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ABSTRACT 
 

MOVEMENT HISTORY OF THE PASAYTEN FAULT ZONE, SOUTHERN BRITISH 
COLUMBIA: INSIGHTS INTO LARGE-SCALE TRANSPORT ACROSS THE 

NORTH AMERICAN CONTINENTAL MARGIN 
 

by John D. Lee 
 

Controversial paleomagnetic data implies that at 90 Ma much of the Coast Mountains 

and Insular superterrane were 1200-3000 km to the south.  The eastern boundary of these 

allochthonous rocks is near the Pasayten fault in southern British Columbia.  This study 

covered an ~40 km segment of the fault, and the Eagle Plutonic Complex and Eagle shear 

zone to the east.  In the 157-123 Ma Eagle tonalite, NE-vergent reverse shear zones 

involve rafts of the host Nicola Group; overall, the Eagle shear zone has flattening 

fabrics.  Plutonic screens in the tonalite yielded a U-Pb zircon age of 207.9±2.1 Ma, 

implying rocks related to the Triassic Mount Lytton Complex extend ~100 km SE into 

the tonalite.  Greenschist-grade mylonites of the ~110 Ma Fallslake Plutonic Suite of the 

Eagle Plutonic Complex formed in the Pasayten fault zone.  Kinematic indicators, 

including quartz fabrics from Electron Backscatter Diffraction, record sinistral slip with a 

west-side-down normal component.  Cooling ages indicate motion at ~110-104 Ma, 

which is some of the youngest documented sinistral shear in the northern Cordillera.  

West of the Pasayten fault, detrital zircon ages from Eocene clastic rocks have a major 

peak at 93 Ma, which does not match Eocene basins east of the fault or adjacent 

Cretaceous strata of the Methow basin.  Brittle slip with a presumed normal component 

occurred after the sinistral shear, but no dextral slip is recognized, casting serious doubt 

that the Pasayten fault is a major structure in the Baja BC hypothesis.  
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INTRODUCTION 

The Canadian Cordillera can be broadly divided into two superterranes, the Insular 

and the Intermontane (Monger et al., 1972) (Figure 1).  The superterranes are separated 

by the Carboniferous to Cretaceous Coast belt, comprising oceanic and arc assemblages 

(Journeay and Friedman, 1993).  In southwestern British Columbia and northern 

Washington, the western margin of the Intermontane superterrane is in contact with the 

southern Coast belt across the ≥250-km-long, northwest-striking, steeply dipping 

Pasayten fault.  This fault is marked by distinct changes in crustal magnetism and 

conductivity (Bustin et al. 2013).  East of the Pasayten fault gravity values are higher and 

conductivity is lower than to the west of the fault (Cook et al. 1995; Jones and Gough, 

1995).    

The Coast Mountains and deformed flanking terranes have been called the Coast-

Cascade orogen (Monger and Brown, 2014).  Broad agreement for the timing of events in 

the Coast Cascade orogen exists from Early-Middle Jurassic accretion of the 

Intermontane superterrane to North America to the present (e.g., Monger et al., 1982; 

Gehrels et al., 2009).  However, understanding the spatial and temporal relationships of 

the Coast and Insular belts relative to North America during the Middle Jurassic through 

mid-Cretaceous is hindered by conflicting paleomagnetic and geologic data (e.g., Cowan 

et al., 1997).  Monger et al. (1982) posited that the Coast belt formed during mid-

Cretaceous accretion of the Insular superterrane to North America, after Middle Jurassic 

accretion of the Intermontane superterrane.  Rubin et al. (1990) outlined evidence for a 

single east-dipping subduction zone where plate velocity changes during subduction- 
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induced compression forming the Coast belt.  Early models have largely been superseded 

by the model of Monger et al. (1994) wherein ~800 km of Late Jurassic-Early Cretaceous 

sinistral translation oblique to the convergent plate boundary separated previously 

contiguous magmatic arc segments.  As a result, part of the central Coast belt was 

transported southward and westward outboard of the southern Coast belt (Monger et al., 

1994).  In this model, convergence changed from sinistral to dextral transpression during 

the mid-Cretaceous (~105-85 Ma) (Monger et al., 1994; Umhoefer and Schiarizza, 1996; 

Chardon et al., 1999; Evenchick et al., 2007; Nelson et al., 2012; Angen et al., 2014).  In 

the early Eocene the tectonic regime changed again to transtension (Parrish et al., 1988; 

Miller and Bowring, 1990; Haugerud et al, 1991; Miller et al., 2016) and by the late 

Eocene the contemporary Cascade magmatic arc had formed (Misch, 1977; Tabor et al., 

1984; Monger et al., 1994).  From ~47-34 Ma the Coast belt was dextrally offset ~150 

km along the N-S trending dextral Straight Creek-Fraser fault (Misch, 1977; Tabor et al., 

1994; Monger and Brown, 2014).   

Sinistral translation of the arc is recorded by clastic rocks of the Tyaughton-Methow 

basin of southern British Columbia and northern Washington.  Detailed detrital zircon 

studies from this basin document an Early Cretaceous (~110 Ma) change from a fore-arc 

to an intra-arc depositional environment (Umhoefer et al., 2002; DeGraaff-Surpless et al., 

2003).  This change is evidenced by westerly derived arc detritus, signaling basin closure 

coincident with sinistral translation of the Coast belt (Monger et al., 1994; Umhoefer et 

al., 2002; DeGraff-Surpless et al., 2003; Gehrels et al., 2009).   

 



3 
 

 

Figure 1.  Simplified map of major faults and terranes near the study area.  Hatched 
lines mark the extent of study area.  EPC=Eagle Plutonic Complex.  Modified from 
Journeay and Friedman (1993), and Monger (2015). 
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Paleomagnetic studies place much of the Coast Mountains and Insular superterrrane 

from north-central British Columbia to northern Washington near present day Baja 

California during the mid-Cretaceous (~90 Ma), leading to the Baja BC hypothesis (e.g., 

Beck et al., 1981; Irving et al., 1985; Umhoefer, 1987).  This hypothesis requires very 

large (2000-3000 km) right-lateral strike-slip. The Pasayten fault is the closest mapped 

structure to the paleomagnetically defined boundary and is thought by many workers to 

be the main structure that accommodated translation of Baja BC (e.g., Wynne et al., 

1995).  Previous work, however, suggests that the Pasayten fault zone has experienced 

sinistral motion (Lawrence, 1978; Greig, 1992; Hurlow, 1993).  Alternative 

paleomagnetic interpretations, incorporating an assessment of regional pluton tilting, 

stratigraphic relationships, and detrital zircon geochronology suggest significantly less 

dextral translation (Butler et al., 1989).  Baja BC proponents contend that uniform tilting 

is unlikely, and that the widely distributed and consistent paleopoles make large-

magnitude dextral translation a more probable explanation (Irving et al., 1985; Rees et 

al., 1985; Wynne et al., 1995).  Resolution of this controversy relies in part on a more 

complete understanding of the Pasayten fault.  

Pasayten Fault Zone 

The Pasayten fault juxtaposes Jurassic-Cretaceous sedimentary and volcanic rocks of 

the Methow basin to the west with the Quesnel terrane (Figure 1) (Greig, 1992).  A 1-4-

km-wide belt of deformed Mesozoic plutonic rocks and amphibolite rafts parallels the 

length of the fault (Greig, 1992; Hurlow, 1993).  Seismic lines across the fault are 
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interpreted to show two listric east-dipping splays that merge at depth (Bustin et al., 

2013).   

The Pasayten fault was active periodically from at least the Early Cretaceous through 

the Paleocene according to previous workers (Lawrence, 1978; Greig, 1992; Hurlow, 

1993).  Several workers have argued for an early period of large ductile strike-slip and 

dip-slip, followed by later episodes of brittle dip-slip movement. 

Coates (1974) noted evidence for ~10 km of vertical and lateral offsets from an 

investigation of a segment of the Pasayten fault just north of the Canada-U.S. border.  

Dip-slip was estimated by assuming that the basement rock of the Methow basin is the 

same as the Eagle Plutonic Complex and had been down-dropped the thickness of the 

Methow basin (Coates, 1974). However, Coates also recognized the lack of stratigraphic 

links across the fault making this estimate unreliable and later workers have shown that 

the Complex is not the basement to the basin (e.g., Ray, 1985; Monger, 1985). 

Barksdale (1975) examined a segment of the Pasayten fault that stretched from the 

U.S.-Canada border southward for ~75 km along the western margin of the dominantly 

Cretaceous Okonagan Range batholith.  Along this segment, a block of the Paleocene 

Pipestone Canyon Formation has been down-dropped on the southwest side of the fault 

(Barksdale, 1975), indicating offset continued into at least the Paleocene.  Additionally, 

Barksdale confirmed the lack of stratigraphic links across the Pasayten fault noted by 

Coates.  

Lawrence (1978) investigated a segment of the Pasayten fault in northern Washington 

where fabrics in trondhjemite rocks east of the fault indicated the Pasayten fault zone is a 
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primarily strike-slip fault that experienced intermittent activity from at least the Early 

Cretaceous to the Paleocene.  He concluded that the “strike slip motion...” is “pre-

Cenozoic in age” and that “the lower limit on this activity is the Jurassic consolidation” 

of a trondhjemite.  However, these age constraints were based on map relations of 

undated units reported by Barksdale (1975).  McGroder (1989) noted that the western 

contact of the Jurassic trondhjemite is a fault.   

Lawrence (1978) applied the Ramsay and Graham (1970) method to calculate 

displacement on ductile shear zones and determined a minimum strike-slip displacement 

of 2-4 km.  This estimate excludes the inner 100 m of the mylonite zone due to faults that 

cross-cut the foliation (Lawrence, 1978), and including the entire width of the mylonite 

zone would likely have significantly increased the estimated ductile displacement.  The 

upper age limit of fault motion is constrained by the overlapping Eocene Island Mountain 

volcanics and the Miocene Coquihalla Group (Figure 2) (Lawrence, 1978). 

Greig (1992) examined structures along the Pasayten fault within the Eagle Plutonic 

Complex and integrated these structures with U-Pb, K-Ar, and Rb-Sr dating of the 

Complex and adjacent units (Figure 2) (Greig et al., 1992).  The Eagle Plutonic Complex 

has yielded U-Pb zircon dates of 157 Ma to 123 Ma (Figure 2) (Greig, 1992).  Mid-

Cretaceous K-Ar and Rb-Sr dates are compatible with resetting during the emplacement 

of the Fallslake Plutonic Suite at approximately 110 Ma (Greig, 1992).  Moreover, K-Ar 

dates of several stocks in the Coquihalla area (Figure 2) indicate widespread early Eocene 

(~55 Ma) magmatism (Greig, 1992).  
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Figure 2.  Geologic map of the Pasayten fault zone in southern British Columbia and 
northern Washington.  Geochronology sampling locations are shown.  Hatched lines 
mark the extent of the study area.  ESZ=Eagle Shear Zone.  SFF=Similkameen Falls 
fault.  Modified from Monger (1989), Greig et al. (1992), Hurlow (1993), and Oliver 
(2008).   
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Mapping of the Pasayten fault zone and the geochronology work led Greig (1992) to 

define two episodes of deformation.  Ductile contraction occurred from the Middle 

Jurassic to the middle Cretaceous.  During this period the Eagle Plutonic Complex 

intruded and deformed the Nicola Group coincident with sinistral motion across the 

Pasayten fault.  This episode was followed by a brittle middle-Eocene event (Greig, 

1992).   

