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ABSTRACT 

THE EFFECT OF PRECIPITATION ON COPY NUMBER OF NITROGENASE 
GENE nifH IN SOIL BACTERIA IN THE MOJAVE DESERT  

 
by Christy Armstrong 

Animals, plants, and microbes all rely on nitrogen to be readily available to 

build amino acids. The earth’s atmosphere is made of 78% nitrogen gas, but this 

molecule has a strong triple bond that prevents many species from utilizing it 

directly. Nitrogen fixation must occur in order for individuals to incorporate this 

nitrogen into their genome. The Mojave Desert is the most arid region in North 

America, averaging 3.5 inches of rain annually at its lowest elevation. Despite the 

extreme arid conditions, many species are supported in the region, all of which 

must rely on some form of nitrogen. This research addresses how aridity affects 

nitrogen fixation rates in soil microorganisms. It is predicted that there will be an 

increase in the nitrogen-fixing gene number, nifH, in more arid climates. Soil 

samples were collected from four sites across a 153-mile precipitation transect of 

the Mojave Desert, ranging from semi-arid to arid climates, over three years. 

Genomic DNA was isolated and quantified. Quantitative PCR was performed with 

primers targeted at the nifH gene of nitrogenase. Nitrogenase gene copy number 

tended to increase in more arid regions. Site number and yearly precipitation had 

significant effects on total nifH abundance. Percent crust and percent vegetation 

had significant effects on the 2009 sites. These results show that there is the 

potential for higher levels of nitrogen fixation in arid regions, which can be 

affected by yearly precipitation or other site factors.  
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Chapter 1: Literature Review 

Introduction 

 Beginning in the late 19th century, the average surface temperature of the 

earth has increased by a total of one degree Celsius (NASA, n.d.). Although this 

amount may seem negligible, it has already caused drastic changes of the earth 

and its ecosystems. The sea level has risen 250 mm since 1870 due to melting 

ice sheets near the poles (NASA, n.d.). Many organisms have experienced 

changes to the timing of their life cycles, including reproduction and migration. 

Species have shifted their habitat ranges to find livable conditions. Parasites 

have expanded their range since livable conditions are widening for them, and 

food webs are disrupted by these shifting ranges and diseases (EPA, 2017). 

Many aspects of the natural world are susceptible to this changing climate, 

including microbiota. The purpose of this study is to examine how alterations in 

climate can affect biogeochemical cycles, specifically the nitrogen cycle.  

Biogeochemical Cycles 

 Biogeochemical cycling is important for the maintenance of all ecosystems. 

Without the constant depletion and renewal of essential nutrients, organisms 

would not be able to grow and thrive. The most important biogeochemical cycles 

circulate water, carbon, and nitrogen through different environments and 

ecosystems on earth. Anthropogenic effects, such as increased carbon 

emissions and agricultural runoff, are disrupting these cycles and can affect the 

survival and functioning of all living organisms.  
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The Water Cycle 

 The water cycle is perhaps the most well-known biogeochemical cycle. Water 

evaporates from bodies of water on earth, and then condenses in the 

atmosphere to form rain, hail, or snow. The water returns to the earth’s surface 

via precipitation, and the cycle continues. There have been interruptions in 

multiple aspects of this cycle caused by human activities, such as groundwater 

mining, urbanization, oxidation of fossil fuels, deforestation, destruction of 

wetlands, production of reservoirs, and installation of irrigation systems (Gornitz 

et al., 1997). These activities can have two main types of effects. Either they can 

cause an increase in the amount of water returning to large bodies of water, or 

conversely, they can decrease the movement of water. Urbanization causes an 

influx in water, because it decreases the amount of soil available to absorb the 

water. Soil surface area is replaced with cement which does not absorb water. 

Groundwater mining takes water out of the soil, leaving it to mobilize towards 

bodies of water instead (Gornitz et al., 1997). The combustion process releases 

water into the atmosphere which can then become precipitation. Destruction of 

wetlands and deforestation destroy ecosystems that utilize a large amount water, 

whether for trees or for waterlogged soils, which mobilizes the water towards 

bodies of water. Irrigation and reservoirs limit water movement in order to be 

used by humans for agriculture or personal use (Gornitz et al., 1997). 

Changing water mobility causes a disruption to the water cycle and either a 

rise or fall in sea level. Man-made reservoirs, water consumption and withdrawal 
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have minimal effects, but anthropogenic activities mainly involving irrigation 

runoff have a larger effect. Irrigation runoff is caused when there is a greater 

amount of water on the surface of the soil than can be absorbed. Contaminants 

and chemicals, such as pesticides and fertilizers, move with the excess water 

into lakes and oceans (Gardner, n.d.). Between the years 1950-2000, the United 

States saw an increased runoff rate of 1.04 mm/year. Climate change has the 

potential to make this effect larger; with increasing surface temperature, irrigation 

will be more necessary. Runoff is predicted to increase 7.3% by the year 2050 

worldwide (Huntington, 2006; Haddeland et al., 2013). 

The Carbon Cycle 

 Changes in climate have disrupted the carbon cycle as well. The natural 

carbon cycle starts with atmospheric carbon dioxide being sequestered by plants 

for photosynthesis. As the plants use this energy to grow, they can either transfer 

the carbon to primary consumers or return the carbon to the soil via 

decomposition. Decomposition of animals and their waste via fungi and bacteria 

can also return the carbon to the soil to be mobilized and utilized by other 

organisms (Riebeek, 2011). Respiration occurs in animals and plants, which 

releases carbon into the atmosphere in the form of carbon dioxide. However, 

increased industrialization and the burning of fuels derived from fossilized carbon 

have increased the amount of carbon released in the atmosphere. Approximately 

80% of carbon emissions are derived from the burning of fossil fuels (EPA, n.d.), 

which has significantly increased during the last century. 
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 Anthropogenic atmospheric carbon dioxide started to accumulate before 

industrialization, as early as the medieval era. However, the upsurge of the 

human population that accompanied the industrial era dramatically shifted the 

amount of carbon emissions by about 45-100 gigatons of carbon per square 

meter (Pongratz et al., 2009). With the increase in atmospheric carbon dioxide 

came an upsurge in the mean surface temperature of the earth, currently at a 

rate of 1.5 degrees Celsius per century (Lindsey and Dahlman, 2018). High 

atmospheric carbon levels can also cause the occurrence of acid rain, which has 

a lower pH than regular rain. Acid rain can disrupt other biogeochemical cycles 

by replacing natural weak acids with strong acids, which dissociates aluminum 

ions that are carried in runoff to bodies of water. These aluminum ions are toxic 

to fish and wildlife (Likens et al., 1981).  

