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ABSTRACT 

A SPATIAL OPTIMIZATION MODEL FOR RESOURCE ALLOCATION FOR 

WILDFIRE SUPPRESSION AND RESIDENT EVACUATION 

by Siqiong Zhou 

Wildland-urban interface wildfires have been a significant threat in many countries. 

This thesis presents an integer two-stage stochastic goal programming model for 

comprehensive, efficient response to wildfire including firefighting resource allocation 

and resident evacuation. In contrast to other natural disasters, the progression of wildfires 

depends on not only the probabilistic fire spread scenarios but also decisions made during 

firefighting. The proposed model optimizes the resource preparations before the fire starts 

and resource allocation decisions during the fire event. This model takes into account 

different wildfire spread scenarios and their impact on high-risk areas. The two objectives 

considered are minimizing the total cost of operations and property loss and minimizing 

the number of people at risk to be evacuated. A case study based on Santa Clara County 

in California, United States of America, is presented to demonstrate the model 

performance. Quantitative experiments show that this model can help to find efficient 

solutions by considering a trade-off between two objectives, and varying cell size based 

on scenarios reduces problem dimension and improves solution time. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Objectives 

Wildfires in the urban-wildland interface (WUI) have been severe threats to human 

beings and wildlife. The state of California has a significant number of lands covered by 

forests and grassland, which are close to populated areas. In recent years, several 

disastrous wildfires in both Northern California and Southern California have led to a 

significant number of deaths and economic losses. 

The main objective of this thesis is modeling and solving the problem of wildfire 

preparation and response in a WUI area. Detailed objectives for the model are 

minimizing residents at risk, property losses, and fire containment cost. 

1.2 Challenges of Wildfire Management Modeling 

The challenges of modeling wildfire management problem are led by the uncertainty 

of fire size and the dynamic process of fire containment. Due to several factors, wildfire 

may spread with an unpredictable speed towards different directions. A reasonable 

mathematical model should consider possible fire scenarios with different rates and 

directions. However, even if the initial condition of the fire becomes known right after a 

fire breaks out, firefighters’ activities will keep affecting the fire spread, which makes the 

problem modeling more complicated. In addition, in some rapid-fire cases, fire 

containment resources may be insufficient for initial response, which leads to another 

challenge of making plans for fire containment. 
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1.3 Brief Review on Relevant Methodology 

1.3.1 Stochastic programming 

Stochastic programming is an optimization method to model and solve problems 

with uncertainty. Uncertainty is caused by random events and it is reflected by random 

parameters in a stochastic problem. Random parameters represent the undetermined 

inputs to the optimization problem, and these random parameters may lead the problem to 

many different solution directions. The importance of random outcomes from 

experiments is shown as their effects on random parameters, not how they are defined 

(Birge & Louveaux, 2011). For example, in the problem of wildfire management, wind 

speed is shown as the effect to fire spread speed. Different wind speeds will produce 

varied fire spread outcomes such as a fire with slow spread or rapid spread. However, 

wind speeds don’t need to be defined very accurately; they are important only as a key 

factor to influence fire spread rate, which can be modeled as a random parameter. 

Generally, decision making problems with uncertainty have two types of decisions. 

The first type of decision, called first stage decisions, is made before the uncertainty is 

revealed, i.e. random parameters are still undetermined. This period before uncertainty is 

called the first stage. The second type of decision, called second stage decisions, can be 

made after the uncertainty is eliminated (observed) and random parameters are 

determined (revealed). The corresponding period without the uncertainty is the second 

stage (Birge & Louveaux, 2011). Since uncertainty is reflected by random parameters in 

stochastic problems, different directions (outcomes) led by those random parameters  
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contribute to different scenarios. In general, these different scenarios do not occur with 

equal probability; thus, probability distribution of scenarios should be estimated. 

Two-stage stochastic programming is a simple form of stochastic programming 

problem in which uncertainty occurs at only one point in time. Fig. 1 shows a scenario 

tree that decisions in two stages (before and after uncertainty) lead to different scenarios. 

 

Fig. 1. Scenario tree with 5 scenarios in a two-stage stochastic problem. 

When uncertainty has effects in different periods in the problem, the problem 

becomes a multi-stage stochastic problem. Fig. 2 shows a scenario tree in which 

decisions at different periods contribute to different scenarios in a four-stage stochastic 

problem. 

Scenario 1 

Scenario 2 

Scenario 3 

Scenario 4 

Scenario 5 

Stage 1 Stage 2 
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Fig. 2. Scenario tree with 8 scenarios in a four-stage stochastic problem. 

Since the optimal solution is highly dependent on the uncertainty in the problem, the 

way to find solutions to a stochastic problem also depends on whether the uncertainty is 

modeled as deterministic or not. The optimal solution to a stochastic problem should be a 

solution which considers all possible scenarios. However, because of uncertainties, it is 

impossible to find a solution which is always the best choice under all of the 

circumstances. In the case of a deterministic problem, which means that information 

about uncertainties is perfect, the optimal solution can be found as the expected value of 

the solutions to each scenario problem. In the case of a stochastic programming problem, 

in which information about uncertainties is not perfect, the optimal solution will be found 

by a model that considers all possibilities. Uncertainties are reflected in the formulation 

using different parameter values in each scenario. 

Scenario 1 

Scenario 2 

Scenario 7 

Scenario 8 

Scenario 3 

Scenario 4 

Scenario 5 

Scenario 6 

Stage 1 Stage 2 Stage 4 Stage 3 
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1.3.2 Goal programming 

Goal programming is used to solve problems with multiple and conflicting objectives 

by setting goals for objective functions and looking for solutions to optimize deviations 

from these goals (Schniederjans, 1984). Goal programming is also a relatively simple 

method to solve practical multi-objective problems like wildfire containment problems 

which require fast solutions. With the goal programming method, Pareto efficiency can 

be achieved as long as no other solution can improve one of the objectives without 

making other objectives worse. 

Goal programming technique works by removing original objective functions to 

constraints and setting a new objective function of optimizing, i.e. minimizing, deviations 

from goals. How to choose suitable goals for each objective function is usually an 

important issue in goal programming. 

To apply goal programming, priorities should be set for each objective function 

(Schniederjans, 1984). In some cases, priority values are available from experience or 

results from experiments. Then, a priority value will be given to each corresponding 

objective function. However, in most real cases, it is hard to know the exact priority value 

for each objective compared to others. In this condition, goal programming only requires 

for a priority ordering to objectives, and the objective with higher importance is assumed 

with a much larger priority value compared to other objectives. 

When solving a multi-objective problem with goal programming, the actual process 

is searching solutions to meet requirements of all the objective functions in the order of 

their priorities. A solution satisfying the highest priority objective function will be found 
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first, and then will be checked if it can also satisfy the rest of the objective functions. If a 

solution can meet the goal of high priority objectives while not making the low priority 

objectives worse, the solution will be the optimal one. 

The essence of solving a problem with goal programming is looking for tradeoffs 

among objectives, especially in cases of inaccurate priorities. Goal programming 

produces various solutions in different settings of goals and priorities to give decision 

makers a reference when they need to make a decision in a multi-objective problem. 

1.4 Major Contribution 

In this thesis, a mathematical optimization model is developed for management of 

WUI wildfires, which first, minimizes the number of people at risk in the high-risk areas 

and second, minimizes the total cost of fire containment and property losses. The model 

optimizes the resource allocation decisions given limited capacity and availability while 

taking into account possible wildfire spread scenarios. Scenarios in the model are based 

on fire spread direction and speed, which are caused by different wind directions and 

strength. In the proposed model, number of decision variables are kept constant in each 

scenario by developing a new approach for geographic area representation, so that 

efficient solutions can be found to highly comprehensive realistic WUI wildfire problems 

with varying area sites in different scenarios. Solutions to the model, which show the 

trade-off between objectives, can help decision makers to make choices based on the 

actual situations they might be facing. 
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1.5 Organization 

In Chapter 2, a spatial optimization model for resource allocation for wildfire 

suppression and resident evacuation is presented. The chapter is organized as follows: 

Section 2.1 introduces the background of wildfire management problem. Section 2.2 

includes relevant literature on wildfire preparedness and response. Section 2.3 presents 

the model assumptions, data sources, the stochastic goal programming model and a 

simple computational experiment. Section 2.4 demonstrates a case study from Santa 

Clara County. In Chapter 3, conclusions are summarized. 
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CHAPTER 2 

A SPATIAL OPTIMIZATION MODEL FOR RESOURCE ALLOCATION FOR 

WILDFIRE SUPPRESSION AND RESIDENT EVACUATION 

2.1 Background 

Wildfire management is a challenging and ongoing problem. Although considerable 

effort has been invested in preventing wildfires, disastrous wildfires still occur every year 

worldwide. Over the past few years, the WUI wildfires have become greater threats in the 

United States, Australia, and Portugal. In 2017, wildfires in both North and South 

California led to losses of more than 10 billion US dollars (Yan, 2017). According to a 

report from California Department of Forestry and Fire Protection (CAL FIRE), the 

October 2017 Northern California wildfires, including more than 250 wildfires, resulted 

in 43 fatalities and widespread evacuations of more than 100,000 people (CAL FIRE, 

2017). These fires burned over 245,000 acres, and at least 11,000 firefighters participated 

in fire containment. The December 2017 Thomas Fire in Southern California charred 

281,893 acres, destroyed more than 1,300 structures, and forced over 100,000 people to 

evacuate (CAL FIRE, 2018). As of December 2018, the Camp Fire, which started on 

November 8th, 2018 in North California and caused 86 civilian fatalities, was the 

deadliest wildfire in modern California history (CAL FIRE, 2018). All these fires were 

typical WUI wildfires. Unlike wildfires in wildland, WUI wildfires threaten both the 

ecosystem and the communities. 