Hurlow (1993) investigated the slip history of the Pasayten fault through a structural 

and geochronologic analysis of the Okanogan Range batholith in northern Washington.  

U-Pb dates from trondhjemitic plutonic rocks of the Okanogan Range batholith indicate a 

minimum crystallization age of 114-111 Ma (Figure 2) (Hurlow and Nelson, 1993).  The 

parallel strike of the western margin of the batholith, the elongate geometry of the 

batholith, and the increase of magmatic foliation intensity towards the Pasayten fault 

suggest that the fault accommodated intrusion of magmas during a period of high-angle 

dip-slip according to Hurlow (1993).  Hurlow also determined that ~20 km of left-lateral 

strike-slip motion occurred either due to oblique plate convergence or the southward 

contractional escape of the Methow basin using the method of Naruk (1986). 

Research Objectives 

Determining the Early Cretaceous to Paleogene (~90-50 Ma) slip history of the 

Pasayten fault zone has significant implications for understanding deformation in the 

Northwest Cordillera and evaluating the Baja BC hypothesis, respectively.  If the 

Pasayten fault zone exhibits dextral slip between 90 Ma and 50 Ma important geologic 

support is provided for the Baja BC hypothesis.  Alternatively, if the fault zone only 



9 
 

records sinistral and/or dip slip during this time interval serious doubt is cast on the Baja 

BC hypothesis.  Past work has focused on segments of the Pasayten fault located 

northwest (Greig et al., 1992; Greig, 1992), directly southeast (Budimirovic and Miller, 

2017), and farther southeast (Lawrence, 1978; Hurlow, 1992) of the study area (Figure 

3).  The fault segment bounded by the Tulameen River to the north and the northern 

boundary of Manning Park to the south has only received limited study by mapping at a 

scale of 1:125,000 (Monger, 1989).   

Rocks of the ~110.5 Ma (U-Pb zircon) Fallslake Plutonic Suite on the northeast side 

of the Pasayten fault (Figure 2) are inferred to cross-cut Late Jurassic fabrics in the Eagle 

Plutonic Complex (Greig, 1992).  Foliations within the Fallslake rocks on the northeast 

side of the Pasayten fault exhibit a northwest strike, that is parallel to the fault and 

increases in intensity towards the fault (Greig, 1992).  Examination of any cross-cutting 

relationships and fabrics in the two units will assist in refining the kinematic history of 

the Pasayten fault.  

The eastern margin of the Eagle Complex juxtaposes Late Jurassic Eagle tonalite to 

the west with the Nicola Group and Eastgate-Whipsaw Metamorphic belt (EWm) to the 

east (Figure 2).  Greig (1992) examined fabrics along part of this ~100-km-long contact 

and interpreted it as part of a northeast-directed, reverse-sense ductile shear zone, which 

he named the Eagle shear zone.  Greig (1992) inferred a Late Jurassic age for the shear 

zone on the basis of strong parallel southwest-dipping foliations in the Eagle tonalite and 

Nicola Group and the higher metamorphic grade of the Nicola Group in the shear zone.  

The proximity of the Pasayten fault to the Eagle shear zone, and the presence of ductile 
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fabrics next to both shear zones, leads to the question of whether there are overprinting 

relationships, which might provide further insights into the timing of deformation.  

Further evaluation of kinematic indicators and gradients in foliation intensity will also 

lead to a better understanding of the fabrics.   

Middle Eocene clastic rocks mapped by Monger (1989) and Greig (1992) are thought 

to be the youngest rocks deformed by the Pasayten fault zone in British Columbia, and 

thus provide an important control on the upper limit of activity in the zone.  The age of 

these rocks is derived from limited fossil identifications (Monger, 1989).  U-Pb dating of 

detrital zircons obtained the Eocene clastic rocks in this study may provide the maximum 

deposition age and information on source regions.  

Faults have been mapped near Vuich Creek, west of the Pasayten fault, and are shown 

to place the Eocene rocks on the Jurassic Zoa Complex (Figure 2) (Greig, 1992).  Two 

mechanisms have been proposed for this arrangement by Greig (1992); either “upper 

plate-to-the-southwest normal faulting,” or reverse faulting during east to northeast 

contraction.  Thrust displacement is problematic in that the dominant tectonic regime 

during the Eocene is generally considered to be transtensional (e.g., Parrish et al., 1988; 

Haugerud et al., 1991; Eddy et al., 2016; Miller et al., 2016).  If Eocene thrusting is 

confirmed, then this implies localized transpression along the Pasayten fault, perhaps in 

an unrecognized restraining bend.   

Regional correlation of the Zoa Complex is uncertain.  One U-Pb zircon date from 

north of the field area places a minimum crystallization age of ~153±10 Ma on intrusive 

rocks of the Zoa complex (Figure 2) (Greig et al., 1992).  Metavolcanic inclusions in the 
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intrusive rocks are not dated and previous workers have advanced three correlations for 

the Zoa Complex; the Nicola Group, Early Triassic Spider Peak Formation, and the Eagle 

Plutonic Complex (e.g., Ray, 1986; Monger, 1989; Greig, 1992).  Rice (1947) mapped 

the Zoa Complex within the field area as part of the Nicola Group, noting the presence of 

pyroxene in each unit, and two geochemical analyses of Zoa Complex metavolcanic 

rocks indicate similarities with the Nicola Group (Greig, 1992).  The Spider Peak 

Formation outcrops along the western boundary of the Methow basin (Ray, 1986).  It 

consists of massive greenstone which is compositionally similar to metavolcanic rocks of 

the Zoa Complex (Ray, 1986).  Monger (1989) included the Zoa Complex in the Eagle 

Plutonic Complex.  The relationship of the Zoa Complex and Eagle Plutonic Complex is 

an important question, as the Zoa Complex and its deformation are localized near the 

Pasayten fault.   

Methods 

Field study consisted of a detailed geologic investigation and mapping at 1:40,000 of 

a segment of the Pasayten fault zone in southern British Columbia (Plate 1), which has 

only been mapped at 1:125,000 (Monger, 1989).  The study area extends ~40 km along 

the Pasayten fault from the Tulameen River to the northeastern boundary of Manning 

Park (Figure 3).  Access in the study area was facilitated by the construction of recent 

logging roads.  Ridge and stream traverses were also undertaken in crucial areas.  During 

an eight-week period of field work, orientations of lineations, foliations, and fold axes 

were measured in transects extending northeast from the Methow basin across the 

Pasayten fault and into the Eagle shear zone.  Particular attention was given to the 
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identification of kinematic indicators in the Pasayten fault zone and Eagle shear zone.  

Numerous oriented samples were collected for laboratory analysis, and several units were 

sampled for U-Pb dating and Electron Backscatter Diffraction Analysis (EBSD).  

Forty thin sections oriented parallel to lineation and perpendicular to foliation were 

cut from selected samples and subsequently evaluated for microstructures.  Sample  

selection criteria was based on the following: (1) representative specimens of each unit; 

(2) intriguing mesoscopic textures and structures; and (3) coverage of the study area.  

During analysis, emphasis was placed on kinematic indicators and deformation 

mechanisms to determine broad temperature ranges for deformation.  

The dated samples were from an inclusion in the Eagle Plutonic Complex and Eocene 

clastic unit (Figure 2; Plate 1).  The Eagle inclusion sample was collected ~200 m east of 

the Pasayten fault in the Granite Mountain area (Figs. 2 and 3).  This location consisted 

of medium-grained Eagle tonalite with moderately developed foliation surrounding 1-2-

m-thick, fine-grained weakly foliated bodies, which were sampled.  Eocene clastic rocks 

were sampled for detrital zircons in the Railroad Creek area (Figure 3).  U-Pb dates from 

this sample provide further insight into the age of the latest motion along the Pasayten 

fault.  Results are compared to previous work and larger regional studies (Figure 2).   
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Figure 3.  Index map of the study area.  Dashed lines mark the extent of the field area. 
Controur interval=40 m.  This map was created from metadata from the British  
Columbia Geological Survey. 
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Zircons were separated from the two samples at San Jose State University by milling 

rock fragments to ~0.420 mm and running the milled fragments through a Wilfley shaker 

table.  The grains were then dried and passed through a Frantz magnetic separator set at 

0.60 amperes and inclined 20°.  The remaining grains were then separated using a methyl 

iodide solution.  The zircons were mounted and imaged at the University of Nevada Reno 

using a Deben panchromatic cathodoluminescence detector and subsequently dated at 

Oregon State University using Laser Ablation Inductively Coupled Plasma Mass 

Spectrometry (LA-ICPMS).  The results were processed using methods described in 

Loewen and Kent (2012).   

Two oriented thin sections from the Eagle Plutonic Complex were analyzed by EBSD 

to determine broad temperatures of deformation and infer motion in the Pasayten fault 

zone.  The samples were prepared and analyzed for EBSD following the methods 

described by Mookerjee et al. (2016).  Equal-area projections of the orientations of quartz 

grains in the samples were plotted using Mathematica scripts from Mookerjee and 

Nickleach (2011).  
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ROCK UNITS 

In the study area, units west of the Pasayten fault are the Zoa Complex, Methow basin 

strata, and Eocene clastic rocks.  Methow units include the Virginian Ridge Formation 

and Winthrop Formation of the Pasayten Group.  East of the Pasayten fault are the Eagle 

Plutonic Complex, deformed Nicola Group rocks, and the Eastgate-Whipsaw 

metamorphic belt.  Several ~500 m2 bodies of the Miocene Coquihalla volcanic rocks and 

volcanic rocks of the Eocene Princeton Group occur in the study area, but only their 

extent and general lithology were investigated during this study. 

Host Rocks to the Eagle Plutonic Complex 

A 1-3-km-wide, NW-striking zone of upper-greenschist- to amphibolite-facies rock 

flanks the Eagle Plutonic Complex to the east (Plate 1).  East-west transects across this 

zone show a progressive transition from moderately foliated greenschist-facies rocks with 

relict pyroxene to strongly foliated amphibolite-facies rocks near the Eagle Plutonic 

Complex.  This zone extends from northwest of Highway 5 to southeast of Highway 3 

(Figure 2).  Monger (1989) and Greig et al. (1992) considered the zone to be correlative 

with Mortimer’s (1987) westernmost calc-alkaline belt of the Upper Triassic Nicola 

Group.  

Recent geochronologic work has refined the extent of the Nicola Group metamorphic 

belt (Massey et al., 2008; M. Mihalynuk and R. Friedman, written communication, 2018).  

Massey et al. (2008) reported an Early Permian (281.1±3.3 Ma) U-Pb zircon age for 

greenschist-facies, metavolcanic rock in the Whipsaw Creek area (Figure 2).  The 

Permian age led Massey et al. (2008) to introduce the name Eastgate-Whipsaw 
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metamorphic belt and separate it from the Nicola Group across the NW-striking 

Similkameen Falls fault (Figure 2) (Massey et al., 2008).  Mihalynuk and Friedman 

(written communication, 2018) obtained a Late Triassic (~201 Ma U-Pb zircon) 

maximum deposition age from a greenschist-facies metasedimentary rock in the 

Champion Creek (Figure 3) area, thereby refining the southern extent of Nicola Group 

metamorphic rocks (Figure 2).  