The Nitrogen Cycle 

 The nitrogen cycle is carried out mostly by microorganisms (Martinez-

Espinosa et al., 2011). Atmospheric nitrogen gas has a strong triple covalent 

bond that can only be broken by organisms with the nitrogenase enzyme which is 

produced by few genera of bacteria and archaea, known as diazotrophs. These 

microorganisms fix the nitrogen gas and produce ammonia. Another group of 

bacteria, known as nitrifying bacteria, use the enzymes ammonia oxidase and 

hydroxylamine oxidase to transfer the nitrogen from ammonia to oxygen to form 

nitrites. The enzyme nitric oxide synthase adds oxygen to form nitrates 

(Bernhard, 2010). Denitrifying bacteria revert nitrates into nitrogen gas to be 
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returned to the atmosphere. The second aspect of the nitrogen cycle involves 

plants. Plants obtain nitrogen in the form of ammonia that is produced by 

diazotrophs, such as the symbiotic genus Rhizobium or the free-living genus 

Azotobacter. Higher organisms consume the plants as a nitrogen source. When 

decomposition occurs, fungi and bacteria break down organisms to return 

nitrogen to the soil in the form of ammonia (Bernhard, 2010). Some fungi, such 

as polypores (commonly known as shelf fungi that grow on trees), can 

decompose organisms independently, however, other fungi live in symbiosis with 

cyanobacteria in lichen. In lichen, cyanobacteria provide energy to the fungi, 

while the fungi supply the cyanobacteria with protection (“Ecology of Fungi”, 

n.d.). 

 The nitrogen cycle can also be affected by the effects of humans. The main 

sources of anthropogenic effects are industrial emissions, agricultural emissions, 

and livestock emissions (Lagzi et al., 2013). Nitrous oxide, like carbon dioxide, is 

a byproduct of fossil fuels that is released into the atmosphere. Nitrous oxide gas 

makes up 6% of greenhouse gases, which contribute to trapping heat in the 

atmosphere (EPA, n.d.). However, the greatest effect humans have had on the 

nitrogen cycle involves the agriculture industry. The use of artificial fertilizers to 

supplement nutrient-limited soil has had a negative effect on the environment; it 

produces an unnatural influx of nitrogen that cannot be supported by the 

environment (Bernhard, 2010). Diazotrophs cannot thrive since they are not 

needed for the production of ammonia, and excess inorganic fertilizer causes 
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runoff during rainy seasons that eventually makes its way to the ocean (Norman 

and Friesen, 2017). Once in the ocean, excess nutrients can cause algal blooms 

that can affect the food chain of higher organisms. Algal blooms are also 

exasperated by increased surface temperature (Bernhard, 2010). Algal blooms 

can be formed by cyanobacteria or a combination of diatoms and dinoflagellates. 

They are detrimental, because they can produce toxins, sequester the oxygen in 

the ocean necessary to maintain the ecosystem, clog up fish gills, and smother 

reefs (“What is Harmful”, 2016). Also, the use of artificial fertilizers can pair with 

unnaturally high atmospheric carbon to produce acid rain and mobilize aluminum 

ions that are toxic to wildlife (Likens et al., 1981).  

Interactions Between Cycles 

 Biogeochemical cycles do not solely interact with the climate; they also 

interact with each other. The hydrological cycle participates in the movement of 

all nutrients through the environment. In temperate and tropical areas, humidity 

promotes decomposition, leaching, erosion and mineralization of carbon, 

nitrogen, sulfur and phosphorus (Likens et al., 1981). However, when available 

water is limited, these processes are unstable. Less plant primary production 

occurs, which leads to less decomposition and mobilization of nutrients. 

Increased global temperatures will decrease precipitation in most areas. This 

could lead to decreases in nutrient mobilization through various ecosystems. 

Nutrient instability is not only associated with availability of water. Gosz et 

al.(1973) found that the ratio between carbon and nitrogen and the ratio between 
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carbon and phosphorus were essential for mineralization of nutrients during the 

process of decomposition. They did this by measuring element amounts in 

decomposing leaf litter. C:N ratios were between 20:1 and 30:1 in their sample 

sites, and C:P ratios were 480:1. When ratios are higher than these amounts, 

immobilization of the nutrients occurs. Immobilization prevents nutrients from 

being accessible to plants. When ratios are lower than these amounts, 

decomposition continues in order to mineralize the nutrients (Gosz et al., 1973). 

Mineralization is critical for mobilizing nutrients to plants and primary consumers. 

The nitrogen cycle is also known to interact with the sulfur cycle. There is a 

negative correlation between nitrate concentration and sulfate concentration in 

bodies of water near deforestation sites and in drainage sites (Likens et al., 

1970). This phenomenon is not well understood. The inverse relationship could 

be due to high sulfate concentrations being toxic to bacteria that cycle nitrogen 

(Liu et al., 2014). However, it has been proposed that nitrates have an effect on 

sulfates as well. With the accumulation of nitrates in precipitation in the United 

States and Europe, there could be a severe decrease in available sulfates, which 

could negatively impact the sulfur cycle (Likens et al., 1977; Soderlund, 1977; 

Likens, 1976). The nitrogen cycle interacts with the other nutrient cycles; thus, it 

is important to study it thoroughly, starting with the beginning, nitrogen fixation. 

Nitrogenase Enzyme 

 The nitrogenase enzyme is found in certain species of archaea and bacteria 

in terrestrial and aquatic habitats. Nitrogenase reduces atmospheric nitrogen (N2) 
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to ammonia (NH3) and consists of two proteins. The first protein, dinitrogenase 

reductase, is an iron protein that transfers electrons to the dinitrogenase protein. 

The second iron protein, dinitrogenase, binds to N2. In dinitrogenase, the iron can 

be bound to molybdenum (most common), vanadium, or neither (Berges and 

Mulholland, 2008). These two proteins are encoded by the gene complex 

nifHDK. Dinitrogenase is specifically encoded by nifD and nifK, while 

dinitrogenase reductase is encoded by nifH (Skot, 2003). There are instances of 

variation in these structural genes and their sequences, however nifH is required 

for encoding of the nitrogenase enzyme (Zehr et al., 2003).  

