecules in the mobile phase during HPLC analyses is directly related to particle 

diameter, velocity of mobile phase and the diffusion coefficient. Fourth is the mass 

transfer of solutes in and out of the stationary phase. The particular mass transfer depends 

on adsorption/desorption kinetics between the solute and stationary, the morphology of 

the packing material (i.e. shape, thickness) and the diffusion coefficient.  Finally, the last 

form of mass transfer diffusion needing to be considered is the transfer of solute in/out of 

stagnant mobile phase within porous media. This method of diffusion is governed by the 

particle shape, pore depth and the diffusion coefficient. Combining all the parameters 

provides the Van Deemter equation, relating each type of diffusion with linear velocity 

and HETP where constant “A” accounts for eddy, “B” for longitudinal and “C” for mass 

transfers (combines convection, in/out of stationary and in/out of stagnant mobile 

phase).23 

Eq. 10. 𝐻𝐻 = 𝐴𝐴 + (𝐵𝐵 × 1
𝑢𝑢

) + (𝐶𝐶 × 𝑢𝑢) 
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1.4 Stationary Phase - Silica 

1.4.1 Advantages 

Inorganic, polymer and hybrid materials have been researched for solid support 

foundations in the synthesis of HPLC stationary phases. Of these materials, inorganic 

particles such as silica, metal oxides, graphite and hydroxyapatite are most commonly 

used in modern applications.24 Silica demonstrates characteristic advantages making 

silica the most popular choice for adsorbent material. Three main advantages are 

mechanical robustness, chemical/thermal stability and flexible control of surface area, 

pore size and pore diameter. Mechanical strength is tested by increasing pressure and 

observing any variance in flow rates due to uniformity change or particle damage. The 

chemical and thermal stabilities are determined by exposing the materials to different pH 

and temperature environments followed by efficiency testing. Lastly, the surface area, 

pore size/diameter can be characterized with scanning electron microscopy (SEM), 

transmission electron microscopy (TEM) and nitrogen adsorption studies.25 Even with 

these beneficial characteristics, silica has been continuously improved over the years. 

1.4.2 Evolution of Silica 

The first silica particles (Si-OH) used as adsorbent material for HPLC were not made 

uniformly and varied in size and shape. These “irregularly shaped silica” materials gave 

little reproducible data and limited scientists to using NP chromatography. Another issue 

with the irregular shape is the susceptibility to produce fines under mechanical stress. 

Particle fines can accumulate and result in unstable packed beds and column/system 

clogging. These issues lead to the production of spherical and uniformly dimensioned 
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silica via a sol-gel process, also referred to as type A. Type A silica provided evenly 

packed beds which increased column lifetime and stability. Despite this advancement, 

trace metals found in the silica framework prevented proper solute-silanol interaction 

when solutes were ionized. The desire to decontaminate type A silica directed the 

chromatographic community towards the high purity form, type B silica. Type A silica 

was purified through acid treatments added to the sol-gel process. Type B silica 

demonstrated improved peak shapes and further increased mechanical/chemical stability. 

Even with the progression from irregularly shaped to high purity type B silica, the 

residual silanol groups left analysts with several issues. 

These free silanols may be detrimental for separations if they electrostatically interact 

with solutes. Scientists have tried end-capping with methyl groups to reduce this issue but 

in doing so limited the pH range for analysis (pH 5-8). Lower pH will lead to the 

hydrolysis of these end caps and higher pH results in dissolution of the silica bed. 

Another problem that arises during analysis using type-B silica is an accumulation of 

adsorbed water. If water is present in the mobile phase, over the course of a run, a quasi-

liquid layer will form and grow with further hydrogen bonding resulting in partitioning 

effects. The effects of partitioning are detrimental in gradient analyses (variation of 

mobile phase composition with time) and equilibration times.26 The solution to these 

issues was the development of Type-C silica which incorporates a Si-H particle surface 

instead of Si-OH. Since there are minimal amounts of Si-OH groups (<5%) the 

monolayer of adsorbed water is almost nonexistent. In addition to this improvement, 

Type-C silica maintains the uniform shape and high purity that type-B has to offer 
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without needing end-capping to operate in standard pH ranges (2.5 – 7.5). Another 

unique capability mentioned before in Figures 1 and 2, is the use of the ANP mode 

(selective to Si-H stationary phases) for dual retention on a single column. Type-C silica 

has numerous applications supporting its growth as the next generation of silica 

materials. 

1.5 Synthesis of Si-H 

1.5.1 Silanization 

For the synthesis of silica hydride materials, two silanization reactions were tested. 

The first involves converting the silanols to Si-Cl by reacting with thionyl chloride. 

Reduction from Si-Cl to Si-H is carried out with lithium aluminum hydride. One 

constraint with this reaction is that it must be performed in a completely dry environment. 

Since the Si-Cl moieties are unstable in the presence of water, they are likely to return to 

their former Si-OH form. The second reaction is the condensation of the silanols to the 

hydride form through interaction with triethoxysilane. Unlike the first reaction, this one is 

not as sensitive to water and even utilizes an aqueous acid catalyst. A schematic of the 

reaction is shown below in Figure 4. 

 
Figure 4. Silica hydride synthesis. Silanization performed on Si-OH materials with 
triethoxysilane to yield Si-H materials. 
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1.5.2 Hydrosilation 

Hydrosilation offers a wide array of attachment options outside of typical stationary 

phase functionalization. The best example is the formation of doubly bound carbon when 

an alkyne is used instead of an alkene. The carbon forms a single bond to two Si-H 

neighbors giving high stability bidentate ligands on the stationary surface. Figure 5 shows 

the basic reaction scheme for hydrosilation.27 

 
Figure 5. Functionalization of silica hydride by hydrosilation. An alkene (or alkyne) is 
reacted with silica hydride materials in the presence of hexachloroplatinic acid catalyst 
giving a silicon-alkyl (two silicon-alkyl bonds if an alkyne was used) covalent bond. 

1.6 Research Aims and Goals 

This thesis project is aimed towards the characterization of four Type-C silica 

columns through the analysis of retention maps based on resveratrol analogues. 

Resveratrol, a phenolic compound commonly found in red wines, grape skin and other 

berries has been associated with health beneficial effects such as fighting heart disease 

and cancer.28-30 Although these benefits are attractive, resveratrol has limitations such as 

solubility issues and poor bioavailability.31 Two solutions would be to derivatize 

resveratrol or to use other analogues with similar health benefits.32,33 The latter solution is 

most relevant to this research, in that the separation of the resveratrol analogues is 

important for future work in characterizing them individually. In addition, compounds of 
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similar structure are more challenging to separate and by achieving separation allow for 

more detailed analysis of each column’s retention capabilities.  

The four columns (Diamond C18, Bidentate C18, phenyl and diol) share a silica 

hydride surface yet are uniquely functionalized. The Diamond C18 and Bidentate C18 

columns are expected to exhibit retention on all the non-polar compounds. The diol 

column is expected to retain polar compounds while the phenyl functionalized column 

should interact more with those compounds with higher degrees of unsaturation. The 

resveratrol analogues were analyzed using UV detectors coupled to HPLC instruments; 

observed wavelengths ranged from 220 nm to 335 nm. Solvents used were acetonitrile 

with 0.1% formic acid, deionized water with 0.1% formic acid and methanol with 0.1% 

formic acid (all solvents were at least HPLC grade). An additional study was performed 

observing retention of a small set of acidic, basic and neutral compounds. Future studies 

may include varying pH or temperature and analysis of folic acid derivatives.  
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Chapter 2: Experimental and Methods 

2.1 Columns 

Four Type-C silica columns were used for this project: Bidentate C18, Diamond C18, 

phenyl hydride and diol (Figure 6).  

 
Figure 6. Tested Column Structures. 

The Bidentate C18 incorporates a chain of 18 carbons with two covalent bonds to two 

neighboring silicon atoms, making the column extremely robust in comparison to other 

C18 columns. In addition to RP mode, the Bidentate C18 can also be used in NP and/or 

ANP when using higher percentages of organic mobile phase. The Diamond C18 is a 

cross between the Bidentate C18 and Diamond Hydride columns where the surface has 

both C18 moieties and shorter carbon chains. This column is still in the testing stages but 

is expected to exhibit similar abilities as the Bidentate C18, albeit slightly stronger effects 

on non-polar compounds. 
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The third column, phenyl hydride, employs short chained phenyl groups which have 

high selectivity for aromatic compounds and those with high degrees of unsaturation. 

