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ABSTRACT 

INFLUENCE OF NIGHT WORK ON PERFORMANCE DURING LUNAR 

TELEROBOTIC OPERATIONS 

 

by Zachary L. Glaros 

Real-time, reactive telerobotic mission control operations require personnel to 

actively operate remotely controlled vehicles or robots in real time. Due to the physical 

separation of the vehicle from the operator, such operations present additional factors that 

can influence fatigue (degraded mental performance) and workload (mental and physical 

cost of task requirements), making it difficult to assess how long an individual can 

conduct operations safely. The upcoming Volatiles Investigating Polar Exploration Rover 

will involve remotely controlling a lunar vehicle from an Earth-based mission control 

station. In order to determine how long personnel could successfully maintain alertness 

and performance while operating a rover, we studied seven trained operators in a 

simulated mission control environment. Operators completed two five-hour simulations 

in a randomized order, beginning at noon and at midnight. Performance was evaluated 

every 30 minutes using the Psychomotor Vigilance Task (PVT), Karolinska Sleepiness 

Scale (KSS), and NASA Task Load Index (NASA-TLX). On average, participants rated 

themselves as sleepier on the midnight drives compared to the day drives. Workload was 

rated higher during the noon drives compared to midnight. Lastly, participants had no 

change in average reaction time between the two drives. From the analysis, performance 

showed degradation after approximately three hours of driving. Our findings suggest that 

rotating drivers at least every three hours would be prudent to allow for breaks, and to 

minimize performance degradation, particularly during midnight shifts. 



v 

ACKNOWLEDGMENTS 

I would like to thank everyone who played a role in making this study a possibility, as 

well as everyone who helped and encouraged me along the way. I want to thank Dr. Erin 

Flynn-Evans, the primary investigator of the Fatigue Countermeasures Laboratory, for 

providing such an amazing opportunity for my thesis study and for all her continual help 

and support throughout. I want to thank Robert Carvalho of the Intelligent Systems 

Division at NASA Ames for making this study a reality by recruiting the trained 

operators, coordinating schedules and shift times, and for sitting in on each of the 

simulations as the acting flight director. 

I want to thank my advisors who made this entire academic venture possible: Dr. 

Sean Laraway and Dr. Susan Snycerski. If it were not for them, I would never have come 

this far in my academic journey. I also want to thank the department of psychology at 

SJSU for always being supportive and providing amazing opportunities for students. 

Many of you have helped me along the way through letters of recommendation, research 

experience, and overall academic advice and counsel. And of course, I want to thank all 

my team members in the Fatigue Countermeasures Lab who have each helped to 

contribute to this project in some form, either though constructive criticism, aiding in 

analyses, or participating in the study itself as a confederate. You all helped to make this 

study and this paper much stronger as a result. 

Last by certainly not least, I want to thank my family, friends, and loved ones who 

always showed continual support and encouragement through the years. Thank you all. 

 



  

vi 

TABLE OF CONTENTS 

 

List of Tables ................................................................................................................... viii 

 

List of Figures .................................................................................................................... ix 

 

Introduction ..........................................................................................................................1 

Fatigue ..........................................................................................................................3 

Effects of Shift Work....................................................................................................5 

Shift Duration...........................................................................................................5  

Effects of Shift Start and End Time .........................................................................6  

Number of Consecutive Shifts .................................................................................8 

Work Shift Designs ................................................................................................10 

Handover ................................................................................................................12  

Workload ....................................................................................................................13 

NASA Task Load Index.........................................................................................13  

Time on Task .........................................................................................................15  

Mission Control Operations .......................................................................................16 

Real-time, Reactive Telerobotic Operations ..........................................................17  

Volatiles Investigating Polar Exploration Rover ...................................................18  

Purpose of Study ..........................................................................................................19 

 

Method ...............................................................................................................................20 

Participants ...................................................................................................................20 

Driver Activities...........................................................................................................20 

Real-Time Scientist Activities .....................................................................................23 

Measures ......................................................................................................................23 

Pre-screening..........................................................................................................23  

Sleep Assessment ...................................................................................................24  

Subjective Fatigue Assessment ..............................................................................24  

Workload................................................................................................................25  

Vigilance ................................................................................................................26 

Study Protocol ..............................................................................................................26 

Statistical Analysis .......................................................................................................28 

 

Results ................................................................................................................................30 

Demographics ..............................................................................................................30 

Noon versus Midnight..................................................................................................34 

KSS ........................................................................................................................34  

NASA-PVT ............................................................................................................35  

Relationship between Sleep and Performance .......................................................36  

NASA-TLX............................................................................................................37 

Rover Health ..........................................................................................................39 

 



  

vii 

Discussion ..........................................................................................................................41 

Subjective Sleepiness ...................................................................................................41 

Psychomotor Vigilance ................................................................................................42 

Workload......................................................................................................................43 

Operational Performance .............................................................................................45 

Implications..................................................................................................................46 

Limitations ...................................................................................................................49 

Future Directions .........................................................................................................52 

Motivation and Consequence .................................................................................52  

Schedule Types ......................................................................................................53  

Shift Lengths ..........................................................................................................54  

Projected Terrain ....................................................................................................54  

Image Adjustment ..................................................................................................55  

Image Labeling ......................................................................................................56 

Conclusion ...................................................................................................................56 

 

References ..........................................................................................................................58 

 

Appendices .........................................................................................................................66 

A. Demographics Questionnaire ..................................................................................66 

B. Sleep Wake Log ......................................................................................................67 

C. NASA Task Load Index ..........................................................................................68 

D. NASA Psychomotor Vigilance Task ......................................................................69 

 

  



  

viii 

LIST OF TABLES 

 

Table 1. Demographic Information ....................................................................................31 

 

Table 2. Sleep Information ................................................................................................32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

ix 

LIST OF FIGURES 

 

Figure 1. Sleep Durations ..................................................................................................33 

 

Figure 2. WASO ................................................................................................................34 

 

Figure 3. KSS Mean Score.................................................................................................35 

 

Figure 4. NASA-PVT Mean Reaction Time......................................................................36 

 

Figure 5. NASA-TLX Weighted Workload .......................................................................37 

 

Figure 6. NASA-TLX Individual Domains .......................................................................39 

 

Figure 7. Rover Health .......................................................................................................40 



1 

Introduction 

Telerobotic operations have been increasingly utilized across a variety of 

occupational situations, ranging from extraplanetary exploration (e.g., NASA rovers), 

military operations (e.g., hazard-seeking or surveillance drones), search and rescue 

operations, and robotic surgery (Chen et al., 2007). Telerobotic operations often involve a 

user operating a robot in a different location from where the vehicle is operating from, 

such as when an operator controls a Mars rover from an Earth-based mission control 

station. As a result, the user is provided with limited sensory feedback and instead must 

rely on feedback provided on visual displays. Such operations require the operator to 

maintain vigilant monitoring of displays for extended durations of time in order to 

preserve the robot and mission. However, it is unclear how long telerobotic operators can 

maintain such duties before experiencing elevated fatigue or workload which may 

increase the potential of making an error or having an accident.  

Fatigue can arise from acute or chronic sleep loss and circadian misalignment (i.e., 

being awake during the biological night). Although every working professional 

experiences fatigue to some extent, it is especially problematic for shift workers who are 

required to work long and irregular hours around the clock such as physicians and nurses, 

pilots, police officers, control center operators, and many more (Åkerstedt, 1995; 

Fitzpatrick et al., 1999; Scheiman et al., 2018). Extending wakefulness through the night 

or for an extended period of time (i.e., over 16 hours), as often happens in shift work, can 

cause deficits in cognitive performance similar to being legally intoxicated, with 

cumulative performance deficits as wakefulness continues (Dawson & Reid, 1997; 
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Lamond & Dawson, 1999; Williamson & Feyer, 2000). Similarly, working consecutive 

night shifts results in circadian misalignment, leading to elevated risk of accidents among 

shift workers (Åkerstedt, 1995; Dinges, 1995). 

Excessive workload is an ongoing threat to shift workers’ fatigue as their mental and 

physical processes are continuously being utilized. With the addition of late night shifts, 

there are added stressors that are not present during the day, such as being active and 

physical during times when one is normally at rest. Continuous operations require 

personnel to work at safe levels of performance to maintain the integrity of the mission. 

The combination of mental, physical, and temporal stressors adds to one’s overall 

workload, potentially causing faster burnout with the addition of fatigue. Many NASA 

missions are telerobotic in nature due to the physical separation from the device, and thus 

require attentive personnel to monitor safety. 

The NASA Volatiles Investigating Polar Exploration Rover (VIPER) mission, 

anticipated to launch late 2023, aims to locate and sample water throughout the moon. 

The upcoming VIPER mission is one of many that will help prepare for the future 

Artemis program—justly named after the twin sister of Apollo in Greek mythology—

which plans to return humans to the moon by 2024. Due to the relative lack of prior 

research on sustained (i.e., 24-hour) real-time, reactive mission control operations, we 

aimed to evaluate fatigue and workload during a simulated VIPER operation to identify 

how sleep loss, circadian misalignment, and workload might interact to inform 

scheduling and staffing requirements for the mission. 
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Fatigue 

“Fatigue” is a broad term that can be defined in many ways. In the context of this 

report, the term fatigue can be defined as arising from acute (i.e., one or a few nights) or 

chronic (i.e., accumulation of weeks, months, or years with fragmented sleep) sleep loss, 

as well as sleep inertia (i.e., grogginess experienced during the time after waking), and 

circadian misalignment (e.g., switching time zones or being awake at night) (Åkerstedt & 

Wright, 2009; Boivin & Boudreau, 2014). The drive for sleep has been described by a 

two-process model involving homeostatic and circadian processes (Dijk & Schantz, 

2005). The homeostatic process corresponds to the build-up of sleep pressure as wake 

continues and is reduced during sleep. The circadian process corresponds to the circadian 

pacemaker located in the suprachiasmatic nucleus in the hypothalamus, which responds 

to the day-night cycle through regulating many aspects of biological function, including 

core body temperature and melatonin (Deboer 2018; Dijk & Schantz, 2005). 