According to the wildfire paradox, most wildfires could be controlled by a variety of 

regular suppression measures, while the remaining wildfires could become disastrous 

(Calkin, Cohen, Finney, & Thompson, 2014). Since it is not possible to eliminate the 
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occurrence of wildfires, developing effective strategies to prevent the fires from 

becoming catastrophic is essential. The critical challenge is the uncertainty in fire spread 

speed and direction. This information becomes observable after the fire breaks out. Even 

the original size and spread speed are immediately available after a fire breaks out, 

making a detailed containment plan is still challenging. In contrast to other natural 

disasters which usually happen at a particular time point and are followed by relief efforts, 

wildfires keep expanding unless proper and sufficient intervention plans are put into 

action. These actions involve both containment efforts and evacuation of residents. Also, 

resources are often limited to execute all the necessary actions. Thus, the prioritization of 

efforts in different wildfire regions becomes crucial. 

2.2 Literature Review 

Previous modeling efforts have considered different aspects of wildfire management, 

including developing strategies for fuel management, finding action plans while 

minimizing costs during fire suppression, and planning for evacuation. 

2.2.1 Fuel management 

One of the main factors that affects the spreading of wildfire is the characteristics of 

the land. In order to reduce the risks of potential wildfires, preventive actions, often 

called “fuel management,” such as removing live and dead vegetation can be utilized. 

Minas, Hearne, and Martell presented several models for fuel management problems to 

reduce wildfire effects (Minas, Hearne, & Martell, 2014) and prepare for fire suppression 

(Minas, Hearne, & Martell, 2015). Rashidi, Medal, Gordon, Grala, and Varner proposed a 

model to evaluate the worst-case scenario in a specific wildfire (Rashidi, Medal, Gordon, 
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Grala, & Varner, 2017). These models take into account terrains and preventative actions. 

However, a model which could take into account resource preparation, show the process 

of fire spreading, and consider the effects of the response process is still needed. 

2.2.2 Resource allocation and cost minimization in wildfires 

Most of the operations management literature includes operations research models 

for optimal resource allocation with the objective of minimizing costs. These models use 

linear programming or stochastic programming to optimize resource allocation decisions. 

For a single fire, Donovan and Rideout built an integer programming model to minimize 

the sum of suppression cost, preparation cost, and damage cost by optimizing resource 

allocation (Donovan & Rideout, 2003). For multiple fires on the same day, Hu and 

Ntaimo presented a stochastic optimization model to manage fire initial attack response 

and a simulation model for the suppression process. (Hu & Ntaimo, 2009). Based on 

historical data, Arrubla, Ntaimo, and Stripling set up an integer programming model to 

plan initial responses (Arrubla, Ntaimo, & Stripling, 2014). 

2.2.3 Evacuation in wildfires 

Even though finding the actions that minimize operational costs is important, saving 

lives is more critical during a wildfire event. During WUI fires, saving lives within a 

minimal amount of time is a great challenge. Cova et al. (2005) presented methods for 

efficient evacuation such as setting evacuation trigger criteria based on a fire spread 

model using a geographical information system (Cova, Dennison, & Kim, 2005). Li et al. 

(2015) also proposed setting evacuation alerts based on trigger modeling (Li, Cova, & 

Dennison, 2015). These models mainly focus on initial response. 
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2.2.4 Disaster response with multiple goals 

Firefighting and resident evacuation influence each other. They are usually planned 

by the same fire department or emergency operations center as a multi-goal task. It has 

been a common objective to achieve multiple goals in wildfire management similar to 

management of all kinds of disaster response. Zhan and Liu built a multi-objective 

stochastic programming model that minimizes both travel time and proportion of unmet 

demand to disaster response (Zhan & Liu, 2011). This model handles disasters occurring 

in a specific location and timing such as earthquakes and hurricanes. However, wildfires 

differ from earthquakes and hurricanes since they would keep spreading if no actions are 

taken, and firefighting interventions can affect the fire spread process significantly. 

2.2.5 Cooperation in wildfire response 

Most wildfires can be controlled by local resources (Southwest Coordination Center, 

2004), but there are still a few disastrous wildfires that require the cooperation of teams 

from different counties, states or even countries. Usually, local fire-fighting resources 

would respond to suppress the initial fire attack, and more nonlocal resources would 

become available for the response if a fire keeps spreading. Different teams from various 

areas usually have agreements and plans. For example, the California Fire Service and 

Rescue Emergency Mutual Aid Plan was adopted to provide a systematic and efficient 

response when a disaster happens (California Governor's Office of Emergency Services, 

2014). 
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2.2.6 Specific contributions 

This thesis presents a two-stage stochastic integer goal programming model which 

focuses on optimizing the resource allocation considering different wildfire scenarios 

while minimizing both the number of people in danger and the total cost of fire 

suppression and land losses. In this model, decisions of containment and evacuation are 

made simultaneously so that they can be more efficient and can better reflect reality. As 

urban areas continue expanding and fire risks in different seasons differ, decisions of 

on-duty resources scheduled in each fire station need to be made in advance to prepare 

for possible wildfires. Unlike the models mentioned above, population and property 

density are both critical factors in this model, which affect both containment and 

evacuation decisions. 

2.3 Mathematical Model 

2.3.1 Model assumptions and data sources 

The model presented in this thesis aims to identify the number of on-duty resources 

before a fire happens and make detailed plans for each potential fire scenario. It 

minimizes the total number of people at risk and the total value of property losses, and 

consequently, the areas with higher population density will have higher priority. The 

model determines the additional necessary local resources that should be kept on duty 

before a fire happens. After a fire initiates, more information about the fire condition is 

assumed to be gathered, and more local or even nonlocal resources may join fire 

suppression if needed in addition to on-duty resources.  
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Fire suppression is a multi-stage process as different types of resources (local or 

non-local) become available at different times if a fire is not contained immediately. The 

model presented in this thesis formulates this multi-stage process as a two-stage 

stochastic program. Fig. 3 shows the stages of wildfire containment process considered in 

this model. The decisions in the first stage involve hiring of additional on-duty resources 

for every station for the fire season that is under consideration. Once a fire starts, it is 

assumed that the uncertainties about fire spread speed and direction will be revealed. The 

uncertainty about fire spread speed and direction is incorporated in the model as 

scenarios with varying probability of occurrences. In the second stage, a detailed fire 

suppression plan is made for each specific fire scenario. Decisions in this stage include 

identifying high-risk areas for evacuation and allocating resources by their availability. 

Resource availability means some of the resources cannot join fire suppression until a 

specific period. For instance, resources outside of California cannot be allocated to 

contain the fire in California until the declaration of a state of emergency, which usually 

happens 24 hours after fire initiation (CAL FIRE, 2004). Since the operation cost of 

on-duty resources is lower than any other resources, on-duty resources will always be 

sent first if a fire happens. Similarly, non-local resources will not be considered unless all 

the available local resources are utilized, or non-local resources are cheaper in some 

particular condition. 
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Fig. 3. Flowchart to two-stage wildfire containment problem. 

The model assumes that all the resource allocation decisions are based on the 

assessment of the fire condition so that more resources are allocated to fires that are 

substantial. The fire condition affects whether an area is determined as high-risk, 

completely burned, or treated (under control). By keeping track of fire conditions in each 

area, resource allocation and evaluation of property losses are determined. 

Many uncertainties contribute to different fires such as fuel, wind and season. 

However, when analyzing a specific location with certain fuel in a specific season, the 

only uncertainty is caused by the wind. In this model, scenarios are generated considering 

different wind directions and wind strengths. With the wind direction known, fire spread 

direction can be estimated. With the wind strength known, fire spread rate can be 

estimated. In addition, for a specific season, the probability of each scenario can also be 

estimated by analyzing historical data from a specific region with known fuel type. 

In this model, geographical areas are expressed by cells to demonstrate fire spread 

process and detailed allocation plan. Cell sizes are associated with the fire spread rate and 

length of each period. In other words, the cell size in a fast fire scenario is larger than the 

cell size in a slow fire scenario. Varying cell sizes keep the number of decision variables 
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constant in different scenarios with different spread speed, which as a result enables us to 

solve problems with huge geographical areas. For different cell sizes in different fire 

spread scenarios, cell population density and cell land value can be generated using 

publicly available data sets. Each cell in the absence of a fire event is considered as a 

no-risk or safe cell. At the beginning of each possible fire, the initial conditions of cells 

including the fire-starting point and adjacent cells to the fire-starting point are updated. 

These initial cell conditions are determined as either high-risk, which means the cell is 

about to be affected by fire spread or has been partially on fire, or burnt, which means the 

cell has been fully on fire. In the following periods, suppression efforts based on resource 

allocation decisions will affect cells’ conditions and result in an update. 