Finally, the Diol column consists of short chain diol groups which have higher selectivity 

for polar compounds and those susceptible to hydrogen bonding. None of the columns 

mentioned require end capping and are all compatible with mass spectrometry. Table 1 

below shows the various column specifications including pore size/volume, column 

dimensions, pH ranges, maximum temperature, carbon loads and part/serial numbers.  

Table 1. Column specifications. Includes column dimensions, particle dimensions, 
carbon load, pH ranges and maximum operating temperature. 

 
2.2 Instruments 

Three HPLC instruments used for this characterization project were a Perkin Elmer 

(PE) Flexar UPLC and two Agilent 1200 Series HPLC units. The PE instrument was 

equipped with both a UV-Vis detector and a single quadrupole MS detector (Figure 7). 

Only the UV-Vis detector was used for this project. The other components include 

solvent manager, autosampler (100 well plate), pumps/purging unit and Chromera 
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software. The PE Flexar UPLC was used to collect acetonitrile data for all four columns. 

Software issues, instrumental failure and instrument location were detrimental for a 

portion of the study and will be discussed further in the following chapter. 

 
Figure 7. Perkin Elmer Flexar UPLC. 

The Agilent 1200 Series HPLC units differed slightly in their respective components, 

but overall, instrumentation was identical (Figure 8). The first unit used is equipped with 

a G1322A Degasser, G1311A Quaternary Pump, G1315D DAD, G1316A Thermal 

Column Compartment (TCC), G1367B HiP-ALS and G1330B FC/ALS Thermostat.  The 

second unit is equipped with a G1379B Degasser, G1312B Bin Pump SL, G1315C DAD 

SL, G1316B TCC SL, G1367D HiP-ALS SL + and G1330B FC/ALS Thermostat. Both 

instruments operate with ChemStation software. The main difference between the 
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degassing units is the vacuum chamber volume in that the G1322A is 12 mL versus the 

G1379B is 0.5-1.0 mL. The G1379B saves solvent by wasting less during routine 

flushing but has been associated with more failures than the former.34  

 
Figure 8. Agilent 1200 Series HPLC 

 
The pumps differ slightly in that the quaternary is capable of mixing up to four 

solvents during a gradient while the binary is limited to two. In addition, the G1311A 

model’s maximum operating pressure is 400 bar while the G1312B model can handle up 

to 600 bar, allowing for UPLC analysis.35 The detectors are identical in all aspects except 

that the G1315C can acquire data at a higher rate, 80 Hz compared to 20 Hz. TCC units 

are identical but the G1316B delivers more stable temperatures and offers a maximum 
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temperature of 100℃. The difference between autosamplers is merely that the D model is 

compatible with a higher pressure (600 bar). Finally, the thermostats are identical for 

both instruments. 

2.3 Chemicals and Compounds 

2.3.1 HPLC Solvents 

Methanol and acetonitrile were the main solvents used for the characterization of the 

four Type-C columns. Formic acid was used as buffer in both methanol and acetonitrile 

(0.1%). HPLC to MS grade solvent was used, and the solvent is devoid of air, small 

particles and signal interferants. The solvents were acquired from Sigma-Aldrich, 

Omnisolv and Fisher Scientific manufacturers.  

2.3.2 Resveratrol Analogues 

Resveratrol and similar compounds were provided by Monash University in 

Melbourne, Australia. All compounds were of high purity, in powder form and delivered 

in small amber vials (1-2 mg of each compound). Each compound was dissolved in 

HPLC grade acetonitrile and vortexed/sonicated to give sample concentrations of 1 

mg/mL. All standard samples of resveratrol and analogues were stored in amber vials and 

refrigerated at -4 ℃. Injected samples were diluted 10-fold using 100uL polypropylene 

vial inserts at a final concentration of 0.1mg/mL. Figure 9 below shows the structure of 

each compound and their respective IUPAC names. All compounds were labeled from 

MH 1 to MH 23 and will be referred to as such throughout this paper. 
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Figure 9. Resveratrol Analogues. Depicts the structures, IUPAC names and partition 
coefficients of the various resveratrol compounds. (ChemSketch Software and 
Molinspiration Property Engine) 

2.3.3 Acidic, Basic and Neutral Compounds  

The acidic, basic and neutral compounds were acquired from Sigma-Aldrich in high 

purity. Two acidic compounds were used, ketoprofen and 2-nitrobenzoic acid. 

Ketoprofen is a common non-steroidal anti-inflammatory drug while 2-nitrobenzoic acid 

is an intermediate used to synthesize a variety of chemicals. The basic compounds 

analyzed were amitriptyline and diphenhydramine. Amitriptyline is an 
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antipsychotic/antidepressant drug while diphenhydramine is a widely used sleep aid and 

allergy medicine. The last compounds of this set are neutral: anisole, naphthalene and 

ethylbenzene. All three are aromatic and serve as synthetic intermediates in a variety of 

reactions. Figure 8 below shows the structures of the acidic, basic and neutral compounds 

mentioned above. 

 
Figure 10. Acidic, Basic and Neutral Compounds. Depicts the structure, name and 
partition coefficient of each compound. (ChemSketch Software and Molinspiration 
Property Engine) 

2.4 Methods 

All methods conducted for this project were carried out in the isocratic mode, where 

the mobile phase composition and flow rate remained constant throughout each run. Each 

set of standard samples were subjected to the same methods where the initial mobile 

phase concentration was 90% organic mobile phase (acetonitrile or methanol) and 10% 

deionized water. The flow rate was maintained at 0.4 mL/min and the injection volume 
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was set to 1 uL. Subsequent analyses demanded that the mobile phase composition be 

reduced by 10% resulting in a range from 90% organic to 10% organic. Wavelengths 

observed are depicted below in Table 2. 

Table 2. Wavelength Parameter. Wavelengths were chosen based on literary values and 
collaborator suggestions. The switch to the Agilent 1200 Series instruments allowed for a 
more thorough investigation of optimal wavelengths. 

Instrument Resveratrol 
Analogues 

Acidic/Basic/Neutral 
Compounds 

PE UPLC (UV-
Vis) 

254 and 308 
nm N/A 

      
Agilent 1200 
(DAD) 1 

220, 254, 280, 
308 and 335 nm 254 nm 

      
Agilent 1200 
(DAD) 2 

220, 254, 280, 
308 and 335 nm 254 nm 
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Chapter 3: Results and Discussion 

For the purpose of characterizing the four Type-C silica columns, two sets of 

compounds were utilized, resveratrol analogues and acidic/basic/neutral compounds. The 

resveratrol analogues are used to observe ANP/RP retention and to determine separation 

capabilities while the acidic/basic/neutral set is used to characterize the columns based on 

specific molecular interactions. Both groups were analyzed using acetonitrile and 

methanol mobile phases (both with 0.1% formic acid), ranging from 90% organic to 10% 

organic. Samples were prepared between 0.1 – 0.5 mg/mL prior to injection and were run 

in triplicate. Tabulated data depict the averaged retention times of each compound and 

specify the stationary phase used for the corresponding mobile phase compositions. The 

first set of figures are retention plots showing the varying retention times (y-axis) of each 

compound from 0 – 45 minutes across the mobile phase spectrum (x-axis). Data 

collection was halted for compounds that were retained longer than 45 minutes or if peak 

shape was too broad or poor. The second set of figures show stacked and overlaid 

chromatograms of the compounds of interest. The chromatograms are separated between 

resveratrol compounds and the acidic/basic/neutral set. The tables of data give precise 

retention averages while the retention maps give visual understanding to retention trends 

between the two groups of compounds. Finally, the stacked overlays show the theoretical 

trends of resolution if the components were introduced as a mixture. All data collected 

and analyzed were based solely on qualitative information. 

The PE UPLC equipped with a UV-Vis detector was used initially for the analysis of 

resveratrol compounds with acetonitrile as the mobile phase. Samples weighing between 
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1.0 mg to 2.8 mg were delivered to SJSU from Melbourne, Australia. Stock standards 

were initially prepared in amber vials, in minimal light, at concentrations between 1.0 – 

1.4 mg/mL using acetonitrile as diluent. A tenfold dilution was performed to give 

standard samples concentrations ranging from 0.1 – 0.4 mg/mL prior to injection. 

