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ABSTRACT

EFFECT OF NEIGHBORHOOD APPROXIMATION ON DOWNSTREAM
ANALYTICS

by Saranya Soundar Rajan

Nearest neighbor search algorithms have been successful in finding practically useful

solutions to computationally difficult problems. In the nearest neighbor search problem,

the brute force approach is often more efficient than other algorithms for

high-dimensional spaces. A special case exists for objects represented as sparse vectors,

where algorithms take advantage of the fact that an object has a zero value for most

features. In general, since exact nearest neighbor search methods suffer from the “curse of

dimensionality,” many practitioners use approximate nearest neighbor search algorithms

when faced with high dimensionality or large datasets. To a reasonable degree, it is known

that relying on approximate nearest neighbors leads to some error in the solutions to the

underlying data mining problems the neighbors are used to solve. However, no one has

attempted to quantify this error or provide practitioners with guidance in choosing

appropriate search methods for their task. In this thesis, we conduct several experiments

on recommender systems with a goal to find the degree to which approximate nearest

neighbor algorithms are subject to these types of error propagation problems.

Additionally, we provide persuasive evidence on the trade-off between search

performance and analytics effectiveness. Our experimental evaluation demonstrates that a

state-of-the-art approximate nearest neighbor search method (L2KNNGApprox) is not an

effective solution in most cases. When tuned to achieve high search recall (80% or

higher), it provides a fairly competitive recommendation performance compared to an

efficient exact search method but offers no advantage in terms of efficiency (0.1x—1.5x

speedup). Low search recall (<60%) leads to poor recommendation performance. Finally,

medium recall values (60%—80%) lead to reasonable recommendation performance but

are hard to achieve and offer only a modest gain in efficiency (1.5x—2.3x).
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1 INTRODUCTION

With increasing business competition, companies such as Amazon and Google strive

to provide value to customers by trying to understand individual user behavior in order to

recommend useful products to customers. The most important challenge that online

recommendation systems face is to generate a list of top−N recommendations for an

individual user by predicting what the user will like based on his or her similarity to the

other users in the system. The more similar the considered neighbors are to the user, the

better the recommendation tends to be. Usually, recommendation systems are applied on

sparse high-dimensional data, where some items have few ratings, or some users have

rated few items.

Nearest neighbor search is a well-known method that is used to identify points in a

given set that are closest (or most similar) to a given point. It is commonly believed that

the exact nearest neighbor search is very expensive in high-dimensional data. Although

finding exact neighbors is efficient for low-dimensional data, the increase of

dimensionality results in the increased time taken to calculate similarities, and poor

overall performance. This led to the development of approximate nearest neighbor (ANN)

algorithms that aim to speed up the process by returning some, but not necessarily all, of

the true nearest neighbors. Some methods (e.g., FLANN [1], Annoy [2]) were able to

show that finding approximate neighbors saves a notable amount of computation time

compared to the exact nearest neighbor search approaches. However, less computation

time does not really guarantee the quality of the overall analytics results.

In this thesis, a comprehensive set of experiments is conducted to investigate how the

approximation error of the search method affects results in the recommendation domain.

We consider several state-of-the-art recommender system algorithms, and omit others that

have been dominated by them. Our research aims to provide persuasive evidence on the
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trade-off between search performance and analytics effectiveness for the recommendation

problem.

The research contributions of this work are:

∙ We conduct a comprehensive experimental evaluation of nearest neighbor methods to

understand the trade-off between exact approximate-based methods in an analytics

pipeline.

∙ Our experimental results show the correlation between the approximation error and

search effectiveness and efficiency, as well as the quality of the pipeline end-point

analytics.

∙ Based on the analysis, we provide needed practitioner guidance in choosing

parameters for appropriate search methods as part of these pipelines.

This thesis does not attempt to improve any algorithm. Rather, the research question

of this thesis is:

In using approximate nearest neighbor methods as part of a recommendation pipeline,

what is the trade-off between the search performance and the effectiveness of the

recommendation engine?
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2 LITERATURE REVIEW

The popularity of e-commerce has been quickly growing in recent years. With the

continuous development of e-commerce platforms, information retrieval has become

necessary for e-commerce sites. Companies make suggestions on their websites to help

customers find new and relevant products. One of the major problems companies face is

improving the techniques used to find appropriate and relevant items for the customers.

Several methods have been developed to find good recommendations. Some of the

algorithms use nearest neighbor search methods to calculate similarities between users or

items, which are later used to predict recommendations for a particular user.

2.1 Nearest Neighbor Search

Finding nearest neighbors for a set of objects is a common task in many fields, such

as online advertising, recommender systems, image recognition, computer vision, etc. The

problem of finding nearest neighbors is called nearest neighbor search (NNS). It is

defined as follows: given a collection of n objects and an arbitrary query object, build a

data structure which reports the data set object that is most similar to the query. The

problem can be formulated as

X* = argmin
X∈D

ρ(X ,Q), (1)

where D = {X1, ...,Xn} ⊂ Rd is a data set, Q is a query, and ρ is a distance measure.

Nearest neighbor search methods can be divided into exact and approximate algorithms.

2.1.1 Exact Neighbor Search

Exact nearest neighbor search algorithms return the true nearest neighbors of any

given query point. One of the earliest data structures that supports finding exact nearest

neighbors is the KD-Tree (k-dimensional tree) [3]. It is a binary tree in which every leaf

node is a k-dimensional point. KD-Tree works well for finding nearest neighbors in
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low-dimensional spaces. When the number of dimensions increases, its performance

degrades as query time increases exponentially. Considerable progress has been made on

scaling exact nearest neighbor search to high dimensions. For example, the cover tree data

structure [4] can remove the exponential dependence completely. Cover trees were

designed to work with high-dimensional data that have low intrinsic dimensionality.

Despite much research on exact neighbor search, for higher values of dimensions almost

all of the known techniques are affected with the curse of dimensionality. For objects

represented in sparse vectors, there have been some methods developed to address the

sparsity issue, e.g., Greedy Filtering [5] and L2KNNG [6].

Many methods have been proposed to reduce computation time by finding only some

of the nearest neighbors. The complexity of the exact nearest neighbor search led

researchers to construct data structures for the approximate nearest neighbor search

problem as a way to avoid the curse of dimensionality [7], [8].

In an analytics pipeline, it is important to choose the algorithm that works best for

each type of problem. When choosing an NNS algorithm, we must consider various

factors such as search time complexity, search quality, data set dimensionality, number of

samples, parameter settings, and the effort required for tuning method parameters.

Unfortunately, none of the prior studies evaluate these measures completely and

thoroughly. Gionis et al. [9] assume that in many cases it is not necessary to insist on

exact neighbors. Rather, approximate nearest neighbors would suffice. They vaguely

address the details of why ANN results are good enough. In general, there are

discrepancies in experimental results reported on approximate nearest neighbors as each

library takes a different approach and has different weak points and different results [10].

2.1.2 Approximate Nearest Neighbor Search

In c-approximate nearest neighbor search, instead of returning all of the closest points

from the query point, the algorithm returns any point p within a radius c from the query q
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with some probability. Unlike exact nearest neighbor methods, ANN do not return all of

the correct neighbors, potentially missing some of the closest neighbors. The main

interest of the approximate nearest neighbor search is the trade-off between query time

and accuracy. It can be measured either in terms of the probability of finding the true

nearest neighbors (recall) or distance ratios.

There are mainly four types of ANN methods:

1) Tree-based (hierarchical structure) methods, such as those using the randomized

KD-tree or the K-means tree.

2) Hashing-based methods, such as locality sensitive hashing (LSH).

3) Graph-based methods.

4) Permutation-based methods.