There are three prerequisites for a cell to be a new high-risk cell: it should have at 

least one upwind burnt cell currently, it should not have been a burnt cell before, and it 

should have never been treated before. It is assumed that fire in a specific cell always 

spreads from upwind cells and can only spread to adjacent cells. The definition of upwind 

cells and adjacent cells are determined based on wind direction. A cell may have different 

adjacent cells and upwind cells in different wind directions. For example, Fig. 4 (a) and 

(b) show that if the wind comes from the west, a cell (analyzed cell shaded in gray) has 

three adjacent cells on the east side and three upwind cells on the west side so that the fire 

can spread to this cell from west side cells and possibly spread to east side cells in the 

next period. Fig. 4 (c) and (d) show that if the wind comes from the northwest, a cell 

(analyzed cell shaded in gray) has three adjacent cells on the southeast side and three  
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upwind cells on the northwest side so that the fire can spread to this cell from northwest 

side cells and possibly spread to southeast side cells in the next period. 

          analyzed cell 

   

          upwind cell 

   

          adjacent cell 

   

(a)  (b) 
   

          

          

          

(c)  (d) 
  

Fig. 4. Cell definitions which affect fire spread in different cases where (a) upwind cells 

in west wind scenario (b) adjacent cells in west wind scenario (c) upwind cells in 

northwest wind scenario (d) adjacent cells in northwest wind scenario. 

Average fire spread rates and resources’ suppression rates for different types of fuel 

can be found in the National Wildfire Coordinating Group (NWCG) Fireline Handbook 

(Incident Operations Standards Working Team [IOSWT], 2004). The published 

suppression rates consider firefighters’ rest time. Thus, in this model, it is assumed that 

all the allocated resources will keep working at given rates until the fire is fully contained, 

and no specific rest time is explicitly modeled. 

The model assumes that once people are evacuated, they will not go back until the 

fire ends. Thus, each person will only be counted once when calculating the total number 

of people at risk. Varying evacuation percentages are used in the model based on different 
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fire sizes in order to represent the reality that fire size affects residents’ evacuation 

choices. 

2.3.2 Model formulation 

The model includes the following parameters and decision variables: 

Sets: 

𝛢   Set of cells in consideration, indexed by α 

𝐼   Set of resource types, indexed by i 

𝐾   Set of all local fire stations, indexed by k 

𝐿   Set of all nonlocal resource locations, indexed by l 

𝑇   Set of discrete periods, indexed by t 

𝛺   Set of all fire scenarios, indexed by ω 

Parameters: 

𝐵   Budget 

𝐺𝑆𝑖   Group size of resource i (required personnel) 

𝑂𝐷𝑘𝑖  Original on-duty resource i in station k 

𝐿𝐼𝑀𝐼𝑇𝑘𝑖  Capacity of resource i in station k 

𝑃𝐶𝐴𝑃  Capacity limit of on-duty personnel 

𝐴𝐿𝑅𝑘𝑖𝑡  Capacity of additional local resource i at station k in period t (𝑡 = 1, … , 𝑇) 

𝑁𝑅𝑙𝑖𝑡  Additional nonlocal capacity of resource i from location l in period t (𝑡 =

1, … , 𝑇)  

𝐼𝑁𝐼𝑇𝛼
𝜔  Initial high-risk condition at cell α (equal to 1 if the cell is initial high-risk 

area) 
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𝑅𝑆𝜔  Minimum required suppression rate for each cell in scenarios (chains per 

hour) 

𝑆𝑈𝑃𝑖  Suppression rate of resource i (chains per hour) 

𝑂𝐷𝐶𝑘𝑖  Cost of hiring one additional local on-duty resource i at station k 

𝐿𝑂𝑅𝐶𝑘𝑖  Unit operation cost of local on-duty resource i from station k 

𝐿𝑅𝐶𝑘𝑖  Unit Operation cost of local call-for-shift resource i from station k 

𝑁𝑅𝐶𝑙𝑖  Unit operation cost of nonlocal resource i from location l 

𝐸𝑉𝐴𝛼
𝜔  Evacuation percentage at cell α in scenarios 

𝐷𝐸𝑁𝛼
𝜔  Population density at cell α in scenarios (because of different cell sizes) 

𝑉𝐴𝐿𝑈𝐸𝛼
𝜔 Property and land value at cell α in scenarios 

𝑝𝜔   Probability of scenario ω 

𝑀𝜔   Big M in scenarios 

Decision variables: 

𝑠𝑘𝑖   Number of additional local on-duty resources that need to be hired in station 

k 

𝑥𝑘𝑖𝛼𝑡
𝜔   Number of local on-duty resources i sent from station k to cell α at period t 

in scenarios 

𝑦𝑘𝑖𝛼𝑡
𝜔   Number of local additional resources i sent from station k to cell α at period 

t in scenarios 

𝑧𝑙𝑖𝛼𝑡
𝜔   Number of nonlocal resources i sent from location l to cell α arrived at 

period t in scenarios 
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𝜇𝛼𝑡
𝜔    Binary variable defining whether cell α becomes a high-risk area at period t 

in scenario ω 

𝜅𝛼𝑡
𝜔    Binary variable defining whether cell α becomes a fully burnt area at period 

t in scenario ω 

𝜑𝛼𝑡
𝜔    Binary variable defining whether cell α start to be treated at period t in 

scenario ω 

Objective functions: 

𝑀𝑖𝑛 𝑂𝑏𝑗1 =  ∑ 𝑝𝜔 ∑ 𝐷𝐸𝑁𝛼
𝜔𝐸𝑉𝐴𝛼

𝜔 ∑ 𝜇𝛼𝑡
𝜔

𝑡∈𝑇𝛼∈Α𝜔∈Ω         (1) 

𝑀𝑖𝑛  𝑂𝑏𝑗2 = ∑ ∑ 𝑂𝐷𝐶𝑘𝑖𝑠𝑘𝑖𝑖∈𝐼𝑘∈𝐾   

+ ∑ 𝑝𝜔 (
∑ ∑ ∑ ∑ (𝑥𝑘𝑖𝛼𝑡

𝜔 𝐿𝑂𝑅𝐶𝑘𝑖+𝑦𝑘𝑖𝛼𝑡
𝜔 𝐿𝑅𝐶𝑘𝑖)𝑡∈𝑇𝛼∈Α𝑖∈𝐼𝑘∈𝐾 +

∑ ∑ ∑ ∑ 𝑧𝑙𝑖𝛼𝑡
𝜔 𝑁𝑅𝐶𝑙𝑖𝑡∈𝑇𝛼∈Α𝑖∈𝐼𝑙∈𝐿 + ∑ 𝑉𝐴𝐿𝑈𝐸𝛼

𝜔 ∑ 𝜅𝛼𝑡
𝜔

𝑡∈𝑇𝛼∈Α
)𝜔∈Ω   

                 (2) 

Constraints: 

∑ ∑ 𝑂𝐷𝐶𝑘𝑖𝑠𝑘𝑖𝑖∈𝐼𝑘∈𝐾 + ∑ ∑ ∑ ∑ (𝑥𝑘𝑖𝛼𝑡
𝜔 𝐿𝑂𝑅𝐶𝑘𝑖+𝑦𝑘𝑖𝛼𝑡

𝜔 𝐿𝑅𝐶𝑘𝑖)𝑡∈𝑇𝛼∈Α𝑖∈𝐼𝑘∈𝐾 +

∑ ∑ ∑ ∑ 𝑧𝑙𝑖𝛼𝑡
𝜔 𝑁𝑅𝐶𝑙𝑖𝑡∈𝑇𝛼∈Α𝑖∈𝐼𝑙∈𝐿 ≤ 𝐵  ∀𝜔 ∈ Ω        (3) 

𝑠𝑘𝑖 + 𝑂𝐷𝑘𝑖 ≤ 𝐿𝐼𝑀𝐼𝑇𝑘𝑖     ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼      (4) 

∑ ∑ 𝐺𝑆𝑖(𝑠𝑘𝑖 + 𝑂𝐷𝑘𝑖)𝑘∈𝐾𝑖∈𝐼 ≤ 𝑃𝐶𝐴𝑃           (5) 

∑ ∑ 𝑥𝑘𝑖𝛼𝑡
𝜔

𝑡∈𝑇𝛼∈𝐴 ≤ 𝑠𝑘𝑖 + 𝑂𝐷𝑘𝑖    ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝜔 ∈ Ω    (6) 

𝑦𝑘𝑖𝛼0
𝜔 = 0        ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝛼 ∈ Α, ∀𝜔 ∈ Ω  (7) 

∑ ∑ 𝑦𝑘𝑖𝛼𝑡′
𝜔

𝑡′∈(1,𝑡)𝛼∈Α ≤ 𝐿𝐼𝑀𝐼𝑇𝑘𝑖 + ∑ 𝐴𝐿𝑅𝑘𝑖𝑡′𝑡′∈(1,𝑡) − 𝑠𝑘𝑖 − 𝑂𝐷𝑘𝑖  

          ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ (1, 𝑇), ∀𝜔 ∈ Ω (8) 

∑ ∑ 𝑧𝑙𝑖𝛼𝑡′
𝜔

𝑡′∈(1,𝑡)𝛼∈Α ≤ ∑ 𝑁𝑅𝑙𝑖𝑡′𝑡′∈(1,𝑡)   ∀𝑙 ∈ 𝐿, ∀𝑖 ∈ 𝐼, ∀𝜔 ∈ Ω, ∀𝑡 ∈ 𝑇  (9) 
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∑ (∑ 𝑥𝑘𝑖𝛼𝑡
𝜔

𝑘∈𝐾 + ∑ 𝑦𝑘𝑖𝛼𝑡
𝜔

𝑘∈𝐾 + ∑ 𝑧𝑙𝑖𝛼𝑡
𝜔

𝑙∈𝐿 )𝑆𝑈𝑃𝑖𝑖∈𝐼 ≥ 𝜑𝛼𝑡
𝜔 𝑅𝑆𝜔  

∀𝛼 ∈ Α, ∀𝑡 ∈ 𝑇, ∀𝜔 ∈ Ω    (10) 