The circadian rhythm promotes sleep at night and wakefulness during the day. Most 

individuals have a circadian clock that is slightly longer than 24 hours on average, 

estimated to be around 24.18 hours (Czeisler et al., 1999; Wright et al., 2001). In order to 

stay aligned with the 24-hour solar day, an individual must be exposed to light each day 

(Lockley et al., 2007). Under normal circumstances this occurs passively, with an 

individual awake during the day and being exposed to sunlight. When an individual 

works during the night and sleeps during the day, a state of circadian misalignment 

occurs between the drive for sleep generated by the internal clock and the solar light-dark 

cycle, making it difficult to fall asleep and stay asleep during the day and hard to stay 
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awake and perform well at night. Circadian misalignment also occurs during “jet lag,” 

when the social drive for waking is out of sync with one’s internal clock (Boivin & 

Boudreau, 2014). Although it is possible to shift the circadian rhythm, the process is 

slow, and without strong, appropriately timed photoperiodic cues, individuals do not 

synchronize with their imposed work schedule (Smith & Eastman, 2012). In addition, 

when an individual is in a circadian misaligned state, performance during the biological 

night will be impaired even when a long sleep episode has occurred during the day. 

Continuous (i.e., 24-hour) operations are typically impacted by both circadian 

misalignment and sleep loss due to the need to schedule staff around the clock, resulting 

in decrements in alertness in cognitive performance (Pilcher & Huffcutt, 1996). Every 

hour of wakefulness increases the homeostatic drive to sleep, which affects a variety of 

neurobehavioral functions, such as increased lapses of attention, decreased reaction time, 

and reduced memory capability (Goel et al., 2013). Even moderate amounts of sleep 

deprivation (e.g., loss of 2-3 hours per night) have been shown to cause significant 

decrements in neurobehavioral functioning that remain present for up to 48 hours even 

during rest (Carskadon & Dement, 1981; Dinges et al., 1997). These performance 

impairments often appear quickly (e.g., one or a couple days) and do not subside until 

adequate rest is achieved (Van Dongen et al., 2003). This becomes especially problematic 

among shift workers for whom sleep is consistently fragmented, not allowing for enough 

time to catch up with their “sleep debt,” which is the accumulation of lost sleep through 

either acute or chronic sleep loss. 
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Effects of Shift Work 

Shift Duration 

Fatigue accumulates over the course of a work shift with increasing number of hours 

awake, such that longer shifts are typically associated with higher levels of fatigue. The 

most common durations of shifts for 24-hour operations are 8- and 12-hour shifts, 

although shifts of other durations may be optimal depending on the work environment. 

There are many considerations that must be accounted for related to the total duration of 

the work shift and the duration of time on task that may be allowable given the nature of 

the work. 

Compared to 12-hour shifts, 8-hour shifts are generally considered safer (Mitchell & 

Williamson, 2000), and result in better performance (Fitzpatrick et al., 1999). Nurses on 

12-hour shifts, for example, are reported to have impaired judgement and clinical 

decision-making, as well as having decreased reaction time relative to 8-hour shifts 

(Bowers-Hutto & Davis, 1989). More recently, nurses working 10- to 12-hour night shifts 

experienced increased fatigue and burnout relative to 8-hour shifts, and the 12-hour night 

shift resulted in nearly half of all nurses expressing concern about making mistakes 

(Estryn-Béhar & Van der Heijden, 2012). A field study examining the differences 

between 8- and 12-hour shifts among electrical power station operators found that there 

were both improvements and deficits when adopting the 12-hour schedule (Mitchel & 

Williamson, 2000). Individuals rated their quality, duration, and habits of sleep to be 

improved during the 12-hour shifts; however, there were higher instances of errors 

occurring at the end of the 12-hour shifts for both the day and night (i.e., reaction time 
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and grammatical ability). Among the Australian coal mining industry, no differences in 

performance were found when comparing 8- and 12-hour schedules; however, there was 

a marked increase in absenteeism for 12-hour shifts when overtime was required for the 

operation (Baker et al., 2001). 

On the contrary, in some situations 12-hour shifts improve work communication by 

minimizing “handovers,” which is the process of informing the upcoming shift of the 

previous work that preceded that shift. A comprehensive study of nurses working 8- and 

12-hour shifts found that most nurses preferred 12-hour shifts over 8-hour shifts, 

reporting that 12-hour shifts provided them with enough time to organize their day and to 

ensure the overlapping shift would be set up accordingly (e.g., in terms of handing over 

relevant information; Baillie & Thomas, 2019). Nurses working early morning, 8-hour 

shifts reported feeling rushed to complete work and guilty if they were forced to 

handover uncompleted work to the next shift. Researchers investigating 8- and 12-hour 

shift schedules among chemical workers found no significant differences between 

alertness and performance, and once again found a general increase in well-being, sleep 

quality, and better social and domestic quality of life (Tucker et al., 1996). However, the 

authors note that these results may be attributable to their fast, forward-rotating 

schedules.  

Effects of Shift Start and End Time 

The time at which a shift begins impacts fatigue and sleep opportunity, such that an 

earlier start time on a day shift can reduce overall sleep length and increase subjective 

sleepiness during the subsequent shift (Kecklund et al., 1997). This is largely due to the 
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influence of the wake maintenance zone, which promotes wakefulness in the hours prior 

to one’s habitual bedtime, making sleep difficult at that time (Jewett & Kronauer, 1999). 

The start time of day and evening shifts can also influence worker performance and their 

ability to achieve recovery sleep. 

There is a wide range of shift start times for work that is considered a “day shift.” In a 

study of experienced train drivers with work start times at 05:49, 07:49, and 09:49, sleep 

duration was shortest, and sleepiness was highest among those with the earliest work start 

time (Ingre et al., 2004). Similarly, airline pilots working a series of early starts beginning 

around 06:00 obtained significantly less sleep, reported increased sleepiness, and had 

reduced performance compared to shifts starting later in the day (Flynn-Evans et al., 

2018). Together, these findings suggest that daytime shifts should begin later in the 

morning in order to allow for adequate rest prior to an individual beginning work. 

The shift start time for evening and night shifts can also determine how well an 

individual will sleep and perform. Among airline pilots, evening shifts ending around 

midnight were associated with reduced alertness and performance compared to shifts 

starting around 09:00 (Flynn-Evans et al., 2018), but did not reduce sleep duration, likely 

due to the ability of most individuals to “sleep in” in the morning. Such late finishes 

following evening work have the potential to increase the risk of motor vehicle crashes 

upon commuting home (Crummy et al., 2008), making it advisable to end the evening 

shift earlier than one’s typical sleep time. 

Working at night is associated with increased sleepiness and reduced performance in 

general, but strategic shift design can allow some individuals to achieve better sleep and 
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performance outcomes. Takeyama et al., (2005) compared the differing start times for 

night shifts among firefighters (i.e., 22:00 – 07:00, split between five, two-hour 

schedules) and found that those who worked between 01:30 – 05:15 achieved shorter 

sleep with increased complaints of fatigue due to the earlier start times. This is likely 

because shift start times that are only slightly later than one’s habitual bedtime do not 

allow for one to go to bed at a normal time to achieve a nap before the shift, resulting in 

an extended duration of time awake (Boivin & Boudreau, 2014). In contrast, when night 

shifts are scheduled to start somewhat earlier, individuals may be more likely to engage 

in a prophylactic nap (i.e., a nap in preparation for extended wakefulness) in the 

afternoon, allowing them to begin work at a lower sleep pressure. 

The end of a night shift should be scheduled so that it does not coincide with the 

circadian low. The circadian rhythm strongly promotes sleep between 01:00 and 07:00 

for most daytime entrained individuals (Wright et al., 2001). Single-vehicle accidents are 

increased during this time, especially when commuting home following an extended 

shift, suggesting that individuals are more likely to have unintentional microsleeps and 

attentional lapses during this time (Barger et al., 2005). As a result, work shifts should 

not be scheduled to end until after this time, when the circadian system is typically 

promoting waking. 

Number of Consecutive Shifts 

     Working too many consecutive day or night shifts can adversely affect performance. 

Due to the cumulative effect of sleep loss and circadian misalignment, working 

consecutive night shifts is more difficult than working consecutive day shifts. Tucker et 
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al. (2010) reported that working seven consecutive 8-hour night shifts resulted in 

significantly higher levels of fatigue, accident risk, and work-life disruption when 

compared to working only three or four consecutive nights. Similarly, Geiger-Brown et 

al. (2012) found that nurses on their third consecutive night shift experienced greater 

sleepiness compared to the first two nights. Muller et al., (2008) also found similar results 

among a mineral processing plant in Australia where operators were on shift for eight 

consecutive 12-hour night shifts. The authors found that at the end of the first two nights, 

operators showed significantly elevated levels of fatigue and slower response times (i.e., 

percent change in reaction time through the Mackworth Clock Vigilance task) when 

compared to the beginning of the shift. The authors also analyzed performance 

comparing it to high levels of blood alcohol concentration; after the end of one 12-hour 

night shift, operators had performance equivalent to someone with a 0.05% blood-alcohol 

concentration.  

The number of consecutive day shifts that an individual can work without 

experiencing performance degradation depends on the characteristics of the work. For 

example, short-haul airline pilots flying an “easy” schedule were able to sustain high 

levels of alertness and performance for five days in a row when their first flight began in 

the mid-morning and ended in the early afternoon. However, when the same pilots were 

scheduled to fly five consecutive days with an early (e.g., 06:00 start) or late start (e.g., 

17:00 start) or with elevated workload (e.g., multiple short flights as opposed to fewer 

long flights), their performance degraded each consecutive day (Flynn-Evans et al., 

2018). 
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Time off for recovery between shifts impacts the number of consecutive days that one 

can work. For example, day workers reported that fatigue was higher when returning to 

work after three or four consecutive day shifts but with only one rest day when compared 

to those who received two (Tucker et al., 2010). In medicine, where workload is high and 

attentional requirements are similar to mission control operations, recommendations for 

junior doctors limit consecutive nights to two or three, with at least two days off for every 

two night shifts worked (Cappuccio et al., 2009; Horrocks et al., 2006). Similarly, 

researchers have suggested that more than one day off is required following two 

consecutive night shifts (Horrocks et al., 2006).  