Eastgate-Whipsaw Metamorphic Belt (EWm belt) 

The ~1-km-wide, NW-striking EWm belt extends southeast for ~20 km from the 

Arrastra Creek area to south of Highway 3 (Figure 2) (Massey et al., 2008).  

Quartzofeldspathic schist and marble of the EWm belt mapped by Massey et al. (2008) 

elsewhere are not seen in the study area.  Within the study area, the EWm belt consists of 

poorly exposed, dark-green, epidote-plagioclase-actinolite schists.  The schists contain 

~1-2-mm-long plagioclase and actinolite porphyroblasts in a granoblastic matrix of ~40% 

actinolite, 20% epidote, 20% plagioclase, 10% chlorite, and ≤10% accessory and 

secondary phases.  Accessory minerals include quartz, rutile, and opaques.  Calcite and 

sericite variably replace plagioclase grains.  Foliations are defined by strongly developed, 

mm-scale compositional layering and planar alignment of chlorite, actinolite, and, 

epidote.  Compositional layers are distinguished by ~3-mm-thick mafic zones rich in 

actinolite porphyroblasts and felsic layers consisting primarily of granoblastic 

plagioclase.  Foliations wrap the porphyroblasts.  Lineations are defined by aligned, 

elongate porphyroblasts.  More commonly, actinolite forms garbenscheifer texture, both 

along and locally across foliation planes.  Sub-millimeter actinolite and epidote grains are 
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generally euhedral.  The high modes of mafic minerals and only sparse quartz make a 

basalt or andesite protolith likely.  

Actinolite porphyroblasts have local asymmetric tails of plagioclase and chlorite.  

Porphyroblasts typically display zoning manifested by darker-green pleochroism in rims 

(Figure 4).  Actinolite cores contain minor inclusions of euhedral epidote along cleavage 

planes.  The epidote inclusions are likely a replacement product.  Contacts between 

porphyroblasts and the matrix are generally sharp except where overgrown by local 

euhedral epidote (Figure 5).   

Plagioclase porphyroblasts contain inclusions of variably aligned, highly elongate 

(10:1) ~100 μm-long rutile needles, ~100-μm-long actinolite grains, and anhedral 

epidote.  Epidote inclusions are likely an alteration product given their shape.  Contacts 

between plagioclase porphyroblasts and the matrix are obscured by euhedral actinolite 

overgrowths.  The tails on plagioclase porphyroblasts consist of quartz and plagioclase 

grains overgrown by euhedral actinolite and epidote grains.  Several tails are variably 

replaced by calcite. 
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Figure 4.  Concentric, compositionally zoned actinolite porphyroblast from the EWm belt. 
A) Plane-polarized light. B) Cross-polarized light.  Arrows point to the plagioclase and 
quartz tails on the actinolite.  
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Nicola Group Metamorphic Belt 

The Nicola Group forms an ~40-km-wide belt that extends northwest from the U.S.-

Canada border past the 51st parallel (Preto, 1979).  Preto (1979) separated the Nicola 

Group into three belts: (1) the western belt of felsic to intermediate calc-alkaline and 

pyroclastic rocks with common limestone lenses; (2) the central belt of mostly 

intermediate calc-alkaline volcanic and intrusive rocks; and (3) the eastern belt of mafic 

volcanic rocks and sedimentary rocks.  Northeast of the study area the western belt 

500 μm 

E 

Figure 5.  Euhedral epidote grain from EWm belt with sharp contacts against other 
phases.  Arrows point to epidote grains.  Cross-polarized light. 
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interfingers with pyroclastic rocks of the central belt (Monger, 1989).  Along the contact 

between the Nicola Group and Eagle Plutonic Complex, well-foliated amphibolite- to 

greenschist-facies rocks of the Nicola Group are interlayered with 1-3-m-wide bodies of 

foliated marble (Greig, 1992).  These deformed rocks of the western belt comprise a 

small percentage of the Nicola Group, but make up the Nicola Group metamorphic belt 

of this study.  Greig (1992) includes this belt and the eastern margin of the Eagle Plutonic 

Complex in the Eagle shear zone (Plate 1).   

Within the study area, the Nicola Group metamorphic belt consists of epidote-

amphibole schist, quartzo-feldspathic schist, and minor marble (Plate 1).  Meter-scale 

rafts of the Nicola Group occur in the adjacent eastern part of the Eagle Plutonic 

Complex.  East of the Nicola Group metamorphic zone are pyroxene-bearing 

volcaniclastic rocks, which were not investigated during this study.  Outcrops of Nicola 

Group schist are mostly limited to drainages and roadcuts.  Fresh epidote-amphibole 

schists are medium- to dark-green, whereas weathered surfaces are reddish-brown.  

Characteristic mm-scale, strongly to moderately developed foliations are defined by 

aligned amphiboles, chlorite, and rare biotite.  Local strongly developed lineations are 

defined by aligned actinolite.  Marble surfaces are pink or cream colored.  The marbles 

have moderately developed foliation and compositional layering defined by 5-10-cm-

wide zones rich in Fe-oxide minerals alternating with calcite.   

Epidote-amphibole-schists are granoblastic and fine- to medium-grained.  They 

consist of ~40% plagioclase, 30% amphibole, 10% quartz, 10% biotite, and ≤10% 

accessory and alteration minerals.  Two-3-mm-long actinolite porphyroblasts occur in 
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one thin section.  Equilibrium phases include epidote, biotite, and chlorite.  Alteration 

minerals include prehnite, epidote, and calcite.  Compositional layering is strongly 

developed; dark layers contain abundant amphibole and light layers contain mostly 

granoblastic plagioclase.  The compositional layers wrap local actinolite porphyroblasts.  

Intermediate to mafic volcanic rocks are likely protoliths given the mineral modes. 

Nicola rafts in the Eagle Plutonic Complex are typically only exposed in roadcuts.  Fresh 

exposures are dark with 1-5-cm-thick injected tonalite stringers, which are parallel to 

foliation.  Minerals in the rafts are larger than in the Nicola Group rocks in the Eagle 

shear zone.  Hornblende is locally compositionally zoned (Figure 6).  Epidote grains are 

typically euhedral and some contain hornblende inclusions (Figure 7).  Strongly 

developed foliations are defined by aligned biotite, hornblende, and compositional layers.  

The compositional layering is marked by ~3-mm-thick felsic and mafic layers of 

plagioclase and hornblende-biotite, respectively.  Aligned hornblende grains define 

lineations (Figure 6).  Some exposures with abundant biotite contain an S-C fabric.  The 

S-surface is defined by biotite and hornblende, and the C-surface by biotite. 
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Figure 6.  Photomicrograph of typical Nicola raft in cross-polarized light.  Note the zoned 
hornblende grain and the adjacent euhedral sphene.  The hornblende grain defines lineation 
in this sample.  Arrow points to the zoned hornblende.   

 

500 μm 

Figure 7.  Euhedral epidote with hornblende inclusions in cross-polarized light. Arrow 
points to epidote. 

500 μm 
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Mount Lytton Complex 

The southern margin of the Triassic (~250-208 Ma; U-Pb zircon) dioritic to tonalitic 

Mount Lytton Complex is intruded by the Eagle Plutonic Complex (Monger, 1989; 

Parrish and Monger, 1992).  In the study area, Fallslake muscovite-biotite granodiorite on 

the western slope of Granite Mountain contains ~1-m-thick, fine-grained equigranular 

tonalite bodies with weak to no foliation (Plate 1).  A sample of this fine-grained rock 

yielded a U-Pb zircon age of 208±10 Ma (see geochronology section).  Herein the dated 

tonalite and nearby tonalite bodies are considered xenoliths of the Mount Lytton 

Complex due to similarity in lithology, texture, and ages.  Descriptions of the Mount 

Lytton Complex (e.g., Parrish and Monger, 1992) better match the tonalite bodies than 

the Eagle Plutonic Complex (Greig, 1992).   

The dated xenoliths of the Mount Lytton Complex consist of ~40-50% plagioclase, 

30-40% quartz, <10% biotite, <5% muscovite, accessory rutile needles, and alteration 

products.  Sericite partially to completely replaces plagioclase grains.  Chlorite 

replacement of biotite is common.  Opaque minerals fill fractures and border mica grains, 

and are commonly accompanied by thin margins of sericite.  Weak foliation is defined by 

aligned biotite and subordinate muscovite.  Muscovite grains have sharp contacts against 

other phases.  Quartz grains show evidence for bulging recrystallization.  Primary epidote 

is not present in the sample, in contrast to the Eagle tonalite.  

Zoa Complex 

The Zoa Complex comprises a discontinuous, ~1-km-wide belt of heterogeneous 

quartz diorite with massive dark green metavolcanic xenoliths and chlorite schists west of 
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the Pasayten fault (Figure 2).  Greig et al. (1992) reported a U-Pb zircon age of 153±10 

Ma from the Zoa Complex ~12 km north of the study area (Figure 2).  Metavolcanic and 

intrusive rocks of the Zoa Complex were first described by Camsell (1913) who 

considered them part of the Eagle Granodiorite.  Monger (1989) included these rocks in 

the Eagle Plutonic Complex.  Greig (1992) formally distinguished the Zoa Complex as a 

separate unit, based on the lack of intrusive relationships with adjacent rocks of the Eagle 

Plutonic Complex.  

In the study area, the Zoa Complex is exposed in two heterogeneous bodies. The 

~600 m2 northern body is exposed in several roadcuts and outcrops near the confluence 

of Sutter Creek and the Tulameen River (Plate 1). The ~2 km2 southern body is mostly 

covered, but several outcrops occur along the Hudson Bay Company Trail ~ 1 km NW of 

the confluence between Podunk Creek and the Tulameen River headwaters (Plate 1).  

Mylonitic Zoa Complex rocks occur locally within an ~500-m-wide zone extending from 

the Pasayten fault in the southern body. 

Chlorite schists in the Zoa Complex are very fine-grained, medium-green, and poorly 

exposed.  They occur as 1-8-cm-long deformed enclaves in Zoa quartz diorite.  The 

enclaves have aspect ratios of 2:1 and consist of ~45% chlorite, 40% plagioclase, and 

15% quartz.  Sericite and calcite variably replace plagioclase grains and some of the 

chlorite likely replaced biotite.  Quartz occurs as recrystallized elongate mosaics, which 

help define foliation along with chlorite.  Mm-scale C-surfaces and S-surfaces defined by 

chlorite and quartz are recognized locally in thin section.  The S-surfaces wrap around 

relict plagioclase grains that typically have undulose extinction and are microfractured.   
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Zoa quartz diorite forms light- to dark-green, moderately resistant exposures.  Grain 

size in the quartz diorites ranges from fine to coarse.  Typical modes are ~37% 

plagioclase, 25% quartz, 23% chlorite, 10% epidote, and 1% to 5% euhedral sphene.  