𝜇𝛼0
𝜔 = 𝐼𝑁𝐼𝑇𝛼

𝜔       ∀𝛼 ∈ Α, ∀𝜔 ∈ Ω      (11) 

𝜑𝛼𝑡
𝜔 ≤ 𝜇𝛼𝑡

𝜔         ∀𝛼 ∈ Α, ∀𝑡 ∈ 𝑇, ∀𝜔 ∈ Ω    (12) 

𝜅𝛼𝑡
𝜔 = 𝜇𝛼,𝑡−1

𝜔 − 𝜑𝛼,𝑡−1
𝜔      ∀𝛼 ∈ Α, ∀𝑡 ∈ (1, 𝑇), ∀𝜔 ∈ Ω   (13) 

𝑀𝜔(𝜇𝛼𝑡
𝜔 + ∑ 𝜅𝛼𝑡′

𝜔𝑡
0 + ∑ 𝜑𝛼𝑡′

𝜔𝑡−1
0 ) ≥ ∑ 𝜅𝛼′𝑡

𝜔
𝑢𝑝𝑤𝑖𝑛𝑑 𝑐𝑒𝑙𝑙𝑠 𝑜𝑓 𝛼   

          ∀𝛼 ∈ Α, ∀𝑡 ∈ (1, 𝑇), ∀𝜔 ∈ Ω   (14) 

𝑀𝜔(1 − 𝜇𝛼𝑡
𝜔 + ∑ 𝜅𝛼𝑡′

𝜔𝑡
0 + ∑ 𝜑𝛼𝑡′

𝜔𝑡−1
0 ) ≥ 1 − ∑ 𝜅𝛼′𝑡

𝜔
𝑢𝑝𝑤𝑖𝑛𝑑 𝑐𝑒𝑙𝑙𝑠 𝑜𝑓 𝛼   

∀𝛼 ∈ Α, ∀𝑡 ∈ (1, 𝑇), ∀𝜔 ∈ Ω   (15) 

𝑀𝜔(1 − 𝜇𝛼𝑡
𝜔 − ∑ 𝜅𝛼𝑡′

𝜔𝑡
0 − ∑ 𝜑𝛼𝑡′

𝜔𝑡−1
0 ) ≥ − ∑ 𝜅𝛼′𝑡

𝜔
𝑢𝑝𝑤𝑖𝑛𝑑 𝑐𝑒𝑙𝑙𝑠 𝑜𝑓 𝛼   

          ∀𝛼 ∈ Α, ∀𝑡 ∈ (1, 𝑇), ∀𝜔 ∈ Ω   (16) 

∑ 𝜅𝛼𝑡
𝜔

𝑡∈𝑇 ≤ 1       ∀𝛼 ∈ Α, ∀𝜔 ∈ Ω      (17) 

∑ 𝜑𝛼𝑡
𝜔

𝑡∈𝑇 ≤ 1       ∀𝛼 ∈ Α, ∀𝜔 ∈ Ω      (18) 

∑ 𝜇𝛼𝑡
𝜔

𝑡∈𝑇 ≤ 1       ∀𝛼 ∈ Α, ∀𝜔 ∈ Ω      (19) 

∑ 𝜅𝛼𝑡
𝜔

𝑡∈𝑇 + ∑ 𝜑𝛼𝑡
𝜔

𝑡∈𝑇 ≤ 1     ∀𝛼 ∈ Α, ∀𝜔 ∈ Ω      (20) 

∑ 𝜅𝛼𝑡
𝜔

𝑡∈𝑇 ≤ ∑ 𝜇𝛼𝑡
𝜔

𝑡∈𝑇       ∀𝛼 ∈ Α, ∀𝜔 ∈ Ω      (21) 

∑ 𝜑𝛼𝑡
𝜔

𝑡∈𝑇 ≤ ∑ 𝜇𝛼𝑡
𝜔

𝑡∈𝑇       ∀𝛼 ∈ Α, ∀𝜔 ∈ Ω      (22) 

∑ ∑ 𝜑𝛼𝑡
𝜔

𝑡∈𝑇𝛼∈Α + ∑ ∑ 𝜅𝛼𝑡
𝜔

𝑡∈𝑇𝛼∈Α = ∑ ∑ 𝜇𝛼𝑡
𝜔

𝑡∈𝑇𝛼∈Α   

          ∀𝜔 ∈ Ω        (23) 

𝑠𝑘𝑖 ≥ 0          ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼      (24) 

𝑥𝑘𝑖𝛼𝑡
𝜔 , 𝑦𝑘𝑖𝛼𝑡

𝜔 ≥ 0       ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝛼 ∈ Α, ∀𝑡 ∈ 𝑇, ∀𝜔 ∈ Ω(25) 
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𝑧𝑙𝑖𝛼𝑡
𝜔 ≥ 0        ∀𝑙 ∈ 𝐿, ∀𝑖 ∈ 𝐼, ∀𝛼 ∈ Α, ∀𝑡 ∈ 𝑇, ∀𝜔 ∈ Ω(26) 

𝜇𝛼𝑡
𝜔 , 𝜅𝛼𝑡

𝜔 , 𝜑𝛼𝑡
𝜔 ∈ {0,1}      ∀𝛼 ∈ Α, ∀𝑡 ∈ 𝑇, ∀𝜔 ∈ Ω    (27) 

Objective function (1) minimizes the expected total number of people at-risk who 

need to be evacuated from high-risk cells over all scenarios. Objective function (2) 

minimizes the expected total cost of hiring additional on-duty resources, allocating local 

and non-local resources in scenarios and property losses of burnt cells over all scenarios. 

The total cost in (2) represents a societal cost since property losses are not incurred by 

fire departments. 

Constraint (3) is the budget constraint which limits the total operation cost of 

resource preparation and allocation. Constraint (4) limits the number of resources in each 

station. The sum of on-duty resources in each station including original on-duty resources 

and additional on-duty resources should meet each station’s capacity requirement. 

Constraint (5) limits the number of on-duty personnel in the current fire department. The 

total number of on-duty personnel from all the stations should not exceed the department 

personnel capacity requirements. Constraints (6) to (9) are availability constraints: 

Constraint (6) ensures that the number of resources to be sent for firefighting cannot 

exceed the available resource limits. Constraint (7) ensures if a local resource is not on 

duty, then it is not available at time 0. Constraint (8) ensures that the number of additional 

local resources sent to cells must be less than the local resource availability at each time t. 

Constraint (9) ensures that the number of non-local resources sent to cells must be less 

than the non-local resource availability limitations at each time t. Constraint (10) ensures 

that all of the resources sent to each cell are sufficient to contain the fire, which means 
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that the suppression rate in a specific cell should be higher than the required suppression 

rate. Constraint (11) sets up initial high-risk condition at the beginning of fire for each 

cell in each scenario. Constraint (12) ensures that only high-risk cells will be treated. 

Constraint (13) represents the fire spread process. If a cell is a high-risk cell and is not 

treated in period t-1, then it will become a burnt cell in period t. Constraints (14) to (16) 

represent the process of detecting new high-risk cells. Constraint (17) ensures each cell 

can become a burnt cell for at most one time. Constraint (18) ensures each cell can 

become a treated cell at most once. Constraint (19) ensures each cell can become a 

high-risk cell at most once. Constraint (20) means each cell can become a burnt cell or 

treated cell. If a cell has been a burnt cell, it would never be treated in the future. If it has 

been a treated cell, it would never become a burnt cell. Constraints (21) to (23) represent 

the relationships among each cell condition. Constraint (21) means each burnt cell needs 

to be a high-risk cell previously. Constraint (22) means each treated cell is used to be a 

high-risk cell. Constraint (23) means each high-risk cell must become a treated cell or a 

burnt cell at the end. 

Constraints (24) to (27) are nonnegativity or binary limitations for decision variables. 

2.3.3 Model Demonstration: A Simple Computational Experiment 

A simple version with 4 by 4 cells is used to test the model with three periods. Each 

period has a length of one hour. In this experiment, the fire spread rate is 20 chains per 

hour in each scenario. One of the scenarios has west wind with a probability of 0.8 and 

the other one has northwest wind with a probability of 0.2. Fire spread rate doesn’t 

change so that cell size stays the same in each scenario. Thus, evacuation percentages, 
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population densities, and land values are fixed in each cell. Cell index and evacuation 

percentages, population densities, land values are shown in Fig. 5. 

0 1 2 3  0.6 0.66 0.72 0.77 

4 5 6 7  0.61 0.88 0.87 0.91 

8 9 10 11  0.78 0.95 0.96 0.63 

12 13 14 15  0.69 0.82 0.82 0.86 

(a)  (b) 

0 0 7 9  6 7 15 22 

0 0 5 6  5 5 13 17 

0 0 0 2  7 4 6 10 

0 3 0 3  6 10 8 12 

(c)  (d) 

Fig. 5. Parameters for cells (a) cell indexes (b) evacuation percentage in each cell (c) 

population density in each cell (d) land value of each cell. 

In this experiment, cell 0 and cell 4 are assumed to be the initial high-risk cells in a 

northwest wind scenario; cell 0 is assumed as the initial high-risk cell in west wind 

scenario. 