Nitrogenase and Plants 

Nitrogenase is necessary for almost all ecosystems to function, so nifH has 

been studied in detail. However, most of the research has involved plants either 

in relation to agriculture or restoration of lands disturbed by human activity. Orr et 

al. (2011) studied the effect of different soil management techniques on diversity 

and activity in diazotrophs. They found that an important indicator of nitrogen 

fixation activity and diazotroph diversity was the type of crop that was planted the 

previous month. Plots that previously contained barley consistently had more 

nitrogenase activity and diversity through all planting seasons.  

Not surprisingly, other studies have identified plants as being important to 

nitrogen fixation. This was studied in arid environments by Koberl et al. (2016) by 

using quantitative Polymerase Chain Reaction (qPCR) to estimate gene copy 

number. Molecular fingerprinting and pyrosequencing were used to analyze 
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diversity. They found that the desert agricultural study site had higher diazotroph 

diversity and 1.5-fold more nifH gene copies than native desert sites. They also 

suggested that aridity might have increased diversity and abundance of 

nitrogenase genes compared to other climates. This could be because of the 

limitation of available nitrogen. In areas with reduced available nitrogen, the 

nitrogenase gene is more prevalent since there is less competition with non-

diazotrophs. The nitrogenase enzyme allows these bacteria to survive nitrogen 

limitation (Zehr et al., 2003). Diazotrophs can restore nitrogen to the ecosystem 

as long as enough phosphorus is available to sustain energy levels (Vitousek, 

1999). No studies have been done to show that these suggestions are consistent 

with nature. 

 Plants have also proved to be a useful resource in the restoration of arid 

environments. Lopez-Lozano et al. (2016) analyzed three desert sites, one that 

was undisturbed, one that was disturbed, and one that was previously disturbed, 

but was restored using native plants. The disturbed sites had been cleared of 

vegetation to build a road in the 1980s. Half of the site was restored in 2004. The 

restored site had a higher potential for nitrogen fixation and was not significantly 

different in diazotroph abundance than the undisturbed site. The type of plants 

used were also essential to the propagation of diazotrophs. Leguminous trees 

had a higher abundance of diazotrophs than other plant species and a higher 

potential for nitrogen fixation (as determined by an acetylene reduction assay). 

All sites with plants had a higher diversity of diazotrophs than sites not 
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associated with plants (Lopez-Lozano et al., 2016). Plant species and sampling 

sites had the largest impact in nitrogen fixation capabilities. Diazotroph 

abundance, potential nitrogen fixation and diazotroph diversity were all 

significantly affected by plant species and sampling sites. However, the amount 

of organic matter and the amount of sand also had a significant effect on 

diazotroph abundance. (Lopez-Lozano et al., 2016). 

Decomposition of organic matter will lead to an increase of soil nitrogen. Sand 

or soil type in general has been shown to affect nifH gene patterns, as well as 

respiration, denitrification, mineralization of organic matter and bacterial 

population structure by changing the amounts of nutrients and water available to 

microorganisms (Poly et al., 2001). This is due to the fractionation of the soil. 

Fractionation is determined by the size and density of soil particles. Soils with 

higher fractionation have larger gaps in between soil particles, which can allow 

microorganisms to have more access to nutrients but can also cause higher rates 

of desiccation in those microorganisms (Poly et al., 2001). 

Nitrogen Cycling in Arid Environments  

Desiccation does not permanently prevent nitrogenase activity. In Antarctica, 

it was found that nitrogenase activity was restored in a desiccated site when 

water was replenished by melting of ice (Olson et al., 1998). Olson et al. 

collected ice aggregates and soil samples from Lake Bonney, Antarctica. They 

used the acetylene reduction assays to determine nitrogenase activity and PCR 

amplification and cloning to analyze diversity. They found desiccation did not 
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prevent bacterial diversity in the arid and nutrient-poor Antarctica. The nifH gene 

was isolated from both bacteria and cyanobacteria and fifteen diverse sequences 

were found within soil and ice aggregates. They also found that there was 

nitrogenase activity in the samples, although it was 10,000-fold less than a 

temperate control (Olson et al., 1998). 

Not much research has been done on the effects of aridity on nitrogenase 

gene abundance in soil bacteria, but there has been research on the effects of 

aridity on ammonia-oxidizing soil bacteria and archaea. Ammonia oxidation in 

soil occurs after the nitrogen has been fixed from the atmosphere. It is essential 

in transforming the ammonia in the soil into nitrites and nitrates that can be 

assimilated into plants. A study performed by Delgado-Baquerizo et al. (2016) in 

Australia looked at the abundance of ammonia-oxidizing genes along an aridity 

gradient in relation to biotic and abiotic features at microsites where the soil was 

collected. There was a strong positive correlation between aridity and ammonia-

oxidizing archaea in all microsites, but there was little to no correlation between 

aridity and ammonia-oxidizing bacteria (Delgado-Baquerizo et al., 2016). 

Microsites that contained ant nests and high amounts of organic carbon in the 

soil had quadruple the amount of nitrate of open areas. Microsites that were open 

areas or consisting of biocrusts had 100-fold less ammonia-oxidizing bacteria 

genes in the soil than the other microsites (Delgado-Baquerizo et al., 2016). 

Higher abundance of ammonia-oxidizing bacteria and archaea would indicate the 

potential for either higher abundance of diazotrophs or higher occurrence of 
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decomposition. The high abundance of ammonia-oxidizing bacteria implies that 

there are higher levels of ammonium in the soil. Since decomposition and 

nitrogen fixation are the two processes that produce soil ammonium, one process 

must be upregulated in the more arid sites.  

Impact of Research 

 Few studies have focused on the effect of precipitation on diazotroph 

abundance in arid environments. Biogeochemical cycles are important to 

research in all environments in order to understand the potential effects of 

changing climates due to anthropogenic effects. Nitrogen fixation is a capability 

unique to microorganisms and is the main source of accessible soil nitrogen. This 

research will be essential for understanding how changing climate can affect the 

beginning of the nitrogen cycle, nitrogen fixation and nitrogenase gene 

abundance. I hypothesize that aridity will increase nitrogenase abundance. 