Work Shift Designs 

     As described above, the duration and number of consecutive shifts that one is 

scheduled to work can greatly influence levels of fatigue. There are many potential 

combinations of shifts that can be designed to cover work requirements. The optimal 

design of work schedules depends on the nature of the work and the number of hours that 

need to be covered and must account for handing over work duties. For example, some 

shift designs require individuals to work five 8-hour shifts, while others use 10- or 12-

hour shifts or combinations of these shift lengths. These shifts are then organized so that 

individuals maintain a stable shift schedule or rotate between day, evening, and night. 

     One consideration when scheduling is whether to schedule rotating work shifts or to 

have workers maintain a stable day, evening or night shift schedule. Rotating schedules 

for continuous operations are typically comprised of either three 8-hour shifts, or two 12-

hour shifts in each 24-hour period. It has been reported that rapidly rotating shifts do not 
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allow for circadian adaptation to night shifts, resulting in poorer performance relative to 

daytime work, particularly on the second night shift (Baulk et al., 2009). Pilcher et al. 

(2000) performed a meta-analysis on rotating night shift nurses working a mixture of day 

and night shifts and found that they had similar performance decrements to nurses that 

solely worked night shifts, suggesting that both types of schedules lead to performance 

impairment. However, individuals working permanent night shifts can take up to three 

weeks to adapt (Fossum et al., 2013), making scheduling individuals for permanent night 

shifts during short duration missions impractical. Furthermore, researchers examining 

circadian adaptation to night shifts suggests that individuals are typically unable to adapt 

completely to a full-time night schedule because they typically revert to a diurnal 

schedule during days off (Smith & Eastman, 2012). Therefore, the persistent circadian 

misalignment that occurs when individuals are scheduled for permanent night duty favors 

scheduling individuals for rotating shifts instead of stable shifts.  

     Although rapidly rotating shifts are preferable to permanent night shifts, the sequence 

of the shift rotation and individual differences—for example, whether or not individuals 

are more “morning“ or “evening types” based on their individual preference and 

performance—all determine how well workers will manage on night shifts. Shifting 

schedules to a later, rather than earlier, rotation has been shown to increase alertness and 

productivity in factory operations (Czeisler et al., 1980). This is likely because most 

individuals have an endogenous circadian period that is slightly longer than 24 hours 

(Czeisler et al., 1999). This means that it is easier for most of the population to stay 

awake later, rather than go to bed earlier, making later rotating shifts easier to adapt to for 
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most individuals (Brooks & Swailes, 2002). The preference of time of day is associated 

with circadian phase, and those who indicate that they are moderate (i.e., neutral) or 

evening types will typically have an easier time with a later rotating schedule (Duffy et 

al., 2001). As a result, shifting rotating schedules from day, to evening, to night, followed 

by days off is preferable to other shift designs. 

     Shift schedules that do not follow sleep and circadian principles provide valuable 

lessons about how to avoid common pitfalls in scheduling. For example, in 2016, the 

United States Air Force School of Aerospace Medicine conducted a fatigue and workload 

study on crewmembers working on the MQ-9 Reaper unit—an unmanned aerial vehicle 

capable of autonomous flight operations—in which shifts were increased from 8- to 12-

hours and individuals rotated between five day and five night shifts with two days off 

between (Scheiman et al., 2018). The transition to longer shifts with more than two 

consecutive night shifts resulted in half of the participants reporting extreme, persistent 

fatigue, even on days off. In addition, the new shift schedule resulted in increased 

headaches with eye strain, decreased appetite, decreased reaction time and processing 

speed, and increased frustration and irritability (i.e., towards co-workers and/or family 

members). Participants also reported difficulty staying awake while commuting. 

Handover 

     Although there is no evidence that handover of information is not in itself a 

contributor to fatigue, schedules that exclude sufficient time for handover can lead to 

increased error. Proper handover procedures are essential in mission control operations to 

maintain the safety and success of the mission. In the medical industry, handovers are 



  

13 

recommended to be received as written documents alongside verbal communication 

(Randell et al., 2011). There are many threats to shift handover, such as time constraints, 

absence of written documents, and lack of interdisciplinary communication (Fealy et al., 

2018). Handover procedures are performed best when they are documented and are 

received during overlap shifts. Another barrier to handovers is the high potential for 

being interrupted due to working in a noisy environment, which is highly probable during 

mission control operations.  

Workload 

NASA Task Load Index 

     The cost of accomplishing a particular mission requirement for the human operator is 

referred to as “workload” (Hart, 1988). Workload is difficult to measure, because it is 

largely a subjective construct and it can be difficult to ask individuals about their 

workload without interfering with their work activities. There are several workload 

measures that have been designed to attain individuals’ perceived workload during or 

after an activity. Due to the increasing prevalence of flight and military operations, the 

NASA Task Load Index (NASA-TLX) was created to evaluate the multiple attributes 

surrounding workload: Mental Demands, Physical Demands, Temporal Demands, 

Frustration, Effort, and Own Performance (Hart & Staveland, 1988). Today, the NASA-

TLX is used across many areas involving automated technology, including by not limited 

to aviation, automobiles, combat, and medicine (Hart, 2006). The NASA-TLX has also 

been tested for reliability and validity and has been shown to have good internal 

consistency (Xiao et al., 2005). 
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The three demand characteristics refer to the mental and perceptual activity required 

for the task (i.e., Mental Demands), physical activity required (i.e., Physical Demands), 

and the time pressure or sensitivity of the task (i.e., Temporal Demands). The other three 

subscales refer to the individual, such as how successful one felt in accomplishing the 

task (i.e., Own Performance), the amount of mental and physical work needed for the task 

(i.e., Effort), and how stressful or irritating the task was (i.e., Frustration) (Bunce & Sisa, 

2002; Young et al., 2008). Each workload domain can be analyzed individually but is 

mainly used to observe overall workload through one aggregate workload score.  

Although constructed for flight operations, the NASA-TLX is now utilized across 

many areas of field research. Early on, Weinger & Englung (1990) demonstrated that 

excessive workload and fatigue, in conjunction with poorly scheduled shifts, resulted in 

cognitive impairment (i.e., vigilance and thought processing) and irritability. In addition, 

poorly designed systems, such as those that do not consider human factors control 

compatibility, cluttered displays, or illegibility, can further increase workload during time 

on task (Hooey et al., 2018). In 2011, Dorian et al. assessed the workload and fatigue of 

Australian rail industry employees in the field, and found that regardless of their role 

(e.g., driver, controller, guard, signaler, etc.), major decrements were found in either 

Mental Demands or Effort. Specifically, the signalers and controllers rated Mental 

Demand highest, while employees in other roles rated Effort highest. Although 

differences were reported in work type, sleep length, and workload, there were no 

differences in subjective fatigue levels. As reported in this study, the type of work also 

plays a key role in fatigue and workload, especially in mission control operations. 
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Time on Task 

     Beyond the type of work performed and the workload required, the time in which one 

spends on each task and switching between task types (e.g., physical versus mental 

workload), plays a crucial role in how successful one will be in completing a given task. 

In 2002, researchers explored the relationship between task difficulty, time on task, and 

workload among graduate and undergraduate students performing simple pursuit and 

memory tasks, requiring the participants to keep a target moving on a circumference 

between two lines (i.e., through turning a wheel) without intersecting them (Haga et al., 

2002). Utilizing the NASA-TLX and physiological measures (i.e., a combination of 

electroencephalography to measure electrical brain activity, and electrooculography to 

measure eye movements), the authors found that difficult tasks that required a higher 

degree of concentration resulted in Mental Demand building up more rapidly under more 

temporally demanding conditions. In other words, difficult and cognitively demanding 

tasks tended to burn out the operators when they were under greater time pressures, as is 

common in mission control operations. The converse was also found, such that easier 

tasks with lower degrees of concentration resulted in Mental Demand increasing due to 

less temporally demanding conditions, such as when the time pressures were not as 

severe, or when the tasks have become monotonous (e.g., less direct input from operators 

due to automation).  

     When working extended shifts (i.e., 12-hours), workers typically report higher levels 

of fatigue throughout the day which interacts with increased workload, leading to reports 

of fatigue accumulating at an even higher rate (Rosa, 1995). MacDonald and Bendak 
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(2000) investigated the effects of varying workload (i.e., mental and physical) during 

both standard and extended work hours (i.e., 8- and 12-hour shifts, respectively) and its 

effect on performance and fatigue in both a field and laboratory study. In the laboratory 

study, results indicated that high instances of physical workload led to increased overall 

workload during both 12- and 8-hour shifts despite identical task demands. Cognitive 

processes such as alertness and grammatical ability were subjectively lower during the 

12-hour shifts as well. Similar results were found across the field study, suggesting that 

the combination of high workload and 12-hour workdays resulted in greater fatigue 

through decreased alertness and overall cognitive abilities and increased bodily 

discomfort. Similarly, nurses working a variety of differing intensive care units (e.g., 

surgical, trauma, pediatric, etc.) showed increased overall workload during the 12-hour 

shifts, especially in Physical Demands and Frustration (Hoonakker et al., 2011). 

Mission Control Operations 

There are three major subcategories of control center operations: (1) pre-planned 

sequence evaluation and generation operations, where controllers intermittently receive 

and upload new sequences of information, with no active control of the remote vehicle 

(e.g., Phoenix Mars Lander); (2) real-time, reactive human operations, where a controller 

is directing or overseeing the actions of a remote human operator (e.g., ISS mission 

control); and (3) real-time, reactive telerobotic operations, where a controller actively 

operates a remotely controlled vehicle or robot in real time (e.g., VIPER). These 

operating models present their own unique challenges in managing fatigue and workload 

due to the variation across the goals of the mission. Previous researchers have 
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successfully implemented a fatigue management program for personnel working in a pre-

planned sequence evaluation and generation control center (Barger et al., 2012), but have 

yet to systematically evaluate real-time, reactive telerobotic operations. The upcoming 

VIPER mission—formerly the Resource Prospector mission—is aimed towards 

expanding lunar exploration through sending a remotely operated rover to the moon to 

both map out and excavate the moon for concentrations of ice. This will be the first 

resource mapping mission on another celestial body and will aid in the future Artemis 

2024 mission. Due to the nature of this upcoming VIPER mission (i.e., being a 

continuous operation with human-operated, remotely controlled technology) there is a 

need to systematically evaluate missions such as these from a fatigue risk-management 

perspective. 