Methods and sequences prepared on Chromera software follow the previously mentioned 

parameters. At first, all compounds were observed at 308 nm (recommended by Monash 

University and comparable to literature wavelengths).36 Little to no signal was observed 

at 308 nm for MH 11-19 and 22. Due to working with small amounts of sample, a UV-vis 

spectrometer was not used to determine the optimal wavelength for these compounds. 

The wavelength of 254 nm was tested for the aforementioned compounds and was 

determined to give sufficient signal for qualitative data. Although the PE UPLC was 

equipped with a temperature controlled autosampler (including insulated sample tray 

cover), the temperature in the room could not be controlled well. Because of this, the 

evaporation of solvent within the HPLC vials was inevitable. Constant refilling of solvent 

and re-spiking sample vials significantly affected the concentration of each sample, 

resulting in variation of absorbance.  

According to the structures and partition coefficients shown in Figure 7, the 

unsaturated resveratrol compounds (MH1, 2, 4 – 10) should exude higher retention than 

the saturated versions (MH 3, 11-19) for the RP columns, Diamond Bidentate C18 and 

Bidentate C18. The phenyl hydride should behave similarly to the previous RP columns 

with additional pi stacking interactions. Finally, the diol column is expected to exhibit 

ANP retention with more polar compounds. Considering that the resveratrol analogues 
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are considered nonpolar, with the exception of MH 21 (gallic acid), minimal retention is 

assumed. Data were compared to the KNO3 dead time and Table 3 gives the expected 

trends. Comparisons between the actual and expected trends will be discussed later. The 

first and fourth trends are based on the transition from resveratrol to an imine/amine 

(MH2/MH12) analogue and finally to an amide (MH3) version. The second and sixth 

trends show the subsequent additions of hydroxide groups to stilbene (MH10) and 

diphenyl ethane (MH19). Trends #3 and #5 compare the differences between having a 

diol plus an unsubstituted benzene or two benzenes with single hydroxide attachment. 

The seventh trend evaluates the effect of meta versus para position hydroxide place. 

Finally, trend #8 compares resveratrol dimer, two flavonoids (MH22 and MH23) and 

gallic acid. 

Table 3. Retention trends of resveratrol and analogues based on structure and polarity.  

 

Since the trends mentioned above only account for polarity, it is important to account 

for other analyte to stationary phase interactions. The linear solvation energy relationship 

(LSER) equation shown below (Eq. 11) gives several possible interactions other than 

hydrophobicity that may explain why the expected trends are not absolute.  

Eq. 11 log 𝑘𝑘 = log 𝑘𝑘0 + 𝜂𝜂′𝐻𝐻 + 𝜎𝜎′𝑆𝑆 + 𝛽𝛽′𝐴𝐴 + 𝛼𝛼′𝐵𝐵 + 𝜅𝜅′𝐶𝐶 

Trend # Reversed Phase Aqueous Normal Phase
1 MH1 > MH2 > MH3 MH3 > MH2 > MH 1
2 MH11 > MH12 > MH3 MH4 > MH1 > MH5 > MH7 > MH9 > MH10
3 MH8 > MH7 MH7 > MH8
4 MH16 > MH15 MH3 > MH12 > MH11
5 MH17 > MH18 MH15 > MH16
6 MH10 > MH9 > MH7 > MH5 > MH1 > MH4 MH13 > MH11 > MH14 > MH15 > MH17 > MH19
7 MH19 > MH17 > MH15 > MH14 > MH11 > MH13 MH18 > M17
8 MH20 > MH1 > MH23 > MH22 > MH21 MH21 > MH22 > MH23 > MH1 > MH20
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The LSER equation relates retention factor k of various compounds with several 

parameters and descriptors associated with the stationary phase.37 Parameters H, S, A, B 

and C correspond to hydrophobicity, steric effects, hydrogen bond acidity/basicity and 

electrostatic interactions.38 For the scope of this work, these parameters and descriptors 

will not be discussed in great detail. However, it is important to account for these 

potential interactions when comparing different stationary phases using the same set of 

analytes and mobile phase compositions.39 Collaborators from Monash University will be 

utilizing the data collected from this project and will calculate these parameters for more 

precise characterization. 

3.1 Data with Acetonitrile as Mobile Phase 

3.1.1 Resveratrol Analogues 

From the Diamond Bidentate C18 data shown in Table 4 and Figure 11, the typical 

RP trend was observed. As acetonitrile was decreased from 90% to 30% compositions, 

retention of all resveratrol analogues was increased. In comparison to KNO3 dead time, 

significant retention (k > 2) was seen for 13 of the 22 compounds while the remainder 

showed minimal retention (k < 2). When addressing the trends in Table 3, only Trend 1, 2 

and 6 were coherent with the expected retention order.  
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Table 4. Diamond Bidentate C18 Capacity Factor “k” (ACN/Resveratrol). Average of in 
triplicate injections from 30% organic to 90% organic.   

 

 
Figure 11. Diamond C18 Retention Map (ACN/Resveratrol). Compares capacity factor 
“k” (y-axis) to percentage acetonitrile mobile phase (x-axis). 

30 40 50 60 70 80 90
MH 1 2.92 0.71 0.25 0.1 0.02 -0.02 -0.06
MH 2 0.54 0.21 0.1 0.05 0.01 0 -0.03
MH 3 0.45 0.1 0.01 -0.02 -0.05 -0.05 -0.08
MH 4 1.58 0.4 0.14 0.04 -0.01 -0.03 -0.07
MH 5 13.29 2.28 0.84 0.42 0.21 0.1 0.03
MH 7 3.8 1.3 0.62 0.3 0.15 0.06
MH 8 2.76 0.97 0.45 0.21 0.1 0.02
MH 9 15.73 4.82 2.16 1.08 0.59 0.29
MH 10 24.67 10.07 4.69 2.41 1.1
MH 11 0.74 0.29 0.11 0.04 -0.01 -0.03
MH 12 0.54 0.37 0.27 0.2 0.27 0.15 0.14
MH 13 0.52 1.29 0.41 0.15 0.02 -0.02 -0.05
MH 14 15.56 4.03 1.54 0.65 0.12 0.04
MH 15 14.25 4.1 1.67 0.86 0.52 0.34 0.24
MH 16 10.51 3.23 1.38 0.73 0.44 0.3 0.21
MH 17 15.5 4.94 2.22 1.11 0.6 0.3
MH 18 16.03 4.97 2.23 1.12 0.59 0.29
MH 19 25.85 10.28 4.76 2.39 1.09
MH 20 1.84 0.61 0.29 0.17 0.09 0.07 0.06
MH 21 0.11 0.12 0.08 0.07 0.07 0.08 0.08
MH 22 0.25 0.17 0.1 0.08 0.07 0.07 0.07
MH 23 6.3 0.62 0.24 0.1 0.02 -0.02 -0.05
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MH8 has a slightly higher logP and differs from MH7 by having a single hydroxide 

group on each benzene while MH7 contains a diol and a bare benzene ring. The structure 

of MH7 is surfactant-like containing a hydrophobic tail (unsubstituted benzene) and 

hydrophilic head (diol substituted) which may explain the difference in elution order with 

MH8. When comparing MH16 to MH15 a similar conclusion is reached explaining the 

higher retention for MH15 (surfactant structure). The higher retention that MH14 and 

MH13 display over MH15 and MH11 is unclear but may be associated with more polar 

heads forcing interaction with the less substituted benzene tail. The difference in polarity 

of MH17 and MH18, meta vs. para hydroxide isomers, was negligible and the order of 

retention not stressed upon. Complete separation of these structural isomers was not 

observed but the DC18 column gave the second highest selectivity for them. Finally, 

MH23 (logP = 1.88) exhibited significantly higher retention than MH20 (logP = 5.43) 

despite being more polar. This may be due to steric hinderance associated with MH20’s 

bulkiness. The overlaid/stacked chromatograms for the Diamond Bidentate C18 using the 

PE UPLC and acetonitrile as mobile phase (Figure 12) showed that few compounds have 

high enough selectivity to be fully resolved from one another. Even at 40% organic the 

majority of compounds overlap from 2 – 10 minutes. Despite having unique retention 

times, if introduced as a mixture, this particular set of compounds would be difficult to 

separate using Diamond Bidentate C18 stationary and acetonitrile mobile phase. Potential 

solutions would be gradient method development and reduced standard/sample 

concentrations. 
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Figure 12. Diamond Bidentate C18 with Acetonitrile Mobile Phase Overlaid/Stacked 
Chromatograms (Resveratrol). 
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Similarly, to the Diamond C18, the Bidentate C18 shows the same RP trend as 

organic mobile phase is reduced from 90% - 10% (Figure 13). When comparing retention 

data between the two, the Bidentate C18 only displayed significant retention (at 30% 

acetonitrile) for 11 compounds compared to 13 on the Diamond C18 (Table 5). This 

information supports that the Diamond C18 is more powerful in retaining this set of 

nonpolar compounds when using acetonitrile as mobile phase. When referring to the 

trends in Table 3, the Bidentate C18 demonstrated comparable retention capabilities. The 

same issues were seen for Trends 3, 5, 6, 7 and 8. In addition, the retention times for 

MH17, 18 and 19 were questionably low in contrast to the Diamond C18. At this time, 

the cause of this variance remains unclear. Figure 14 shows the overlaid/stacked 

chromatograms and gives a similar assessment where the overlap observed would make 

complete resolution difficult. 