Elaine Bryant (2011) found that arid regions in the Mojave Desert had a large 

population of cyanobacteria, which fix nitrogen. This is consistent with other 

deserts and arid environments, which develop biological crusts which tend to 

have cyanobacteria. The Mojave Desert is unique, because its biological crusts 

are not as developed as crusts found in other deserts (Alwathnani and Johansen, 

2011). There is evidence to support that there is increased ammonia-oxidation in 

arid environments by the presence of more ammonia-oxidizing bacterial genes 

(Delgado-Baquerizo et al., 2016), meaning that there is an accumulation 
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ammonia in the soil that is available for oxidation. A potential reason for this 

would be an increase in the abundance of nitrogen fixing soil microorganisms.  
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Chapter 2: Manuscript 

1. Introduction 

 The nitrogen cycle is important for making nitrogen available to higher 

organisms. It involves a more diverse array of microorganisms compared to most 

other biogeochemical cycles. Abiotic factors are not the main contributors to 

nutrient cycling (Hayatsu et al., 2008). Arid and semi-arid regions represent 60% 

of global terrestrial area, yet only a few studies have focused on the effect of 

changes in climate on nitrogen cycling soil microorganisms in these areas 

(Belnap, 1995). Semi-arid and arid regions are threatened by desertification 

caused by anthropogenic effects, such as increased carbon dioxide levels and 

fluctuating precipitation amounts. Desertification occurs when the aridity of 

drylands increases to a point that vegetation and wildlife are threatened.  These 

areas become infertile and soil biological processes including the hydrological 

cycle and nutrient cycling, are disrupted (Hillel and Rosenzweig, 2005).  

The interaction between plants and the nitrogen cycle has been explored. 

Multiple studies have shown that the presence of plants increases diazotroph 

diversity (Orr et al., 2010; Koberl et al., 2015; Lopez-Lozano et al., 2015). 

However, Bryant (2011) found that in the Mojave Desert, the site with the least 

amount of vegetation coverage had the highest diversity and abundance of 

cyanobacteria, Clostridia and β-proteobacteria. The phylum Cyanobacteria and 

the classes Clostridia and β-proteobacteria include many species of diazotrophs. 

Bryant (2011) also found that there was an increase in abundance and diversity 
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of the class Nitrospira, which consists of nitrite-oxidizing bacteria. These 

organisms contribute to the nitrification step of the nitrogen cycle. Other studies 

have found similar microbial diazotroph compositions in arid regions with limited 

vegetation. In arid Lake Bonney, Antarctica, diazotrophs from the classes 

Cyanophyceae, ɑ-proteobacteria, 𝛿-proteobacteria, 𝛾-proteobacteria, Clostridia, 

and Methanococci were found in soils and ice aggregates (Olson et al., 1998). 

Free-living diazotrophs do not require a symbiotic relationship with vegetation to 

grow as seen in both of these studies. 

Aridity has also been shown to enhance other aspects of the nitrogen cycle. 

Delgado-Baquerizo et al. (2016) found that more arid regions had more 

ammonia-oxidizing genes in the soil, indicating the potential presence of more 

ammonia in the soil. The increased concentration of ammonia could be due to 

two different parts of the cycle, nitrogen fixation or decomposition. Decomposition 

is limited in more arid regions; therefore, it is unlikely to increase the ammonia in 

the soil (Likens et al., 1981). Also, as previously stated, vegetation that can be 

decomposed is typically decreased in arid environments. This suggests that 

there may be an increase in nitrogen fixation in these areas. 

 Some researchers have hypothesized that diazotrophs have a competitive 

advantage in areas that are nitrogen limited, such as deserts, as long as they are 

able to energetically support nitrogen fixation (Zehr et al., 2003; Vitousek, 1999). 

This hypothesis is supported by the fact that semi-arid and arid environments 

tend to have biological soil crust formation, which are communities of 
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cyanobacteria, algae, fungi, and bryophytes (Alwathnani and Johansen, 2011; 

Belnap et al., 2001). Biological soil crusts thrive because of their symbiotic 

relationships that support nutrient cycling and prevent desiccation of organisms 

in the crust. In the Mojave Desert, Bryant (2011) found that there was a ten-fold 

decrease in the amount of nitrogen in the soil going from a semi-arid region to an 

arid region, as well as 80% increase in crust formation. This demonstrates that 

crusts dominated by cyanobacteria are more common in nitrogen limited areas of 

the Mojave Desert than areas with higher total nitrogen. The high number of 

cyanobacteria and the symbiotic relationships within biological soil crusts point to 

higher levels of nitrogen cycling. 

 This study focuses on the effect of precipitation amounts on nifH gene 

abundance in the Mojave Desert. nifH is the most conserved gene in the 

nitrogenase gene complex and is the standard gene to study when studying 

nitrogenase. In this study, quantitative PCR was used to estimate nifH gene 

abundance at four sites along a precipitation transect in the Mojave Desert. The 

gene copy number of the soil samples was analyzed over three years and an 

analysis of variance (ANOVA) was used to determine if yearly precipitation had a 

significant effect. It was hypothesized that with increased aridity, there would be 

an increase in nifH abundance. 

2. Site Description 

The Mojave Desert is located in Southern California and ranges from arid to 

semi-arid. Arid is defined as having a ratio of mean annual precipitation to mean 
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annual potential evapotranspiration between 0.03 to 0.20, while the ratio for 

semi-arid is between 0.20 and 0.50 (UNEP, 1997). For the Mojave Desert, the 

mean annual precipitation ranges from 3.4 to 31 centimeters per year (Hereford 

et al., 2005).  

From the year 2007 to the year 2010, soil samples were collected in 

collaboration with NASA’s Spaceward Bound expedition. A 153-mile precipitation 

transect through the Mojave Desert was established. The sites along the transect 

decreased in elevation three-fold, and changes in rock and soil composition 

differed among the sites (Table 1).  

 
 
Table 1. Sample sites in the Mojave Desert. Soil was collected from each of the 
four sites. Each site is listed with their number, name, location and elevation. 
Average rainfall was calculated from the average of rainfall for the 3 collection 
years (listed in Figure 2). Rock and soil types found in the immediate presence of 
the site are listed as well. Data collected by Bryant (2011). 

 

 

Site Latitude 
(o) 

Longitude 

(o) 
Elevation(m) Average 

Rainfall 
Soil 
Type 

Rock Type 

Site 15 

Sand 
Canyon 

N35.1230 -118.3240 1212 21.94 Rich, 
humic 

None 

Site 16 

California 
City 

N35.0218 -117.9160 736 6.79 Sandy 
silt 

Angular 
quartz, 
feldspar 

Site 18 

Fields 
Road 

N35.0260 -116.5400 630 6.84 Sandy 
silt 

Feldspar, 
granite 

Site 21 

Henry 
Springs 
Rd 

N35.2530 -115.9790 403 9.65 Sandy 
silt 

Quartz, 
feldspar, 
5% basalt 
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Diversity in rock types increased with more aridity, and soil changed from rich 

and humic in the semi-arid site to sandy silt in the arid sites. Yearly precipitation 

measurements were obtained from weather stations operated by the Desert  

Research Institute (DRI) in Las Vegas, Nevada (Figure 1) (Bryant, 2011). The 

yearly precipitation for each site was estimated by proximity to a weather station 

(Figure 2). Site 15, 16, and 21 were near the weather stations in Tehachapi, 

Mojave, and Baker respectively. Site 18 was equidistant from the Barstow and 

Zzyzx weather stations, so an average was taken for its estimate.  