Additional minor phases include hornblende, biotite and opaques.  Chlorite and 

subordinate biotite grains define weakly to moderately developed foliation that variably 

wraps 1-5-cm-long metavolcanic xenoliths. The chlorite commonly forms pseudomorphs 

of biotite.  Elongate quartz aggregates define variably oriented, moderately developed 

lineations.  Quartz in these aggregates records bulging and subgrain-rotation 

recrystallization.  Plagioclase grains are typically heavily sericitized and saussuritized.  

Secondary epidote typically forms ~100 μm grains with sharp contacts against other 

phases.   

Mylonites and ultramylonites of the Zoa Complex consist of plagioclase and quartz 

porphyroclasts in a matrix of sericite, chlorite, quartz, and epidote.  Euhedral, ~1 mm 

sphene grains occur locally.   Plagioclase porphyroclasts are variably fractured and 

typically have tails of chlorite and quartz (Figure 8).  Quartz occurs in ~100-μm-wide 

recrystallized aggregates (Figure 9).  Calcite and sericite variably replace feldspar grains.  

Foliation is defined by aligned chlorite and quartz, and local compositional layering.  

Compositional layers are distinguished by ~2-mm-thick lighter-colored zones of elongate 

quartz aggregates and chlorite, and darker zones of euhedral epidote and opaque phases.  

In one thin section, aligned epidote aggregates define a weak lineation.  Locally, foliation 

and compositional layering are deformed into open folds with 20 cm wavelengths.   
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Figure 8.  Fractured plagioclase porphyroclast with chlorite and quartz tails in Zoa Complex. 
A) Plane-polarized and B) Cross-polarized light. The anastomosing foliation is defined by 
chlorite, biotite, and quartz. Note that the foliations are perpendicular to fractures in the 
plagioclase porphyroclasts. 

 

500 μm 

Figure 9.  Recrystallized quartz in Zoa Complex mylonite. Cross-polarized 
light. 
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Eagle Plutonic Complex 

Early workers included plutonic rocks of this study in the ~250-km-long, variably 

deformed Mesozoic Eagle Granodiorite (Rice, 1947; Anderson, 1984).  Monger (1985) 

formally separated the Eagle Granodiorite into three bodies: 1) the Mount Lytton 

Complex, which is north of ~50˚N; 2) the Eagle Complex, which extends from ~50˚N to 

~49˚N; and, 3) the Okanogan Crystalline Complex or Okanogan Range batholith, which 

is south of ~49˚N in northern Washington (Figure 2).  Greig et al. (1992) renamed the 

Eagle Complex the Eagle Plutonic Complex and recognized three subdivisions: 1) the 

Eagle tonalite; 2) the Eagle Gneiss; and 3) the Fallslake Plutonic Suite.  Due to the lack 

of mappable contacts between Eagle tonalite and gneiss, in this work rocks mapped as 

Eagle tonalite incorporate banded zones that match the description of Eagle gneiss.  The 

Fallslake Plutonic Suite is mapped separately.  Amphibolite-facies rafts that occur within 

a ~200-m-wide zone along the northeastern margin of the Eagle Plutonic Complex are 

herein differentiated.  The rafts consist of recrystallized rocks of the Nicola Group and 

EWm belt.  

Traverses across the width of the Eagle Plutonic Complex reveal consistent textural 

and structural trends.  The Fallslake Plutonic Suite ranges from ~1-2.5 km in width and 

pinches out to the SE near Copper Creek (Plate 1).  Mylonites and protomylonites of the 

Fallslake Plutonic Suite are concentrated in a ~500-m-wide zone next to the Pasayten 

fault.  The Eagle tonalite is ~3.5-6 km in width.  East of the Fallslake-Eagle tonalite 

contact, there is an ≤5-km-wide western zone, and an additional ≤1-km-wide eastern zone 

of Eagle tonalite.  The western zone has only modest variation in texture and 
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composition.  The eastern zone is variably banded and intrudes and surrounds inclusions 

of the Nicola Group and EWm belt.  Massive equigranular Fallslake bodies intrude the 

Eagle tonalite and western margin of the Nicola Group. 

Eagle Tonalite 

The 157-123 Ma (U-Pb, zircon) Eagle biotite-epidote tonalite forms the bulk of the 

Eagle Plutonic Complex (Figure 2) (Greig et al., 1992).  A continuous, ~40-km-long 

segment of Eagle tonalite extending from Railroad Creek southeast to Copper Creek was 

studied during this work (Figure 2).  Exposures were studied via a network of hiking 

trails, service roads, and stream and ridge traverses.  Fresh surfaces are white with local 

mm- to cm-scale banding.  Weathered surfaces are typically khaki and locally stained 

dark red.  Enclaves are rare but where present are fine grained and have a higher color 

index than the tonalite.   

The western zone was recognized in the Champion Creek transect and Arrastra Creek 

transect (Plate 1).  Therein, the Eagle tonalite consists of meter-scale sheets with a 

predominantly medium-grained texture.  These sheets are recognized by slight 

compositional and textural differences.  Foliation in these sheets is moderately developed 

except near the Fallslake Plutonic Suite contact where the sheets are deformed into open 

folds that wrap intruding lobes of the Fallslake body.  The lobes penetrate up to ~3 m into 

the Eagle tonalite.  

The eastern zone of the Eagle tonalite is constructed of numerous cm- to meter-scale 

sheets.  Across sheet contacts, grain size ranges from fine- to medium-grained and 

banding is variably developed.  Near the eastern margin of the Eagle tonalite the banding 
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becomes better developed.  The color index of individual sheets varies from 2 to as much 

as 15, due to fluctuations in abundance of biotite, hornblende, and epidote.  Accessory 

phases, including garnet and sphene, also vary from 0% to 5% across sheet contacts.  

Foliations within individual sheets and across sheet contacts are variably developed, 

spaced, and deformed, and in adjacent sheets may be misoriented by up to 15˚.  In some 

sheets the foliations have been deformed into open folds with wavelengths of 10 to 50 

cm.  

Eagle tonalite and granodiorite are predominantly equigranular-hypidiomorphic and 

consists of approximately 30-45% plagioclase, 10-15% potassium feldspar, 20-35% 

quartz, 5% biotite, 2% hornblende and 2% epidote. Primary and secondary epidote are 

both present.  Weakly to moderately developed foliation is defined by aligned biotite and 

elongate quartz.  The foliations are presumed to be solid-state due to the alignment of 

quartz. 

Banded zones in the tonalite consist of 2 mm-10-cm-thick layers of alternating light 

and dark minerals.  The dark layers contain ~10% biotite and ~5% epidote and light 

layers contain mostly quartz, plagioclase, and potassium feldspar.  Quartz in the banded 

zones is elongate.  Accessory phases in these zones are hornblende, sphene, garnet, 

zircon, apatite, and opaque phases.  Alteration products include chlorite, epidote, and 

hematite.  Inclusions of 200-μm-diameter, euhedral garnets occur in some biotite and 

plagioclase grains.     

Plagioclase is subhedral.  Grains are kinked and display deformation twins locally.  

Potassium feldspar is subhedral.  Quartz is interstitial and has aspect ratios of 2:1 and up 
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to 3:1 in banded zones.  Solid-state deformation of quartz is indicated by grain bulging 

and subgrain rotation recrystallization.  Biotite locally forms 2 cm by 2 cm “books”.  

Partial to complete chloritization of biotite is widespread.  Euhedral magmatic sphene 

occurs adjacent to unaltered biotite.  Epidote forms up to 1-mm-long, euhedral grains in 

dark compositional layers.  The grains have sharp contacts against most phases, but are 

intergrown with quartz and plagioclase (Figure 10).  Several epidote grains contain dark 

red allanite cores (Figure 10).  These textures imply that the epidote is magmatic (Zen 

and Hammarstrom, 1984; Zen, 1985), a conclusion also reached by Greig (1992).  

Slickensides are typically plated with secondary epidote.  Hornblende is rare and where 

present is anhedral and smaller than biotite.   

 

Figure 10.  Zoned euhedral epidote.  (A) Plane-polarized-light.  (B) Cross-polarized-light.   

 

Fallslake Plutonic Suite 

The 110±2 Ma (U-Pb) Fallslake Plutonic Suite is the youngest member of the Eagle 

Plutonic Complex (Figure 1) (Greig et al., 1992).  Typical Fallslake exposures consist of 

A B 
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leucocratic granodiorite and tonalite (Greig et al., 1992).  Discontinuous Fallslake bodies 

are reported from where the Eagle Plutonic Complex is truncated in the north by the 

Fraser-Straight Creek fault to Highway 3 (Figure 2) (Greig, 1992).  The northeastern 

margin of the Fallslake Plutonic Suite forms a NW-striking intrusive contact with the 

Eagle tonalite.  This contact zone consists of meter-scale dikes, sills, and local Fallslake 

intrusions that extend eastward up to 10 m into the Eagle tonalite.  The main Fallslake 

body has yielded zircons of ~110 Ma with minor error, but zircons from the contact zone 

yield scattered ages (~147-100 Ma) that are attributed to inherited cores from the Eagle 

tonalite (Figure 2) (Greig et al., 1992).  Unabraded zircons yield younger ages that match 

Fallslake ages to the west (Figure 2) (Greig et al., 1992). 

In the study area, Fallslake rocks form a discontinuous, ~1-2.5-km-wide, NW-striking 

belt that extends southward from the northwest boundary of the mapping area until 

pinching out in the Copper Creek area (Plate 1).  The Fallslake belt consists 

predominantly of homogeneous equigranular, fine- to medium-grained muscovite-biotite-

granodiorite and muscovite-biotite-tonalite.  In an ~200-m-wide zone near the Pasayten 

fault 10-cm- to 2-m-thick zones of Fallslake rocks are deformed into mylonites and 

protomylonites.  Fallslake intrusions in the contact zone with the Eagle tonalite consist of 

equigranular muscovite-biotite granodiorite and tonalite.  East of the contact zone, 

Fallslake-type intrusions have sharp contacts and ~2-mm-wide, fine-grained chilled zones 

against Eagle tonalite and Nicola Group metamorphic rocks.     

Non-mylonitic rocks of the Fallslake Plutonic Suite consist of ~30% quartz and 40% 

plagioclase, with variable amounts of potassium feldspar (15-25%) and muscovite (2-
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5%).  Minor (~1%) phases include biotite, garnet and opaques.  Secondary phases are 

chlorite and epidote.  Muscovite and subordinate biotite define weak foliations.  The 

color index ranges from 1-5 due to fluctuations in biotite modes.  Quartz grains show 

local evidence for bulging recrystallization.  Some plagioclase grains are normally zoned 

and myrmekitic texture occurs locally.  Sericite and calcite variably replace plagioclase, 

and biotite is typically highly chloritized.  Subhedral to euhedral garnet occurs as 

inclusions in, or adjacent to, muscovite grains.  Sub-radial muscovite splays occur 

locally, commonly adjacent to the euhedral garnet (Figure 11).  Undeformed quartz 

grains host muscovite splays (Figure 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Photomicrograph of equigranular Fallslake granodiorite showing splayed 
muscovite and garnet. Cross-polarized light.  

500 μm 
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Near the contact with Eagle tonalite, the Fallslake Plutonic Suite has strongly  

developed, cm-scale compositional layering, which is progressively better developed 

approaching the Eagle tonalite.  Light colored layers are rich in quartz and plagioclase, 

and dark layers consist of biotite and rare epidote, which replaces biotite.   