Tree-based methods perform very well when the dimensionality of the data is

relatively low. They often employ space-partitioning techniques to group samples that are

in close proximity to each other. However, their storage utilization increases and search

performance decreases as the number of dimensions grows, making these methods

ill-suited for searching high-dimensional data sets.

LSH was introduced by Indyk and Motwani [8]. As the name suggests, LSH uses

hash functions to produce similar hashes for items that are close to each other. Before the

search, as a pre-processing step, for each data point the method uses several hash

functions to form a new identifier, called a signature. These hash functions reduce the

dimensionality of the data based on random projections. The data are then divided into

uniform bins. If there is a large number of bins, a second hashing step may be performed

to obtain a smaller signature. At a similarity search time, the algorithm returns candidates

by first hashing the query point using hash functions and then finding the close data

points in the same bin. Through linear search, the final nearest neighbors are selected

from the candidate data points, which is a much smaller subset of objects than the full
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data set. Given a proper choice of hash functions, LSH is not susceptible to the curse of

dimensionality and works well with larger data sets [11].

Graph-based methods have drawn considerable attention in recent years. Some of the

popular graph-based methods are NN-Descent [12], K-Graph [13], and GNNS [14]. Their

main idea is that a neighbor of a neighbor may also be a neighbor. These methods find

candidate neighbors of a query point using random selection, and then iteratively check

the neighbors of these candidate neighbors for closer points. While they offer high search

efficiency, graph-based methods tend to have high computation times for building the

k-nearest neighbor graph data structure when the data set is large.

Permutation-based methods were first introduced by Chavez et al. [15] and Amato et

al. [16]. These methods use a dimensionality-reduction technique, in which each data

point is represented by a ranked list of vectors, called permutations, which are then sorted

based on the increasing distance to find nearest neighbor candidates [17], [18]. Amato et

al. [16] proposed to index permutations using an inverted file, called MI-File. Tellez et

al. [19] proposed a modification of the MI-File, called the neighborhood approximation

index (NAPP). These methods do not rely on metric properties of the distance and can

thus be applied to non-metric spaces.

A number of open-source packages have been developed in recent years for the

nearest neighbor search task. The fast look-up of cosine and other nearest neighbors

(FALCONN) method is based on an LSH variant by Andoni et al. [20]. The fast library

for approximate nearest neighbors (FLANN) [21] package provides access to a collection

of approximate nearest neighbor search algorithms. It automatically chooses the best of

the available algorithms depending on the characteristics of the data set. Annoy [2] was

built by Erik Bernhardsson to use at Spotify for music recommendations. The library

recursively builds a neighborhood tree, given a set of points, which can be used at search
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time to quickly identify a subset of search candidates. It can be used for both user and

item similarity search and have the ability to use static files as indexes.

2.2 Implications of Approximate Nearest Neighbor Methods

Good performance of approximate nearest neighbor methods has been demonstrated

when data lie in a low-dimensional latent space. However, ANN algorithms provide no

guarantees about their performance in many common uses of nearest neighbor search.

The methods permit returning an arbitrary sample that satisfies the approximation

condition. As such, ANN algorithms may be useful when the query point has a

sufficiently large number of neighbors that satisfy the approximation condition. Then, the

approximation algorithm is free to choose an arbitrary approximate nearest neighbor.

However, when these conditions are not met, ANN methods will return unrelated far away

objects that lead to low recall and may hurt further analytics performance.

An ANN algorithm provides no useful guarantees about its behavior or usefulness

when it is utilized for the purposes that nearest neighbor algorithms are usually used. The

algorithm fails to provide helpful predictions about its performance or any useful

suggestion asymptotically (i.e., as the dimension grows) on any practical problem

instance. Whether the proposed algorithms are useful depends on other properties, such as

the density of neighbors or the minimum quality of a useful neighbor, which cannot easily

be controlled by the ANN method. In some cases, ANN methods may return high enough

quality results. However, the research community has failed to demonstrate that such

algorithms have an advantage in these cases compared to traditional exact nearest

neighbor methods, when considering the efficiency and effectiveness of the overall

analysis.
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3 RECOMMENDER SYSTEMS

Top-N recommender systems play an important role in e-commerce applications by

providing personalized recommendations and content to users based on past purchase

history and user feedback. The main objectives of top−N recommender system are the

accuracy of identifying the products or items a user will likely prefer, and the efficiency

of the recommendation. Recommendation methods are classified into content-based

filtering and collaborative filtering, which we will discuss in detail in the next section.

Content-based filtering, also referred to as cognitive filtering, recommends items to users

based on the similarities between the items and items which a user has previously rated.

3.1 Collaborative Filtering

Collaborative filtering (CF) techniques are part of the most popular and widely used

real-world recommender systems. In CF, for each user, recommender systems recommend

items based on how other similar users liked the item. Conceptually, they collect the past

behavior of users and make rating predictions based on the similarity between user

behavior patterns. The user’s behavior is used to infer hidden user preferences and is

usually represented by explicit (e.g., user ratings) and implicit user actions (e.g., clicks

and query logs). Breese et al. [22] categorize CF systems into two subgroups,

memory-based and model-based methods.

3.1.1 Memory-Based Methods

Memory-based methods operate by memorizing the rating matrix. They then

recommend items based on the correlation between the queried user and the rest of the

rating matrix. The memory-based CF methods are also called neighborhood-based

methods, which find nearest neighbors that have rating preferences similar to those that of

the target user or item. For example, if there are two users who have similar preferences

and one of them gives a good rating to a product, then the other user is more likely to like
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that product. The methods operate over the entire user database to predict the results. The

similarity is assessed by a cosine similarity-type measure, and unrated items are estimated

using a k-nearest neighbor regression estimate. Memory-based methods are further

classified into two categories, namely user-based k-nearest neighbor recommender

(UserKNN) and item-based k-nearest neighbor recommender (ItemKNN).

In UserKNN, for a certain user, the method first identifies a set of similar users and

then recommends top−N items based on what items those similar users have

purchased [23]. The user-based algorithms make predictions based on users’ rating

patterns similar to those of a target user u. Let U(u; i) be a set of users who rate item i

and have similar rating patterns as the target user u. Let wi j denote the similarity measure

between two items i and j. The predicted rating ˆrui is calculated as

ˆrui = bui +
∑v∈U(u;i)(rvi −bvi)wuv

∑v∈U(u;i)wuv
, (2)

where bvi is a rating bias for user v’s rating of item i and wuv is the similarity between two

users, u and v. Pearson’s correlation coefficient or cosine similarity are measures often

used to compute similarities between users in UserKNN methods.

Similarly, ItemKNN methods first identify a set of similar items for each of the items

that the user has purchased, and then recommend top−N items based on those similar

items [23]. The item-based algorithms predict the rating for target item i of user u based

on the rating patterns between items. Let I(i;u) be a set of items that have rating patterns

similar to that of i and have been rated by u. Let wi j denote the similarity between two

items i and j, and bui be a rating bias for user u’s rating of item i. The predicted rating ˆrui

is then calculated as

ˆrui = bui +
∑ j∈I(i;u)(ru j −bu j)wi j

∑ j∈I(i;u)wi j
. (3)
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Cosine-based similarity measures are commonly used to calculate the similarity between

items.

However, for the top−N recommendation task, predicting the exact rating values is

not necessary. Instead, it is more important to distinguish the importance of items that are

likely to be appealing to the target user. Toward this goal, items are ranked by ignoring

the denominator used for rating normalization. Since the denominator is non-negative and

constant across all compared users or items, the same order is maintained while reducing

the number of multiplications that must be performed to solve the problem. The predicted

score in the user-based algorithms is then computed as

ˆrui = bui + ∑
v∈U(u;i)

(rvi −bvi)wuv, (4)

and the predicted score in the item-based algorithms is computed as

ˆrui = bui + ∑
j∈I(i;u)

(ru j −bu j)wi j. (5)

3.1.2 Model-Based Methods

Model-based methods first build a model based on the given rating matrix, and then

recommend items to the users based on the fitted model. They build models by

discovering patterns in the training data and use these models to make predictions on

out-of-sample data. Model-based approaches, particularly latent factor models, have

achieved state-of-the-art performance on large-scale recommendation tasks. The key idea

of latent factor models is to factorize the user-item matrix into low-rank user and item

factors that represent user preferences and item characteristics in a common latent space.