To make the suppression process simple, only one station and one kind of resource 

are considered here. There are no initial on-duty resources in the station. On-duty 

resource limitation is 3 and the total capacity is 9. On-duty resources can arrive as early 
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as period 0 and other local resources can arrive as early as period 1. Non-local resources 

are available in the last period. Suppression rate of each resource is 7 chains per hour. 

When ignoring the objective function (2) in this experiment, the problem becomes a 

single objective problem which only minimizes number of residents at risk. The optimal 

solution of this simple example is shown in Fig. 6. 

S=3 

 Northwest wind  West wind  

t=0 

           Burnt cell 

x=3           Treated cell 

           High-risk cell 

          

           

t=1 

 y=3     y=3    

x=3 y=3     y=3    

          

          

           

t=2 

 y=3     y=3    

x=3 y=3     y=3    

          

          

Fig. 6. Result of single objective experiment with 4 by 4 cells. 

The results show that the number of on-duty resources required to be hired is 3. In 

this experiment, operation costs are not affecting the result since the cost objective 

function has been removed in the solution process. In the west wind scenario, no on-duty 

resource is sent in the first period. In this scenario, cell 0 doesn’t have residents; thus, 
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resources are not sent to initial high-risk cells in period 0. In period 1, cell 1 and cell 5 

still don’t have residents, while resources are sent to these two cells since they can 

prevent populated cells from becoming high risk in the next period by containing fire in 

current cells. In the northwest wind scenario, even if cell 4 has no resident, resources are 

still sent there to make sure that the fire won’t spread to a very big area which is beyond 

the containment ability. Because the resource capacity has a limitation of 9, the model 

needs to find out a solution that less or equal to 3 treated cells are produced in total. 

This simple experiment is used to demonstrate how the model works in updating cell 

conditions as fire spreads and how decisions are made accordingly when only a single 

objective is considered. 

2.3.4 Solution Approach 

The solution to this multi-objective model can be found by using goal programming 

methodology. Several new parameters and variables are needed to solve this problem 

with goal programming. 

Parameters: 

𝐺1   Goal value of the first objective function 

𝐺2   Goal value of the second objective function 

𝑃1   Priority, the importance of the first objective function 

𝑃2   Priority, the importance of the second objective function 

Variables: 

𝑑1
−   Deviation of the first objective function below from 𝐺1 

𝑑1
+   Deviation of the first objective function above from 𝐺1 
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𝑑2
−   Deviation of the second objective function below from 𝐺2 

𝑑2
+   Deviation of the second objective function above from 𝐺2 

Then the new model is: 

min {𝑃1𝑑1
+ + 𝑃2𝑑2

+}               (28) 

𝑂𝑏𝑗1 + 𝑑1
− − 𝑑1

+ = 𝐺1              (29) 

𝑂𝑏𝑗2 + 𝑑2
− − 𝑑2

+ = 𝐺2              (30) 

Equations (3) to (27) 

Here an assumption is made that the first objective function has a higher priority than 

the second objective function, i.e., 𝑃1 ≫ 𝑃2, since human safety is considered to be more 

important than property safety in reality. 

In this model, two objective functions are measured in different units, and the total 

cost is almost always significantly higher compared to the number of residents at-risk. 

When these two objective functions are summed up directly, the final solution may have 

a significant bias. To avoid this issue, the percentage normalization technique is applied 

here. The percentage normalization method is a simple way to ensure that each objective 

function can have roughly the same magnitude (Tamiz, Jones, & Romero, 1998). A 

normalization constant, 𝑁𝑖, is needed in this method. The normalization constant is 

defined as equation (31): 

𝑁𝑗 =
𝐺𝑗

100
⁄         𝑗 = 1, 2        (31) 

Then the updated model is: 

min {𝑃1
𝑑1

+

𝑁1
+ 𝑃2

𝑑2
+

𝑁2
}               (32) 
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𝑂𝑏𝑗1 + 𝑑1
− − 𝑑1

+ = 𝐺1              (33) 

𝑂𝑏𝑗2 + 𝑑2
− − 𝑑2

+ = 𝐺2              (34) 

Equations (3) to (27) 

2.4 Case Study 

In this section, a case study is presented which considers potential fire scenarios in 

Santa Clara County, California. Relevant information and data are gathered from the 

official documents from CAL FIRE, Santa Clara County Fire Department (SCCFD), 

NWCG, National Wildfire Suppression Association (NWSA), United States Department 

of Labor (USDL), as well as Google Maps, Zillow Real Estate, and Weather 

Underground. Details about how data are gathered and used in this case study, along with 

the assumptions made are explained below. 

2.4.1 Assumptions and data collection 

 2.4.1.1 Budget 

In most cases, fire departments fight WUI fires without consideration of the budget if 

a fire event has already occurred. In this model, the budget of fire containment is set as 

the excess of revenues over expenditures of SCCFD in 2017, which is $11,501,453 

according to the SCCFD 2017 Annual Report (SCCFD, 2017). 

 2.4.1.2 Fire spread in scenarios 

Fire spread rate is affected by fuel model, slope, fuel moisture, and wind speed. A 

study by Jin et al. (2015) has shown that typically two fire seasons exist in California and 

the Santa Ana winds from October to April usually produce the more disastrous fires (Jin 

et al., 2015). Therefore, in this case, historical weather data from October are used. Based 
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on the historical average humidity level in October (The Weather Company, 2018), the 

reference table from the NWCG (NWCG, 2018), the slope map of Santa Clara County 

(Graham & Pike, 1998) and the fuel models map of California (CAL FIRE, The Fire and 

Resource Assessment Program, 2018), it is assumed that the area considered in this case 

study has the average characteristics of Santa Clara homogenously. Required suppression 

rates are assumed to have four levels which are 4 chains per hour, 36 chains per hour, 144 

chains per hour, and 324 chains per hour, respectively. The probabilities of each wind 

direction are calculated as equation (35), in which data are collected from historical wind 

data in October from 2008 to 2017 (The Weather Company, 2018). 

P (
wind from a specific direction 
with speed in a specific range

) 

=

Number of days with wind from 
a specific direction with speed in a specific range

Total number of days in consideration
     (35) 

For each wind range, there is a corresponding fire spread speed level according to 

NWCG Fireline Handbook (IOSWT, 2004). Probabilities to scenarios with different fire 

spread direction and fire speed (chains per hour) are shown in Table 1. 

 2.4.1.3 Cell size 

We assume that each period has a length of 6 hours. Accordingly, the size of each cell 

in the specific scenario is determined as the distance that fire can spread in 6 hours 

without treatment so that fire’s spread speed in scenarios can always be expressed as “one 

cell per period.” For example, when the fire spread rate is four chains per hour, the cell 

size will be 24 chains. 
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Table 1 

Probabilities of Scenarios 

Fire speed 

(chains/hour) 

Wind direction 

4 12 24 36 

E 0 0.003226 0 0 

NE 0.003226 0 0.003226 0 

SE 0.003226 0.093548 0.048387 0.009677 

N 0.006452 0.006452 0 0 

NW 0.151612 0.477419 0.022581 0.009677 

S 0.003226 0.016129 0.003226 0 

SW 0.006452 0.051613 0.009677 0 

W 0.009677 0.058065 0.003226 0 

 2.4.1.4 Resources and costs 

Two types of resources are considered in the case study, engine group and hand crew. 

Since either engine group or hand crew can have different numbers of personnel, which 

contribute to different suppression speeds, this case study assumes that engine groups 

may include 1 firefighter, 2 firefighters, 3 firefighters, 4 firefighters or 5 firefighters and 

hand crews may include 7 firefighters or 20 firefighters based on NWCG Fireline 

Handbook (IOSWT, 2004). For hardwood fuel, line production rates of both resources are 

estimated by NWCG (IOSWT, 2004). Detailed suppression rates of different resources 

are shown in Table 2. 
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Table 2 

Suppression Rate of Different Resources 

Fire 

Behavior 

Fuel Model 

Construction Rate by Hand Crews in Chains per Person per Hour 

Hardwood 

Litter 

2.0 

Construction Rate by Engine Crews in Chains per Crew per Hour 

1-person 

crew 

2-person 

crew 

3-person 

crew 

4-person 

crew 

5-person 

crew 

3 7 12 18 22 

In this case study, an assumption is that only a single fire starts at period 0, and all 

the operational costs are calculated based on this fire location. Resources from the local 

fire department are considered as local resources. Other resources including in-state 

resources and out-of-state resources are treated as non-local resources. Costs of 

containment of the fire include payment for additional on-duty firefighters, on-duty 

resources operation cost, local call-for-shift resources operation cost and non-local 

resource operation cost. The set-up cost of an additional on-duty firefighter is assumed as 

$5500 based on the data from the USDL (USDL, 2018). The set-up cost of an additional 

engine or truck, including preventative maintenance, training and some other indirect 

costs of fires, is also assumed for each station based on the data from the NWSA (NWSA, 

2013). Details of engine resource set-up costs are shown in Table 3. 

Operation costs of on-duty resources, local call-for-shift resources, and non-local 

resources are estimated based on the data from the NWSA (NWSA, 2013), the Pacific 

Northwest Wildfire Coordinating Group (Pacific Northwest Wildfire Coordinating Group, 
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2017) and Google Maps (Google, 2018). The different distances between fire stations and 

the fire lead to different transportation costs, which finally affect resource assignment 

priorities. Thus, closer resources will be assigned first. Details of different distances from 

local stations to fire are shown in Table 4. Since the distances of nonlocal resources are 

varied from station to station, average distances are assumed for neighbor-county 

resources, in-state resources, and out-of-state resources, respectively. Details of different 

nonlocal resources distances are shown in Table 5. The equation of calculating the 

operational cost to a specific resource is shown in equation (36). 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑢𝑛𝑖𝑡 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑐𝑜𝑠𝑡 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 

𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒    (36) 

In this case, unit traffic cost is assumed as $270 per mile. Personnel payment for both 

call-for-shift local resources and neighbor-county resources are assumed as $616. 