 
Figure 13. Bidentate C18 Retention Map (ACN/Resveratrol). Compares capacity factor 
“k” (y-axis) to percentage acetonitrile mobile phase (x-axis). 
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Table 5. Bidentate C18 Capacity Factor “k” (ACN/Resveratrol). Average of in triplicate 
injections from 10% organic to 90% organic.   

 
Table 6. Phenyl Hydride Capacity Factor “k” (ACN/Resveratrol). Average of in triplicate 
injections from 10% organic to 90% organic. 

 

10 20 30 40 50 60 70
MH 1 9.47 2.48 0.94 0.36 0.17 0.08
MH 2 1.1 0.56 0.33 0.21 0.11 0.06
MH 3 1.1 0.44 0.2 0.11 0.02 0
MH 4 4.61 1.35 0.55 0.24 0.11 0.04
MH 5 9.05 2.67 0.96 0.54 0.31
MH 7 15.98 4.47 1.44 0.78 0.42
MH 8 10.1 3.3 1.13 0.61 0.32
MH 9 19.27 5.08 2.69 1.39

MH 10 22.96 12.54 5.98
MH 11 1.25 0.78 0.63 0.91 0.57 0.4 0.26
MH 12 3.88 1.34 0.72 0.48 0.33 0.25 0.19
MH 13 0.62 0.35 0.08
MH 14 7.17 1.89 0.81
MH 15 16.97 4.84 1.93 0.97 0.55
MH 16 12.77 3.86 1.61 0.82 0.48
MH 17 0.77 0.64 0.56 0.53 0.4 0.67
MH 18 0.79 0.64 0.55 0.51 0.4 0.67
MH 19 0.78 0.64 0.54 0.5 0.4 0.32
MH 20 13.47 2.29 0.77 0.35 0.18 0.1
MH 21 0.62 0.28 0.18 0.15 0.13 0.1 0.08
MH 22 4.11 0.74 0.35 0.23 0.15 0.11 0.08
MH 23 9.57 2.14 0.76 0.36 0.15 0.06
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MH 2 1.46 0.68 0.35 0.2 0.12 0.02 0.09
MH 3 3.7 1.01 0.35 0.13 0.04 -0.04 0.03
MH 4 19.2 4.47 2.01 0.53 0.19 0.03 0.07
MH 5 12.51 3.89 1.14 0.95 0.55
MH 7 30.34 7.49 2.45 0.98 0.38 0.28
MH 8 25.41 6.52 2.18 0.89 0.34 0.26
MH 9 21.37 6.04 2.21 0.85 0.54

MH 10 16.54 5.33 1.93 1.08
MH 11 24.5 5.77 1.87 0.75 0.33 0.1 0.12
MH 12 0.67 0.36 0.21 0.12 0.02 0.09
MH 13 20.17 4.44 0.62 0.31 0.13 0.13
MH 14 36.81 9.06 2.86 0.95 0.53
MH 15 21.46 6.22 2.19 0.91 0.35 0.27
MH 16 18.9 5.52 2 0.84 0.33 0.26
MH 17 18.05 5.5 2.07 0.8 0.52
MH 18 17.98 5.58 2.1 0.81 0.52
MH 19 15.72 5.11 1.84 1.02
MH 20 2.47 0.68 0.21 0 0.04
MH 21 0.19 -0.01 -0.05 -0.07 -0.06 -0.1 0
MH 22 2.03 0.46 0.12 0.02 -0.03 -0.09 0
MH 23 6.77 1.82 0.69 0.29 0.08 0.11
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Figure 14. Bidentate C18 with Acetonitrile Mobile Phase Overlaid/Stacked 
Chromatograms (Resveratrol). 
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The Phenyl Hydride data shown was collected from the Agilent 1200 Series (1). The 

dimensions of the Phenyl Hydride and the Diol were 2.1 x 100mm compared to 4.6 x 75mm 

for the Diamond C18 and Bidentate C18. Since the flow rates (0.4 mL/min) and injection 

volumes (1 uL) were maintained throughout the study, the capacity factor k of the Phenyl 

Hydride and Diol columns can be theoretically compared to the Diamond C18 and 

Bidentate C18 columns. Similar to the Diamond C18 and Bidentate C18 columns, the 

Phenyl Hydride operates in a RP manner where retention is increased as percent organic is 

decreased (Table 6). Of the unsaturated resveratrol analogues, MH4 and MH5 were the 

only ones that gave less retention than their respective saturated versions (MH13 and 

MH14). Unfortunately, no explanation for this incident has been determined. In reference 

to the polarity tendencies, only Trends 7 and 8 were completely agreeable. In Trends 1 and 

4, MH3 exhibited higher retention than MH2/MH12 despite having a low logP value. This 

phenomenon could be attributed to the central keto group on MH3 but the associated 

interactions are unclear. 

In Trends 2, 3, 5 and 6 the surfactant-like properties of MH5, 7, 14 and 15 

overshadowed the expected retention scheme. Figure 15 shows that significant retention 

(k > 2) is observed for 19 of 22 resveratrol analogues. Figure 16 displays the progression 

of separation across all mobile phase compositions. Significant selectivity is observed for 

the majority of the compounds where the most difficult to separate were MH2/MH12 and 

MH17/MH18. Overall, the Phenyl Hydride shows the highest potential in separating this 

set of resveratrol compounds in acetonitrile. Furthermore, considering that full resolution 
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is achieved (≈ 1 mg/mL) at 10% acetonitrile, analysts can save on solvent expenses and 

utilize gradient methods to optimize separations. 

 
Figure 15. Phenyl Hydride Retention Map (ACN/Resveratrol). Compares capacity factor 
“k” (y-axis) to percentage acetonitrile mobile phase (x-axis). 

The Diol data shown was collected from the Agilent 1200 Series (2). Compared to the 

previous columns, the Diol is considered to be an ANP column. The resveratrol 

compounds are considerably nonpolar and are expected to exhibit minimal retention with 

Diol stationary phase. Indeed, from data shown in Table 7 and Figure 17, the majority of 

the compounds (except MH9 and MH10) display little to no retention across the mobile 

phase spectrum. Although only slightly, the Diol was the sole column that demonstrated 

dual retention (ANP: 60-90%B, RP: 50-10%B) with MH2 (imine). Referencing the 

expected polarity trends is more complex due to the presence of two modes of retention. 
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Figure 16. Phenyl Hydride with Acetonitrile Mobile Phase Overlaid/Stacked 
Chromatograms. 



46 
 

Table 7. Diol Capacity Factor “k” (ACN/Resveratrol). Average of in triplicate injections 
from 10% organic to 90% organic.   

  

  
Figure 17. Diol Retention Map (ACN/Resveratrol). Compares capacity factor “k” (y-
axis) to percentage acetonitrile mobile phase (x-axis). 