The prediction for a user on an item can then be calculated as the dot product of the

corresponding user factor and item factor vectors.
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3.2 Matrix Factorization

Traditional CF models have been widely successful in quite a few fields. However,

they all face problems such as data sparsity, scalability, and cold start. To alleviate the

sparsity problem, many matrix factorization models have been developed in recent years

based on popular dimensionality reduction techniques, such as singular value

decomposition (SVD), principal component analysis (PCA), probabilistic matrix

factorization (PMF), and non-negative matrix factorization (NMF). Matrix factorization is

a powerful technique that is able to find hidden structure in the data. A key idea of SVD

is to factorize an m-by-n matrix R as the scaled inner product of two low-rank matrices

with dimension f , i.e., one low-rank m-by- f matrix called the user-factor matrix, and

another n-by- f matrix called the item-factor matrix. Each user u is thus associated with

an f -dimensional vector pu ∈ R f , and each item i is described by an f -dimensional

vector qi ∈ R f . In this case, the predicted rating ˆrui is calculated as

ˆrui = bui + puqT
i . (6)

Conventional SVD is not well-defined in the presence of missing ratings (i.e.,

unknown values). Some earlier works have addressed this issue by filling missing ratings

with a baseline estimation procedure [24]. However, this procedure has a drawback of

creating a large, dense user-rating matrix, whose factorization becomes computationally

not feasible. Recent works directly learn feature weights from known ratings through a

suitable objective function to minimize prediction error [25]. For a top−N

recommendation task, we are interested only in the ranking of the items and do not care

about accurate rating prediction. This grants us some flexibility. All missing ratings are

considered negative user feedback, and they are imputed as close to zero. This

modification can form a complete m-by-n matrix R, and the conventional SVD method
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can be applied to R,

ˆrui =U ∑V T , (7)

where U is an n-by- f orthonormal matrix, V is a m-by- f orthonormal matrix, and ∑ is an

f -by- f diagonal matrix.

3.3 Ranking Based Collaborative Filtering

For the top−N recommendation, it is important to consider the ranking of items.

Learning to rank (LTR) is a machine learning technique for training the model in a

ranking task. Models in the LTR paradigm can be grouped into three main categories,

point-wise, pairwise, and list-wise approaches. Differences between these categories are

due mainly to the form of the loss function and the type of training data used. Weimer et

al. [26] proposed a ranking technique called CoFiRank that uses maximum margin matrix

factorization to optimize the ranking of items. Liu et al. [27] developed EigenRank to

decide the ranking of items using neighborhood-based approaches.

Hu et al. [28] proposed a weighted matrix factorization (WRMF) method for implicit

feedback recommendation. WRMF includes all the unobserved user-item interactions as

negative samples and uses a case weight to reduce the impact of uncertain samples. The

algorithm scans through the entire data set for every iteration until convergence, which

may prove computationally very expensive for data sets with a large number of users. The

authors formulated a new square loss function that includes both preference and

confidence metrics, which are optimized using the alternating least squares (ALS) method

as follows,

min
y*y*

∑
u,i

cu,i(pu,i − xT
u yi)

2 +λ (∑
u
||x||2 +∑

i
||y||2), (8)

where xu and yi are user and item latent vectors, respectively, cu,i is a confidence metric,

and pu,i is a preference metric.
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Although the approach of Hu et al. reduces the impact of missing data by relying on

the confidence and preference metrics, it does not directly optimize its model parameters

for ranking. Instead, it optimizes the prediction of whether an item is selected by a user or

not. Rendle et al. [29] proposed a generic optimization framework called bayesian

personalized ranking (BPR) that uses pairs of items (i.e., the user-specific order of two

items) to discover personalized rankings for each user. It maximizes the likelihood of

pairwise preferences between observed and unobserved items in implicit data sets. The

objective function of BPR can be formulated as

∑
(u,i, j)∈DS

ln σ(x̂ui j)−λΘ ||Θ||2, (9)

where λΘ are model specific regularization parameters, σ(x) = 1
1+e−x is the sigmoid

function to convert the margin to a probability, and D denotes the set of pairwise training

examples,

D = {(u, i, j)|i ∈ R+
u ∧ j ̸∈ R+

u }, (10)

where R+
u denotes the set of items that u has interacted with before. In each step, it

randomly draws an observed interaction (u, i) and then selects an item j that u has not so

far interacted with to constitute (u, i, j). This process of selecting j is also known as

negative sampling. The optimization of BPR is usually done using stochastic gradient

descent (SGD) with a small batch size, which reduces the computational time

significantly.

Gantner et al. [30] extended BPR by generating negative items through random

sampling of the missing entries in the training set. Shi et al. [31] combined CF with LTR

methods to optimize the ranking of items. Futhermore, Shi et al. [32] combined rating and

ranking-oriented algorithms with a linear combination function, and Liu et al. [33]

extended probabilistic matrix factorization with list-wise preferences.
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Weston et al. [34] proposed a rank-based weighting scheme, called the weighted

approximate-rank pairwise loss (WARP), to penalize items at a lower rank. WARP

repeatedly samples negative items until it finds one that has a higher score. Then, the

number of sampling trials is used to estimate item ranks. WARP uses stochastic gradient

descent and is an approximate approach that can estimate the rank function efficiently. Its

main idea is to weigh pairwise violations depending on their position in the ranked list.

Let N be the number of items and Du be user u positive feedback. e can calculate users

preferences for each item j ∈ N. Then, the WARP loss function is defined as

LWARP( fu,Du) = ∑
i∈Du

Θ ranki( fu), (11)

where ranki( fu) is the margin-based rank of item i, i.e.,

ranki( fu) = ∑
j ̸∈Du

I( fu( j)≤ fu(i)), (12)

where I(·) is the indicator function. Furthermore, Θ(·) is a loss function which transforms

the predicted rank of an item into a loss value,

Θ(k) =
k

∑
t=1

αt ,α1 ≥ α2....≥ 0. (13)

Different settings of αt allow the loss function to optimize different objectives.

Minimizing Θ with αt =
1
N would optimize the N mean rank and minimizing Θ with

αt > αt +1 would assign higher importance to the top-ranked items. Additionally, Weston

et al. [35] proposed the K-order statistic (K-OS) loss, which generalizes WARP by taking

into account the set of positive examples during optimization, where K denotes the

number of positive samples considered. For a given user u, let o be the vector of indices

denoting the order of the positive examples in the ranked list. The K-OS loss function is
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defined as

LK−OS( fu,Du) =
1
Z

|Du|

∑
i=1

P
(

i
|Du|

)
Θ rankDuoi

( fu), (14)

where Z = ∑i P(
i

|Du|). K-OS degenerates to WARP when K = 1.