Real-time, Reactive Telerobotic Operations 

     Real-time, reactive telerobotic operations require a significant fraction of time for 

monitoring, managing, and maintaining the health and safety of the onboard systems 

(McCann & Spirkovska, 2005). This differs from the other types of missions in two key 

ways: (1) it will be a continuous operation meaning it needs to be operated at all times 

around the clock; and (2) there will be a direct lack of immediate feedback with the 

technology due to the remote and distant location, as well as not having direct human 

interaction and feedback. In space-related missions, long-term exposure to environmental 

stressors are constant (e.g., circadian disruption or misalignment), which can be 

problematic when information processing and decision-making capabilities need to be at 

their maximum potential. On top of that, the sustained nature of these real-time, reactive 
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operations (i.e., performing operations 24-hours a day until completion) require personnel 

to rotate shifts consistently throughout the day and night. Previous missions have had 

various complications arise due to mission personnel experiencing decreased sleep 

quality and circadian misalignment during prolonged, continuous mission operations 

(e.g., Barger et al., 2012). Despite these findings, more research is required to ascertain 

the extent of this fatigue in relation to other factors, such as how it might affect workload, 

initial shift timing, staff scheduling, and use of fatigue countermeasures.  

Volatiles Investigating Polar Exploration Rover 

     The upcoming VIPER mission aims to locate and extract water (in the form of ice) on 

the moon. Projected to launch late 2023, mission control operators will continuously (i.e., 

rotating, 24-hour shifts) operate the rover and evaluate the flow of data coming in for 100 

days. Roughly the size of a golf cart, the VIPER will land in the south pole of the moon 

to locate sources of water using four distinct science measures: (1) the Neutron 

Spectrometer System (NSS) will detect “wet” areas of the moon; (2) The Regolith and 

Ice Drill for Exploring New Terrain (TRIDENT) will drill into the moon’s surface up to 1 

meter below; (3) Lastly, the Mass Spectrometer Observing Lunar Operations (MSolo) 

and (4) Near InfraRed Volatiles Spectrometer System (NIRVSS) will analyze the 

volatiles in terms of composition and concentration of the water. For the purposes of this 

experiment, a simulation of the VIPER mission was utilized to assess the major roles of 

the future mission (i.e., rover driver and real-time scientist, with guidance from an acting 

flight director). 
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Purpose of Study 

     The purpose of this study was to evaluate fatigue and workload during real-time, 

reactive control center operations, using the computer-based simulated control center 

environment at NASA Ames Research Center (ARC). Using participants trained for the 

Resource Prospector mission (a precursor to VIPER), we assessed the duration of drives 

based on operators’ fatigue and workload, as well as the differences in performance 

related to the time of day (i.e., one beginning at 12:00, and one beginning at 24:00). We 

hypothesized that the performance of the drives (i.e., in terms of vigilance, workload, and 

sleepiness) would worsen over time during the two five-hour drives. We also 

hypothesized that the midnight drives would result in worse performance relative to the 

noon drives, and that midnight drives would result in quicker burnout than the noon 

drives (i.e., indicative of increased workload, subjective fatigue, and reaction time). 
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Method 

Participants 

This study was approved by the NASA IRB (HRI-359). A total of 16 individuals 

were trained to operate the VIPER simulation and were invited to participate. Of the 

eligible participants, seven (n = 1 female) agreed to participate (i.e., five drivers; two 

real-time science operators). Each trial consisted of one driver paired with one real-time 

scientist (RTSci) operating the simulation; the duties performed by each role are detailed 

below. Due to the uneven distribution of drivers and RTSci, two researchers from the 

Fatigue Countermeasures Laboratory at NASA ARC acted as RTSci (i.e., the last six trial 

runs were with confederates). The driver was always paired with the same RTSci (or 

confederate) during the study. For the purposes of this study, there were no exclusion 

criteria beyond requiring the participants to be trained operators for the VIPER mission. 

Driver Activities 

The role of the driver was to operate and manage the safety of the rover. During the 

simulation, the driver viewed a 3D projected world space of the moon. There were two 

levels of the world space: (1) the drivable terrain, and (2) the projected image of the 

surface of the moon. A high-resolution visual environment of the moon’s surface was 

displayed (i.e., 1 km x 1 km), though the drivers only had a portion of that (i.e., 320 m x 

320 m) available for driving. If the rover was driven past the physical terrain space, the 

simulation would error; therefore, drivers were instructed to remain within the mapped 

simulation. The driver issued a series of commands to the rover, such as precise 

directional input, waypoints to travel to, simulated images to capture, and projected 
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hazards (e.g., rock, divot, or crater in immediate vicinity). Capable of turning in any 

direction, the rover would navigate to a waypoint submitted by a driver. To simulate the 

slight delay in communications during a real lunar operation, there was a six second 

buffer for uplink of commands to the rover and a 10 second buffer for the downlink of 

telemetry, plus an additional bandwidth calculation—the larger the telemetry item, the 

longer it took to download—resulting in pictures taking roughly 30 seconds to download 

after the command was received. The monitor displayed each command that was recently 

uploaded in the top left corner of the screen, as well as a timer for subsequent commands. 

The rover traveled at a speed of 10 cm per second while in motion, but on average, it 

traveled roughly 1 cm per second when buffer time, operator decision time, and other 

factors are considered, equaling roughly 36 m an hour. The driver also utilized other 

commands for navigational purposes to determine the safest route, such as the navigation 

and hazard cameras.  

The navigation camera, or NavCam, took photo-realistic images of the projected 

world space, allowing the driver to see if there were obstacles in their path. There was a 

total of two NavCams, both located at the top of the rover situated roughly two meters 

high to simulate the angle that an average sized human would observe. These cameras 

had an effective range of eight meters. The NavCam pair took a 70-degree wide image of 

the terrain around the rover and displayed the projected hazards immediately in that field 

of view with a color-coded visual. Flat surfaces were highlighted green to indicate that 

they were safe to traverse, while difficult terrain (e.g., rocks, divots, or craters) was 

highlighted in shades of red; the greater the threat, the darker the saturation of red. In 
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addition to the NavCams, there were an additional four cameras located at each wheel, 

with one in the back of the rover as well. The hazard cameras, or HazCam, displayed 

hazards to the immediate terrain around the wheels with a range equal to two meters. The 

drivers continuously scanned their environment in order to avoid crashing the rover. The 

pitch—the rover pointing up or down a slope—or roll—the rover moving across a 

slope—was not supposed to exceed a 15-degree tilt, as that was the agreed upon limit for 

safe travel. It was estimated that a tilt of 25-degrees or more would result in a crash, 

either through flipping the rover and or general loss of control. 

The main task for the drivers was to traverse the path that was programmed for the 

simulation. Each traverse plan was the same for every trial run, so that the drivers would 

experience the same obstacles and challenges during the day compared to the night. In 

order to minimize learning effects, the traverse plan was reversed for each drive (i.e., the 

midnight traverse plan was the reverse of the noon traverse plan). While driving the 

traverse plan, the drivers needed to be mindful of the location of the sun; solar panels 

were located on all sides of the rover except the front, meaning that drivers were advised 

to avoid driving in the direct direction of the sun to avoid loss of power. However, this 

was often difficult when maneuvering around the lunar surface, often forcing drivers to 

drive backwards to ensure the sun remained on the panels. Each traverse plan contained 

two Area of Interest Maps (AIM) which showed a colored square around the projected 

world space, indicating areas that would be of interest to the science operator. 
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Real-Time Scientist Activities 

The role of the real-time scientist (RTSci) was to observe the flow of data collected 

from the hydrogen sensors on the rover. As the goal of the future mission is to excavate 

the moon for volatiles, specifically water, the RTSci were consistently monitoring a two-

channel count rate, comparing water-equivalent hydrogen abundance, and burial depth. 

This informed the RTSci about the concentration of water as well as how deep below it 

would be located. As the driver traversed the path and AIM, the RTSci may provide input 

on where specifically the rover should travel based on the flow of data. For example, 

when traveling across the traverse plan, the RTSci may observe a spike in the data, and 

would suggest going back over that location to see if truly was indicative of a high water 

concentration, or just an anomaly (e.g., statistical error). The areas of high hydrogen 

concentration were color coded, such that areas of low concentration were colored yellow 

and progressively transitioned to green as concentration increased, with blue indicating 

the highest degree of hydrogen concentration. Areas with too little data were marked 

black. 

Measures 

Pre-screening 

Prior to the start of the experiment, participants were debriefed on the study 

procedures. Participants were given a background questionnaire that included general 

demographic information (e.g., age, BMI, and typical sleep and wake schedule; see 

Appendix A) and questionnaires to assess whether they are more morning or evening 

types, as well as their quality of sleep. The Morningness-Eveningness Questionnaire 
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(MEQ) distinguishes individuals who identify as morning types from individuals who 

identify as evening types in terms of how well they feel subjectively (e.g., overall mood) 

and how well they perform in general, and has been demonstrated to correlate with the 

circadian phase of the participant (Duffy et al., 2001; Horne & Östberg, 1976). In the 

present study, the MEQ was assessed for reliability through Cronbach’s alpha and was 

rated internally consistent with a score of 0.83.  

The Pittsburgh Sleep Quality Index (PSQI) and Epworth Sleepiness Scale (ESS) are 

questionnaires that determine the likelihood of a person having a sleep disorder (Buysse 

et al., 1989; Johns, 1991). In the present study, the ESS and PSQI were assessed for 

reliability through Cronbach’s alpha and were rated internally consistent with a score of 

0.57, and 0.88, respectively. These were gathered early to provide a well-rounded picture 

of their prior sleep history.    

Sleep Assessment 

     During the initial meeting, each participant was given an activity monitor (Actiwatch 

Spectrum, Respironics Inc®, Bend, OR, USA) to wear on their non-dominant wrist. The 

Actiwatch was used to evaluate participants’ sleep timing, duration, and quality leading 

up to and during the stimulation. Participants were also asked to complete a daily sleep 

diary consisting of periods of sleep, including naps, to supplement the actigraphy analysis 

(see Appendix B). 