 

 

 
 
Figure 1. Precipitation amounts at DRI sites per year. Precipitation amounts (in 
cm) recorded at regional DRI stations for a year prior to soil collection. No data 
was collected at site Zzyzx the year prior to the 2010 Spaceward Bound 
expedition. (Bryant, 2011) 
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Figure 2. Precipitation amounts by year and site. Precipitation amount estimates 
(in cm) for each soil collection site. Estimates were based on closest DRI station. 
Site 18 was located halfway between Barstow and Zzyzx, so its estimate is the 
average of the two precipitation amounts. In 2010, estimate could not be made 
for Site 18 due to missing site Zzyzx data. Data collected by Bryant (2011). 
 

 

Soil composition and abiotic site factors were determined for the soils 

collected in 2009 and are listed in Table 2. Total nitrogen, percent organic 

carbon, percent moisture, and percent vegetation coverage decreased from the 

least to the most arid site. Conversely, percent crust increased across the 

precipitation transect. pH fluctuated across the transect, ranging from 7.18 to 

7.88. The exact procedure for the soil collection was described in Bryant (2011). 

Chemical analysis of the soil was performed by Basic Laboratory, Inc. (Redding, 

California). 
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Table 2. Soil composition and abiotic factors associated with 2009 sample sites. 
Quantitative soil and site factors were collected for the 2009 samples. pH, total 
nitrogen, and percent organic carbon were analyzed in the soil. Percent crust, 
percent moisture, and vegetation coverage are variables of the site. Data 
collected by Bryant (2011). 

 

3. Materials and Methods 

3.1 Genomic DNA Extraction  

Anabaena sp. in Ala-Gro® Freshwater medium was purchased from 

Carolina® Biological Supply (Carolina®, Burlington, NC). The Wizard® Genomic 

Purification Kit (Promega, Madison, WI) was used to extract genomic DNA from 1 

mL of Anabaena sp. culture. The Gram-positive bacteria protocol was used to 

extract the Anabaena DNA. Soil genomic DNA was extracted from 0.5 grams of 

each soil sample using the DNeasy® PowerSoil® Kit (Qiagen, Hilden, Germany). 

Each kit was used according to the manufacturer’s instructions. The DNA quality 

was assessed by 1% gel electrophoresis. The gel was stained with 0.5 µg/mL 

ethidium bromide and was visualized using UV transillumination on the Gel 

Site pH Total 
Nitrogen 

(mg/kg) 

% Organic 
Carbon 

% 
Moisture 

% 

Crust 
Vegetation 
Coverage 

Site 15 

 Sand 
Canyon  

7.18  1330 1.34 18.5  0 85-100% 

Site 16  
California 
City 

7.60 238 0.26 1.2 0 60-75% 

Site 18 

Fields Road 

7.34  285 0.11 0.6 30 40-60% 

Site 21 

Henry 
Springs Rd 

7.88  111 0.18 0.18 80 25-45% 
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Doc™ EZ Gel Documentation System (Bio-Rad Laboratories, Inc., Hercules, 

CA).  

3.2 nifH Amplification from the Anabaena Genome 

Degenerate primers were used to amplify the nifH gene via Polymerase 

Chain Reaction (PCR) in Anabaena sp. The forward and reverse primers used 

were IGK3 and DVV, respectively, and were synthesized by Fisher Scientific 

(Table 3). Eschericia coli was used as a negative control. 

 
Table 3. nifH PCR primers. Primers used to amplify nifH gene as found in Gaby 
and Buckley (2012). The IUPAC nucleotide code was used. I = Inosine 

Primers Coding (5’-3’) 

IGK3 (forward) GCIWTHTAYGGIAARGGIGGIATHGGIAA 

DVV (reverse) ATIGCRAAICCICCRCAIACIACRTC 

 

 

The PCR reactions had a total volume of 50 µL. The reagent concentrations 

were: 1x GoTaq® Flexi Buffer (Promega, Madison, WI), 2.5 mM MgCl2, 200 µM 

dNTPs, 1.5 µM of primers IGK3 and DVV, 0.2% BSA, 2.5 U GoTaq® DNA 

Polymerase (Promega, Madison, WI). Four nanograms of Anabaena and eight 

nanograms of E. coli genomic DNA were used as template DNA. PCR was 

carried out in a MJ Research PTC 100 thermal cycler (Global Medical 

Instrumentation, Inc., Ramsey, MN). The cycling protocol consisted of an initial 

denaturation at 95oC for 5 minutes, 34 cycles of 95oC, 52oC, 72oC each for 45 

seconds, and a final elongation step at 72oC for 7 minutes. The PCR products 
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were run on a 2% analytical agarose gel with Fisher BioReagents™ 

exACTGene™ 100 bp ladder (Fisher Scientific, Hampton, NH). The gel was 

stained with 0.5 µg/mL ethidium bromide and was visualized using UV 

transillumination on the Gel Doc™ EZ Gel Documentation System (Bio-Rad 

Laboratories, Inc., Hercules, CA). The expected PCR product size was 400 bp. 

3.3 Cloning and Sequencing of Anabaena nifH 

PCR products were cloned into pCR® 2.1-TOPO® vectors using the TOPO® 

TA Cloning® Kit (Invitrogen, Carlsbad, CA) according to manufacturer’s 

instructions. OneShot® Top10 Chemically Competent E. coli cells (Invitrogen, 

Carlsbad, CA) were transformed with the plasmids and assessed via blue/white 

screening. Three white colonies were grown in Luria-Bertani broth with 0.1mg/mL 

ampicillin. The plasmids were extracted using the Wizard® Plus SV Minipreps 

DNA Purification System (Promega, Madison, WI). The plasmids were stored at -

20℃. The presence of the gene was verified by PCR amplification as well as 

sequencing by Sequetech (Mountain View, CA). The sequences were then 

compared to other known nucleotide sequences using BLAST (NCBI, Bethesda, 

MD).  