Ning et al. [36] proposed a novel sparse linear method that learns a coefficient matrix

of item similarity for top−N recommendation called SLIM. The basic idea in SLIM is

that the user’s preference over an item is modeled as the linear aggregation over the items

that the user purchased before. It generates top−N recommendations by aggregating user

ratings. The rating for an item i is predicted as a sparse aggregation of existing ratings

provided by the user,

r̂ui = rT
u si, (15)

where rT
u is the uth row of the rating matrix R of size m×n, and si is the sparse vector

containing non-zero aggregration coefficients over all items. The sparse n×n matrix S of

user ratings is learned by solving an L1 and L2 regularized optimization problem,

minimize
S

1
2 ||R−RS||2F + β

2 ||S||
2
F + λ ||S||1.

sub ject to S ≥ 0,
diag(S) = 0,

(16)

SLIM has shown to be effective, but it can only capture relations between items that are

co-purchased/co-rated. Cheng et al. [37] proposed LorSLIM, which uses the nuclear-norm

to ensure the low-rank structure of the coefficient matrix. Liu et al. [38] adopted boosted

regression trees to represent conditional user preferences in CF algorithms. AdaBPR [39]

introduces a boosting technique to improve on BPR loss. SLIM and these algorithms have

been found to outperform other methods, such as similarity or neighborhood-based

methods, and are thus currently considered to be the state-of-the-art.
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4 NEAREST NEIGHBOR SEARCH IN TOP-N RECOMMENDATION

The quality of recommendations produced by neighborhood-based methods depends

on various factors, such as algorithm mechanism, data set sparsity, available user data,

and the evaluation metric used. Hence, there has been much work focused on improving

the quality of neighborhood-based models. Existing work on scaling up nearest neighbor

approaches is partitioned into three categories, filtering-based approaches, approximate

methods for nearest neighbor identification, and sampling-based approaches [6]. While

learning their recommendation model, recommender systems often have to construct a

search for all users or items in the system, a task known as the k-nearest neighbor graph

construction.

4.1 K-Nearest Neighbor Graphs

K-nearest neighbor (k-NN) graphs are widely used in data mining and machine

learning to solve real-world problems in collaborative filtering, information retrieval, and

query search in web search engines, among others. A k-NN graph is a directed graph,

G = (D,E), where D is the set of nodes (i.e. data points) and E is the set of links. Node

di is connected to node d j if d j is one of the k-nearest neighbors of di. The choice of k is

crucial to achieve good performance in the analysis. A small k value makes the graph too

sparse or disconnected so that hill-climbing methods frequently get stuck in local minima.

Choosing a large k value gives more flexibility during the run time, but it consumes more

memory and makes offline graph construction more expensive.

4.2 K-NNG Construction Methods

Exact k-NN graph construction has been extensively studied in the literature. A

brute-force construction method has a time complexity of O(dn2), where n is the number

of objects and d is the dimensionality of each object vector. Several methods have been

proposed to avoid this time complexity. Parades et al. [40] proposed a more efficient
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algorithm to construct the exact k-NN graph that has an empirical time complexity of

O(n1.27) in low-dimensional data and O(n1.90) in high-dimensional data. In spite of

extensive research on this topic, the time complexity of graph construction methods

increases exponentially with an increase of dimensionality or linearly with increasing size

of data. Recent research has therefore focused more on approximate neighborhood graph

construction. Applying ANN search methods is one way of constructing an approximate

k-NN graph. In the construction of approximate k-NN graph, each data point is treated as

a query point, and the ANN search algorithm retrieves k-nearest neighbors for each query

point by performing a search.

A popular approach for ANN search has been LSH. However, the LSH method is

computationally expensive for achieving accurate approximation. Park et al. [5] developed

Greedy Filtering, an approximate filtering-based approach, which filters item pairs that do

not have any matching dimensions with large values. Malkov et al. [41] proposed a

greedy approximate k-NN graph construction method that organizes data into a navigable

small world graph structure suited for distributed approximate k-nearest neighbor search

in metric spaces. Dong et al. [12] proposed K-Graph, an approximate k-NN graph

construction method also called NN-Descent, which follows an iterative neighborhood

improvement strategy. It is based on the idea that similar objects are likely to be found

among the neighborhoods of objects in a query object’s neighborhood.

Anastasiu et al. [6] developed an exact and approximate k-NN graph construction

method called L2KNNG and L2KNNGApprox. L2KNNG solves the exact cosine

similarity k-NN graph construction problem efficiently by effectively ignoring

insignificant object pair comparisons. The L2KNNG algorithm adopts a two-phase

approach. The first step uses a fast method (L2KNNGApprox) to build an initial

approximate graph. The algorithm finds k similar objects for each object. These objects

may not necessarily be the true nearest neighbors. In the second step, the algorithm
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examines all the objects again and gradually updates each object by finding k most similar

objects until its true neighbors are found. Similar to the Greedy Filtering method by Park

et al. [5], L2KNNGApprox first builds a set of initial neighborhoods using a value-based

sorted inverted index to efficiently identify candidate objects with common high-value

features with the query; then, similar to the K-Graph method by Dong et al. [12], it

iteratively enhances the initial k-NN graph by looking for new candidates in each

neighbor’s neighborhood. Experiments have shown that L2KNNG and L2KNNGApprox

outperform alternatives in both approximate and exact nearest neighbor graph

construction [6]. As such, in this research, we chose L2KNNG and L2KNNGApprox as

the state-of-the-art methods we employed in our error propagation experiments.
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5 EXPERIMENTAL DESIGN

It is important that we choose a performant algorithm for any analytics problem. In

this section, we conduct experiments on different data sets to understand the performance

of current state-of-the-art recommender system algorithms. This allows us to compare

different methodological approaches for the recommendation task and also to point out

how ItemKNN using an exact k-NN graph construction method compares to

state-of-the-art recommender system methods.

5.1 Data Sets

We present numerical experiments to evaluate the performance of recommendation

methods on six different real data sets whose statistics are shown in Table 1. These data

sets provide snapshots of real users’ behavior and are widely used in the research

literature for benchmarking recommender system algorithms. Some data sets are very

sparse, with some of the users providing ratings for two items or less. In these cases, the

recommendations for these users will likely be less precise.

Table 1: Statistics of the Data Sets

Data set #Users #Items #Trns Rsize Csize Density
BX 3,586 7,602 84,981 23.70 11.18 0.31%
ML100K 943 1,682 100,000 106.04 59.45 6.30%
ML1M 6,040 3,706 1,000,209 165.60 269.89 4.47%
ML10M 69,878 10,677 10,000,054 143.11 936.60 1.34%
ML20M 138,493 26,744 20,000,263 144.41 747.84 0.54%
Netflix 336,914 17,770 51,937,015 154.16 2922.74 0.87%

In each data set, the “#Users,” “#Items” and “#Trns” columns are the number of users, number of items, and
the number of transactions, respectively. The “Rsize” and “Csize” columns are the average number of
ratings for each user and for each item (i.e., row and column density of the user-item matrix), respectively.
The “Density” column is the density of each data set (i.e., Density = #Trns/(#Users x #Items)).

Movielens: Movielens is one of the popular data sets that have been widely used for

offline experimental evaluation of recommender systems. The ML100K, ML1M, ML10M

and ML20M data sets were obtained from the MovieLens research project. These are

some of the publicly available data sets collected by GroupLens [42], a research lab at the

University of Minnesota, from their active online movie recommendation system.
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Netflix: In 2004, the online movie rental company Netflix announced a competition

for improving its recommendation system. For the purpose of the competition, Netflix

released a data set containing 480,000 user ratings of over 17,700 movies. Ratings are

between 1 and 5 stars for each movie. The data set is very sparse (i.e., users mostly rated

a small fraction of the available movies). For our experiments, we have extracted a subset

from the Netflix Prize data set [43] such that each user has rated at least 30 movies and at

most 500 movies.

Book Crossing: The BookCrossing website allows a community of book readers to

share their interests in books and to review and discuss books. The system lets its users

rate books on a scale of 1 to 10 stars. The specific data set that we used was collected

from the BookCrossing website in a 4-week crawl during August and September 2004 by

Cai-Nicolas Ziegler [44], [45]. The data set contains 105,283 users and 340,556 books,

and the average number of ratings for a user is 10. This data set is even more sparse than

the Netflix data set, as there are more items and fewer ratings per user. We only used a

subset of the data set, in which each user has rated at least 20 items and each item has

been rated by at least 5 users and at most 300 users.