Subjective Fatigue Assessment 

Participants’ self-rated fatigue levels were assessed through the Karolinska Sleepiness 

Scale (KSS), which is a highly sensitive subjective measurement for sleepiness 
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(Åkerstedt & Gillberg, 1990). The KSS is a one-item scale that asked participants to rate 

how sleepy they felt in that instance; on a nine-point Likert scale (i.e., 1 = extremely alert 

to 9 = fighting sleep), participants were asked to rate how fatigued they felt throughout 

the duration of the drive (i.e., one prior to the drive, and repeated testing every 

subsequent 30 min). In the current study, the KSS was assessed for reliability through 

Cronbach’s alpha and was rated internally consistent with a score of 0.30 for the noon 

drives, and 0.46 for the midnight drives.  

Workload 

The NASA-TLX is a multi-dimensional scale designed to obtain estimates of 

workload from operators and was originally developed at NASA ARC (Hart & 

Staveland, 1988). Since the original pen-and-paper version, the NASA-TLX was recently 

adapted to a fifth generation, 32-GB Apple iPod with the same characteristics as the 

original. Participants completed a baseline assessment of workload prior to both drive 

sessions in order to create the individual weighted ratings for each participant. This 

consisted of a 15-item comparison in which the participants were asked to compare 

which workload characteristics were more demanding. Each of the six workload 

domains—Mental Demands, Physical Demands, Temporal Demands, Frustration, Effort, 

and Own Performance—were weighted against individuals’ perceived workload 

sensitivities. In other words, the weight for each demand was multiplied by the raw score 

provided, and then divided by 15 (i.e., the total number of comparisons during the 

baseline assessment). Raw scores were obtained through a series of visual analog scales 

for each domain, allowing participants to select their perceived workload for each domain 
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along a continuum (see Appendix C). In the present study, the NASA-TLX was assessed 

for reliability through Cronbach’s alpha and was rated internally consistent with a score 

of 0.74 for the noon drives, and 0.87 for the midnight drives.  

Vigilance 

A handheld, 5-minute visual Psychomotor Vigilance Task (NASA-PVT) was utilized 

to assess participants’ reaction times and lapses in performance (Arsintescu et al., 2019; 

Dinges et al., 1997; Dinges & Powell, 1985). As with the NASA-TLX, the NASA-PVT 

was developed at NASA ARC on a fifth generation, 32-GB Apple iPod with the same 

characteristics as the original PVT-192. This version of the PVT required participants to 

hold a horizontal facing iPod that displayed a black screen with a red rectangle in the 

middle (see Appendix D). Once the red rectangle began counting in milliseconds, the 

participants were required to tap the screen with their dominant thumb as quickly as they 

could. The intervals at which the stimulus (i.e., the millisecond counter) appeared varied 

between two to 10 seconds, requiring the participants to remain vigilant throughout the 

five-minute duration. Participants were instructed how to use the NASA-PVT prior to 

testing and performed a baseline test prior to the start of the simulation. The main 

parameters used in the analysis of reaction time data were mean reaction time (RT), 

response speed (1/RT), and number of lapses (i.e., responses > 500 ms). 

Study Protocol 

A within-subjects, randomized experimental design was used for the study utilizing 

the simulated control center environment at NASA ARC. The experimental conditions 

consisted of the two times at which the drives commenced, 12:00 – 17:00 and 00:00 – 
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05:00. In order to simulate the full experience of a real-time, reactive telerobotic 

operation, the major roles of the VIPER mission were examined (i.e., rover driver and 

real-time science operator). Four participants had their noon drive first and three 

participants had their midnight drive first, and both RTSci had their noon drive first. Each 

participant completed two drives each, ranging from a minimum of two to a maximum of 

10 days between.  

The day drive began at noon, while the night drive began at midnight. Each 

participant drove for five hours total, with the option to end the simulation if they felt too 

fatigued. Prior to the start of the simulation, the acting flight director provided a brief 

rundown on the drive procedures (e.g., purpose of drives, traverse plan, and refresher on 

controls). The driver and RTSci (or confederate) were also asked about their most recent 

caffeine consumption prior to testing, although caffeine was not accounted for in the final 

analysis. After this, participants completed a baseline cognitive test battery that took 

nearly 10 minutes completing an initial KSS, NASA-TLX, and NASA-PVT. Once the 

baseline assessment was complete, participants began their session. Roughly every 25 

minutes, participants were asked to pause operating the simulator to complete their 

cognitive battery. In total, participants were scheduled to complete nine test batteries (not 

including the baseline assessment), until they completed five hours of driving. During 

each cognitive battery, participants were moved to a nearby, isolated meeting space to 

minimize distractions. Participants were monitored by a study staff member for 

compliance during all tests. 
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Statistical Analysis 

Analyses were calculated using R statistical software (version 3.6.1) on the Ubuntu 

Linux Operating System (version 18.04). Sleep data were calculated from actigraphy 

using a standard algorithm (Phillips Respironics). Sleep outcomes included sleep duration 

in the week prior to the simulation, sleep duration in the 12 and 24 hours prior to the 

simulation, and wake after sleep onset (WASO), which is a measure of sleep disruption. 

As is in the name, the WASO refers to how long an individual was awake after they 

started their sleep period. For example, individuals with sleep apnea or other sleep 

disorders might have a high WASO simply due to waking at multiple periods through the 

night.  

We calculated the following metrics from the NASA-PVT: mean reaction time (RT), 

number of lapses (i.e., RT > 500 ms), optimum response times (i.e., the fastest 10% of 

response times for all trials), and cognitive slowing (i.e., the slowest 10% of response 

times for all trials). We also assessed the correlation between average duration of sleep 

achieved 24 hours prior to the drive with NASA-PVT performance (i.e., mean RT) using 

a Pearson correlation. 

Workload was evaluated on the NASA-TLX by calculating the weighted average for 

each participants’ trial. At baseline, participants completed a 15-item comparison in 

which they selected which workload domain was most taxing to them for their given task. 

These weights were used to calculate the weighted average by multiplying individual 

weights to individual raw scores and dividing the sum of those numbers by 15 (i.e., the 
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number of comparisons). Individual workload metrics were also analyzed to measure 

differences between the noon and midnight drives.  

To assess operational performance during each drive, we determined how often 

drivers exceeded a 15-degree tilt during their drives. We also evaluated the magnitude of 

the tilt as a measure of severity. 

We aimed to evaluate performance difference in three ways. First, we used paired t-

tests to evaluate the overall difference between the noon and midnight drives. In order to 

determine the time when performance deterioration reached an unacceptable level, we 

identified the NASA-PVT tests when RT exceeded two standard deviations above the 

baseline for each individual. This was calculated through averaging each trial and getting 

the difference in RT from the baseline. The standard deviations of those differences were 

calculated to determine the two-standard deviation limit. This method was also used for 

the NASA-TLX as well. For all analyses, confidence intervals will surround the mean 

differences observed. Lastly, we utilized Hedge’s g to measure effect size for a more 

accurate representation of the population (i.e., due to utilizing the sample-based standard 

deviation) as well as the low sample size (see Eq. 1 below). Because our sample was 

within-subjects, we calculated Hedge’s g utilizing the pooled standard deviation equation 

from Cohen (1988).   

                                                        Hedge′s 𝑔 =  
𝑀1− 𝑀2

𝑆𝐷∗ 𝑝𝑜𝑜𝑙𝑒𝑑
                                      (1) 
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Results 

Demographics 

Baseline demographic characteristics are shown in Table 1. Participants differed on 

many characteristics. One participant scored above the clinical threshold on the ESS and 

PSQI, while two others scored above the threshold for just the PSQI which are indicative 

of the participants potentially having undiagnosed sleep disorders (see Table 1). Sleep 

duration was also variable, ranging from pre-study sleep duration of four to almost 10 

hours (see Table 2). According to the MEQ, most participants were either neutral (i.e., 

neither morning nor evening types), or had scores close to neutral; two participants were 

scored to be moderate morning types and one participant was scored to be a moderate 

evening type. Sleep durations prior to the drives are shown in Figure 1 below, as well as 

the amount of WASO (see Figure 2). 
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Table 1 

Demographic Information 

Variable M(SD) Range 

Age 47.14 (12.32) 28 – 65 

BMI 26.30 (5.52) 21.6 – 27 

Weekday Bedtime 23:17 (1:02) 22:00 – 01:00 

Weekday Waketime 06:34 (0:43) 06:00 – 08:00 

Weekend Bedtime 23:42 (0:59) 22:00 – 01:00 

Weekend Waketime 07:34 (0:56) 07:00 – 09:30 

MEQ 53.36 (8.09) 41 – 64.5 

ESS 6.57 (3.26) 2 – 10 

PSQI 6.57 (3.39) 2 – 12 

Note. Age = years; BMI = Body Mass Index. 
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Table 2 

Sleep Information 

Variable M(SD) Range 

Sleep Duration for prior week (h) 6.50 (1.75) 4.10 – 9.58  

WASO for prior week’s sleep 50.58 (40.52) 0.00 – 3.40 

Sleep in prior 8 hours (noon) 1.89 (0.69) 1.83 – 2.90 

Sleep in prior 12 hours (noon) 5.28 (0.29) 4.97 – 5.73 

Sleep in prior 24 hours (noon) 6.02 (0.83) 4.97 – 7.19 

Sleep in prior 8 hours (midnight) 1.19 (1.21) 0.00 – 3.50 

Sleep in prior 12 hours (midnight) 1.19 (1.21) 0.00 – 3.50 

Sleep in prior 24 hours (midnight) 7.44 (2.54) 4.12 – 11.00 

Note. Sleep in prior # hours = Sleep duration (h) prior to a drive session. 
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Figure 1 

Sleep Durations 

Note. Median duration of sleep in hours (y-axis) prior to their drive dates. Panels A, B, 

and C represent the median duration of sleep received in the eight, twelve, and twenty-

four hours before their noon and midnight drives (respectively); and as represented by the 

legend, the lightly-dotted box represents the time prior to a noon drive (12:00), while the 

striped line represents the time prior to a midnight drive (00:00). The upper and lower 

hinges represent the inner and outer quartiles for the range of scores. Panel D represents 

all participants’ median sleep duration throughout the study, which each participant in 

numbered order from left to right. The four dots below each represent minimum sleep 

durations.  
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Figure 2 

WASO 

Note. Median wake after sleep onset (WASO) for each participant (in minutes; y-axis) 

prior to their drives.   