3.4 Quantitative PCR (qPCR) Standard Curve 

A standard curve was created using the plasmid previously described. Ten-

fold dilutions were performed on the nifH plasmid by pipetting 10µL of plasmid 

sample into 90µL of sterile distilled water. This was repeated until a 10-6 dilution 

was obtained. Each 20µL qPCR reaction consisted of 1x Power SYBR™ Green 
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PCR Master Mix (Applied Biosystems, Foster City, CA) and 500 nM of primers 

IGK3 and DVV. 5µL of dilutions 10-1 to 10-6, and negative controls of water, were 

added to the master mix, and sterile millipore water was added to each sample to 

obtain a final volume of 20µL. Three replicates of each dilution were prepared. 

Primer concentration and annealing temperature were selected in order to 

reduce quantification bias as demonstrated by Gaby and Buckley (2017). 

 The samples were cycled in a Mx3005P qPCR System (Stratagene, La Jolla, 

CA). The following cycling protocol was used: 95o for 10 minutes, followed by 65 

cycles of 95o for 15 seconds, 52o for 1 minute, and 72o for 30 seconds. A standard 

curve was generated by a line of regression through all data points. The gene 

copy number for each dilution was calculated using the equation in Figure 3. A 

standard curve was generated by a line of regression through the mean of each 

dilution. Standard errors were shown using error bars. 

 

  

  

  

 

 

 

 

Figure 3. Equation to determine gene copy number. Nanograms of DNA were 
multiplied by Avogadro’s Number and divided by the weight of each base pair in 
grams. 1*109 represents the conversion from grams into nanograms. 
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3.5 qPCR of Soil Samples from years 2008-2010 

Thirty nanograms of soil genomic DNA and 500 nM of primers IGK3 and DVV 

were added to 1X Power SYBR™ Green PCR Master Mix (Applied Biosystems, 

Foster City, CA). Water was added to a final volume of 20µL. The samples were 

cycled in the Mx3005P qPCR system (Stratagene, La Jolla, CA) with the same 

cycling protocol described above for the standard curve samples.  Total gene 

copy number was divided by the estimated bacteria population of one gram of 

soil as determined by viable counts previously described in Elaine Bryant’s thesis 

(2011) (Table 4).   

 

Table 4. Colony Forming Unit (CFU) count for each site and year. Population 
estimates per one gram of soil as measured by a viable count over three years 
and all four sites. Data collected by Bryant (2011).  

 
 

3.6 Statistical Analysis 

Statistical analysis was performed using R software (R Core Team, 2013). t-

tests were used to determine significant differences between sites. ANOVAs 

were used to determine significant interactions between abiotic factors and sites. 

Two-way ANOVAs were used to determine interactions between multiple factors 

and gene copy amounts. A significance level of 0.05 was set for all statistics.  
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4. Results 

4.1 Cloning and Sequencing  

400 bp was the length of the DNA fragment amplified from Anabaena sp. in 

the initial PCR amplification and is the expected length of the nifH gene fragment 

when amplified with IGK3 and DVV primers. nifH PCR amplification of the 

plasmid DNA resulted in a band approximately 400 bp in length. The sequencing 

results revealed a 93% similarity between the cloned sequence and the nifH 

gene in Anabaena cylindrica strain UTEX B629 (Score = 409, E-value = 6e-110) 

Figure 4 shows the similarities between the cloned sequence and Anabaena 

cylindrica’s nifH gene.  

 

Figure 4. Comparison of cloned sequence to nifH sequence in Anabaena 
cylindrica strain UTEX B629 (Sequence ID: AY768423.1). NCBI BLAST results 
for cloned sequence matched 93% with nifH gene in Anabaena cylindrica. 
Matched nucleotides are denoted with a vertical line, and mismatched 
nucleotides are indicated by an x. 
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4.2 qPCR Standard Curve  

 The means of the cycle thresholds (Ct) were averaged and the standard 

deviations were calculated. A standard curve was generated from the means 

(Figure 5). An R2 of 0.998 was calculated using Microsoft Excel (2016). An 

equation was derived from the regression line, which was used to calculate the 

gene copy numbers for the soil sites. The equation of the standard curve is   

y = 2E+12e-0.374x. 

 

 

Figure 5. Standard curve generated from qPCR of cloned nifH gene in plasmid. 
Each point represents the mean of the replicates of each dilution. Error bars 
represent the standard error of each mean. The x axis is on a log scale. 
 

 

4.3 qPCR of Soil Samples from years 2008-2010 

The average nifH gene copy number of site 15 over the years 2008-2010 was 

8,976 + 15,083 gene copies. Site 16 had an average gene copy number of 

36,036 + 66,554 gene copies. Site 18 had an average of 66,249 + 111,741 gene 
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copies, and site 21 had an average of 95,324 + 113,894 gene copies. Over all 

sites, the average for the year 2008 was 63,655 + 90,668 gene copies. The 

average for 2009 was 48,875 + 82,171, and 2010 had an average of 56,601 + 

109,930 copies. The total nifH gene copy number fluctuated by year but had a 

trend of increased copy number at the more arid sites (Figure 6). All site 15 years 

were significantly different from 2009 site 21 (2008: p = 0.050, 2009: p=0.036, 

2010: p=0.032). 2008 site 16 and 2010 site 18 also were significantly different 

from 2009 site 21 (p=0.0448, p=0.345). There was a significant difference 

between 2009 site 15 and 2010 site 15 (p=0.047).  

 
 

Figure 6. Total gene copy number of sample sites. Gene copy numbers were 
plotted by sites and year. Significance values of 0.05 and below are signified by 
difference in letters. n=6  
 

 

 Gene copy number was adjusted by dividing the total gene copy number by 

the viable count population estimate of one gram of soil. The adjusted gene copy 

number fluctuated by year for site 16 and site 18 but stayed consistent in site 15 
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and site 21 (Figure 7). There was a trend of higher gene copy proportional to 

population in more arid sites. 2009 site 21 was significantly different from all 

years of site 15 (2008: p=0.031, 2009: p=0.031, 2010: p=0.030), 2008 site 16 

(p=0.032), and 2010 site 18 (p=0.034). 2009 site 15 was significantly different 

from 2010 site 15 (p=0.028).  