10 20 30 40 50 60 70
MH 1 1.12 0.31 0.13 0.07 0.01 -0.05 -0.12
MH 2 0.2 0.15 0.13 0.1 0.18 0.24 0.32
MH 3 0.28 0.16 0.11 0.08 0.04 -0.01 -0.08
MH 4 0.44 0.3 0.15 0.08 0.02 -0.04 -0.11
MH 5 1.35 0.46 0.2 0.07 0 -0.06 -0.12
MH 7 2.67 0.57 0.19 0.07 0 -0.06 -0.13
MH 8 2.21 0.48 0.17 0.07 0 -0.06 -0.14
MH 9 7.48 1.28 0.3 0.09 0 -0.07 -0.15

MH 10 30.12 4.63 0.8 0.19 0.02 -0.07 -0.15
MH 11 0.5 0.2 0.11 0.06 0.01 -0.05 -0.12
MH 12 0.2 0.16 0.13 0.1 0.06 -0.01 -0.08
MH 13 0.26 0.19 0.11 0.06 0 -0.05 -0.11
MH 14 0.25 0.21 0.2 0.07 -0.01 -0.07 -0.13
MH 15 1.41 0.36 0.15 0.07 0 -0.06 -0.13
MH 16 1.21 0.32 0.14 0.06 0 -0.06 -0.13
MH 17 4.68 0.91 0.24 0.08 0 -0.07 -0.15
MH 18 4.62 0.9 0.24 0.08 0 -0.07 -0.15
MH 19 4.06 0.72 0.17 0.01 -0.07 -0.15
MH 20 4.13 0.38 0.1 0.04 -0.01 -0.06 -0.13
MH 21 0.16 0.13 0.12 0.1 0.07 0.04 -0.02
MH 22 0.22 0.15 0.11 0.08 0.05 0.01 -0.05
MH 23 1.21 0.32 0.14 0.08 0.02 -0.04 -0.11
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Trends 2, 4, 6 and 8 were compliant for the ANP portion and Trends 2, 6, 7 and 8 for 

the RP portion. When operating in ANP, MH7/MH8 and MH15/MH16 were inseparable 

but in RP mode the surfactant displayed similar retention patterns as the aforementioned 

columns. The “amide resveratrol” (MH3) still exhibited higher retention than the imine 

(MH2) and amine (MH12) versions. This shows that MH3 is selectively retained on the 

Phenyl and Diol columns compared to the Diamond and Bidentate C18 stationary phases 

when using acetonitrile as mobile phase. From overlaid and stacked chromatograms 

(Figure 18), the unique dual retention is shown more clearly. In the end, the Diol does not 

supply adequate retention or resolution for any useful separations with these RP 

compounds.   

3.1.2 Acidic, Basic and Neutral Compounds 

A small set of common acidic, basic and neutral compounds were employed for 

additional characterization of the four columns using both Agilent 1200 HPLCs. Trends 

shown in Table 8 correspond to the logP values for the proposed compounds. Table 9 

shows that Trends 1 and 2 are followed except Trend 3 where anisole gave higher 

retention than ethylbenzene. Anisole has a significantly lower logP value than 

ethylbenzene (1.99 vs. 2.85) due to the presence of the methoxy group and the reason for 

anisole’s higher retention is unclear. Amitriptyline and diphenhydramine were the only 

two that displayed ANP retention from 90%B – 70%B, followed by a switch to RP mode 

from 60% B – 10% B. The retention map below (Figure 19) shows that significant 

retention can be achieved for all six compounds. Finally, the overlaid chromatograms 

(Figure 20) display the Diamond C18’s successful resolution of each compound as 
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organic mobile phase is reduced. Since amitriptyline and diphenhydramine experience 

band broadening at lower organic compositions gradient separations would need to be 

used to achieve full resolution. 

 
Figure 18. Diol with Acetonitrile Mobile Phase Overlaid/Stacked Chromatograms. 
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Table 8. Retention trends of acidic/basic/neutral compounds based on structure and 
polarity. 

 
Table 9. Diamond Bidentate C18 Capacity Factor “k” (ACN/ABN). Average of in 
triplicate injections from 10% organic to 90% organic. 

 

 
Figure 19. Diamond C18 Retention Map (ACN/ABN). Compares capacity factor “k” (y-
axis) to percentage acetonitrile mobile phase (x-axis).    

Trend # Reversed Phase Aqueous Normal Phase
1 Ketoprofen > 2-Nitrobenzoic Acid 2-Nitrobenzoic Acid > Ketoprofen
2 Amitriptyline > Diphenhydramine Diphenhydramine > Amitriptyline
3 Naphthalene > Ethylbenzene > Anisole Anisole > Ethylbenzene > Naphthalene

30 40 50 60 70 80 90
Ketoprofen 17.34 4.84 2.01 0.98 0.6 0.39 0.26

2-Nitrobenzoic Acid 1.33 0.78 0.49 0.31 0.26 0.17 0.13
Amitriptyline 17.52 5.67 3.03 2.16 2.05 2.45 3.67

Diphenhydramine 5.91 2.48 1.55 1.23 1.27 1.68 2.73
Anisole 13.68 6.46 3.44 1.92 1.23 0.82 0.53

Naphthalene 23.5 10.12 4.81 2.75 1.65 0.97
Ethylbenzene 5.58 2.89 1.71 1.08 0.75 0.54 0.39
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Figure 20. Diamond Bidentate C18 with Acetonitrile Mobile Phase Overlaid/Stacked 
Chromatograms. 
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The Bidentate C18 column demonstrated the same retention patterns as the Diamond 

C18. The main difference observed was that all the compounds were retained slightly 

more on the Bidentate C18 than the hybrid column (Table 10). Selectivity and resolution 

were also comparable as shown in Figure 22. The Bidentate C18 also showed higher 

ANP properties for amitriptyline and diphenhydramine than the Diamond C18 (Figure 

21). 

Table 10. Bidentate C18 Capacity Factor “k” (ACN/ABN). Average of in triplicate 
injections from 10% to 90% organic.   

  

Figure 21. Bidentate C18 Retention Map (ACN/ABN). Compares capacity factor “k” (y-
axis) to percentage acetonitrile mobile phase (x-axis).   

10 20 30 40 50 60 70
Ketoprofen 21.65 5.79 2.43 1.14 0.66

2-Nitrobenzoic Acid 7.15 3.15 1.68 0.97 0.6 0.36 0.28
Amitriptyline 20.41 6.67 3.83 3 2.49

Diphenhydramine 7.04 3.04 2.13 1.66 1.57
Anisole 17.74 8.13 4.28 2.28 1.39

Naphthalene 12.43 5.58 3.11
Ethylbenzene 18.32 7.64 3.88 2.26 1.34 0.9
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Figure 22. Bidentate C18 with Acetonitrile Mobile Phase Overlaid/Stacked 
Chromatograms. 
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The Phenyl Hydride demonstrated the same reversed phased retention as the 

Diamond C18 and Bidentate C18. Similar to the other two, the Phenyl followed Trends 1 

and 2 but still showed greater retention of anisole over ethylbenzene in Trend 3. The 

main differences were that the retention power of the Phenyl Hydride was much lower for 

these compounds (Table 11) but the peak shape for the compounds gave less peak 

broadening that the other two reversed phase columns (Figure 24). In addition, the ANP 

properties demonstrated by retention of amitriptyline and diphenhydramine were much 

weaker than the Diamond C18 and Bidentate C18 stationary phases (Figure 23).  

Table 11. Phenyl Hydride Capacity Factor “k” (ACN/ABN). Average of in triplicate 
injections from 10% to 90% organic.   

  

 
Figure 23. Phenyl Hydride Retention Map (ACN/ABN). Compares capacity factor “k” 
(y-axis) to percentage acetonitrile mobile phase (x-axis).    

10 20 30 40 50 60 70
Ketoprofen 33.35 7.67 2.71 1.14 0.48 0.37

2-Nitrobenzoic Acid 2.83 1.89 1.17 0.73 0.44 0.22 0.23
Amitriptyline 18.28 3.72 1.29 0.59 0.32 0.4

Diphenhydramine 26.26 5.63 1.57 0.62 0.33 0.18 0.29
Anisole 13.65 8.13 4.35 2.33 1.25 0.61 0.49

Naphthalene 35.68 13.17 5.43 2.43 1.08 0.75
Ethylbenzene 11.07 5.05 2.61 1.48 0.88 0.48 0.43
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Figure 24. Phenyl Hydride with Acetonitrile Mobile Phase Overlaid/Stacked 
Chromatograms. 
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Finally, the Diol column was the only column to follow all three expected trend 

orders. The retention map (Table 12) shows typical RP retention from high to lower 

organic for the acidic and neutral species but demonstrates both ANP and RP retention 

for amitriptyline and diphenhydramine. The ANP properties are much more apparent for 

the Diol stationary phase than the others but the retention power and selectivity are the 

lowest of the four (Figure 25 and 26). The resveratrol compounds do not appear to have 

enough affinity for the Diol column to be separated as a mixture. 