As we are not interested in the rating prediction problem, we transformed the ratings

for all data sets into implicit feedbacks by keeping a value of 1 if there is a transaction

between the user and the item, and setting the value to 0 otherwise. In other words, we

binarized the rating matrix, replacing all existing non-zero values in the matrix by ones.

5.2 The Sparsity Problem

A common problem in machine learning is sparse data. Data are considered sparse

when a large number of values in a data set are missing or have a zero value, which is a

common phenomenon in general large scale analytics. This problem is commonly referred

to as the sparsity issue. A matrix is considered extremely sparse when there are very few

elements in a matrix whose value is not non-zero. In the recommendation domain, it is
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also known as the cold-start recommendation problem, referring to the act of providing

recommendations for new users who have rated very few items (i.e., they have very few

non-zeros in their profile). Sparse data sets affect the performance of top-N

recommendation algorithms by making inaccurate predictions.

Given the large size of data sets such as ML20M and Netflix, naive representation as a

dense matrix would result in high computation times and likely memory overruns. To

efficiently operate on the sparse data, the ratings corresponding to each user and movie

are stored in a compressed sparse row (CSR) matrix. The size of the sparse matrix

depends on the number of non-zero elements, rather than the dimensionality of the dataset.

Fig. 1 shows the distribution of non-zero elements over rows and columns for all six data

sets. For the ML10M and ML20M data sets, some of the items have very few ratings. In

the BX data set, a single user has rated 2238 items. For most of the data sets, only some

of the items are rated frequently, and the vast majority of items are rated rarely. These

frequently rated items are referred to as popular items.
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Fig. 1: Distribution of non-zero elements over rows and columns.

21



Fig. 2 shows the placement of non-zero elements across the rows and columns of the

matrix for the ML100K and ML10M data sets (dark dots represent non-zero elements).

Similar additional figures for the remaining data sets are included in Appendix A.
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Fig. 2: Distribution of non-zero elements for ML100K and ML10M.
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5.3 Evaluation Methodology

We applied 5-fold Leave-One-Out cross-validation (LOOCV) to evaluate the

performance of the top−N recommender system algorithms. In each run, each of the

data sets was split into a training and test set, by using a random selection approach. We

randomly selected one of the non-zero entries (i.e., item id) for each user and placed it in

the test set. The rest of the data comprised the training set. The training set was used to

train a model, then a ranked list of top−N items for each user was generated using that

model. The model was then evaluated by comparing the recommendation list of each user

and the item for the particular user in the test set. Throughout this research, we used the

same set of training and test sets to conduct experiments across all algorithms.

5.3.1 Recommendation System Evaluation

We measured recommendation quality using hit rate (HR), which is defined as

HR =
#hits

#users
, (17)

where #users is the total number of users, and #hits is the number of users whose item in

the testing set was recommended (i.e., hit) in the top−N recommendation list. An HR

value of 1.0 indicates that the algorithm is able to recommend all of the hidden items in

the test set, whereas an HR value of 0.0 denotes that the algorithm is not able to

recommend any of the hidden items. Furthermore, the efficiency of a recommendation

engine was measured as the overall execution time needed to find recommendations for

all test users, measured in seconds.

5.3.2 Nearest Neighbor Search Evaluation

Exact nearest neighbor search methods return the true nearest neighbors. ANN

methods, on the other hand, return only some of the nearest neighbors. We measured the
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effectiveness of these methods as using recall, which is defined as

recall =
1
n ∑

u

# f oundu

#neighborsu
, (18)

where # f oundu is the number of true neighbors of user u that were found by the search

algorithm and #neighborsu is the number of true neighbors user u has (at times

#neighbors < k), and n is the total number of users. By definition, exact methods have a

recall of 1.0. We use the neighbors found by the exact method as the set of true neighbors

needed to compute recall in approximate methods.

The efficiency of a nearest neighbor search method was measured as the overall

execution time needed to find neighbors for all test objects, measured in seconds.

Additionally, we consider the speedup of an approximate method over its exact

counterpart, which is defined as

speedup =
time(exact)

time(approx)
, (19)

where time(exact) and time(approx) are the execution times of the exact and

approximate methods under comparison, respectively. Note that speedup of 1.0 indicates

the methods finished in the same amount of time, speedup > 1.0 indicates that the

approximate method was faster than the exact method, and speedup < 1.0, which is also

called slowdown, indicates that the approximate method was slower than the exact

method.

5.3.3 Hypothesis Testing

To draw a reliable conclusion from the experiments, we performed significance testing

on the experimental results. A standard tool for hypothesis testing is p-value (i.e) the

probability of predicting a particular score by chance. If the p-value corresponding to the

difference in mean weight between two groups of participants is less than the chosen

significance level (e.g, p < α , α = 0.001), then we can reject the null hypothesis (i.e., the
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hypothesis that no difference exists between the comparison methods), and our result is

deemed “statistically significant”. If the p-value is above the significance level, we cannot

reject the null hypothesis and our result is “not statistically significant”. This procedure is

called as statistical hypothesis testing.

5.4 Baseline Methods

We performed experiments with multiple baseline methods, including item

neighborhood-based collaborative filtering (ItemKNN), recommender systems based on

matrix factorization (MF), bayesian personalized ranking (BPR), weighted

approximate-rank pairwise (WARP) loss, k-order statistic (K-OS) loss, and SLIM.

ItemKNN is a classic collaborative filtering method that recommends similar items based

on items previously rated by users [23]. We adapt it for implicit feedback data by

predicting the rating for target item i of user u based on the rating patterns between items

using Equation 5. MF [46] is a well-developed and commonly-used technique for top−N

recommendation. For the MF method, we used the implicit library [47], which

implements MF with an ALS learning method. BPR [29] optimizes the area under the

ROC curve (AUC) and is another widely-used baseline. We used WARP loss from the

WSABIE [34] package and K-OS codes from their authors [35]. These codes have been

integrated into the lightfm [48] library, which we used to conduct our experiments. SLIM

generates recommendation results by aggregating user purchase/rating profiles. We used a

SLIM software variant developed by the authors of [36]. All these methods constitute the

current state-of-the-art for top−N recommendation task.
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6 EXPERIMENTAL RESULTS

This section is focused on answering the following questions:

∙ How does the ItemKNN method perform compared to existing current

state-of-the-art top−N recommendation methods?

∙ How effective are ANN methods compared to exact nearest neighbor search?

∙ What is the trade-off between effectiveness (high recall) and efficiency (low

execution time) of the approximate method in the top−N recommendation?

All the above questions are answered by empirical evidence across the six different data

sets described in Section 5.1.

6.1 Top-N Recommendation Performance Comparison

We begin by investigating the recommendation quality of ItemKNN compared with

five baselines over the six data sets. Fig. 3 depicts the best HR results of different top−N

recommendation algorithms for the ML100K (Fig. 3a) and ML10M (Fig. 3b) data sets.

Additional figures for the remaining data sets show similar characteristics and are

included in Appendix B.

All experiments were executed five times, with random seeds, and the averaged results

are reported. For SLIM, we reported only the experimental results for the BX, ML100K,

and ML1M data sets because it was unable to run this on a larger data set. The results

showed that, SLIM outperformed all other methods for all data sets it ran on. For the

Netflix data set, ItemKNN achieved a significantly better performance than other methods,

and BPR, WARP, K-OS methods showed similar performance. MF performed better than

ItemKNN on the ML100K, ML1M, ML10M, ML20M data sets, but worse on the BX and

Netflix data sets.

26



5 10 15 20 25
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
R

0.235

0.333

0.409

0.455
0.485

BPR
WARP

K-OS
MF

ItemKNN
SLIM

(a) ML100K

5 10 15 20 25
N

0.0

0.1

0.2

0.3

0.4

0.5

H
R

0.199

0.281

0.336

0.377
0.411

BPR
WARP

K-OS
MF

ItemKNN
SLIM

(b) ML10M

Fig. 3: Performance of recommendation algorithms for different N values for ML100K
and ML10M.