 

 
 

Figure 7. Adjusted gene copy number of sample sites. Gene copy number 
adjusted by viable counts shown in Table 4. qPCR results were divided by 
population estimates in Table 4. p-values under the significance level of 0.05 are 
indicated by differences in letters. n=6  
 

 

4.4 Statistical Analysis 

 Site number and yearly precipitation had significant effects on total gene copy 

number (p=3.64e-4, p=0.027) (Table 5). Year, the combination of year and 

precipitation, year and site, and site and precipitation did not have a significant 

effect on nifH total gene copy number over the three years. Site and the 
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combination of site and year had significant effects on gene copy number 

/CFU*𝑔−1 (p=4.46e-07, p=0.040) (Table 6). 

Table 5. Total gene copy number vs site factors over 3 years. Site, year, 
precipitation, and combinations of these factors were analyzed in respect to their 
effect on nifH gene copy number. Site and yearly precipitation had a significant 
effect on gene copy number. ‘*’ represents a significance level of 0.05. ‘#’ refers 
to the exclusion of data from 2010 site 18 due to missing precipitation data. 
 

Factors p-value 

Site 3.64e-4* 

Year 0.782 

Precipitation # 0.027* 

Site + Year 0.263 

Site + Precipitation # 0.643 

Year + Precipitation # 0.323 

 
 
Table 6. Adjusted gene copy number vs site factors for 3 years. Site, year, 
precipitation, and combinations of these factors were analyzed in respect to their 
effect on the adjusted gene copy number. Site had a significant effect on gene 
copy number. ‘*’ represents a significance level of 0.05. ‘#’ refers to the exclusion 
of data from 2010 site 18 due to missing precipitation data. 
 

Factors p-value 

Site 4.46e-07* 

Year 0.320 

Precipitation # 0.096 

Site + Year 0.040* 

Site + Precipitation # 0.931 

Year + Precipitation # 0.518 
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In Figure 8, the p-values of ANOVAs between abiotic site and soil 

composition factors and gene copy number were plotted on a dot plot. p-values 

to the left of the red line are less than 0.05. Percent vegetation, percent crust, 

and site number had significant effects on the total nifH copy number in the 2009 

sites (p=.009, p=0.010, p=0.008).  

 
Figure 8. ANOVA of 2009 soil and site composition factors on total gene copy 
number. The p-value of each factor is represented as a dot on the dot plot. p-
values to the left of the 0.05 line are less than 0.05.  
 

 

A similar dot plot was compiled for the bacterial population adjusted gene 

copy number. Many factors had a significant effect on the adjusted nifH copy 

number (Figure 9). Site number (p=0.002), pH (p=4.15e-04), total nitrogen 

(p=0.046), percent crust (p=0.001), and percent vegetation (p=0.009) were single 

factors that had significant effects. Precipitation, percent organic carbon, and 
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percent moisture did not have significant effects as single factors. pH when 

interacting with any other factor did not have a significant effect on adjusted gene 

copy number. The interactions of site with all other factors besides pH had 

significant effects on the adjusted gene copy number (precipitation: p=0.031, total 

N: p=0.030, org C: p=0.037, crust: p=0.038, moisture: p=0.032, vegetation: 

p=0.047). Precipitation also had a significant effect when interacting with percent 

organic carbon, percent crust, percent moisture, and percent vegetation 

(p=6.51e-04, p=0.040, p=0.002, p=0.009). When interacting with percent 

moisture, percent crust, percent organic carbon, and total nitrogen, percent 

vegetation had significant effects as well (p=0.011, p=0.039, p=0.020, p=0.007). 

The interaction of organic carbon with percent moisture, percent crust, and total 

nitrogen had a significant effect on adjusted gene copy number (p=0.005, 

p=0.038, p=0.037). Lastly, percent crust had a significant effect when interacting 

with total nitrogen and percent moisture (p=0.041, p=0.039). 
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Figure 9. ANOVA of 2009 soil and site composition factors on adjusted gene 
copy number. ANOVA p-values are plotted on the dot chart for different factors 
and combinations of factors. 0.001, 0.01, and 0.05 significance levels are 
indicated by the colored lines.  
 

 

 Principal component analysis (PCA) was used to determine correlation 

among sites using the 2009 abiotic factors, total gene copy number, and adjusted 

gene copy number. Two principal components were produced that accounted for 

87.3% of the total variance (PC1 = 70.57%, PC2 = 16.73%). The semi-arid site, 

site 15, was different from the arid sites, sites 16, 18, and 21, when a normal 

distribution ellipse was utilized (Figure 10a). Figure 10b shows the breakdown of 

the different sites. Fields Rd (site 18) and California City (site 16) showed closest 

clustering of the four sites. 
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Figure 10. PCA of 2009 factors. a) 2009 abiotic factors, total gene copy numbers, 
and adjusted gene copy numbers were analyzed using PCA. A normal 
distribution was used to frame the different climates. b) The same factors were 
differentiated by site. Site 15 = Sand Canyon, Site 16 = California City,  
Site 18 = Fields Rd, Site 21 = Henry Springs Rd 
 

 
5. Discussion 

 Arid environments cover up to 40% of the surface of the earth, potentially 

more with the increasing surface temperature, yet there has been little research 

on biogeochemical cycling in these regions. The effect that changing precipitation 

has on nitrogen cycling is important to understand since changing climate could 

affect the microorganisms that catalyze the reactions within the cycle.  

In this study, nifH copy number in soil microbial populations was determined 

using quantitative PCR. There was a trend of higher gene copy numbers in more 

arid sites. Arid regions tend to have biological soil crusts, which are commonly 

populated by cyanobacteria. These organisms are photosynthetic diazotrophs 

(Alwathnani and Johansen, 2011; Mogul et al., 2017). Alwathnani and Johansen 
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(2011) isolated 90 strains of cyanobacteria from the biological soil crust of six 

sites in the Mojave Desert near Fort Irwin National Training Center, 36 miles 

north of Barstow, CA. The known strains encompassed 12 genera. Mogul et al. 

(2017) found that cyanobacteria dominated the topsoil in the Mojave Desert, 

comprising of 33% of known phyla. The most arid region in this study, site 21, 

had 80% crust and 35% of its bacterial population was cyanobacteria (Bryant, 

2011). These observations support the results of the study. 

 In addition, there was a trend of higher proportions of nifH gene copies in the 

more arid sites. Proportion was determined by dividing the total gene copy 

number by viable count population estimates for one gram of soil. When the total 

gene copy number was divided by viable count population estimates, larger 

values were observed in the more arid region. This proportion does not 

necessarily mean that there is an increase in the number of diazotrophs in the 

population. Multiple species of bacteria have multiple nifH gene copy numbers. 