 

Noon versus Midnight 

KSS 

There was a significant increase in mean KSS scores from the noon drive (M = 

3.12, SD = 1.44), to the midnight drive (M = 5.06, SD = 2.28), t(65) = -9.13, p < .001, 

99% CI [-2.37, -1.30], g = 0.85, meaning the participants felt sleepier on average 

during the midnight drive (see Figure 3).  
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Figure 3 

KSS Mean Score 

Note. Mean KSS score (y-axis; larger number indicate greater sleepiness) plotted by 

trial number (x-axis); The noon scores are represented by the dotted line with circles, 

with midnight represented by the hashed lines with squares. Error bars represent 

standard deviation. 

 

NASA-PVT 

There were no significant differences across any mean measures on the NASA-

PVT. RT during the noon drive (M = 237.73, SD = 60.99) was not significantly 

different from the midnight drive (M = 238.73, SD = 57.85), t(65) = 0.12, p = .91, 

99% CI [-9.13, 9.95], g = 0.04 (see Figure 4). There were no significant differences in 

RT for the fastest 10% of responses comparing the noon drives (M = 170.83, SD = 

12.23) to the midnight drives (M = 175.11, SD = 18.41), t(65) = -1.73, p = .088, 99% 

CI [-8.96, 1.89], g = 0.27. There were no significant differences in RT for the slowest 

10% of responses for the noon (M = 363.0, SD = 79.91) and midnight (M = 364.4, SD 
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= 99.25) drives, t(65) = -0.19, p = .85, 99% CI [-40.87, 35.51], g = 0.02. Lastly, there 

were no significant differences across lapses in performance between the noon (M = 

0.35, SD = 0.54) and midnight drives (M = 0.46, SD = 0.88), t(65) = 0.61, p = .55, 

99% CI [-0.25, 0.41], g = 0.27. 

Figure 4 

NASA-PVT Mean Reaction Time 

Note. NASA-PVT performance (RT; y-axis) plotted by trial number (x-axis); Noon 

performance is represented by the dotted line with circles, with midnight represented 

by the hashed lines with squares. Error bars represent standard deviation. 

 

Relationship between Sleep and Performance 

Sleep duration was significantly positively correlated with NASA-PVT 

performance for the noon drives, r(64) = .30, p = .013, 99% CI [0.06, 0.51], 

accounting for 9% of the total variance. This would imply that performance got worse 

as the hours of sleep attained prior increased, which is counterintuitive based on the 

literature. Sleep duration was also found to be significantly negatively correlated with 
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NASA-PVT performance for the midnight drives, r(68) = -0.34, p = .004, 99% CI [-

0.53, -0.11], accounting for 11% of the total variance. This would suggest that 

performance was best when sleep duration prior was increased.  

NASA-TLX 

There was a significant increase in TLX scores from the noon drive (M = 37.93, 

SD = 20.09), compared to the midnight drive (M = 32.09, SD = 21.74), t(65) = 2.81, p 

= .007, 99% CI [0.29, 10.91], g = 0.26, meaning the participants felt their overall 

workload was higher during the noon drive (see Figure 5). 

Figure 5 

NASA-TLX Weighted Workload  

Note. NASA-TLX performance (weighted workload; y-axis) plotted by trial number 

(x-axis); Noon performance is represented by the dotted line with circles, with 

midnight represented by the hashed lines with squares. Error bars represent standard 

deviation. 
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For individual workload dimensions, Temporal Demand was significantly higher 

in the noon drive (M = 40.15, SD = 28.74) compared to the midnight drive (M = 

32.50, SD = 27.04), t(65) = 2.62, p = .011, 99% CI [-0.46, -0.06], g = 0.26. 

Frustration was also significantly higher in the noon drive (M = 31.36, SD = 30.44) 

compared to the midnight drive (M = 22.57, SD = 28.09), t(65) = 3.34, p = .0014, 

99% CI [16.45, 1.89], g = 0.31. 

Temporal and Mental Demand, closely followed by Effort, were the highest rated 

workload demands during the noon drives (see Figure 6). Conversely, Mental 

Demand, closely followed by Own Performance and Effort, were the highest rated 

workload demands during the midnight drives. Notably, physical demands were 

rating slightly higher in the midnight drives (M = 11.36, SD = 20.78) compared to the 

noon drives (M = 8.94, SD = 14.26). 
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Figure 6 

NASA-TLX Individual Domains 

Note. NASA-TLX performance (mean weighted workload; y-axis) plotted against 

individual workload domains (x-axis). Noon performance is represented by the lightly 

dotted bars, and midnight with the heavily dotted bars. Error bars represent standard 

deviation.  

 

Rover Health 

Four out of the five drivers exceeded a pitch or roll tilt of 15-degrees during the 

noon drives, while three of the five exceeded during the midnight drives (Figure 7). In 

the noon drives, one participant exceeded only once, two exceeded twice, and one 

exceeded four times; the simulation needed to be reset twice due to loss of control. Of 

the midnight drives, one participant exceeded four times, while the other two 

exceeded five times; the simulation needed to be reset once due to loss of control. 
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Figure 7 

Rover Health 

Note. Rover health indicated by max degree of tilt (accounting both pitch and roll) 

achieved by the driver during both the noon (lightly dotted) and midnight (heavily 

dotted) drives. A tilt of 15° was agreed as the limit for safe travel (yellow line), where 

a tilt exceeding 25° would be indicative of a crash (red line). It should be noted that 

tilt was only recorded for drivers that approached 15°, hence the empty cells for 2903, 

and 2904’s Noon drive. 

 

 

 

 

 

 

 

 

 

 

 



  

41 

Discussion 

We evaluated how long an individual could operate a lunar rover before the effects of 

fatigue and workload began to impair performance. We also evaluated the changes in 

performance over time during work shifts starting at noon and work shifts starting at 

midnight. We found that on average, participants rated themselves as subjectively 

sleepier with a greater range of scores during the midnight drives compared to the noon 

drives. Objective performance did not differ between the noon and midnight drives on 

average but was more variable at night. Our evaluation of performance over time 

suggests that drivers should rotate into a different role after three hours of driving during 

the day and night. In the following sections, we highlight our results compared to current 

literature findings that have assessed similar populations in terms of operators’ subjective 

sleepiness, psychomotor vigilance, workload, and operational performance.  

Subjective Sleepiness 

We found that participants rated themselves to be much sleepier during the midnight 

drives, with a mean difference of almost two points. Previous researchers have found 

subjective sleepiness to increase when work shifts are either extended (Barger et al., 

2014), or scheduled during the biological night (Kazemi et al., 2016). In 2014, Amann et 

al. assessed pilots’ subjective sleepiness during extended operations and found it to be 

rated the highest (i.e., a KSS score greater than 7) for missions that exceeded 20 hours. 

Similarly, when operators perform during the biological night, sleepiness tends to 

increase as time continues, before tapering off as the morning approaches (Kazemi et al., 

2016). This has been consistently shown across a variety of operational environments, 



  

42 

where sleepiness tends to reach well above average during night shifts (Garbarino et al., 

2002; Harma et al., 2002). However, researchers assessing underground miners found 

that years of experience seemed to mitigate this subjective fatigue, in that the only 

reported difference was at the end of their night shift (Legault et al., 2017). In the present 

study, we found that almost all participants, regardless of years of experience, rated their 

subjective sleepiness to be higher during the midnight drives. Only one driver reported 

lower levels of sleepiness throughout both drives; however, this participant’s rating 

spiked on the very last trial, which coincides with the literature suggesting sleepiness to 

be highest at the end of the night shift (Dinges, 1995). Often coupled with this increase in 

subjective sleepiness are other cognitive deficits that have been shown to worsen 

throughout the shift (i.e., in terms of reaction time and lapses). 

Psychomotor Vigilance 

Our findings support that an increase of time on task in driving the lunar rover leads 

to overall poorer performance. We found that performance on the NASA-PVT exceeded 

two standard deviations from baseline after approximately three hours of driving during 

both the noon and midnight drives. At night, performance was more variable between 

participants with worse performance towards the end of the night shift. This coincides 

with much of the literature on shift work; In 2011, Ferguson et al. assessed miners’ 

psychomotor performance through a hand-held NASA-PVT while working a variety of 

shift schedules (e.g., comprising a combination of consecutive day and night shifts, with 

few days off in between) and found a significant main effect of test timing, in that 

reaction time was significantly lower during the end of the night shifts compared to any 
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other time reported. The authors also compared performance based on the hours of sleep 

attained in the prior 24-hours and found those who exceeded seven hours of rest resulted 

in significantly better performance (i.e., in terms of mean differences of reaction time). 

We observed a wide spread of average sleep durations across the participants; we found 

that those who slept less leading up to their shift performed much worse compared to 

those who slept more and was much more apparent during the midnight drive.  

In 2019, Naerri et al. (2019) conducted a simulated flight study utilizing pilots from 

the Department of Aviation at the University of Oklahoma found that as the number of 

manual tasks required of the pilot increased, performance worsened. The authors also 

correlated psychomotor performance with an eye tracking paradigm and found a decrease 

in the number of average eye fixations, an increase in the average eye fixation duration, 

as well as an increase in random eye movements as psychomotor performance declined. 

Taken together, perhaps a combination of a psychomotor vigilance and an eye tracking 

paradigm should be investigated to provide some context of a threshold of operator 

performance when operating in real-time.  

Workload 

Contrary to our hypotheses, we found that overall weighted workload was slightly 

higher during the noon drives compared to the midnight drives. When coupled with 

subjective sleepiness levels, it seems that moderate levels of workload results in lower 

subjective fatigue, with lower levels of workload resulting in higher levels of fatigue. 