Mylonitic rocks of the Fallslake Plutonic Suite consist of quartz (~45%), plagioclase 

(~30%), potassium feldspar (~15%) and muscovite (5-10%).  Quartz forms elongate 

mosaics.  Muscovite occurs as ~100-μm-wide trails and 2-4 mm lenticular “fish” with 

curved tips and 4:1 aspect ratios (Figure 12).  Rare parallelogram-shaped fish are also 

present.  Muscovite and elongate aggregates of quartz form a strong foliation.  The 

foliation wraps plagioclase and potassium-feldspar porphyroclasts, which  

have tails of recrystallized quartz.  Some plagioclase grains exhibit core and mantle 

structures.  Lineation is defined by stretched quartz grains.  Calcite and sericite partially 

to completely replace the porphyroclasts, some of which also have ~20-μm-wide epidote 

and chlorite rims.  Fe-oxides and opaque minerals occur in 1-2-μm-wide zones parallel to 

muscovite trails. 
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Methow Basin (Pasayten Group) 

The Early Cretaceous Pasayten Group is ~2.4 km thick and consists of clastic rocks 

and volcanic flows (Coates, 1974; Barksdale, 1975; Trexler, 1985).  Exposures extend 

along the Pasayten fault from near the Mount Lytton Complex in British Columbia, 

southward into north-central Washington (Barksdale, 1975; Monger, 1989).  Coates 

(1970, 1974) and Barksdale (1975) defined two interfingering formations in the Pasayten 

Figure 12.  Photomicrograph of an asymmetric muscovite fish showing top-to-right 
motion in a Fallslake mylonite.  Note the foliation defined by elongate recrystallized 
quartz aggregates, and feldspar porphyroclasts with core and mantle structures. Arrow 
points to porphyroclast.  Cross-polarized light. 
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Group: 1) the west-derived Virginian Ridge Formation; and 2) the east-derived Winthrop 

Formation.  In the study area, these Formations interfinger in the Skaist Mountain area 

(Plate 1).  Barksdale (1975) also included dark red clastic rocks of the Midnight Peak 

Formation in the Pasayten Group.  However, this Formation has only been described in 

Washington.  The Pasayten Group in the study area is largely undeformed and only 

shows evidence for low temperature metamorphism, in contrast to units east of the 

Pasayten fault and the Zoa Complex.  Clast assessments are based on qualitative 

observations. 

Virginian Ridge Formation 

The Virginian Ridge Formation consists of interbedded mudstone, siltstone, and 

sandstone, and local conglomerate (Barksdale, 1975; Trexler, 1985).  Green-black 

siltstone is most common and local arkose beds occur in the upper part of the Formation 

(Barksdale, 1975).  Standard QFL composition plots indicate either a continental block or 

magmatic arc provenance (Barksdale, 1975; Trexler, 1985). 

In the study area, Virginian Ridge rocks crop out west of the Pasayten fault from the 

northern map boundary to the Hope Pass area (Figure 2).  The Jurassic Zoa Complex and 

the overlying Miocene Coquihalla Volcanic Complex separate the Virginian Ridge 

Formation into two belts.  

Lithologies in the study area include shale, siltstone, sandstone, and conglomerate.  

Resistant siltstone and local sandstone beds comprise ≥60% of outcrops.  Siltstone beds 

are ~40 cm in thickness, with 5-10-cm-thick mudstone interbeds.  Mudstone and siltstone 

beds weather to dark brown.  Fresh surfaces are tan.  Local fissile mudstone beds contain 
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angular concretions ranging from ~1-2 cm in diameter.  Local ≤0.5-m-thick, coarse-

grained, poorly-sorted sandstone beds are interbedded with ~10-cm-thick mudstone beds. 

Lenticular beds along the banks of Sutter Creek and Vuich Creek consist of ~80% 

siltstone and ~20% mudstone (Plate 1).  Mudstone beds contain local 5-12-cm-thick 

nodules of medium-coarse sand, cemented in a calcite matrix.  Subvertical ≤20-m-high 

cliffs that form the banks of Vuich Creek consist of green argillite (Plate 1).  The argillite 

beds are 10-20 cm in thickness.   

Conglomerate commonly forms ~20-cm-thick beds.  Clasts are typically ≤6 cm in 

diameter and are supported by a coarse sand matrix.  Locally, the long axes of larger (≥8 

cm) clasts are aligned.  Clasts range from sub-angular to sub-rounded.  Sorting is 

typically poor except in Sutter Creek where well-rounded clasts are 5-10 cm in diameter 

(Plate 1).   

Outcrop estimates of the conglomerate suggest it consists of ~70% mafic volcanic 

rock, ~20% felsic plutonic rock, and ~10% sedimentary rock.  Mafic volcanic clasts are 

dark-green.  Plutonic clasts commonly contain well-developed foliations and resemble 

rocks in the adjacent Eagle Plutonic Complex on the other side of the Pasayten fault. 

Sedimentary clasts are well-rounded and well-sorted lithic sandstone. Rare mudstone 

clasts occur locally.  

An exposure along the northwestern bank of Vuich Creek near Treasure Mountain 

consists of conglomerate overlain by medium-coarse quartzofeldspathic sandstone.  

Angular tonalite clasts, which are ~5 cm in diameter make up ~70% of the conglomerate.    
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Some of these clasts resemble the Eagle Plutonic Complex.  The remaining clasts include 

volcanic rock and mudstone.  Overlying sandstone beds are ~2 cm in thickness. 

Sandstones are poorly sorted and typically consist of ~75% feldspar, ~10% quartz, 

and ~5-15% lithic fragments.  Minor (≤1%) components include muscovite, biotite, 

hornblende, zircon, opaques, and chlorite.  Several clasts are altered to epidote, calcite, 

and sericite.  Fibrous chlorite is common.  Plutonic and volcanic clasts typically make up 

~2% of the rock.  Mafic clasts are basaltic.  

Feldspar clasts are variably altered.  Larger (400-900 μm in diameter) grains are 

typically mostly replaced by epidote and calcite.  Smaller (≤200 μm in diameter) grains 

are subangular.  Quartz clasts are angular to rounded and commonly ≤100 μm across.        

Orthogneiss lithics are present in all sandstone samples and consist of equigranular 

plagioclase (50%), quartz (30%), potassium feldspar (~15%), and minor muscovite 

(≤1%).  Several tonalite clasts contain ≤500-μm-long laths of muscovite that resemble 

those in the Fallslake Plutonic Suite.  Trachytic clasts contain ≤400-μm in diameter, 

zoned plagioclase phenocrysts set in a matrix of alternating zones of fine- and very-fine 

plagioclase.  Several ≥80-μm in diamater tonalitic clasts are also present.  Strain in the 

tonalite clasts is indicated by bulging and subgrain-rotation-recrystallization of quartz. 

Mudstone clasts larger than 200 μm comprise ≤10% of samples.  Siltstone clasts 

include quartz, plagioclase, muscovite, and biotite.   

Alteration in mudstone samples is common.  A network of 1-5-μm-wide hematite 

veins cross-cuts and is locally concordant to bedding planes.  Individual veins are 

discontinuous and undulating with 20-40-μm spacing.  The centers contain local clusters 
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of opaque minerals.  Chlorite flanks some veins.  Clasts adjacent to large hematite veins 

are replaced by epidote.  Several ≤40-μm-wide calcite veins cut mudstones.  Micro-folds 

of sericite are cut by hematite veins.   

Winthrop Formation 

The Winthrop Formation consists of quartzo-feldspathic sandstone that interfingers 

and partly overlies the Virginian Ridge Formation (Coates, 1974; Trexler, 1985).  Coates 

(1974) and Barksdale (1975) suggested a fluvial depositional environment.  Outcrops 

along the Pasayten fault are reported from Skaist Mountain southward from the study 

area (Coates, 1974; Monger, 1989) (Figure 2).  The Formation continues farther 

northward from the study area, west of the Virginian Ridge Formation (Monger, 1989) 

(Figure 2).  Detrital zircon work in the Winthrop Formation indicates a maximum 

deposition age of ~98 Ma, and cross-cutting 87 Ma dikes provide a minimum age limit 

(DeGraff-Surpless et al., 2003).  These authors found the southern Canadian Cordillera to 

be the best source for the Winthrop Formation. 

In the study area, the Winthrop Formation was only examined in four roadcuts which 

are within ~250 m of the Pasayten fault, near the headwaters of Copper Creek (Plate 1).  

Exposures consist of well-bedded, coarse-grained sandstone and mudstone beds in 

subequal quantities.   Beds are typically 0.5 m to 1 m in thickness and are defined by 

alternating layers of coarse to fine sand.  Weathered surfaces are khaki and fresh surfaces 

are pink.  Clasts are sub-angular and moderately well sorted.  One ~0.5-m-thick 

conglomerate bed contains felsic plutonic lithics, intermediate and mafic volcanic lithics, 

and metamorphic lithics.   
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A single thin-section was made from a medium-coarse sandstone. Grains include 

plagioclase (50%), quartz (35%), potassium feldspar (10%), biotite (≤ 2%), and chlorite 

(5%).  Felsic plutonic clasts and mafic volcanic clasts make up ~5% of the sample. Grain 

size ranges from medium- to fine-grained sand.  Quartz grains ≥ 400-μm-wide are sub-

angular to angular.  Grains ≤ 400-μm-wide are sub-rounded to sub-angular.  Larger 

quartz clasts are partially fractured and the fractures are filled by sericite.  Plagioclase 

rims and cores are variably replaced by sericite.  Plutonic grains are sub-rounded.  

Several clasts contain quartz mosaics with evidence for bulging and subgrain-rotation 

recrystallization.  Rare volcanic rock clasts have felty textures.   

Eocene Clastic Rocks 

Two NW-striking bodies of undeformed dark-red to purple clastic rocks occur west of 

the Pasayten fault north of the study area (Figure 2) (Cairnes, 1924; Monger, 1989; Greig 

et al., 1992).  Cairnes (1924) assigned these rocks a Cretaceous age based on an assumed 

eastern intrusive contact with the Eagle Plutonic Complex.  Monger (1985; 1989) refined 

the extent of the clastic rocks and further work by Greig (1992) suggested a middle 

Eocene age based on a palynomorph identification from Vuich Creek (Figure 2).  Detrital 

zircon data collected during this work indicates a Late Cretaceous (~90 Ma) maximum 

deposition age.   

A distinctive red sandstone forms an elongate, 500-m-wide, NW-trending body 

between the Zoa Complex and Virginian Ridge Formation near Railroad Creek (Plate 1).  

The body extends another ~1 km southeast of the Zoa body (Fig 2), and consists of 



40 
 

interbedded red feldspathic arenite sandstone, grey mudstone, and grey siltstone.  The 

sandstone plots in the dissected arc region on a QFL diagram. 

The sandstone consists of poorly sorted and angular, fine to coarse grains, cemented 

in a Fe-oxide-rich matrix.  Clasts are ~65% feldspar, 30% quartz, 10% plutonic 

fragments, and 3% other lithic fragments.  Feldspar clasts are variably replaced by 

sericite.   

Plutonic grains are ~3 mm by 2 mm.  Quartz and feldspar grains dominate, and rare 

magmatic epidote grains also occur.  The quartz grains have aspect ratios of 2:1 and 

display evidence for bulging recrystallization.  Plagioclase grains in plutonic clasts 

contain sericite-filled veins that do not continue into the matrix.   