As shown in Fig. 3a and Fig. 3b, recommendation quality improved when more items

were considered, as N was increased from 5 to 25. Among the three MF-based models,

BPR and WARP had similar performance on most of the data sets. We found that the

performance of ItemKNN was better than that of some of the state-of-the-art methods but
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worse than SLIM. We can observe the following recommendation performance trend:

ItemKNN > BPR, ItemKNN > WARP, ItemKNN > K-OS for all six data sets. The

values of the hyper-parameters that lead to the best resulting performance in each method

are shown in Appendix C.

Table 2 presents the performance difference between ItemKNN and the best

performing baseline. Columns N=5 through N=25 show the performance difference (in

terms of HR) between ItemKNN and the best performing baseline for that N value. For

example, 0.008 for BX in the N=5 column indicates that HR@5 (when top-5 items are

recommended) was calculated and the difference between the best HR across all methods

and the HR of ItemKNN was 0.008.

Table 2: Comparison of ItemKNN and the Best Performing Baseline

Data set N = 5 N = 10 N = 15 N = 20 N = 25 p-value
BX 0.008 0.009 0.014 0.016 0.019 0.0032
ML100K 0.050 0.057 0.070 0.066 0.055 <0.0001
ML1M 0.048 0.063 0.069 0.070 0.073 <0.0001
ML10M 0.032 0.042 0.047 0.050 0.052 0.0002
ML20M 0.033 0.040 0.045 0.047 0.048 0.0001
Netflix 0.0 0.0 0.0 0.0 0.0 -

Further, to validate the effectiveness of ItemKNN, we also conducted two-sided

hypothesis tests for the null hypothesis that the average of the performance difference

between ItemKNN and the best performing baseline is zero. We have set the significance

level to 10−4 instead of 0.01 because we measure the effectiveness difference between

ItemKNN and the best performing baseline and not the hit rate results, and the effective

range of this difference is O(10−2). Paired t-tests were carried out on the performance

difference of both methods at various levels of N = {5, 10, 15, 20, 25}.

As we can see from Table 2, given a significance level α = 0.0001, p-values indicate

that there is no significant difference between the methods for the BX, ML10M, and

ML20M data sets. Based on these comparisons, we conclude that the basic ItemKNN

algorithm provides a reasonably good predictions for the top−N recommendation task.
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6.2 ItemKNN Recommendation for Different N Values

In this section, we report the comparison of approximate and exact ItemKNN search

performance. The objective is to investigate the impact of search performance (recall) on

recommendation quality (HR). The ItemKNN code was implemented in Python using

cosine similarity k-nearest neighbor graphs identified using the L2KNNG (exact) and

L2KNNGApprox (approximate) [6] methods.

For the exact ItemKNN experiment, we first tuned the parameter of k by testing all

values in the set {5,10,20,25,50,75,100,200,500,1000} to optimize HR. We found the

best values to be k = 10 for BX, ML100K and ML1M and k = 20 for the rest of the data

sets. We observed that, even with such small values for k, ItemKNN provides reasonably

accurate recommendations. This is particularly important since small values of k lead to

fast results (i.e., low computational cost).

The L2KNNGApprox parameters α and γ influence its effectiveness and efficiency; α

indicates the number of candidates to consider for each query during the search, as a

multiple of k, and γ indicates the number of iterations of the neighborhood graph

enhancement step in the algorithm.

For the approximate ItemKNN experiment, we used the same setting of the parameter

k as in ItemKNN and tuned α and γ by performing a grid-search through the sets α

∈ {1,2, . . . ,10,15, . . . ,100} and γ ∈ {1, 2, . . . , 20}. The L2KNNGApprox search using

different α and γ values produced different k-NN graphs with different recall values.

Higher α values lead to more similarity evaluations and higher γ values lead to more

iterations of the neighborhood enhancement step, both leading to higher recall but slower

computation.

To compare the methods, we manually selected approximate k-NN graphs with recall

close to {0.50, 0.55, . . . , 0.95}. This procedure was repeated over all five data set splits,

and evaluation results were averaged. For some data sets, the highest recall was near or
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above 0.95, while for others, the highest achieved recall was only 0.85. We denote those

results in tables by a dash (-) and in figures by missing data points or bars.

6.2.1 Parameter Sensitivity

Fig. 4 shows the effects of α and γ of the L2KNNGApprox method in terms of

similarity computation time and recall for BX and ML1M data sets. Even with the low

parameter setting, L2KNNGApprox was able to achieve ≥ 95% recall for the ML1M

dataset. By putting in more computation, we were able to boost recall for the more

difficult data sets (BX, ML20M) to close or above 85%. Additional figures for the

remaining data sets are included in Appendix E. When tuning parameters, the recall

improves only up-to a point (highest recall). We see that beyond a critical point, recall

only improves marginally. Also, there is a trade-off between achieving the highest recall

and the time taken to achieve them.

An interesting aspect to note in Fig. 4 is the difficulty with which high recall can be

achieved for some data sets. While most values for α > 2 and γ > 2 give high recall for

the ML1M data set (indicated by black tiles in the right sub-figure of Fig. 4b), only

α > 100 can lead to high recall for the BX dataset, which coincides with high execution

times (indicated by black tiles in the left sub-figure of Fig. 4a). This further underscores

the lack in reliability when employing approximate search algorithms. In general, they

cannot provide quality guarantees and tend to be hard to tune to achieve high recall.
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Fig. 4: Effects of α and γ on efficiency (left) and effectiveness (right) for BX and ML1M.

6.2.2 Recommendation Performance

Fig. 5 reports the best HR results for approximate and exact search-based ItemKNN

for different values of N ∈ {5,10,15,20,25} for the ML100K (Fig. 5a) and ML10M

(Fig. 5b) data sets. Additional figures for the remaining data sets show similar results and

are included in Appendix B. As we can see from the figure, the performance of the

approximate method decreases as recall decreases.
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Fig. 5: ItemKNN recommendation for different N values for ML100K and ML10M.

Recall has a significant impact on the recommendation quality for both data sets, as

different values of recall lead to substantially different values of HR. Despite this

variability, if the recall is 0.80 or higher, then the approximate method provides good

overall recommendation performance.
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6.2.3 Relationship Between Recall and HR

During our experiments, we found that the performance of the approximate

search-based ItemKNN method depends on the recall value of the search result. Here we

discuss how recall affects the HR of the recommender system. Fig. 6 plots the relationship

between recall and normalized HR on N = {5, 10, 15, 20} for the six data sets, with recall

varying from 0.50 to 1.00. HR values have been normalized using min-max normalization

with the minimum value of 0 and the maximum value set to the HR obtained using the

exact search-based ItemKNN. The normalization allows us to compare the relative

decrease in performance for different recall values across the six data sets.
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Fig. 6: Recall versus normalized hit rate (HR) for various N values.

We can see from Fig. 6 that, for most datasets, the recall value has to be at least 80%

for an approximate method to be able to achieve a similar performance as its exact

counterpart (normalized HR = 0.97). For recall levels between 70% and 80%, there is a
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decrease in the performance, but it is not significant. Performance decreases rapidly for

recall levels below 70%.