Personnel payment for both in-state resources and out-of-state resources are assumed as 

$776. Assumptions to unit traffic cost and personnel payment are made based on the data 

from the NWSA (NWSA, 2013). Then operational costs for both local resources and 

nonlocal resources can be calculated as equation (36). Details of operational costs are 

shown in Table 6 and Table 7. 
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Table 3 

Set-Up Cost of An Additional Engine in Different Stations 

Station 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Engine 

set-up cost ($) 
3256 2701 1517 5735 6327 5661 4070 2257 2405 3737 4403 3367 2849 5254 3256 

Table 4 

Distances to Fire for Local Stations 

Station 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Distance (mile) 8.8 7.3 4.1 15.5 17.1 15.3 11 6.1 6.5 10.1 11.9 9.1 7.7 14.2 8.8 

Table 5 

Distances to Fire for Nonlocal Resources 

Resource Neighbor-county In-state Out-of-state 

Distance (mile) 25 300 600 

Table 6 

Operation Costs for Nonlocal Resources 

Resource i 0 1 2 3 4 5 6 

NRC_i neighbor 7366 7982 8598 9214 9830 11062 19070 

NRC_i in-state 81776 82552 83328 84104 84880 11032 31520 

NRC_i out-of-state 162776 163552 164328 165104 165880 12432 35520 
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Table 7 

Operation Costs for Local Resources 

station k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

LORC_k0 2376 1971 1107 4185 4617 4131 2970 1647 1755 2727 3213 2457 2079 3834 2376 

LORC_k1 2376 1971 1107 4185 4617 4131 2970 1647 1755 2727 3213 2457 2079 3834 2376 

LORC_k2 2376 1971 1107 4185 4617 4131 2970 1647 1755 2727 3213 2457 2079 3834 2376 

LORC_k3 2376 1971 1107 4185 4617 4131 2970 1647 1755 2727 3213 2457 2079 3834 2376 

LORC_k4 2376 1971 1107 4185 4617 4131 2970 1647 1755 2727 3213 2457 2079 3834 2376 

LORC_k5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 2376 

LORC_k6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 2376 

LRC_k0 2992 2587 1723 4801 5233 4747 3586 2263 2371 3343 3829 3073 2695 4450 2992 

LRC_k1 3608 3203 2339 5417 5849 5363 4202 2879 2987 3959 4445 3689 3311 5066 3608 

LRC_k2 4224 3819 2955 6033 6465 5979 4818 3495 3603 4575 5061 4305 3927 5682 4224 

LRC_k3 4840 4435 3571 6649 7081 6595 5434 4111 4219 5191 5677 4921 4543 6298 4840 

LRC_k4 5456 5051 4187 7265 7697 7211 6050 4727 4835 5807 6293 5537 5159 6914 5456 

LRC_k5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 6688 

LRC_k6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 14696 
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2.4.1.5 Fire containment process and resource availability 

The working process of this case can be shown as the flowchart in Fig. 7. 

 

Fig. 7. Fire preparation and suppression process in the case of Santa Clara County. 

The first decision before the fire is the number of additional on-duty engine groups 

and the group size. The capacity of engine resource for each fire station in Santa Clara 

County is determined according to the information from the SCCFD (SCCFD, 2015). 

Details of engine capacities in each local fire station are shown in Table 8. In addition to 

the engine capacities, there is an upper limit of 66 full-time personnel and 25 volunteers 

in total for the county fire department (SCCFD, 2015). In reality, the number of on-duty 

resources is also determined by many factors such as urban fires, traffic accident rescue 

in addition to wildfires. Thus, in this case, an assumption is made that each station has 

one 3-person engine group on duty due to other considerations. 
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After a fire breaks out, it is assumed that engine groups from nearby state fire 

stations can join containment as early as the second period (after 6 hours), and engine 

groups from neighbor departments can join containment as early as the third period (after 

12 hours). Local hand crews can also come as early as the third period (after 12 hours). 

Since station 15 and the headquarter of SCCFD have the same location, additional local 

hand crew resources are assumed to be sent from station 15. More in-state resources can 

start to contain the fire as early as the fourth period (after 18 hours). Additional 

out-of-state resources will come after 24 hours. Table 9 shows the detailed additional 

resource availability. Detailed resource availability is estimated based on a report from 

the SCCFD (SCCFD, 2017) and CAL FIRE (CAL FIRE, 2004). Response times and 

capacities of all these resources can be adjusted with more details if a higher accuracy 

level is required. 

 2.4.1.6 Attribute values in cells 

Fig. 8 shows the geographic areas which are covered in the slow fire and the 

extremely fast fire scenarios as an example. Geographic information is gathered from 

Google Maps (Google, 2018). Population and property values for each cell are shown in 

Fig. 9. The value in the first row of each cell represents the number of residents in 

specific cell, and the value in the second row of each cell represents the land values of a 

specific cell. Population densities and property values are estimated based on the cell size 

and publicly available information such as census data and median housing values. 

Population densities and property values of wildlands are collected from the result of the 

census (U.S. Department of Commerce, 2018) and Zillow (Zillow, 2018). 
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Table 8 

Capacities of Engine Resource in Fire Station 

station 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

# of engine 3 1 2 1 3 2 2 2 1 2 1 2 1 2 0 

Table 9 

Additional Resource Availability 

t 

Local resources Non-local resources 

Local 

additional 

engine crew 

Local 

additional 

hand crew 

personnel 

Neighbor 

CAL FIRE 

station engine 

Neighbor 

Department 

station engine 

In-state 

Additional 

hand crew 

personnel 

In-state 

Additional 

engine 

Out-of-state 

Additional 

hand crew 

Out-of-state 

Additional 

engine 

1   8      

2  61  70     

3     1783 229   

4     4300  9999 9999 
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(a) 

 

(b) 

Fig. 8. Geographic areas expressed by cells (a) the fire spread 4 chains per hour and cell 

size is 24 chains (b) the fire spread 36 chains per hour and cell size is 216 chains. 
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(a) 

 

(b) 

Fig. 9. Population and property values (million) in each cell (a) slow fire scenario, low 

population density (b) extremely fast fire scenario, high population density. 
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Varying evacuation percentages are assumed for different fire scenarios. Evacuation 

percentages for each cell are assumed as 82%, 86%, 90%, 94% for slow speed fire, 

medium speed fire, high-speed fire, extremely high-speed fire respectively based on 

Paveglio, Prato, Dalenberg, and Venn’s study (Paveglio, Prato, Dalenberg, & Venn, 2014). 

These estimates may be affected by the average population age in each cell and some 

other factors however no stratified data are currently available. 

 2.4.1.7 Ignition point and cell initialization 

Historical data of fire locations from CAL FIRE show that some of the locations 

always have a higher fire risk. For example, the October 2017 Tubbs Fire happened at the 

same place as the September 1964 C. Hanley Fire, and the two fires also had very similar 

sizes. Therefore, an assumption can be made that the fires in different scenarios all start 

from a specific point. However, when there is more than one ignition point, the only 

differences in this model are scenarios and initial cell conditions, which are easy to 

achieve by adjusting related parameters. In this case study, it is assumed that a single fire 

in the center of an area with 64 cells, i.e., the junction of cell 27, 28, 35, 36, starts at the 

beginning of the first period. However, this model could also be used for cases with 

multiple fires initiating at different locations at different time points by adjusting to the 

parameters related to initial high-risk cells. 

2.4.2 Optimal solution 

The model is solved by Gurobi Optimizer 7.5.1 with Anaconda Python 3.6 interface 

on a Dell XPS 13 – 9350 machine with Intel Core 6th Generation i5-6200U Processor,  
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8GB RAM (Gurobi Optimization, 2018). The formulation in this case study included 

2,396,265 decision variables and 2,674,739 constraints. 

 2.4.2.1 Single objective models 

The optimal solution to this case can be found easily when only one objective is 

considered. In this case, there are two single-objective models if either number of 

residents in danger or total cost is set as objective function. The optimal solution to a 

single-objective model of minimizing residents at risk is found as 1408. The optimal 

solution to a single-objective model of minimizing total cost and property loss is found as 

$88,129,615. 

Fig. 10 shows how different objective functions affect fire spread process in selected 

scenario 𝜔24. Note that Fig. 10 shows only the partial areas of 64 cells that are involved 

in selected periods. 