Table 12. Diol Capacity Factor “k” (ACN/ABN). Average of in triplicate injections from 
10% to 90% organic.   

  

 
Figure 25. Diol Retention Map (ACN/ABN). Compares capacity factor “k” (y-axis) to 
percentage acetonitrile mobile phase (x-axis).   

10 20 30 40 50 60 70
Ketoprofen 1.92 0.29 0.08 -0.01 -0.07 -0.14 -0.21

2-Nitrobenzoic Acid 0.14 0.09 0.04 0 -0.04 -0.1 -0.18
Amitriptyline 1.75 0.39 0.15 0.06 0.01 -0.02 -0.03

Diphenhydramine 0.74 0.25 0.11 0.06 0.01 -0.01 -0.01
Anisole 0.47 0.23 0.1 0.02 -0.05 -0.11 -0.2

Naphthalene 2.14 0.69 0.22 0.04 -0.05 -0.14 -0.21
Ethylbenzene 0.56 0.24 0.11 0.03 -0.03 -0.1 -0.18
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Figure 26. Diol with Acetonitrile Mobile Phase Overlaid/Stacked Chromatograms 
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In terms of retention power when using acetonitrile as mobile phase, the Bidentate 

C18 is the highest, followed by the Diamond C18, then the Phenyl Hydride and finally 

the Diol. The Phenyl Hydride demonstrates the most selectivity and resolution compared 

to the other three (Bidentate and Diamond C18 are comparable). The reason for this may 

be due to the additional pi-pi interactions with the aromatics and phenolic aspects of the 

resveratrol analogues. 

3.2 Data with Methanol as Mobile Phase 

3.2.1 Resveratrol Analogues 

When comparing the mobile phases, the first expected difference is in retention. Since 

methanol is a weaker organic than acetonitrile which supports that higher retention is 

assumed when using methanol. This concept is fully supported for all four columns when 

comparing the methanol retention maps to the acetonitrile ones for the resveratrol 

analogues (Tables 13-16). When specifically observing the Diamond C18, three 

differences between trend order are noted. The first difference was that Trends 1 and 2 

(amide vs. imine/amine) showed the amide resveratrol retained longer than the imine and 

amine versions while in acetonitrile this was not the case. The second change was seen 

between the meta/para position resveratrol isomers (MH17 and 18) where in acetonitrile 

MH18 displays greater retention than MH17 while in methanol the order is flipped. 

Surprisingly, although retention is greater in methanol, selectivity for the meta/para 

isomers is lower when compared to acetonitrile mobile phase. The third variation was 

observed between MH14 and MH15 (1, 2, 3-triol and 1, 3-diol) where acetonitrile 

promoted retention such that MH14 > MH15 while methanol supported the opposite 
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order. Reasons for this change are unclear at this time. When referring to retention power, 

20 of the 22 compounds gave a capacity factor k > 2 supporting increased retention with 

methanol. In terms of selectivity, Figures 27 and 28 confirm that methanol gives better 

selectivity and resolution than acetonitrile for these resveratrol analogues.  

Table 13. Diamond Bidentate C18 Capacity Factor “k” (MeOH/Resveratrol). Average of 
in triplicate injections from 10% to 90% organic.   

  
 

 

 

10 20 30 40 50 60 70
MH 1 16.62 4.41 1.25 0.42 0.16
MH 2 6.54 2.6 1.31 0.66 0.32 0.1 0.07
MH 3 1.89 0.67 0.25 0.1 0.03
MH 4 7.02 2.13 0.67 0.12 0.01
MH 5 6.38 2 0.76
MH 7 10.96 2.8 1.05
MH 8 8.07 2.15 0.8
MH 9 12.56 4.41

MH 10 20.77
MH 11 16.9 4.88 1.51 0.5 0.2
MH 12 2.4 1.34 0.93 0.66 0.33 0.39 0.08
MH 13 6.85 1.79 0.41 0.19
MH 14 5.79 2.16 0.92
MH 15 9.46 2.68 1.02
MH 16 8.85 2.27 0.86
MH 17 11.46 3.9
MH 18 11.19 3.76
MH 19 19.46
MH 20 11.04 1.72 0.37 0.07 0
MH 21 1.33 0.56 0.29 0.15 0.07 0.03 0.01
MH 22 12.42 2.45 0.81 0.27 0.1 0.03 0
MH 23 9 2.7 0.81 0.33

Diamond Bidentate C18

Resveratrol Analogues
Mobile Phase Composition (% Methanol)
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Table 14. Bidentate C18 Capacity Factor “k” (MeOH/Resveratrol). Average of in 
triplicate injections from 10% to 90% organic.   

 
Table 15. Phenyl Hydride Capacity Factor “k” (MeOH/Resveratrol). Average of in 
triplicate injections from 10% to 90% organic.   

 

10 20 30 40 50 60 70
MH 1 20.7 5.49 1.73 0.58 0.25
MH 2 7.96 3.33 1.58 0.81 0.44 0.26 0.18
MH 3 8.32 2.31 0.84 0.36 0.17 0.09
MH 4 0.88 0.42 0.23
MH 5 7.64 2.99 1.24
MH 7 12.73 3.52 1.29
MH 8 10 2.79 1.06
MH 9 16.89 5.49
MH 10 26.38
MH 11 20.89 5.96 1.95 0.66 0.29
MH 12 7.89 3.33 1.58 0.81 0.44 0.25 0.17
MH 13 3.15 1.25 0.54 0.28
MH 14 7.17 2.55 1.14
MH 15 11.19 3.29 1.24
MH 16 9.93 2.87 1.1
MH 17 14.48 4.82
MH 18 14.11 4.62
MH 19 24.18
MH 20 13.53 2.2 0.52 0.14 0.06
MH 21 1.67 0.74 0.38 0.21 0.13 0.08 0.06
MH 22 14.54 3.33 0.99 0.36 0.17 0.08 0.06
MH 23 10.81 3.38 1.07 0.46

Bidentate C18

Resveratrol Analogues
Mobile Phase Composition (% Methanol)
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ap
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ity
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ac
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r (

k)

10 20 30 40 50 60 70
MH 1 24.55 7.26 2.12 0.3 -0.35 -0.43
MH 2 1.73753 0.83 0.25 -0.08 -0.3 -0.47 -0.47
MH 3 6.03448 2.24 0.63 0.01 -0.31 -0.49 -0.49
MH 4 4.05 2.2 1.01 0.34 -0.08 -0.4 -0.44
MH 5 29.02 5.64 1.66 0.21 -0.18
MH 7 25.05 7.7 1.93 0.06 -0.3
MH 8 23.58 7.11 1.72 0.01 -0.36
MH 9 24.27 6.16 0.94 -0.18

MH 10 17.39 3.1 0.52
MH 11 15.51 4.8 1.48 0.18 -0.35 -0.49
MH 12 1.75 0.84 0.23 -0.09 -0.3 -0.47 -0.53
MH 13 36.403 17.83 2.87 0.92 0.09 -0.33 -0.46
MH 14 17.49 3.92 1.19 0.03 -0.31
MH 15 16.1 5.41 1.42 -0.02 -0.37
MH 16 16.45 5.41 1.36 -0.04 -0.42
MH 17 18.8 5 0.76 -0.18
MH 18 17.43 4.7 0.71 -0.19
MH 19 15.22 2.76 0.34
MH 20 22.64 3.95 0.39 -0.38 -0.56
MH 21 0.22086 -0.04 -0.23 -0.35 -0.44 -0.53 -0.6
MH 22 3.699 1.25 0.22 -0.18 -0.38 -0.52 -0.59
MH 23 12.93 3.72 0.77 -0.2 -0.48

Phenyl Hydride

Resveratrol Analogues
Mobile Phase Composition (% Methanol)
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Table 16. Diol Capacity Factor “k” (MeOH/Resveratrol). Average of in triplicate 
injections from 10% to 90% organic.   

  

Figure 27. Diamond C18 Retention Map (MeOH/Resveratrol). Compares capacity factor 
“k” (y-axis) to percentage mobile phase (x-axis). 