6.2.4 Relationship Between Recall and Speedup

In this section, we evaluated the trade-off between search quality and efficiency. Fig. 7

shows the relationship between recall and speedup for the six data sets, with recall

varying from 0.50 to 0.95. We can see from the figure that, as recall increases, speedup

decreases. For recall levels above 80%, speedup is at times lower than 1.0, indicating the

approximate search took longer than the exact one. By losing little recommendation

performance, better speedup (0.5x - 2.0x) was achieved for recall levels between 70% and

80%. Though speedup values were higher for recall levels below 70%, the associated

recommendation performance was significantly worse for most data sets.
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Fig. 7: Recall versus speedup for different data sets.
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6.3 Statistical Analysis of the Approximation Effect on Recommendations

As a way to identify the significance of the approximation effect on the

recommendation results, we computed Welch’s t-test, or the unequal variances t-test,

between recommendations based on the exact search results and those based on

approximate ones. Welch’s t-test is a two-sample location-based statistical test that tests

whether two populations are equal in the expectation, i.e., they have equal means. The

method is an adaptation of Student’s t-test designed to account for differences in the

variance of the two samples being tested. In our experiment, samples are the HR values of

recommendations obtained with the item-based collaborative filtering recommender when

finding neighbors either with an exact nearest search method or an approximate one. For

the approximate method, we restricted neighbor search results to those near a given recall

value and set the number of recommendations, N, to 10. For each data set, we executed

t-tests at each recall value in the range [0.50,0.95], in increments of 0.05.

The null hypothesis in our test is that the recommendation performance when relying

on approximate search methods is as good as that when relying on exact methods. Let ra

and re be the hit rates of the approximate and the exact experiments, respectively. Welch’s

t-test defines the statistic t as,

t =
ra − re√

s2
a

na
+

s2
b

nb

, (20)

where ra, s2
a, and na are the approximate sample mean, variance, and size, respectively,

and re, s2
e , and ne are similarly defined for the exact sample. In each experiment, we

executed a two-tailed test and analyzed the probability value (p-value) of the null

hypothesis being true, i.e., the probability that the absolute value of the sample mean

difference between the results obtained with approximate search results and those

obtained with exact search results is greater or equal than that of the observed results.

When setting a confidence level, e.g., C = 95%, p-values smaller than (1.0−C = 0.05)
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imply that the null hypothesis may be rejected and the alternative hypothesis accepted.

Alternatively, if the p-value is above the significance level (α = 0.05), we fail to reject

the null hypothesis and cannot accept the alternative hypothesis. In our case, the alternate

hypothesis states that the recommendation performance when relying on approximate

search methods is significantly worse than that when relying on exact search methods.

Table 3 shows the results of our statistical analysis across all data sets. Bold values

indicate p-values lower than our significance level, i.e., recall values for which we can

reject the null hypothesis. Approximate algorithms provide significantly worse

performance for recall values with bold p-values in each data set. Specifically, recall

levels below 70% have a p-value lower than the cut-off threshold α .

Table 3: Statistical Analysis of L2KNNGApprox for Top-N Recommendation

BX ML100K ML1M ML10M ML20M Netflix
recall p-value
0.95 - - 0.8979 0.9788 - -
0.90 - 0.9173 0.8546 0.6033 - -
0.85 0.6824 0.5443 0.1221 0.3538 0.6058 0.9575
0.80 0.5160 0.6013 0.0557 0.1281 0.4225 0.8001
0.75 0.2688 0.4699 0.0462 0.0464 0.1781 0.1137
0.70 0.0937 0.0226 0.0091 0.0008 0.0014 0.0011
0.65 0.0041 0.0015 6.36×10−5 2.04×10−6 2.79×10−6 0.0002
0.60 0.0018 0.0003 4.41×10−5 0.0011 3.09×10−6 0.0042
0.55 0.0006 0.0002 3.12×10−6 3.01×10−8 1.16×10−7 5.64×10−5

0.50 4.79×10−5 0.0015 3.39×10−6 1.63×10−6 3.99×10−10 5.55×10−6

6.3.1 Discussion

For p-values of 0.05 and above, our analysis cannot conclude that the performance of

the approximate and exact method is the same, or even similar. For p-values between 0.05

and 0.001, the evidence is not strong enough to conclusively state that the performance of

the approximate method is worse than that of the exact method, but the result acts as a

suggestion, providing a middle-ground between acceptance and rejection. For p-values of

0.001 and below, we can state with high confidence that equal performance of the

approximate and exact methods is extremely unlikely and reject the null hypothesis in
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favor of the alternative hypothesis. We would have to conclude here that approximate

method effectiveness remains unproven. Analysis results show that the approximate

methods yield better performance for low-dimensional data sets. As the recall value

ranges between 0.95 - 0.50, there is a linear drop in p-values for small data sets and an

exponential drop for large data sets. For example, ML20M shows a significant difference

in p-values across decreasing recall levels, especially below 70%, while the decrease is

much slower for ML100K.

As shown in Fig. 8, building approximate k-NN graphs with high recall generally

incurs high computational costs, at times much higher than even the exact search method

(denoted by recall of 1.0). The ML20M and Netflix data sets are intrinsically more

difficult than the other data sets to search. Approximate methods sacrifice some search

accuracy to lower the execution cost. In order to increase accuracy, one must set the

method parameters high, which will result in high execution cost. The parameter analysis

of the approximate methods is shown in Appendix E.
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Fig. 8: Recall versus search time (log-scaled) for different data sets.
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In real-world scenarios, due to the massive size of the data sets being analyzed,

recommender systems present a few items to each user and the set of items to be

recommended are chosen among the top-most items often identified off-line. We believe

this study to be promising for industrial applications for the following reasons:

∙ For applications requiring interactivity, where response time is important, the α and

γ parameters in the approximate method allow adjusting the trade-off between

accuracy (effectiveness) and response time (efficiency).

∙ We have shown that approximate approach is not efficient in the context of big data,

as it incurs a high computational cost to provide high recall values.

Based on our comprehensive evaluation, we provide the following recommendations

for researchers or practitioners.

∙ When high effectiveness is required, it is best to use an efficient exact search method,

such as L2KKNG, as the search time of the approximate method (L2KNNGApprox)

tends to be higher than that of the exact method (L2KNNG) for high recall levels

(above 80%).

∙ When aiming to achieve high efficiency, approximate methods provide “good

enough” performance for recall levels between 70% and 80%.

∙ When using approximate methods for larger data sets, it is important to tune

parameters to achieve a recall level of at least 70%. Failure to do so may result in

significantly worse recommendation performance.

∙ Not all the data sets achieve near-perfect recall using approximate methods. For

some datasets, it is impractical to tune parameters of approximate methods to reach

the desired recall as the execution cost may be higher than that of the exact method.
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7 CONCLUSIONS AND FUTURE WORK

Our research was mainly focused on the nearest neighbor search, and the experiments

we conducted were limited to the recommendation domain. In this thesis, we discussed

how the quality of approximate nearest neighbor search affects the effectiveness and

efficiency of the top−N recommendation task. Our experimental results across six

real-world data sets demonstrated that the approximate method achieves a similar

recommendation performance as the exact method for high-quality search results (recall

values above 80%) and only slightly lower performance for medium quality search results

(recall values between 70% and 80%). The approximate approach is not necessarily an

effective solution for reasonably sized data sets, as approximate search methods may take

longer to finish the search than exact methods when desiring high-quality results for these

data sets.

We used L2KNNGApprox to construct the k-nearest neighbor graph for the

approximate approach. While L2KNNGApprox has been shown to outperform other

approximate search methods in general, it would be interesting to conduct a similar study

with state-of-the-art locality-based hashing or permutation-based approximate search

methods, which would help generalize the result.

In future work, we plan to expand the approximate search error propagation analysis

we conducted in this thesis to other domains, such as classification, regression, or

clustering. Our understanding of real-world data sets is inadequate. We plan to study what

properties of a data set affect the quality of the approximate nearest neighbor search and

how the error incurred in the search of these data sets propagates in the underlying

analysis. We hope that this research opens up more questions on the usage of approximate

methods while providing helpful guidance to data mining and machine learning

practitioners and researchers when working with nearest neighbor search algorithms.
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[40] R. Paredes, E. Chávez, K. Figueroa, and G. Navarro, “Practical construction of
k-nearest neighbor graphs in metric spaces,” in Proceedings of the 5th International
Conference on Experimental Algorithms, WEA’06, (Berlin, Heidelberg), pp. 85–97,
Springer-Verlag, 2006.