Hornblende-Plagioclase Porphyry Dikes 

Northeast-striking, 1-2-m-thick hornblende-plagioclase porphyry dikes intrude all the 

Mesozoic units in the study area.  Exposures are light to dark green and are more resistant 

to weathering than host rocks.  The dikes consist of 1-2-mm-long hornblende and 

plagioclase phenocrysts in a matrix of quartz, plagioclase, and hornblende.  Common 

accessory phases include biotite and sphene.  Elongate hornblende phenocrysts define 

weak foliations that are parallel to the dike contacts.  Contacts are sharp with no apparent 

deflection of fabric in host rocks.   
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GEOCHRONOLOGY 

Zircons were separated from a sample of fine-grained tonalite hosted by the Eagle 

tonalite and from an Eocene clastic rock (Plate 1).  The xenolith in the Eagle tonalite was 

sampled in the Granite Mountain area (Plate 1).  Individual zircons are typically ~150-

µm-long, have aspect ratios of 3:1, and are euhedral.  The zircons exhibit oscillatory 

zoning and do not show evidence for inherited cores or metamorphic rims.  A total of 50 

grains were picked and 49 were analyzed by inductively coupled plasma mass 

spectrometry.  Twenty-nine of these grains were used to determine a weighted mean age 

of 207.9±2.1 Ma (Figure 13).  Four grains were not used to calculate the age, as 

concordia plots imply that they suffered lead loss (Figure 13).  The analyzed grains have 

a mean Th/U ratio of ~0.004, which is typical of igneous grains (e.g., Williams and 

Claesson, 1987).   

The age of this xenolith is older than the Eagle Plutonic Complex (Figure 2).  Triassic 

plutons are mapped ~20 km north of the study area in the Mount Lytton Complex, which 

is on strike with the Eagle Plutonic Complex (Figure 2) (Monger, 1985).   

In addition, the Mount Lytton Complex is cross-cut by Jurassic plutons that yield ages 

similar to those of the Eagle tonalite (Figure 2) (Monger, 1985).   
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Figure 13.  Plots of zircons from a xenolith hosted by the Eagle tonalite. A) Error bar 
graph for zircons from the xenolith.  B) Concordia diagram of the zircons.  Unused 
zircons are shown in red.  
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Eocene clastic rocks were sampled near Railroad Creek road, northwest of the 

Tulameen River (Figure 2).  The sample contains abundant angular subhedral zircons 

with well-developed oscillatory zoning, from which 98 were dated.  These zircons do not 

show evidence for inherited cores or metamorphic rims (Figure 14) and have a mean 

U/Th ratio of .095.  The dated zircons range from the Late Triassic to the early Eocene. 

The youngest grain is 53±1 Ma (Figure 15).  There is a major peak at 93 Ma and two 

broad peaks from 120 Ma to 150 Ma, and 200 Ma to 250 Ma (Figure 15).  In between the 

broad peaks there is a gap at ~180 Ma (Figure 15).  Following Dickinson and Gehrels 

(2009), a maximum depositional age of 86.2±1 Ma was calculated from the weighted 

mean of the three youngest grains with an overlap of 2σ.  Notably, the calculated 

maximum deposition age is older than the palynmorph age reported by Greig (1992), but 

the single youngest grain of 53±1 Ma from this study is a close match.   
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Figure 14. Cathodoluminescence image of representative zircons from the Eocene 
clastic rocks.  Note the well-developed oscillatory zoning. 

Figure 15.  Age histogram and probability density distribution for the Eocene 
clastic rocks. 
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STRUCTURAL ANALYSIS 

Structural measurements and descriptions were recorded at 290 stations in the study 

area (Plate 1).  During field work, structural analysis focused on coverage of the study 

area and kinematic analysis of the Pasayten fault and Eagle shear zone.  The Eagle 

Plutonic Complex comprises the bulk of the study area and thus received the most study.   

Deformation attributed to motion along the Pasayten fault is evident in rocks on both 

sides of the fault, as best displayed by mylonites in the Fallslake Plutonic Suite and Zoa 

Complex.  West of the Pasayten fault, foliations in the Zoa Complex increase in intensity 

approaching the fault, but some of them are not parallel to the fault (Plate 1). East of the 

Pasayten fault, the metamorphic and plutonic rocks have solid-state, NW-striking 

foliations (Plate 1).  In the Eagle Plutonic Complex, changes in dip direction are common 

and occur with increasing frequency approaching the Pasayten fault and Eagle shear zone 

(Plate 1).  Only subtle changes occur along strike (Plate 1).  Foliations in the EWmb and 

Nicola Group have consistent NW strike and SW dip. 

The trace of the Pasayten fault is offset by several NE-striking faults (Plate 1).  

Evidence for these faults was observed up to ~1 km east of the Pasayten fault. 

Eastgate-Whipsaw Metamorphic Belt 

The EWm belt is a NW-striking body with similar E-W structural and metamorphic 

gradients as the adjacent Nicola Group (Plate 1).  Foliations in the EWm belt strike NW 

and typically dip moderately to steeply (26˚ to 77˚; average 52˚) SW (Figure 16; Plate 1) 

and become stronger to the west near the Eagle Plutonic Complex.  The foliations have a 

maximum of 131˚, 61˚ SW.  Most of the mineral stretching lineations plunge moderately 
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to shallowly (19˚ to 39˚) NW and a few plunge 14˚ to 36˚ SE (Figure 16).  Foliations in 

the EWm belt are typically better developed than lineations and are deformed into folds 

with cm-to-meter wavelengths and NW-trending hinge lines (Plate 1).  Local NE (56˚ to 

89˚)-dipping foliations occur on the limbs of such folds (Figure 16).   

Nicola Group Metamorphic Belt 

Foliations in Nicola Group rocks strike NW and dip moderately SW (Figure 17).  The 

foliations steepen and become stronger near the Eagle tonalite.  Foliations are typically 

much better developed than lineations except in several outcrops north of the Arrastra 

Creek area where there are L-tectonites (Plate 1).  Lineations plunge gently to moderately 

SSW and SSE with one outlier plunging to the NW (Figure 17).  Rafts of the Nicola 

Group in the Eagle tonalite have strong foliations that also strike NW and dip SW (Figure 

17), and are parallel to foliations in the adjacent Eagle tonalite.  The single measured fold 

axis plunges SW (Figure 17).   

Eagle Shear Zone 

Structures in the Eagle shear zone were examined in the Champion Creek area and 

along Tulameen Road (Plate 1).  Nicola Group rocks there are deformed into kink folds 

and isoclinal folds with wavelengths of ~2 cm.  Foliations are deflected in four ~50-cm-

wide shear zones, which strike NW and dip moderately (~45˚) SW.  The deflection in 

foliations is interpreted to record top-to-the-NE reverse slip.  East of the Eagle shear 

zone, asymmetric fabrics were not observed. (Plate 1).  Overall in the Eagle shear zone, 

the EWm belt and Nicola Group consistently strike NW and dip on average ~52˚ SW.  
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Thus, assuming that the Eagle shear zone is parallel to the eastern margin of the Eagle 

Plutonic Complex, the EWm belt and Nicola Group are structurally below the Complex.   

 

 

 

 

 

Figure 16.  Poles to foliations in the EWm belt.  Contour interval=2σ; after Kamb 
(1959). 

 

N 



48 
 

 

 

 

 

 

Figure 17.  Poles to foliations and shear zones, lineations, and a fold axis from the 
Nicola Group metamorphic belt, and lineations in the Eastgate Whipsaw metamorphic 
belt. 
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Nicola Group metamorphic belt      Eastgate-Whipsaw metamorphic belt 
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Similkameen Falls Fault 

The EWm belt is separated from the Nicola Group by the Similkameen Falls fault 

according to Massey et al. (2009) (Plate 1).  In the study area, the orientation and 

intensity of foliations is similar on both sides of this fault and east-west gradients in 

deformation and metamorphism are continuous across the Similkameen Falls fault.  

Moreover, direct evidence for faulting near the fault, such as mylonites or cataclasites, 

were not observed.  

Zoa Complex 

The northern body of the Zoa Complex is in contact with the Fallslake Plutonic Suite 

across the Pasayten fault (Plate 1).  Foliations in this body are defined by aligned chlorite 

and biotite, and strike variably NW, W, and SW (Figure 18).  Dips range from 11˚ to 84˚ 

(Figure 18).  Within ~200 m of the Pasayten fault the foliations are locally strong.  

Elsewhere in the northern body foliations vary in development (Figure 18) (Plate 1).  

Lineation was measured in a single outcrop that contained aligned epidote aggregates. 

The southern body of the Zoa Complex displays an increase in deformation intensity 

from west to east.  The rocks range from moderately foliated to ultramylonitic near the 

Pasayten fault.  Foliations dip from 30˚ to 84˚ NE (Figure 18).  Foliation is subvertical in 

ultramylonites near the Pasayten fault (Plate 1).  The two measured stretching lineations 

plunge moderately SE and steeply ESE, respectively (Figure 18) (Plate 1).  Foliations are 

typically better developed than lineations except in mylonites where they are subequal.  

An 8-10-m-thick zone of NW-striking mylonites is present in the southern Zoa body next 

to the Pasayten fault.  Two samples of mylonitic greenschist from this shear zone were 
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analyzed for kinematics (Plate 1).  Foliation in one sample dips 60˚ NE, and lineations 

plunge ~30˚ SE indicating oblique slip.  Asymmetric microcline porphyroclasts are 

interpreted to show dextral-normal shear (Figure 19).  In contrast, rare calcite tails are 

interpreted to record sinistral-reverse shear (Figure 20).  The second sample dips 84˚ to 

the NE and lineation plunges ~12˚ SE, as was determined by cutting oriented slabs.  

Shear bands in this sample indicate sinistral-reverse shear (Plate 1).   
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Figure 18.  Stereographic projection of poles to foliations, and lineation from the 
northern and southern Zoa bodies.  
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Figure 19.  Microcline porphyroclasts in a mylonite from the Zoa Complex.  (A) 
Half arrows indicate direction of non-coaxial shear.  “B” outline emphasized.   

Figure 20.  Mylonite from the Zoa Complex showing an asymmetric calcite grain.  
Note, this is the same sample as in Figure 19. Half arrows indicate direction of 
non-coaxial shear. 
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Eagle Plutonic Complex 

The Eagle Plutonic Complex and Mount Lytton Complex form a highly elongate 

body (aspect ratio of 8:1) parallel to the trace of the Pasayten fault (Plate 1).  U-Pb 

crystallization ages young from Triassic in the NW to mid-Cretaceous south of the study 

area (Figure 2).  

Eagle Tonalite 

Foliations in the Eagle tonalite dip mostly moderately to steeply NE and SW, and 

have a maximum of 146˚, 72˚ SW.  The foliations are deformed into open macroscopic 

folds with axes that plunge moderately NW and SE (Figure 21; Plate 1).  The folds have 

wavelengths of up to 150 m and extend through the study area.  Subvertical foliations are 

present near the Pasayten fault and locally next to the Eagle shear zone (Figure 21) (Plate 

1).  Foliation is concordant to variably developed compositional layering.   