10 20 30 40 50 60 70
MH 1 2.25 1.11 0.49 0.18 0.04 -0.03 -0.06
MH 2 0.16 0.09 0.05 0.01 -0.01 -0.05 -0.06
MH 3 0.33 0.18 0.09 0.03 0 -0.05 -0.06
MH 4 0.08 0.05 0.03 -0.01 -0.04 -0.09 -0.1
MH 5 1.6 0.71 0.3 0.12 0.04 -0.03 -0.05
MH 7 5.92 2.3 0.89 0.31 0.09 -0.01 -0.05
MH 8 4.68 1.91 0.76 0.27 0.08 -0.03 -0.05
MH 9 15.91 5.58 1.92 0.62 0.19 0 -0.04

MH 10 20.49 6.47 1.83 0.52 0.08 -0.03
MH 11 0.81 0.38 0.17 0.04 0 -0.05 -0.06
MH 12 0.15 0.07 0.04 0 -0.01 -0.05 -0.08
MH 13 0.28 0.12 0.05 0.01 -0.01 -0.05 -0.06
MH 14 1.11 0.36 0.17 0.05 0.01 -0.04 -0.06
MH 15 2.44 0.95 0.38 0.12 0.03 -0.04 -0.06
MH 16 2.32 0.84 0.34 0.09 0.01 -0.04 -0.06
MH 17 8.69 2.96 1.05 0.34 0.09 -0.03 -0.06
MH 18 8.52 2.87 1.04 0.34 0.09 -0.03 -0.06
MH 19 13.03 4.59 1.34 -0.03 0.03 -0.04
MH 20 1.34 0.3 0.03 -0.05 -0.08
MH 21 0.12 0.08 0.04 0.01 0 -0.04 -0.05
MH 22 0.24 0.12 0.07 0.01 0 -0.04 -0.06
MH 23 3 1.39 0.62 0.23 0.08 -0.03 -0.05
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Figure 28. Diamond Bidentate C18 with Methanol Mobile Phase Overlaid/Stacked 
Chromatograms. 
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The Bidentate C18 followed similar RP trends as the Diamond C18 and also showed 

significant retention of 20 out of the 22 compounds (k > 2). In terms of retention power, 

the Bidentate C18 showed slightly higher retention for all the compounds than the 

Diamond C18. Similar to the Diamond C18, the Bidentate showed more retention of 

MH3 than MH2/MH12 (Trends 1 and 2) at higher water mobile phase compositions. The 

second change was observed for Trend 7 where the expected trend was followed in 

methanol but completely different in acetonitrile. No concrete explanation for this 

phenomenon has been determined. The last difference found in methanol was the 

retention order of MH1, MH20 and MH23 (Synthetic vs. Natural Derivatives). In 

acetonitrile MH20 retained more than MH23 and MH1 while in methanol the order of 

retention was MH23 > MH1 > MH20. Despite these differences in retention order, the 

selectivity of the Bidentate C18 was comparable to the Diamond C18 (Figures 29 and 30) 

but the Diamond C18 demonstrated higher selectivity of the unsaturated and saturated 

forms of resveratrol. 

 
Figure 29. Bidentate C18 Retention Map (MeOH/Resveratrol). Compares capacity factor 
“k” (y-axis) to percentage mobile phase (x-axis). 
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Figure 30. Bidentate C18 with Methanol Mobile Phase Overlaid/Stacked 
Chromatograms. 
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The Phenyl Hydride column gave comparable retention orders as the previous RP 

columns and demonstrated the third highest retention of the four stationary phases. 

Comparing retention between acetonitrile and methanol, both solvents gave significant 

retention (k > 2) of 19 of the 22 compounds (Figure 31). In reference to the expected 

retention trends, there were four variations with methanol as solvent. First, the Phenyl 

column was the only one to follow Trend 4 when using methanol. The second and most 

important was the selectivity for the meta/para hydroxides (MH17 and MH18). The 

Phenyl Hydride demonstrated the highest selectivity for these isomers when using 

methanol. The next difference observed was a higher selectivity for MH14 (triol) in 

acetonitrile where MH14 > MH17 while in methanol MH17 > MH14 in terms of 

retention. In both solvents retention of MH14 > MH15 (triol > diol). Lastly, in 

acetonitrile the retention of MH1 > MH20 > MH23 while in methanol the order was 

MH23 > MH1 > MH20. In terms of selectivity and resolution the Phenyl Hydride shows 

the most potential (Figure 32).  

 
Figure 31. Phenyl Hydride Retention Map (MeOH/Resveratrol). Compares capacity 
factor “k” (y-axis) to percentage mobile phase (x-axis). 
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Figure 32. Phenyl Hydride with Methanol Mobile Phase Overlaid/Stacked 
Chromatograms. 
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The Diol stationary phase still gave little to no retention for the majority of the 

resveratrol analogues despite the use of methanol mobile phase (Figure 33). In 

acetonitrile, eight of the 22 gave a k > 2 compared to 11 of 22 in methanol. Although the 

selectivity was significant for half of the compounds, the selectivity was not high enough 

to afford acceptable resolution (Figure 34). Between the expected and actual retention 

trends only two differed between mobile phases. First, in acetonitrile the Diol followed 

the expected order for Trend 6, while in methanol retention of MH1 > MH5. Secondly, in 

acetonitrile the retention order for Trend 8 was actually MH11 > MH13 > MH14 whereas 

in methanol the original order was maintained. In terms of retention, selectivity and 

resolution the Diol stationary phase achieved little success. Interestingly, the ANP 

retention of MH2 was only observed in acetonitrile but not in methanol. No solid 

explanation can be given for these findings at this time. 

 
Figure 33. Diol Retention Map (MeOH/Resveratrol). Compares capacity factor “k” (y-
axis) to percentage mobile phase (x-axis). 
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Figure 34. Diol with Methanol Mobile Phase Overlaid/Stacked Chromatograms. 
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The retention strength of the columns only differed in methanol where the Bidentate 

C18 > Diamond C18. The selectivity for the resveratrol compounds was the same as in 

acetonitrile where Phenyl > Diamond C18 > Bidentate C18 > Diol. The main differences 

in methanol were higher retention of all compounds and the ANP properties observed for 

MH2 were only seen when acetonitrile was used as mobile phase. While there were 

significant differences in the expected retention trends 

3.2.2 Acidic, Basic and Neutral Compounds 

Similar results were found for the acidic, basic and neutral compounds when 

comparing the change in mobile phase solvent. Tables 17-20 support that methanol is a 

weaker organic solvent in that higher retention is observed for all seven compounds in RP 

mode with all four columns. The retention strength of the columns was the same as with 

acetonitrile (BC18 > DC18 > Phenyl > Diol) and the selectivity was similar as well. 

While the Diamond C18 and Bidentate C18 gave significant resolution, at lower organic 

content the peaks for amitriptyline and diphenhydramine broadened considerably 

(Figures 35 and 36).  

Table 17. Diamond Bidentate C18 Capacity Factor “k” (MeOH/ABN). Average of in 
triplicate injections from 10% to 90% organic.   

  

10 20 30 40 50 60 70 80 90
Ketoprofen 14.71 3.89 1.37 0.45 0.14

2-Nitrobenzoic Acid 7.72 4.28 2.45 1.35 0.75 0.36 0.19 0.08 -0.03
Amitriptyline 12.09 3.21 1.25 0.56 0.33

Diphenhydramine 3.32 1.1 0.51 0.28 0.15
Anisole 9.32 4.12 2.09 0.91 0.46

Naphthalene 15.51 6.28 2.16 1.02
Ethylbenzene 9.26 4.36 1.89 1.03 0.48 0.23

Acidic/Basic/Neutral
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k
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Diamond Bidentate C18

Mobile Phase Composition (% Methanol)
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Table 18. Bidentate C18 Capacity Factor “k” (MeOH/ABN). Average of in triplicate 
injections from 10% to 90% organic.   

  
Table 19. Phenyl Hydride Capacity Factor “k” (MeOH/ABN). Average of in triplicate 
injections from 10% to 90% organic.   

  
Table 20. Diol Capacity Factor “k” (MeOH/ABN). Average of in triplicate injections 
from 10% to 90% organic.   