[41] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, “Approximate nearest
neighbor algorithm based on navigable small world graphs,” Information Systems,
vol. 45, pp. 61–68, 01 2013.

[42] “Movielens.” https://grouplens.org/datasets/movielens/. (Accessed on 11/09/2018).

[43] “Uci machine learning repository: Netflix prize data set.”
https://web.archive.org/web/20090925184737/http:
//archive.ics.uci.edu/ml/datasets/Netflix+Prize. (Accessed on 11/09/2018).

[44] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving
recommendation lists through topic diversification,” in Proceedings of the 14th
International Conference on World Wide Web, WWW ’05, (New York, NY, USA),
pp. 22–32, ACM, 2005.

[45] “Book-crossing dataset.” http://www2.informatik.uni-freiburg.de/∼cziegler/BX/.
(Accessed on 11/09/2018).

[46] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, pp. 30–37, Aug. 2009.

[47] B. Frederickson, “Fast python collaborative filtering for implicit datasets.”
https://github.com/benfred/implicit, 2016.

[48] M. Kula, “Metadata embeddings for user and item cold-start recommendations,”
CoRR, vol. abs/1507.08439, 2015.

44

https://grouplens.org/datasets/movielens/
https://web.archive.org/web/20090925184737/http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
https://web.archive.org/web/20090925184737/http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
https://github.com/benfred/implicit


Appendix A

DATA SET CHARACTERISTICS

Fig. 9 and 10 show the distribution of non-zero elements over the matrix for the BX,

ML1M, ML20M, and Netflix data sets (dark dots represent non-zero elements).

Additional figures for the remaining data sets are included in Section 5.2.
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Fig. 9: Distribution of non-zero elements for BX and ML1M.
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(a) ML20M

(b) Netflix

Fig. 10: Distribution of non-zero elements for ML20M and Netflix.
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Appendix B

RECOMMENDATION FOR DIFFERENT TOP-N VALUES

Fig. 11 and 12 show the performance of different top−N recommendation algorithms

on the BX, ML1M, ML20M, and Netflix data sets. Additional figures for the remaining

data sets are included in Section 6.1.
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Fig. 11: Performance of recommendation algorithms for different N values for BX and
ML1M.
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Fig. 12: Performance of recommendation algorithms for different N values for ML20M
and Netflix.

Fig. 13 and 14 show the best approximate HR results compared with the exact HR for

different values of N ∈ {5,10,15,20,25} for the BX, ML1M, ML20M, and Netflix data

sets. Additional figures for the remaining data sets are included in Section 6.2.2.
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Fig. 13: ItemKNN Recommendation for different N values for BX and ML1M.
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Fig. 14: ItemKNN Recommendation for different N values for ML20M and Netflix.
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Appendix C

HYPER-PARAMETER CHOICES FOR TOP-N RECOMMENDATION

ALGORITHMS

Table 4 represents the hyper-parameter choices for top−N recommendation

algorithms. Best and second-best HR values are shown in bold and italic, respectively.

These hyper-parameters for each model were tuned using a grid search. We use the

symbol ‘-’ to denote that the corresponding algorithm failed to process the specific data

set.

Table 4: Hyper-Parameter Choices for Top-N Recommendation Algorithms

Method
BX ML100K ML1M

Params HR Params HR Params HR
ItemKNN 10 - 0.099 10 - 0.275 10 - 0.184
MF 10 - 0.061 10 - 0.311 20 - 0.281
BPR 0.01 10 0.031 0.01 10 0.237 0.05 10 0.149
WARP 0.01 10 0.033 0.01 10 0.286 0.05 10 0.179
K-OS 0.01 10 0.021 0.01 10 0.274 0.05 10 0.175
SLIM 3 0.5 0.108 2.0 2.0 0.332 1.0 2.0 0.248

Method
ML10M ML20M Netflix

Params HR Params HR Params HR
ItemKNN 20 - 0.239 20 - 0.259 20 - 0.213
MF 50 - 0.281 100 - 0.304 100 - 0.188
BPR 0.01 20 0.2 0.5 30 0.165 1.0 30 0.165
WARP 0.05 20 0.235 0.5 30 0.198 1.0 30 0.185
K-OS 0.01 30 0.229 0.5 30 0.181 1.0 30 0.172
SLIM - - - - - - - - -

The column “Params” in Table 4 represents the parameters for the corresponding

method. For the ItemKNN method, the only required parameter is the number of

neighbors. The MF method requires the number of latent factors. For the BPR, WARP,

and K-OS methods, the parameters are the learning rate and the number of epochs to run.

For SLIM, the parameters are L2-norm regularization parameter β and the L1-norm

regularization parameter λ . The number of recommendations, N for results in this table is

10. For ItemKNN, k was selected from {5,10,20,25,50,75,100,200,500,1000}. For MF,

the latent factor was selected from {10,20,50,100}. For SLIM, L2 regularization
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parameters were selected from {1,2,3,5} and L1 regularization parameters were selected

from {0.5,1,2}. For the BPR, WARP, and K-OS methods, the learning rate and number

of epochs were selected from the range {0.01,0.05,0.5,1} and {10,20,30}, respectively.
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Appendix D

COMPUTATION TIME FOR TOP-N RECOMMENDATION ALGORITHMS

Table 5 shows the average recommendation computation time across the 5 folds of the

cross validation. The number of recommendations, N, for results in this table is 10. We

use the symbol ‘-’ to denote that the corresponding algorithm failed to process the specific

data set.

Table 5: Computation Efficiency Results

Dataset BPR WARP K-OS MF ItemKNN SLIM
BX 46 37 41 129 19 355
ML100K 54 59 48 368 41 956
ML1M 1445 1312 1248 545 253 8294
ML10M 5863 5794 5712 1736 329 -
ML20M 13242 14891 13145 4221 574 -
Netflix 38531 38604 39452 9873 872 -
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Appendix E

PARAMETER ANALYSIS OF APPROXIMATE METHODS

Fig. 15 and 16 show the effects of the α and γ parameters of the L2KNNGApprox

method in terms of similarity computation time and recall for the ML100K, ML10M,

ML20M, and Netflix data sets. Additional figures for the remaining data sets are included

in Section 6.2.1.
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Fig. 15: Effects of α and γ on efficiency (left) and effectiveness (right) for ML100K and
ML10M.
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Fig. 16: Effects of α and γ on efficiency (left) and effectiveness (right) for ML20M and
Netflix.

Table 6 shows the parameter choices for the ItemKNN approximate methods. The

symbol ‘-’ denotes that the corresponding data set was unable to achieve the desired recall

in the L2KNNGApprox method.
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Table 6: Parameter Choices for the ItemKNN Approximate Methods

Recall BX ML100K ML1M ML10M ML20M Netflix
α γ α γ α γ α γ α γ α γ

0.95 - - - - 9 4 100 1 - - - -
0.90 - - 25 4 4 4 6 7 - - - -
0.85 40 2 9 3 10 1 4 4 200 5 7 6
0.80 20 2 4 8 8 1 3 4 10 4 9 2
0.75 10 5 3 8 2 3 2 6 6 3 5 2
0.70 7 5 4 3 1 10 2 4 3 5 2 4
0.65 5 4 10 1 5 1 8 1 3 3 10 1
0.60 4 6 8 1 2 2 3 2 7 1 7 1
0.55 4 2 2 4 1 4 1 7 2 2 1 6
0.50 3 2 3 2 3 1 1 5 4 1 1 4
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