This exact phenomenon was observed among Naval crewmembers operating in a 5-day, 

24-hour setting in that moderate levels of workload resulted in lower levels of subjective 
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sleepiness; the authors also reported that high levels of workload (exceeding the moderate 

range) resulted in an increase in fatigue once again (Grech et al., 2009). This coupling of 

subjective sleepiness and workload has been observed across a variety of occupational 

contexts as well. In 2019, Berg et al. assessed cabin crew pilots on ultra long-haul flights 

(over 12 hours) and found that higher levels of workload resulted in significantly higher 

levels of fatigue with a moderate effect. Arsintescu et al. (2020) found similar results 

with short-haul flights (under 3 hours) as well, but with a weaker effect size. Similarly, 

short-haul pilots were reported to have the highest workload during morning shifts, 

potentially a result of compensation for the negative effects of fatigue on performance 

(Bourgeois-Bougrine et al., 2018). Additionally, over 300 short-haul transport drivers 

reported that the four strongest contributors to their fatigue and workload were: (1) long 

driving hours, (2) insufficient night/pre-work sleep, (3) insufficient rest breaks, (4) and 

monotonous driving routes (Friswell & Williamson, 2008). Therefore, it seems that 

moderate levels of workload are required to maintain appropriate levels of fatigue, so 

long as adequate rest is achieved prior to the shift.  

Another factor that seems to impact overall workload is the degree of autonomy in the 

simulation. Although not directly measured in this study, other researchers have found 

that tasks that involved manual operations resulted in a significant increase in workload 

among train operators when compared to autonomous tasks (Huang et al., 2019). This 

would also help explain the Naeeri et al. (2019) study mentioned previously, where 

pilots’ performance became significantly more decremented as the number of manual 

tasks increased. Researchers investigating workload in various unmanned vehicle systems 
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also found that increasing the levels of automation may directly reduce workload; for 

example, in high-demanding missions with various visual displays, additional modalities 

of the display (e.g., auditory and or haptic cueing) can be used to further reduce workload 

and aid navigation (Hooey et al., 2017). Perhaps if some of these tasks used in the 

simulation were converted to be more autonomous, it would help preserve some of the 

operators’ cognitive performance. 

Operational Performance 

We measured operational performance in terms of the overall “health” of the rover. 

Primarily, this consisted of monitoring the degree of tilt in which the simulated rover was 

placed; anything over 15-degrees was deemed as “unsafe,” while anything exceeding 25-

degrees was estimated to result in a definite loss of control of the rover. Our results, 

although not directly comparable to most operational contexts, does coincide with the 

available literature. Truck drivers operating 12-hour shifts around the clock were reported 

having a greater percent of failures in operational performance (i.e., through the Truck 

Operator Proficiency system which is a dual-axis tracking task that monitors speed and 

steering in controlled environments with its own divided attention task) during the 

biological night, as well as during extended (i.e., over 8 hours) shifts (Charlton & Baas, 

2001).  

In the present study, we found that three of the five drivers during the noon drives 

exceeded the agreed upon safe limit for travel (i.e., over 15-degrees), but did not exceed 

25-degrees. During the midnight drive, the same three drivers all exceeded 25-degrees, 

with two reaching upwards of 30- to 35-degrees. For the midnight drives, two of the three 
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participants achieved less than 5 hours of sleep in the prior 24-hours which may have 

resulted in their poor performance. However, one of the three received upwards of 9 

hours and yet still resulted in a crash. Looking solely at previous sleep, it would be 

contradictory to claim that one performed poorly due to lack of sleep, while others 

performed safely with similar minimal hours of rest. Regardless, the worst operational 

performance was observed during the end of the midnight drives, once again coinciding 

with the literature that performance degrades much quicker towards the tail end of a night 

shift. Taken together, it may be beneficial to preserve the last hour on shift for something 

less cognitively demanding (e.g., documenting information for subsequent shifts). It may 

also provide useful to rate the task complexity for each task in a given role before 

scheduling operators. Two researchers compared the task complexity measure known as 

TACOM with the NASA-TLX among 18 nuclear powerplant crewmembers and found 

them to be correlated (Park & Jung, 2006). Therefore, it may be beneficial to assess 

certain tasks with the TACOM prior to creating a shift roster to properly allocate 

crewmembers to tasks (with a larger emphasis towards the tail end of night shifts) to 

prevent accidents and overall burnout. 

Implications 

One discovery that was not predicted in our initial hypothesis was the higher overall 

workload in the noon drives compared to the midnight. This could suggest that the noon 

drive was more temporally and mentally demanding, requiring greater overall effort. On 

the other hand, this could have been reflective of the participants’ stresses of the day 

considering they took five hours away from their normal work schedule to participate in 
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this study. This would also help explain why Mental, as well as Physical Demands were 

higher in the midnight drive as they were not accustomed to working against their body’s 

biological clock and were therefore required to exert more effort.  

Our findings have practical implications for individuals working in similar 

environments. For example, drone operators typically control an unmanned aerial system 

from a ground control station and is typically performed around the clock. Due to the 

anticipated increase in prevalence of such operations (i.e., where an individual is 

controlling a vehicle from a ground control station), our findings may provide benefit for 

future operations.  

In 2016, the United States Air Force School of Aerospace Medicine conducted a 

fatigue and workload study on crewmembers working on the MQ-9 Reaper unit 

(Scheiman et al., 2018). The concern was stemmed from the increase of daily shift work 

from 8 to 12 hours, where crews were required to work five consecutive 12-hour days 

with only two days off, including rapidly alternating between shifts adding up to 60+ 

hours a week. A total of 72 operators participated, assessing both pilots and sensory 

operators. During the end of the shifts, around 18% of pilots reported a substantial 

increase in degraded alertness with roughly 23% of sensory operators. This split between 

the pilots and sensory operators should be considered when creating schedules, such that 

the tasks performed by both do not reflect the same workload. In the present study, 

drivers were paired with RTSci operators; and although we had an uneven split between 

the two groups, we found that drivers tended to have more variable performance with 

greater levels of subjective fatigue.  
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As mentioned earlier, Scheiman et al. (2018) reported that 30% of pilots and around 

16% of sensory operators expressed fatigue prior to the mission altogether, suggesting 

that they may live in a state of persistent fatigue. This was also observed in the present 

study as many of the drivers came into their drives with very little average sleep 

beforehand. The authors reported symptoms that stemmed from their fatigue, including 

headaches with eye strain, decreased appetite while on shift, and 30% expressing 

increased frustration and irritability (i.e., towards co-workers and or family members). 

Participants also reported in interviews that it was not uncommon to fight fatigue when 

commuting home due to the long hours. This increase in frustration can negatively impact 

the work environment by disrupting crucial communication between the operators, not to 

mention the dangers in commuting home while fatigued. Future operations should take 

these into consideration when creating rosters, and perhaps provide lodging to those who 

need to commute far distances to and from work.   

Due to the similarity between nurses, miners, drone and mission control operators 

(i.e., in terms of the 24-hour operations, staffing requirements, and similar levels of 

cognitive output required), many of the findings reported in the literature are 

generalizable to the context of this study. Researchers have found that the temporal 

sensitivity of an operation while performing situational awareness tasks led to the largest 

increases in workload across all other tasks (Hendy, 1995). This may help explain why 

workload was rated higher during the noon drives, simply due to the time pressures of 

participating in this study while still having work of their own to do. Regardless, it is 

imperative to assess the effects of the shift start time during these missions. Identifying 
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how much time a driver can reasonably operate during both the day and night can provide 

better insight regarding staffing requirements, and guidance to future mission operations. 

Although fatigued workers may continue to function, the potential for error will only 

increase as their quality of work diminishes, especially when operating a mentally and or 

physically straining task.  

These results may have various research and practical implications for shift workers 

who need to perform rigorous duties around the clock. Although our study was 

simulation based, it remains one of the few studies to evaluate a specific type of mission 

control operation (i.e., real-time, reactive) from a fatigue-risk management perspective. 

This study should also provide some insight in preparing for the future VIPER mission 

through proper shift scheduling, and insight into the effects of fatigue on operators’ 

performance. As of now, many such operations have multiple tasks that each individual is 

assigned to. However, the issue occurs when one individual becomes stuck performing 

one role and is forced to sometimes work over 12 hours in one sitting. Based on our 

results, operators need some form of break or relief of duty after three hours of 

continuous work in order to be at their maximum performance levels. Proper scheduling 

should also ensure that no one individual is forced to work one role for a prolonged 

period.  

Limitations 

While our study was one of the first to evaluate a specific real-time, reactive 

telerobotic simulation from a fatigue perspective, it was not without limitation. 

Limitations include dose dependency for either melatonin and or caffeine use as these 
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were not controlled for during the study. It was quite common for most if not all the 

participants to be have consumed caffeine either hours or minutes prior to the start of the 

drives. We did not assess participants’ use of melatonin either. Also, there was the 

potential for sleep inertia to have been a factor from waking from recuperative naps. For 

example, we observed a wide range of sleep durations prior to the midnight drive, which 

suggests that some attempted to nap prior while others did not. There may not be a “be-

all-end-all” solution for fatigue as it encompasses many environmental and physiological 

factors; therefore, some form of sleep-monitoring technology should be present during 

these shifts to prevent accidents and errors due to fatigue. As mentioned previously, 

perhaps some form of psychomotor vigilance and eye tracking paradigm can be utilized 

as studies have found correlations between the two. This system could alert personnel if 

their performance drops below “optimum performance levels;” however, there is 

currently no gold standard as to what that may be.  

Due to the small number of participants and representation of only one female, our 

study findings may not be generalizable to all individuals completing future mission 

operations. Although our study population represents nearly half of those currently 

trained for such duties, it is not enough to be able to generalize to other individuals that 

may be trained to conduct these operations in the future. In addition, we also utilized two 

members from the Fatigue Countermeasures Laboratory to act in the remaining three 

RTSci roles due to uneven distribution of drivers to RTSci operators. Although their data 

was not utilized in the analyses, the unfamiliarity of the lab members acting in this role 

may have affected the drivers in some unpredicted way, such as through providing a 
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sense of laxness of the simulation due to lack of technical knowledge, for example. 