Since the objective function of minimizing residents at risk is affected by number of 

residents in high-risk cells, in period 2, decision is made that available resources are sent 

to cell 46, 51, 52, and 53. In this situation, resources in period 2 are not enough to contain 

the fire, and cell 54 has the lowest population comparing to the other high-risk cells. As a 

result, resources are not sent to cell 54. However, the objective function of minimizing 

total cost and property loss is affected by land value and allocation cost; thus, in period 2, 

decision is made that available resources are sent to cell 46, 51, 53, and 54. In this 

situation, cell 52 has the lowest land value comparing to the other high-risk cells, and 

resources are not sent to cell 52.
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 Optimal Obj1   Optimal Obj2   

t=0 

27 28 29 30 31  27 28 29 30 31   Burnt cell 

35 36 37 38 39  35 36 37 38 39   Treated cell 

43 44 45 46 47  43 44 45 46 47   High-risk cell 

51 52 53 54 55  51 52 53 54 55  

 59 60 61 62 63  59 60 61 62 63 
Obj1: Minimizing residents 

at risk. 
            

t=1 

27 28 29 30 31  27 28 29 30 31 

35 36 37 38 39  35 36 37 38 39 

Obj2: Minimizing total cost 

and property loss 
43 44 45 46 47  43 44 45 46 47 

51 52 53 54 55  51 52 53 54 55 

 59 60 61 62 63  59 60 61 62 63  

             

t=2 

27 28 29 30 31  27 28 29 30 31  

35 36 37 38 39  35 36 37 38 39  

43 44 45 46 47  43 44 45 46 47  

51 52 53 54 55  51 52 53 54 55  

 59 60 61 62 63  59 60 61 62 63  

             

t=3 

27 28 29 30 31  27 28 29 30 31  

35 36 37 38 39  35 36 37 38 39  

43 44 45 46 47  43 44 45 46 47  

51 52 53 54 55  51 52 53 54 55  

 59 60 61 62 63  59 60 61 62 63  

Fig. 10. Fire spread process comparison of different single-objective models in ω24. 

Table 10 shows the different first stage decisions in the optimal solutions of the two 

single-objective models separately. The single-objective model of minimizing residents at 

risk only considers the total number of residents in high-risk cells, and the first stage 
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decisions reflect the unimportance of cost. In this condition, additional on-duty resources 

are hired as many as possible to deal with any potential extreme cases of residents at risk 

in scenarios. The single-objective model of minimizing total cost and property loss only 

considers the expenses. In this condition, the first stage decisions show the importance of 

hiring cost. Thus, less additional on-duty resources are hired to save expenses compared 

to the other single-objective model. 

Table 10 

First Stage Decision Comparison of Single-Objective Models 

 
Obj1: 

Minimizing residents at risk 

Obj2: 

Minimizing total cost and 

property loss 

First stage decision 

𝑠𝑘0𝑖4 = 2 

𝑠𝑘2𝑖3 = 1 

𝑠𝑘4𝑖3 = 2 

𝑠𝑘5𝑖4 = 1 

𝑠𝑘6𝑖4 = 1 

𝑠𝑘7𝑖3 = 1 

𝑠𝑘11𝑖4 = 1 

𝑠𝑘13𝑖3 = 1 

𝑠𝑘0𝑖3 = 2 

𝑠𝑘2𝑖4 = 1 

𝑠𝑘6𝑖4 = 1 

𝑠𝑘7𝑖4 = 1 

𝑠𝑘9𝑖3 = 1 

𝑠𝑘11𝑖3 = 1 

𝑠𝑘13𝑖3 = 1 

 2.4.2.2 Two-objective model 

When both objective functions are considered, the optimal solution to this case study 

is found using the goal programming technique. The goal values for each objective 

function are determined by two single objective models. Then the goals for the first 

objective function and the second objective function can be set as 1408 and $88,129,615 

respectively. In this case, priority is set as 0.9 for the first objective function and 0.1 for 

the second objective function after the normalization of both objective functions, since 

residents’ safety always has a higher priority than properties in real life. 
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Table 11 and Fig. 11 show the solution to the model which considering both 

objective functions. Within the 32 scenarios with varying wind directions and fire speed, 

there are only two extreme fire speed scenarios, scenarios 0 which has a fire spread speed 

of 4 chains per hour in northwest wind and scenario 24 which has a fire spread speed of 

36 chains per hour in northwest wind, are shown in Table 11 and Fig. 11. 

Resource preparation and allocation results of this case are shown in Table 11. The 

fire in this case study involves high population density areas in several scenarios which 

have a high loss potential. Thus, initial decisions are found to be set up of more on-duty 

firefighters in stations which have enough capacity. 4-person engine groups need to be 

hired in Stations 0, 6, 9, 11, 13 and 5-person engine groups need to be hired in Stations 2, 

7, and 13. 

The second stage decisions include resource allocation plans after a fire breaks out 

with specific direction and speed. In scenario 0 with slow fire spread rate, the fire is 

found to be fully contained with three local on-duty resources which are allocated in 

period 0. In scenario 24 with rapid-fire, all the local on-duty resources need to be sent to 

cell 28 in period 0 due to the higher population density and land value. However, these 

local on-duty resources are found to be not enough to cover all high-risk cells. During 

period 1, period 2 and period 3, the fire keeps expanding, and more local resources and 

non-local resources need to be assigned to high-risk areas. In period 3, the fire is found to 

be under control with the efforts of both local and nonlocal resources. 
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Table 11 

Resource Preparation and Allocation Results in Two Selected Scenarios 

First stage decision 

𝑠𝑘0𝑖3 = 2 

𝑠𝑘2𝑖4 = 1 

𝑠𝑘6𝑖3 = 1 

𝑠𝑘7𝑖4 = 1 

𝑠𝑘9𝑖3 = 1 

𝑠𝑘11𝑖3 = 1 

𝑠𝑘13𝑖4 = 1 

Second stage 

decision of 

scenario 0 

(Northwest wind 

lead to 4 chains per 

hour fire spread 

speed) 

t0 t1 t2 t3 

𝑥𝑘2𝑖2𝛼36𝑡0
𝜔0 = 1 

𝑥𝑘2𝑖4𝛼28𝑡0
𝜔0 = 1 

𝑥𝑘7𝑖4𝛼35𝑡0
𝜔0 = 1 

   

Second stage 

decision of 

scenario 24 

(Northwest wind 

lead to 36 chains 

per hour fire spread 

speed) 

t0 t1 t2 t3 

𝑥𝑘0𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘0𝑖3𝛼28𝑡0
𝜔24 = 2 

𝑥𝑘1𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘2𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘2𝑖4𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘3𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘4𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘5𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘6𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘6𝑖3𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘7𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘7𝑖4𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘8𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘9𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘9𝑖3𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘10𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘11𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘11𝑖3𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘12𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘13𝑖2𝛼28𝑡0
𝜔24 = 1 

𝑥𝑘13𝑖4𝛼28𝑡0
𝜔24 = 1 

𝑦𝑘4𝑖4𝛼37𝑡1
𝜔24 = 1 

𝑦𝑘5𝑖4𝛼37𝑡1
𝜔24 = 1 

𝑦𝑘14𝑖5𝛼37𝑡1
𝜔24 = 8 

𝑧𝑙0𝑖4𝛼37𝑡1
𝜔24 = 8 

𝑦𝑘4𝑖3𝛼52𝑡2
𝜔24 = 1 

𝑧𝑙1𝑖4𝛼46𝑡2
𝜔24 = 15 

𝑧𝑙1𝑖4𝛼51𝑡2
𝜔24 = 15 

𝑧𝑙1𝑖4𝛼52𝑡2
𝜔24 = 14 

𝑧𝑙1𝑖4𝛼53𝑡2
𝜔24 = 15 

𝑧𝑙1𝑖4𝛼55𝑡3
𝜔24 = 11 

𝑧𝑙2𝑖5𝛼55𝑡3
𝜔24 = 3 

𝑧𝑙2𝑖5𝛼62𝑡3
𝜔24 = 6 

𝑧𝑙2𝑖5𝛼63𝑡3
𝜔24 = 6 

𝑧𝑙2𝑖6𝛼55𝑡3
𝜔24 = 1 

𝑧𝑙2𝑖6𝛼62𝑡3
𝜔24 = 6 

𝑧𝑙2𝑖6𝛼63𝑡3
𝜔24 = 6 

The result of 

objective functions 

𝑂𝑏𝑗1 = 1408 (Number of residents at risk) 

𝑂𝑏𝑗2 = $9.02805 × 107 (Total cost of preparation and fire 

containment plus property losses) 
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 𝜔0   𝜔24   

t=0 

27 28 29 30 31  27 28 29 30 31   Burnt cell 

35 36 37 38 39  35 36 37 38 39   Treated cell 

43 44 45 46 47  43 44 45 46 47   High-risk cell 

51 52 53 54 55  51 52 53 54 55  

 59 60 61 62 63  59 60 61 62 63 𝜔0: Scenario in northwest 

wind, fire spread speed is 4 

chains per hour, cell size is 24 

chains. 

            

t=1 

27 28 29 30 31  27 28 29 30 31 

35 36 37 38 39  35 36 37 38 39 𝜔24: Scenario in northwest 

wind, fire spread speed is 36 

chains per hour, cell size is 

216 chains. 

43 44 45 46 47  43 44 45 46 47 

51 52 53 54 55  51 52 53 54 55 

 59 60 61 62 63  59 60 61 62 63  

             

t=2 

27 28 29 30 31  27 28 29 30 31  

35 36 37 38 39  35 36 37 38 39  

43 44 45 46 47  43 44 45 46 47  

51 52 53 54 55  51 52 53 54 55  

 59 60 61 62 63  59 60 61 62 63  

             

t=3 27 28 29 30 31  27 28 29 30 31  

 35 36 37 38 39  35 36 37 38 39  

 43 44 45 46 47  43 44 45 46 47  

 51 52 53 54 55  51 52 53 54 55  

 59 60 61 62 63  59 60 61 62 63  

Fig. 11. Cell conditions in two selected scenarios. 