Lineations in the Eagle tonalite typically plunge shallowly to moderately SE and NW, 

and have a maximum of  7˚, 143˚ (Figure 22).  A small subpopulation also plunges 

moderately to steeply NE (Figure 22).  The majority of lineations define a NW-striking 

and steeply NE-dipping great circle (Figure 22).  Shallow to moderately plunging 

lineations are more common near the Eagle shear zone and Pasayten fault (Plate 1).  The 

steeply plunging lineations are concentrated in the middle of the Eagle tonalite body 

(Plate 1).   
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Figure 21.  Poles to foliations in the Eagle tonalite.  Kamb (1959) contour interval 
of 2σ. 
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Figure 22.  Lineations in the Eagle tonalite. Kamb (1959) contouring at 2σ. 
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Roadcuts in the Champion Creek area along Lodestone Road are fresh and mostly 

continuous, enabling detailed examination of the Eagle tonalite structure in an ≥500-m-

wide zone extending from the Nicola Group contact (Plate 1).  Near the eastern contact of 

the Eagle Plutonic Complex, an ~200-m-wide zone of Eagle tonalite contains nine, 20-

cm- to 50-cm-thick rafts of the Nicola Group.  The contacts of the rafts are parallel to the 

adjacent tonalite sheets.  The rafts typically contain 2- to 5-cm-thick, closely folded 

tonalite veins with 5- to 15-cm wavelengths.  Tonalite stringers in Nicola Group rafts are 

partly discordant to the internal foliation of the rafts.  Some of the stringers are deformed 

into complex cuspate-lobate structures.  The rafts and adjacent Eagle tonalite sheets are 

also deformed by several NW-striking, SW-dipping ~30-cm-thick reverse shear zones 

that are defined by deflected foliations and have SSE plunging lineations (Figure 23).  

The shear zones are interpreted to show reverse and dextral shear with displacements of 

10 cm to 1 m.  One prominent ~1-m-wide shear zone contains tight, parallel folds of 

foliation with 1- to 2-cm wavelengths.  Biotite schlieren are common here.   

East of the shear zones is an ~40-m-wide sheeted zone of fine- to coarse-grained, 

equigranular Eagle tonalite.  Sheet contacts are marked by sharp changes in modal 

abundances of mafic minerals.  Ptygmatic folds of felsic material and ~10-cm-thick 

pegmatite veins occur locally.   

The Eagle tonalite locally contains a weakly developed S-C fabric.  This fabric is 

more common near the western and eastern contacts.  The S-surfaces are defined by 

euhedral biotite and epidote grains.  The C-surfaces are defined by more finely 

recrystallized biotite, quartz, and chlorite grains.  Quartz is moderately elongate and 
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shows evidence for bulging and subgrain rotation recrystallization indicating that the C-

surfaces formed at low to medium temperatures (Hirth and Tullis, 1992).  Three oriented 

thin sections with an S-C fabric were analyzed for kinematics.  Two samples from the 

Champion Creek transect have foliations that dip 78˚ and 30˚ SW, respectively, and a 

down-dip lineation.  They record NE-vergent, reverse shear.  The third sample was 

collected NE of Granite Mountain in the Arrastra Creek watershed, in the interior of the 

tonalite (Plate 1).  The foliation there dips 51˚ SW and lineation plunges 9˚ SE; the S-C 

fabrics indicate sinistral shear with a reverse component (Plate 1).  
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Figure 23.  Nicola Group raft enclosed in Eagle tonalite. Note northeast-vergent folds of 
tonalite stringers that intrude along foliation. A reverse shear zone defined by deflected 
foliations is shown to the left of photo. TrN=Nicola Group, LJt=Eagle tonalite.  Author 
for scale. 
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Fallslake Plutonic Suite   

The Fallslake Plutonic Suite is exposed in a NW-striking, 1- to 2.5-km-wide body 

along the Pasayten fault and as numerous ~100 m2 stocks east of this body (Plate 1).  

Only one of these stocks was mappable.  It is in the Arrastra Creek area and trends NW 

(Plate 1).  The eastern contact of the main body of the Fallslake Plutonic Suite with the 

Eagle tonalite is curvilinear and has an overall NW trend.   

The main body of the Fallslake Plutonic Suite extends from the northern boundary of 

the study area to the Copper Creek area (Plate 1).  Deformation in the body generally 

increases towards the Pasayten fault.  Mylonites and protomylonites derived from the 

Fallslake Plutonic Suite are exposed in a 100-m- to 300-m-wide zone next to the fault, as 

observed near Tulameen Falls and Skaist Mountain (Plate 1).  Locally, the Fallslake 

mylonites are juxtaposed against mylonites of the Zoa Complex across the Pasayten fault.  

Folds occur throughout the main body, but are better developed in the Fallslake-Eagle 

contact zone and within ~100 m of the Pasayten fault.   

Foliations in the main Fallslake body strike NW and dip NE and SW (Figure 24).  

Dips increase approaching the Pasayten fault.  Lineations in the Fallslake Plutonic Suite 

are typically weak and difficult to measure.  They plunge from sub-vertical to sub-

horizontal and trends are scattered, although in the mylonites the lineations plunge S and 

NW (Figure 24).  Quartz microstructures include bulging and subgrain rotation 

recrystallization of grains, which indicate that foliation and lineation formed at low- to 

medium-temperature.     
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Figure 24.  Stereographic projection of lineations and poles to foliations in the main 
Fallslake body and in Fallslake stocks.  The yellow halo indicates samples used for 
kinematic analysis.   
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Kinematics were obtained from a protomylonite in the Sutter Creek area and two 

mylonites from the Skaist Mountain area (Plate 1).  The foliation of the protomylonite 

dips 85˚ SW and strikes parallel to the Pasayten fault, and has a lineation that plunges 11˚ 

SSE.  The protomylonite has a shape preferred orientation of elongate quartz grains that 

is oblique to the main foliation.  This quartz fabric and rare muscovite fish indicate 

sinistral shear across the Pasayten fault with a small normal component.  The mylonites 

have foliations that dip 78˚ and 79˚ SW, and have lineations that plunge 35˚ SSE and 45˚ 

S, respectively.  Both samples fit the Lister and Snoke (1984) description of a type II S-C 

mylonite.  They contain a strong shape preferred orientation of recrystallized quartz (Fig 

25), which along with the long axis of the well-developed muscovite fish define the S-

surface.  The C-surface is defined by trails of muscovite on the fish.  The obliquity of the 

quartz fabric and muscovite fish indicate sinistral shear with a east-side-down, normal 

component across the Pasayten fault (Figure 26).    

Near the Fallslake Plutonic Suite-Eagle tonalite contact, banded muscovite-biotite 

tonalite sheets are variably folded.  One 4-m-thick sheet contains prominent felsic veins 

and ~3-mm-thick biotite schlieren (Figure 27). The folds plunge moderately NE and have 

5- to 10-cm wavelengths (Figure 27). 

The few measured foliations in the equigranular Fallslake stocks are not consistently 

oriented.  They strike NW and E-W, and dip moderately steep to the SW, NE, and N 

(53˚-69˚) (Figure 24).  The few measured mineral lineations plunge S, NNW, and SW at 

14˚, 42˚, and 43˚, respectively (Figure 24).  An additional W-SW-trending lineation 

plunges 6˚ (Figure 24).   
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Figure 25.  Fallslake mylonite showing intensely deformed quartz.  Also note feldspar 
porphyroclasts and muscovite fish (lower right corner). 

 500 μm 

Figure 26.  Block diagram showing motion of Pasayten fault obtained from mylonites of 
the Fallslake Plutonic Suite.  The foliation and lineation symbols of stations used for 
kinematics are shown in red. Kpw=Winthrop Formation, mKg=Fallslake Plutonic Suite, 
LJt=Eagle tonalite.   
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The ~300-m-wide curvilinear contact zone of the main body of the Fallslake Plutonic 

Suite with the Eagle tonalite was observed in the Dear Mountain, Hope Pass, and Granite 

Mountain areas (Plate 1).  In this zone, the Fallslake Plutonic Suite commonly contains 1-

m-long inclusions of the Eagle tonalite, and the tonalite encloses ~30-cm-long inclusions 

of the Fallslake Plutonic Suite.  The foliations generally strike NW and dip ~30˚ to 80˚ 

NE or SW.  In the Dear Mountain area, zones of ptygmatically folded Fallslake sheets 

wrap around inclusions of Eagle tonalite (Figure 28).  The sheets are 5 cm to 20 cm in 

thickness and are delineated by changes in color index and are associated with schlieren.  

More commonly, the sheets intrude the Eagle tonalite in 2- to 3-m-wide zones marked by 

cuspate lobate folds (Figure 28B).  Additional discordant, ~1-m-thick sheeted zones 

Figure 27.  Folded felsic veins in Fallslake muscovite-biotite granodiorite.  Pencil is 
~8 cm long. 
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consisting of cm-scale sheets are deformed into tight folds and occur adjacent to the 

cuspate lobate zones (Figure 28C).   

 

 

 

Figure 28.  Field photographs of the Fallslake-Eagle tonalite contact zone.  (A) Sheeted 
zone cut by several thin felsic intrusions.  (B) Felsic rock with cuspate-lobate fold 
geometry.  (C) Tightly folded and steeply dipping Fallslake sheets. Red arrow points to 
fold of Fallslake. 
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Methow Basin  

A ~400-m-thick section of the Methow basin was examined during this study (Plate 

1).  The rocks consist of the Virginian Ridge Formation and the Winthrop Formation.  

Virginian Ridge rocks make up ~90% of exposures.  The strata are typically well-bedded.   

Strikes and dip directions of beds in the Virginian Ridge Formation are variable, 

presumably due to folding rotation from nearby faults (Plate 1).  Dips range from 18˚ to 

74˚ (Figure 29).  Near the northern Zoa body, Virginian Ridge beds strike NE and NW 

(Plate 1).   

In an ~300-m-wide zone next to the Pasayten fault, beds are deformed into gentle 

folds that have ~1-m wavelengths.  In this zone, the dip of beds also steepens towards the 

fault (Plate 1) where they average ~62˚.  Mudstone near the Sutter Creek and Vuich 

Creek confluence has been deformed into pencil structures defined by sets of closely 

spaced fractures that intersect beds.  The pencils have NE plunges of ~61˚.  Gentle SW-

plunging folds of beds are common in the mudstone.  Next to the Pasayten fault, beds are 

deformed by outcrop-scale brittle shear zones, and one z-fold was observed.  The shear 

zones strike ~040°, at nearly right angles to the fault, and are defined by deflected 

sandstone and mudstone beds.  Beds are highly silicified in this area.   

The Winthrop Formation lacks the silicification and deformation observed in the 

Virginian Ridge Formation.  The few (n=4) measured beds strike N, NE, and SE, and dip 

between 61˚ and 80˚ (Figure 29).  Next to the Pasayten fault, Winthrop beds dip steeply 

SW. 
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Figure 29.  Poles to beds from the Virginian Ridge Formation and Winthrop Formation. 
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Northeast-Striking Faults 

A series of sub-parallel and subvertical, NE-striking faults offset the Pasayten fault by 

up to 2 km (Plate 1).  Slickenlines along several of the fault planes plunge steeply NE.  