Although the lab members were instructed how to perform in their role, it still may have 

biased the dynamic between the driver and our confederate RTSci operator. Similarly, all 

participants were instructed to avoid carrying any side conversation unrelated to the 

simulation, though this was not always the case throughout both the noon and midnight 

drives as each pair of drivers and RTSci operators held side chatter at some point 

throughout. However, we were told early on from key members of the future VIPER 

mission that side chatter will be very common in and around the control room during the 

real operation. 

As with any laboratory simulation, our study lacked consequences for errors made 

during the simulation. Although the participants were instructed by both the researchers 

and flight director, there were no repercussions for “crashing” the rover. During a real 

mission operation, there is likely to be a much greater component of stress than was 

simulated here due to the vast amount of time, money, and resources that goes into these 

missions. In addition, there were many more individuals in and around the control room 

during the noon drives and no other individuals present during the midnight drives, which 

may explain why some of the workload measures were unexpectedly higher during the 

day. As mentioned in the previous paragraph, we were told that during a real mission 

environment the control room will always be occupied due to the nature of the continuous 

operation. Therefore, our lack of a busy control room during the midnight drives may 

have confounded the data. Although some side conversation occurred during these 
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midnight drives that could have potentially kept them more alert, we still saw a decline in 

performance and an increase in overall sleepiness during the midnight drive.  

Lastly, other limitations that may have affected the study results that were not 

anticipated were technical difficulties with the simulation itself. There was one 

occurrence during a noon drive where the acting flight director could not be present. 

Taking their place, another highly trained individual in the future VIPER mission acted in 

this role. However, there were some nuances of the simulation that were not fully 

translated (e.g., how certain displays were set up and configured), therefore taking 

roughly 30 extra minutes to begin. This may have confounded the results in some unseen 

way, despite accounting for the extra 30 minutes towards the end.   

Future Directions 

Motivation and Consequence 

As the VIPER mission nears, a great deal of time will be spent developing further 

simulation tests and trainings to prepare as much as possible. It would be beneficial to 

continue analyzing operators during this time to gain a deeper understanding of their 

fatigue and workload. Although the participants were trained to operate the simulation 

and were instructed to take it as seriously as a real mission, we still lacked 

consequences/motivation for failure/completion. Future researchers should attempt to 

implore some motivational and consequential component, such that participants treat it as 

closely to a real mission as possible with a simulation. Future researchers should also 

study handover procedures. Although not heavily discussed in the literature, some 

researchers have found issues with handover due to time constraints, absence of written 
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documents, and lack of interdisciplinary communication (Fealy et al., 2018). Therefore, it 

would be beneficial to study this transfer of information from shift to shift, to ensure 

there is no loss of vital information. Although most operations likely have handover’s 

scheduled, it would be prudent to allocate at least the last hour to documenting vital 

information.  

Schedule Types 

In the present study, we evaluated only two schedule types with the same duration: 

noon versus midnight, each lasting a total of 5 hours each. As discussed previously, the 

literature on shift work has shown repeatedly that poorly scheduled shifts can result in 

fatigue and cognitive impairment (Åkerstedt, 1995; Dinges, 1995; Weinger & Englung, 

1990). Therefore, future researchers should also explore the different schedule types, 

comprised mainly of forward rotating schedule types as the literature suggests those to be 

most beneficial to one’s fatigue and workload (Czeisler et al., 1980; Tucker et al., 1996). 

Some researchers have found fast, forward rotating shifts to be detrimental to 

performance, though this was demonstrated for solely night shift work (Baulk et al., 

2009). Other operational professions requiring shift work (e.g., doctors) limit the 

consecutive night shifts to two or three and require at least two days off for every two 

nights worked (Cappuccio et al., 2009; Horrocks et al., 2006). Taking the MEQ into 

account should help construct these schedules, so that morning types can take a larger 

portion of morning shifts before rotating to evening, while those who prefer evenings can 

be scheduled with only a few mornings before rotating to the evening (Duffy et al., 

2001).  
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Shift Lengths 

Lastly, and in conjunction with evaluating schedule types, it would be beneficial to 

determine proper shift lengths for certain roles (e.g., driver vs RTSci operator). In our 

analyses, only one of the RTSci operators had worse performance during their midnight 

drive (i.e., indicative of mean RT), while the second operator remained resilient 

throughout. Perhaps this was indicative of the hours of sleep attained beforehand or their 

preference indicted by the MEQ; however, both RTSci operators had comparable hours 

of rest attained for both the noon and midnight drives, and both responded neutrally in the 

MEQ prescreen questionnaire. There are many other factors that could have accounted 

for this, such as motivation, personal stress, susceptibility to fatigue, or years of 

experience, but were not investigated in this study. Future researchers should therefore 

gather a larger sample—one that is gender balanced and consisting of different operator 

roles—and study them from a fatigue-risk management perspective to ensure both roles 

are operating safely and without decrement to their performance.  

Projected Terrain 

One of the ways to potentially reduce cognitive workload produced from strenuous 

tasks or frustration to time delays would be to externalize information that would 

normally reside in the operator’s short-term memory (Chen et al., 2006). For example, 

one or a few operators during their initial drives mistakenly clicked off the hazard 

mapping display which ultimately erased all previous scans. One feature that should be 

implemented is some form of permanent/autonomous hazard mapping system that will 

continuously display each hazard that the rover traveled to prevent loss of important data. 
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This feature was not implemented in the simulation because each NavCam image would 

eventually accumulate error due to the drivable surface being a projected terrain, creating 

a major discrepancy towards where the rover thought it went versus where it actually 

went. For example, one of the drivers mentioned that they drove through rocks not 

projected on either the Haz- or NavCam, likely the result of this accumulated error. This 

increased difficulty in estimating vehicle position, speed, and the presence of 

environmental hazards can all significantly increase workload over time (Hooey et al., 

2017). Perhaps a permanent mapping system that reset itself after a certain period, while 

informing the driver it is doing so, may help prevent loss of information and 

accumulation of statistical error. For example, considering this was a simulation, each 

scan performed by the operator created an aggregate estimate of what the program 

“thought” the moon’s surface was. As the number of scans increased, it increased the 

overall accumulation of error which created a less accurate picture of the surface, making 

it increasingly difficult for the operator to both traverse and interpret the terrain.  

Image Adjustment 

Another feature that should be implemented in the future VIPER mission that was 

present in the simulation is the ability to adjust the brightness and contrast of the 

NavCam images taken. Some of the operators had expertise in specific functions of the 

simulation, such as the user interface and how it displayed the real-time data and 

elements of the NavCam, as well as the ability to adjust the brightness and contrast on the 

NavCam images. This made it easier to differentiate between rough and smooth terrain. 

Although not expressed by everyone, every driver spent time early in their drives 
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adjusting the contrast and continued to do so throughout the drives when faced with 

ambiguous images. For example, some images had simulated glare from the sun, making 

it much harder to differentiate between the terrain. This feature should remain in future 

missions, as previous telerobotic missions have named perception as being one of the 

many detriments to operator performance (Chen et al., 2007). 

Image Labeling 

Lastly, each image taken by the rover should have an appropriate labeling system. On 

a few instances, some of the operators were faced with ambiguous images from the 

NavCam displays. For example, one driver towards the end of their night shift viewed 

what looked to be old rover tracks and was confused if it was an old image or a newer 

one. They concluded that it could have been taken behind the rover as opposed to in front 

but were ultimately unsure. Considering fatigue is likely to interfere with short-term 

memory of image retention, timestamps as well as the location of the camera (or simply 

displaying which NavCam is taking the picture) should be displayed on each image. This 

would free up required cognitive resources from the operator, allowing them to easily 

understand the situation they are in based on the image.  

Conclusion 

In summary, we evaluated how long a remote operator could drive a lunar rover 

before the effects of fatigue and workload began to impair performance. Participants, on 

average, rated themselves as sleepier during the midnight drives with less overall 

workload demand compared to the noon drives. No significant differences were found in 

vigilance, though most participants during the midnight drives reached poor performance 
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thresholds after roughly three hours. Nearly half of the participants performed well 

throughout the noon drive, with only one of those same participants remaining resilient 

during the midnight drive. Our findings support limiting the duration of time that a 

telerobotic operator engages in the driving task.  

Despite our limitations, our findings nonetheless have practical implications for 

individuals working in similar environments. For example, drone operators typically must 

control an unmanned aerial system from a ground control station through a series of 

scheduled shifts around all hours of the day of night, often causing operators to 

experience fatigue and performance degradation (Arrabito et al., 2010). These operations 

are becoming more prevalent today through the increasing use of technology and should 

therefore be further investigated. Our findings may provide useful for such operations, 

especially as NASA prepares for the VIPER launch planned for late 2023. Our findings 

also support the implementation of thoughtful schedule design that accounts for shift 

duration, timing, rotation, and time off to maintain control center staff alertness and 

performance. Therefore, future researchers should consider our findings and further 

investigate differing schedule types (i.e., comprised of fast, forward rotating shifts) and 

duration lengths of main role activities to prevent fatigue and cognitive degradation. 
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Appendix 

A. Demographics Questionnaire 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The information contained in the form will be kept confidential. All analyses conducted on the information contained in this form will 

report aggregate statistical findings only, and will not identify individuals. Your cooperation is appreciated.  

 
 

 

 
 

Date of Birth: ____________________ 

 

Height:  _________ 

Weight: _________ 

 

What is your typical bedtime on WEEKDAYS?  _____________ 

What is your typical wake-time on WEEKDAYS? _____________ 

 

What is your typical bedtime on WEEKENDS?   _____________ 

What is your typical wake-time on WEEKENDS?  _____________ 
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B. Sleep Wake Log 

 

 

 

Sleep Wake Log 

Name:_________________________   Phone:_______________   Date:_____________ 

 

INSTRUCTIONS:  Please make your form entry every night before going to bed and every 

morning upon awakening.  

 

Date at 

bedtime 

Day of 

week 

Time into 

bed 

Est. time to 

fall asleep 

Day at 

wake time 

Final wake 

time 

Time out of 

bed 
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C. NASA Task Load Index 
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D. NASA Psychomotor Vigilance Task 
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