Results of cell conditions are shown in Fig. 11. Fig. 11 shows only the partial areas 

of 64 cells that are involved in these two fire spread scenarios. In scenario 0, the weak 
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wind coming from the northwest direction leads to slow fire spreading to the southeast 

direction, and the cell size is 24 chains. Then, initial high-risk cells are determined as 

cells 28, 35, and 36. On-duty resources are selected and sent to these three cells, and no 

more resources are needed to contain the fire. In scenario 24, the extreme wind coming 

from the northwest direction leads to fast fire spreading to southeast direction, and initial 

high-risk cells are determined as 28, 35 and 36. However, compared with the one in 

scenario 0, size of each cell is much larger, which is 216 chains due to “one cell per 

period” principle explained before. In period 0, on-duty resources are found to be 

insufficient for full containment, and they are sent to cell 28 which has the highest 

number of residents and the highest land value. In period 1, cell 35 and cell 36 have been 

burnt, and new high-risk cells are determined. Like period 0, available resources are sent 

to the most urgent cell, which is cell 37. By period 3, all the utilized resources are found 

to be sufficient to treat all the high-risk cells due to the arrival of a large number of 

nonlocal resources. 

The optimal solution for this case study is achieved when 𝑂𝑏𝑗1 = 1408 and 

𝑂𝑏𝑗2 = $90.2785 million. The optimal solution shows that the first objective function 

has fully achieved its goal. 

To check the Pareto efficiency of this solution, an integer goal programming Pareto 

efficiency detection technique developed by Tamiz, Mirrazavi, and Jones is applied 

(Tamiz, Mirrazavi, & Jones, 1998). Based on their work, the new achievement function is 

considered as equation (37): 

max {𝑃1
𝑑1

−

𝑁1
+ 𝑃2

𝑑2
−

𝑁2
}               (37) 
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The new model is infeasible, i.e. no points can be found for this new achievement 

function, which proves that no other solution dominating the current optimal solution can 

be found in the original feasible region. Thus, the solution obtained above is Pareto 

efficient. 

2.4.3 Computational experiments 

In this section, sensitivity analysis results by changing 𝑃1, 𝑃2, 𝐺1, 𝐺2 are 

presented. In these computational experiments, objective functions have been normalized 

in order to evaluate the impact of 𝑃1 and 𝑃2. 𝑃1 and 𝑃2 are chosen between 0 and 1 to 

show the importance percentages of both objective functions. Optimal objective function 

values of the individual problems with single objectives are the best values that the model 

can achieve. Thus, goal values are initially set to individual objective function values to 

tighten the goal. Then, goal values are increased to relax the goals. When importance 

factors are fixed and goal values are varied, the results show its sensitivity to goal values. 

When goal values are fixed and importance factors are varied, the results show its 

sensitivity to importance factors. 

2.4.3.1 Experiments with varied priorities  

Table 12 shows the experiments results with 𝐺1 =  1408, 𝐺2 =  $88.13 million. 

These experiments have the same goal value while the priority factors are varied. In this 

set of experiments, as the first objective function becomes less important, its solution 

becomes worse while the second objective function’s solution keep improving until the 

goal value $88.13 million is fully achieved. 
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Table 12 

Computational Experiments Result with 𝐺1 = 1408 and 𝐺2 = 88.13𝑀 

No. 𝑃1 𝑃2 𝑂𝑏𝑗1 𝑂𝑏𝑗2($) Dev1 Dev2 ($) Time(s) 

1 0.999 0.001 1408 93.11M 0 4.98M 154 

2 0.99 0.01 1408 90.29M 0 2.16M 114 

3 0.9 0.1 1408 90.28M 0 2.15M 123 

4 0.5 0.5 1411 88.96M 3 0.83M 176 

5 0.1 0.9 1444 88.13M 36 0 147 

6 0.01 0.99 1444 88.13M 36 0 135 

7 0.001 0.999 1444 88.13M 36 0 131 

2.4.3.2 Experiments with varied goal values 

Table 13 shows the experiments results with 𝑃1 = 0.9, 𝑃2 = 0.1. These experiments 

have the same priority factors while goal values varied. In this set of experiments, the 

first objective function that minimizing at-risk residents is fully achieved when the first 

goal value is set as the value of 1408, which is the optimal solution to the single objective 

model of minimizing residents at risk. Similarly, the second objective function that 

minimizing total cost is closer to the goal or fully achieved when the second goal value is 

set as the value of $88.13 million, which is the optimal solution to the single objective 

model of minimizing total cost. When either of objective functions is relaxed by related 

high goal value, the solution to that corresponding objective function will become worse. 

When both objective functions are relaxed by very high goal values, solutions to both 

objective functions are much worse than other experiments in this set. 
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Table 13 

Computational Experiments Result with 𝑃1 = 0.9 and 𝑃2 = 0.1 

No. 𝐺1 𝐺2 𝑂𝑏𝑗1 𝑂𝑏𝑗2($) Dev1 Dev2 ($) Time(s) 

1 1408 88.13M 1408 90.28M 0 2.15M 123 

2 1408 100M 1408 95.49M 0 -4.51M 109 

3 1408 150M 1408 95.50M 0 -54.50M 111 

4 1500 88.13M 1444 88.13M -56 0 137 

5 1500 100M 1437 99.77M -63 -0.23M 91 

6 1500 150M 1482 126.25M -18 -23.75M 85 

7 2000 88.13M 1444 88.13M -556 0 130 

8 2000 100M 1499 99.53M -501 -0.47M 89 

9 2000 150M 1553 130.73M -447 -19.27M 86 

2.4.3.3 Experiment results analysis 

From the computational experiments, it is seen that both priorities and goal values 

affect results. When one of the objective functions becomes more critical, the one with 

higher priority tends to achieve the optimal value while the other one moves towards a 

worse solution. When one of the goal values is relaxed (increased), the optimal solution 

produces a worse (increased) value for the related objective function. 
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CHAPTER 3 

CONCLUSION 

3.1 Thesis Contribution 

This thesis presents a new integer stochastic goal programming model to solve the 

resident evacuation and resource allocation problem for wildfire preparedness and 

response. The proposed model in this thesis minimizes both the number of residents at 

risk and total cost of fire containment and property loss. A new approach is explored in 

this thesis to keep the number of variables constant by increasing the size of grids for the 

scenarios which have higher fire spread speed. Results show that this stochastic goal 

programming model can produce efficient solutions to highly comprehensive realistic 

WUI wildfire problems with considerations on all possible fire scenarios. In each 

scenario, the fire spread process is influenced by human response actions along with the 

wind speed. Computational experiments with different priority settings indicate that it is 

possible to find efficient solutions by considering a trade-off between the two objective 

functions. 

Goal programming is used to solve this multi-objective problem. A disadvantage of 

goal programming methodology is that the decision maker must make assumptions to 

goals and their priorities, which are difficult to determine. However, it is a relatively 

simple method in that only a few additional variables are required to solve 

multi-objective problems. The impact of the priority parameters on the optimal solution 

can be investigated with computational experiments. For complex real-world problems  
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such as WUI wildfire preparedness and containment, goal programming ensures that a 

solution can be found in a short time and it is easy to understand. 

3.2 Limitation and Future Direction 

In the practical application of this model, the effectiveness of the produced solution 

is highly related to the accuracy of the collected data. However, in large-scale real-life 

problems, data cannot be simply collected from published resources. For example, land 

values and residents in each cell are key parameters for resource allocation decisions, 

while these values are gathered from published data in this model assuming a uniform 

distribution within a cell. A more accurate data acquisition and conversion module is 

needed to be developed to apply this fire containment model. 

An important assumption in this model is that wind speed and direction do not 

change once a fire breaks out, which is a reasonable assumption for most of the relatively 

stable situations where fires are contained within a few hours or at most in the first few 

days, following the assumption of predictable seasonal wind behavior in a known 

topology. But in some exceptional cases, the wind may suddenly change before 

containment or fire suppression lasts for several weeks, so that fire spread direction may 

change after periods. In those cases, the problem presented here becomes a three-stage, 

four-stage or even ten-stage stochastic programming problem. Then the problem 

formulation needs to be extended to reflect changing scenarios. However, when dealing 

with real problems, wind conditions and the fire spread direction usually behave with 

much more complexity than the assumptions in this model. The model in this thesis can 

provide solutions in a system level by following the assumed basic rules. More detailed 



52 

 

plans can be available by combining this model with a precise wind prediction model or 

fire behavior prediction model. 

Another assumption in this model is that once resource allocation decisions are made, 

all the allocated resources stay in a specific area until the fire is fully contained. If 

firefighting resources can decide that the fire will not spread in their current area and the 

fire keep spreading in other areas, they may be reallocated. 

Fuel management focusing on specific high-risk areas to reduce fire risk and 

magnitude is also a critical part of wildfire preparation. Thus, a more detailed model 

which considers both fuel management and fire suppression could be developed in the 

future. Furthermore, the model presented in this thesis has the limiting assumption of 

homogenous geographical structure in each cell, which can only provide a framework for 

more realistic applications with heterogeneous geographic areas. More realistic models 

could be developed, incorporating a mathematical model with a geographic information 

system software. 

In addition, disaster response including wildfire containment is a problem with high 

complexity. Resource allocation and resident evacuation are also greatly influenced by 

traffic conditions and timing of the fire. Effects of a WUI wildfire are usually large 

besides threat to life, wildlife and property in the fire area. Smoke and its effects on 

residents’ and wild animals’ health also should be considered. 
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