  
 

 

10 20 30 40 50 60 70 80 90
Ketoprofen 17.2 4.72 1.68 0.58 0.3

2-Nitrobenzoic Acid 8.99 5.01 2.84 1.58 0.86 0.46 0.27 0.14 0.08
Amitriptyline 13.14 3.7 1.41 0.65 0.45

Diphenhydramine 3.82 1.29 0.57 0.32 0.24
Anisole 24.01 11.4 5.15 2.58 1.16 0.72

Naphthalene 18.95 7.58 2.62 1.4
Ethylbenzene 13.44 6.09 2.73 1.46 0.71 0.48

Acidic/Basic/Neutral

C
ap

ac
ity

 F
ac

to
r (

k)
Bidentate C18

Mobile Phase Composition (% Methanol)

10 20 30 40 50 60 70 80 90
Ketoprofen 18.19 4.79 0.66 -0.17 -0.53 -0.75

2-Nitrobenzoic Acid 3.7 2.47 1.63 0.85 0.31 -0.14 -0.3 -0.5 -0.7
Amitriptyline 17.29 3.65 0.59 -0.38 -0.6 -0.73 -0.84

Diphenhydramine 13.51 3.58 0.71 -0.15 -0.52 -0.65 -0.74 -0.85
Anisole 13.08 7.91 4.53 2.19 0.83 -0.03 -0.36 -0.58 -0.76

Naphthalene 23.88 9.26 3.31 0.61 -0.15 -0.51 -0.75
Ethylbenzene 20.83 9.84 4.75 2.03 0.73 -0.06 -0.36 -0.57 -0.76

Acidic/Basic/Neutral

C
ap

ac
ity

 F
ac

to
r (

k)

Phenyl Hydride

Mobile Phase Composition (% Methanol)

10 20 30 40 50 60 70 80 90
Ketoprofen 7.09 1.7 0.54 0.18 0.05 -0.03 -0.05 -0.13 -0.23

2-Nitrobenzoic Acid 0.24 0.16 0.12 0.06 0.04 0 -0.03 -0.08 -0.18
Amitriptyline 5.6 1.62 0.64 0.25 0.09 0 -0.04 -0.12 -0.24

Diphenhydramine 2.16 0.72 0.33 0.12 0.06 -0.01 -0.04 -0.12 -0.23
Anisole 0.73 0.41 0.25 0.13 0.05 -0.01 -0.04 -0.1 -0.21

Naphthalene 5.24 2.18 1.01 0.43 0.18 0.04 -0.01 -0.1 -0.22
Ethylbenzene 2.23 0.79 0.37 0.17 0.08 0.01 -0.03 -0.1 -0.21

Acidic/Basic/Neutral
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ap

ac
ity

 F
ac

to
r (

k)

Diol

Mobile Phase Composition (% Methanol)
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Figure 35. Diamond Bidentate C18 with Methanol Mobile Phase Overlaid/Stacked 
Chromatograms. 
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Figure 36. Bidentate C18 with Methanol Mobile Phase Overlaid/Stacked 
Chromatograms. 
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In comparison, the Phenyl Hydride was capable of achieving high resolution without 

suffering from significant band broadening (Figure 37). Unfortunately, the Diol still does 

not offer much in the areas of retention even when used with methanol (Figure 38). The 

only notable difference between retention trends of these compounds was the Phenyl 

Hydride displaying the expected retention order for Trend 3 (Naphthalene > 

Ethylbenzene > Anisole) compared to acetonitrile supporting the retention of anisole over 

ethylbenzene. The most interesting difference between the use of each mobile phase is 

that the ANP properties are only observed when acetonitrile is used and not at all with 

methanol (Figures 39 – 42). Although the reason for this result is uncertain, the fact that 

acetonitrile is a stronger organic may assist in the competition between ANP retention 

and RP retention. 
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Figure 37. Phenyl Hydride with Methanol Mobile Phase Overlaid/Stacked 
Chromatograms. 
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Figure 38. Diol with Methanol Mobile Phase Overlaid/Stacked Chromatogram. 
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Figure 39. Diamond C18 Retention Map (MeOH/ABN). Compares capacity factor “k” 
(y-axis) to percentage mobile phase (x-axis).   

 
Figure 40. Bidentate C18 Retention Map (MeOH/ABN). Compares capacity factor “k” 
(y-axis) to percentage mobile phase (x-axis).    
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Figure 41. Phenyl Hydride Retention Map (MeOH/ABN). Compares capacity factor “k” 
(y-axis) to percentage mobile phase (x-axis).     
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Figure 42. Diol Retention Map (MeOH/ABN). Compares capacity factor “k” (y-axis) to 
percentage mobile phase (x-axis). 

Chapter 4: Conclusions and Future Studies 

The main purpose for this project was to characterize the four Type-C silica 

stationary phases by gathering retention data of resveratrol analogues and a small set of 

acidic, basic and neutral compounds. Retention maps were created by comparing the 

retention factor k and mobile phase compositions ranging from 90% organic (acetonitrile 

vs. methanol) to 10% organic. Retention trends were organized based on the compound 

structure and polarity (determined by calculated logP values). Finally, the overlaid and 

stacked chromatograms were prepared to demonstrate each column’s theoretical ability to 

resolve each peak if the compounds were introduced as a mixture. The information 

collected gave valuable insight regarding the retention power, selectivity and resolution 

of each column when specific mobile phase was used to analyze the two sets of 

compounds. 

To summarize, there were several key pieces of data that proved informative and 

interesting. First, higher retention was observed using methanol compared to acetonitrile 

which was expected due to methanol being a weaker organic. Between the stationary 

phases the highest retention observed with acetonitrile was as follows: Diamond C18 > 

Bidentate C18 > Phenyl Hydride > Diol. Compared to methanol, the order changed to: 

Bidentate C18 > Diamond C18 > Phenyl Hydride > Diol. Secondly, the actual retention 

trends showed selectivity for compounds apart from polarity. For example, the amide 

resveratrol retained more than the amine/imine versions at higher aqueous mobile phase 

compositions. Additionally, surfactant like properties were observed for compounds with 
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hydrophilic heads and hydrophobic tails such as MH4 > MH5 (triol/diol), MH7 > MH8 

(unsaturated diols) and MH15 > MH16 (saturated diols). While selectivity did vary 

between the four stationary phases and two mobile phases, the column that demonstrated 

the most selectivity Phenyl Hydride. The Phenyl showed the highest selectivity for the 

meta/para hydroxides (MH17 and MH18), unsaturated vs. saturated resveratrol and gave 

high resolution for both compound sets at low organic content. Aside from methanol 

demonstrating higher retention of the analytes compared to acetonitrile, methanol did not 

appear to support ANP retention of MH2 (imine resveratrol), amitriptyline and 

diphenhydramine. This is important to note that the use of a stronger organic mobile 

phase may be necessary to promote ANP retention. Another interesting factor was that 

only nitrogenous compounds where the nitrogen atom was only bound to carbon 

demonstrated ANP properties. This is most evident when comparing imine, amine and 

amide versions of resveratrol on the Diol because only the imine version shows ANP 

retention. All the capacity factor data collected has been sent to collaborators from 

Monash University for LSER analysis and zeta potential measurements. 

Despite all the data gathered for this project future work can still be pursued. Other 

forms of characterizing the columns may include pH studies where all other conditions 

such as mobile phase composition, flow rate and injection volume remain constant while 

varying the pH of the solvent (within the recommended limits of each column). 

Controlling the pH may shed light on any ionic interactions that may occur depending on 

whether the analytes are suppressed or not. Similarly, temperature studies can be 

observed in the same fashion where the temperature of the column is controlled. 
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Temperature studies plays a role in the viscosity of solvent, kinetic and thermodynamics 

which can change retention properties of the stationary phase. Other potential studies 

may focus on the solvation effects of the mobile phase on the analytes. Since the 

resveratrol compounds are polyphenols, the hydroxide groups may be susceptible to 

being solvated by acetonitrile or methanol. One interesting thought provided by Drs. 

Chester Simocko and Madalyn Radlauer was to derivatize the resveratrol compounds 

with methoxymethyl acetal groups and compare the retention when methanol is used as 

mobile phase. The idea is to mimic the proposed “solvation” effect when methanol is 

used as mobile phase. If the derivatives show the same retention times on the RP columns 

then the solvation effect may be responsible for some of the differences in retention order 

mentioned previously.  
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