Cyanobacteria can have up to six copies, but the copy number can change with 

the number of heterocysts they form (Pratte et al., 2006). Since the species of 

bacteria for each sample is unknown, the adjusted proportion reflects the upper 

limit of the population’s percentage of diazotrophs. The adjusted proportion 

assumes 1:1 ratio of genes per bacterium. A similar approach has been used to 

estimate the number of antibiotic resistance genes in aquatic microorganisms by 

Suzuki et al. (2015). They demonstrated that there was a higher percentage of 
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drug resistant genes in bacterial populations in urban rivers and wastewater 

treatment plants than in rural rivers. 

 Site and yearly precipitation amounts were found to have a significant effect 

on nifH copy number. Percent vegetation and percent crust also had a significant 

effect in the 2009 sites. The effect of percent crust is expected due to the 

presence of cyanobacteria. Much research has been done on the symbiotic 

relationship between plants and diazotrophs. Lopez-Lozano et al. (2016) studied 

the effect of different plant species on free-living diazotrophs in the soil. When 

compared to soil without plants, soil containing plants showed a higher average 

activity in an acetylene reduction assay as well as higher average diazotroph 

diversity. Similarly, Koberl et al. (2015) found that there were significantly higher 

nifH abundance and diversity in agricultural soils and soils dominated by plants 

than desert soil. They found there was a 1.5-fold increase in nifH abundance in 

agricultural soils. There was also a greater nifH diversity at both genus and class 

levels. The results of this study contradict these observations. There are higher 

gene copy numbers in areas with less vegetation. This could be due to the 

reduction of vegetation litter, which would decrease the amount of nitrogen in the 

soil. It has been proposed that less nitrogen in the soil gives an advantage to 

diazotrophs as long as they have enough phosphorus available to be 

energetically stable (Zehr et al., 2003; Vitousek, 1999).  

 pH, total nitrogen, percent crust, and percent vegetation had significant 

effects on the proportion of nifH genes in the microbial population as determined 
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by dividing total gene copy number by population estimates of one gram of soil. 

In this study, site 21 had the highest pH and the most gene copies. This 

observation is supported by reports that low pH led to significant reduction of 

nitrogenase activity in soil (Schubert et al., 1990). Genetic data were not 

collected, but the authors predicted the reduction was due to excess hydrogen 

ions in the soil. This study also determined that total nitrogen was low in the sites 

with the highest gene copies. Previously it was found that nitrogenase activity 

was decreased when urea was added to rice soil as a nitrogen source (Ayuni et 

al., 2015). This could be due to reduction of nitrogenase genes in high nitrogen 

environments. Diazotrophs thrive in regions with depleted nitrogen since they do 

not need to compete for the limited nitrogen.  

 There were a few limitations to this study. First, diazotrophs have varying 

amounts of nifH copies. For example, Klebsiella pneumoniae has one nifH gene 

copy, Paenibacillus azotofixans has three, and Clostridium pasteurianum has six 

copies (Hong et al., 2012). Also, since cyanobacteria can have two copies of nifH 

per heterocyst, it would be difficult to tell if there truly was a higher proportion of 

diazotrophs or simply diazotrophs with higher numbers of heterocysts in the soil 

(Pratte et al., 2006). This study also does not look at diazotroph activity, only 

gene abundance. Gene abundance is not indicative of enzyme activity only 

enzyme potential. Enzyme activity increases and decreases over time and can 

be influenced by bacterial diversity (Philippot et al., 2013). For example, 

denitrification activity was attenuated when microbial diversity was decreased, 
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even when there was not a significant difference in nosZ gene copy number 

(Philippot et al., 2013). The previous study performed by Bryant (2011) 

demonstrated a higher diversity in site 21, which could imply that there is not only 

the highest nitrogenase potential, but also perhaps the highest activity in that 

site. 

 My future directions would be to analyze nifH gene diversity within the four 

sites used in this study. Bryant (2011) previously analyzed 16S rRNA genetic 

diversity at these sites, but the genetic diversity for the nifH gene has not been 

studied. Poly et al. (2001) concluded using gene pool analysis that differences in 

the nifH gene pools may be manipulated by inorganic nitrogen in temperate 

environments. They were able to demonstrate, using PCA analysis, that forest 

and cultivated soils had similar RFLP profiles, but both were different from 

permanent pasture soils. Permanent pasture soils were different from each other 

as well. They hypothesized that this could be due to the soils having distinct 

levels of inorganic nitrogen. Understanding the structure of the nifH gene pools at 

the study sites will elucidate how microbial diversity changes among the sites 

and what environmental drivers influence diversity in arid soils.  

Measuring the activity of nitrogenase itself would also be useful. One method 

used to determine nitrogenase activity is acetylene reduction assay, which uses 

gas chromatography to quantify the reduction of acetylene gas to ethylene by the 

nitrogenase enzyme. Acetylene reduction assay has been used in experiments to 

show diazotroph activity in soil associated with different plants in arid 
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environments and in soils with different sources and quantities of nitrogen 

(Lopez-Lozano et al., 2016; Ayuni et al., 2015). Lopez-Lozano et al. (2016) used 

the assay to show that nitrogenase was significantly more active around 

mesquite trees in the Sonoran Desert than soil without plants. Ayuni et al. (2015) 

used the acetylene reduction assay to show that urea inhibited nitrogenase 

activity in diazotrophs. It is a useful method, because it measures nitrogenase 

activity instead of relying on assumptions made from genetic information. 

Analyzing the RNA of these samples could also help elucidate both genetic 

diversity and nitrogenase activity, because it looks at not only the order of the 

nucleotides but also the amount of transcription taking place. Reverse 

transcription-qPCR (RT-qPCR) and operational taxonomic unit (OTU) analysis 

were used by Calderoli et al. (2017) to demonstrate that diazotrophs were 

abundant under soybean crops in the Argentinean Pampas. They also showed 

that in no-till agricultural soil, diazotroph diversity was influenced by soil stability 

and organic carbon. RNA isolation would be useful because of its ability to 

understand both enzyme activity and diversity information.  

6. Conclusions  

This research focused on how one step of the nitrogen cycle is affected by 

precipitation in an arid region. The gene nifH increases in abundance in more 

arid regions of the Mojave Desert. Yearly precipitation has a significant effect on 

the total gene copy number. Other site and soil composition factors, such as 

percent vegetation and percent crust, also influence total gene copy number. 
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Future research is needed to help understand the effect on changes in climate on 

biogeochemical cycling. 
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