Similar high-angle, NE-striking faults are mapped to the north of the study area (Monger, 

1989; Greig, 1992).  The youngest unit cut by these faults is Miocene in age.   

The Pasayten fault is offset by several NE-striking faults with dextral separation near 

the confluence of Sutter Creek and the Tulameen River.  NE-striking slickensides were 

observed at least 1 km into the Eagle Plutonic Complex.   

The southern body of the Zoa Complex is also bounded in part by NE-striking high-

angle faults (Plate 1).  The northern fault displays ~1.5 km of sinistral separation and 

places the Zoa Complex against the Fallslake Plutonic Suite and the Virginian Ridge 

Formation (Plate 1).  The southern fault displays ~2 km of dextral separation of the 

Pasayten fault.  A series of smaller NE-striking faults cut the southern Zoa Complex 

body, but are too small to show at the scale of the map.  Thus, the sparse exposure in 

several areas suggests there are likely to be more faults offsetting the Pasayten fault.   

 

 

 

 

 

 

 



68 
 

ELECTRON BACKSCATTER DIFFRACTION ANALYSIS 

Quartz crystallographic orientations were analyzed by electron backscatter diffraction 

(EBSD) from two samples.  These were chosen to compare the range of quartz 

deformation in plutonic rocks in the study area.  One sample is a tonalite from the Mount 

Lytton Complex hosted by Eagle tonalite in the Granite Mountain area (Plate 1).  The 

second sample is a mylonitic muscovite-granodiorite of the Fallslake Plutonic Suite from 

the Hope Pass area near the Pasayten fault (Plate 1).   

Crystallographic orientations from the Mount Lytton Complex sample are scattered.  

There are several maxima and empty areas on the pole diagrams, but no recognizable 

pattern is evident (Figs. 30 and 31).   These results are comparable to thin section 

observations.  Quartz is weakly elongate and shows evidence for minor bulging 

recrystallization.  Foliation in the sample is poorly developed, but is more recognizable 

than the very weak lineation.   

Foliation in the Fallslake Plutonic Suite mylonite is partly defined by highly elongate 

aggregates of recrystallized quartz, which show evidence for bulging and subgrain 

rotation recrystallization.  The foliation is strongly developed and dips 78˚ to the SW.  

Recrystallized elongate quartz aggregates define a lineation that plunges 35˚ to the S.   

On a contoured pole figure, the “c” axes in the Fallslake mylonite display a single 

girdle with two maxima and a fabric-attractor plane that strikes 080˚ (Figure 32).  The 

girdle is inclined to foliation and lineation (Figure 32).  The “a” axes plot in a single 

maximum within the SW quadrant of the pole diagram (Figure 33).  
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Lattice preferred orientation (LPO) patterns result from the different slip planes 

operating in quartz with respect to temperature.  On the basis of microstructures, the 

Fallslake sample was probably deformed at relatively low temperature (<500˚C) and 

matches low-temperature LPOs that indicate quartz-slip was concentrated in the <a> 

rhomb planes (Schmid and Casey, 1986).  Inclination of the c-axis girdle is typically 

inferred to indicate an accumulation of non-coaxial shear and so, this LPO pattern is 

interpreted to show sinistral and normal shear in the Pasayten fault zone (Figure 32).    
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Figure 30.  Equal area projection of C-axis orientations from the sample of Mount 
Lytton Complex. 
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Figure 31.  Equal area projection of A-axis orientations from the sample of Mount 
Lytton Complex.   
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Figure 32.  Equal area projection of C-axis orientations from a Fallslake Plutonic Suite 
mylonite.  Note that the girdle is inclined to foliation.  Sr=foliation, Lr=lineation. 
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Figure 33.  Contoured pole diagram of A-axis orientations from a Fallslake Plutonic Suite 
mylonite.  Note the single maximum of “A” axes.  
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DISCUSSION 

Controversy over the Baja BC hypothesis is a prominent issue in the tectonics of 

western North America.  In southern British Columbia, the large dextral offset required 

by the Baja BC hypothesis is postulated to have occurred within ~40 km of the Pasayten 

fault (e.g., Cowan, 1997).  However, previous researchers have not found evidence for 

dextral motion on this fault (Lawrence, 1978; Greig, 1992; Hurlow, 1993).  Below, the 

motion of the Pasayten fault is discussed to evaluate potential large-scale transport.  

Other major nearby structures, including the Eagle shear zone and Similkameen Falls 

fault, are also considered, particularly their timing and kinematics relative to the Pasayten 

fault.  Other topics discussed to a lesser extent are the emplacement depth of the Eagle 

tonalite, the distribution of pluton ages adjacent to the Pasayten fault, the southern 

Canadian Cordillera transect, the zircon signature of Eocene clastic rocks, and the Baja 

BC hypothesis.  

Constraints on Motion of the Pasayten Fault  

In the study area, direct evidence for motion of the Pasayten fault consists of 

mylonites from the Zoa Complex and the Fallslake Plutonic Suite.  Mylonites of the Zoa 

Complex were observed in an 8-10-m-wide, NNW-striking and moderately NE-dipping 

zone next to the Pasayten fault (Plate 1).  Two samples from this zone with gently SSE 

plunging lineations indicate sinistral shear with a minor east-side-up reverse component 

across the fault.  Greig (1992) also reported sinistral motion from mylonitic rocks of the 

Zoa Complex north of the study area, but did not report lineation orientation.  

Information on the timing of motion recorded by the Zoa Complex mylonites is limited.  
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The mylonites are juxtaposed against mylonitic rocks of the Fallslake Plutonic Suite 

across the Pasayten fault in the study area, and the foliation strike in both units is 

subparallel near the fault.  Quartz microstructures in the Zoa Complex indicate relatively 

low (~300-500 ˚C) deformation temperatures, which are similar to those in the Fallslake 

Plutonic Suite.  Thus, mylonites of the Zoa Complex and Fallslake Plutonic Suite may be 

coeval.  

The Fallslake mylonites occur in a ~300-m-wide, NW-striking zone parallel to the 

Pasayten fault and grade into weakly deformed rocks ~600 m to the NE.   In this zone, 

foliation consistently strikes NW and dips steeply SW and NE.  Lineation varies from 

down-dip to nearly horizontal.  Lineations in mylonites closest to the fault plunge 

obliquely SE with rakes of 24˚ to 37˚.  Quartz microstructures indicate low- to medium- 

temperature deformation compatible with regime 2 of Hirth and Tullis (1992).   

Kinematic indicators in two samples record sinistral shear with a west-side-down normal 

component across the Pasayten fault.  The EBSD analysis of quartz in a Fallslake 

mylonite indicates a similar sense of shear.  Thus, sinistral-normal motion postdates 

crystallization of the Fallslake Plutonic Suite at ~110 Ma (Figure 34). 

The consistent, nearly straight, ≥ 250-km-long map trace of the Pasayten fault has 

been interpreted to reflect a steep or subvertical subsurface geometry (Lawrence, 1978; 

Monger, 1989; Greig, 1992; Hurlow, 1993).  Mylonites of the Zoa Complex dip 

considerably less steeply (moderately NE) near the Pasayten fault, and thus are likely 

unrelated to the most recent episode of fault motion (Plate 1).  In contrast, mylonites of 

the Fallslake Plutonic Suite dip steeply SW and approach subvertical within ~100 m of  



76 
 

 

 

 

 

Figure 34.  Summary of ages of magmatism, deposition, cooling, metamorphism, and 
Pasayten fault motion.  Modified from Friedman and van der Heyden (1992), Greig et al. 
(1992), Hurlow (1993), Parrish and Monger (1992), DeGraaff-Surpless et al. (2003), 
Oliver (2008), and Mihalynuk and Friedman, written communication. bt=biotite, 
dz=detrital zircon, hb=hornblende, ms=muscovite, PF=Pasayten fault. 
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the fault (Plate 1), and thus are the clearest record of fault motion.  Chronologic results 

(Figure 34) from Greig et al. (1992) imply that mylonitization of the Fallslake Plutonic 

Suite is tightly bracketed between the crystallization age of 110±5 Ma and the muscovite 

Rb-Sr cooling age of 104±4 Ma (Greig et al., 1992) (Figure 341).  Given the ~350˚ C 

closure temperature of muscovite (Dodson, 1973), this date is interpreted to signal the 

end of sinistral-normal ductile shear of the Fallslake Plutonic Suite (Figure 34). 

The dips of mylonitic foliation and plunges of lineation, in the Fallslake Plutonic 

Suite change along strike.  Approximately ~30 km NNW of the study area, moderately 

east-dipping mylonites resembling the Fallslake Plutonic Suite are reported (Price and 

Monger, 2003; R.B. Miller, written communication).  Price and Monger (2003) 

interpreted these rocks to record reverse slip.  If these mylonites are coeval with those in 

the study area the presence of both reverse and strike slip on the Pasayten fault at ~110-

105 Ma indicates that the fault zone may be transpressional.  The normal component of 

shear in the study area, however, is not compatible with this interpretation.   

The long axis of the Eagle tonalite in map view and the consistent NW-striking 

foliations in the tonalite are parallel to the mylonitic foliation in the Fallslake Plutonic 

Suite.  Greig (1992) postulated that the proximity of the Pasayten fault to the tonalite 

suggests that foliation in the Eagle tonalite developed during intrusion.  Similar scenarios 

have been published for the highly elongate Okanogan Range batholith, which is on-

strike with the Eagle Plutonic Complex (Hurlow, 1993).  Hurlow (1993) reasoned that 

solid-state fabrics in ~117-107 Ma tonalitic rocks of the Okanogan Range batholith and 

those reported in the Eagle Plutonic Complex likely developed during emplacement, 
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which was accommodated by extension along the fault.  Given the >40 Ma age range of 

these intrusions, a protracted period of motion on the Pasayten fault is implied by these 

interpretations.  However, in the study area the Eagle tonalite is not mylonitic and no 

direct evidence links motion of the fault with the emplacement of the Eagle tonalite.  

Instead, during an unknown time after the ~157-123 Ma crystallization of the tonalite, 

solid-state fabrics may have formed due to NE-SW regional contraction. 

In the study area, the Virginian Ridge Formation of the Methow basin is juxtaposed 

against mylonites of the Fallslake Plutonic Suite across the Pasayten fault.  Mudstones 

and sandstones of the Virginian Ridge Formation are more silicic and resistant within 

~100 m of the fault, but are not recrystallized.  This arrangement implies a period of 

brittle motion that postdates mylonitization of the Fallslake Plutonic Suite and probably a 

component of west-side-down slip.   

The single (~53 Ma) date from a detrital zircon in the Eocene clastic rocks suggests 

that brittle slip continued until that time.  Several NE-striking, ~49.5 Ma hornblende 

porphyry dikes and NE-striking faults that cut the Pasayten fault in the study area and 

elsewhere provide an upper bracket for brittle motion (Figure 34; Plate 1) (e.g., Monger, 

1989; Greig et al., 1992).  Approximately 30 km south of the international border, the 

~48 Ma (U-Pb, fission track zircon) Island Mountain Group overlaps the fault (White, 

1986).  Thus, brittle shear on the Pasayten fault in the study area could have occurred 

anytime from ~105 Ma, the cooling age of the Fallslake Plutonic Suite, to ~49.5 Ma.  
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High Strain Rocks Next to the Eastern Margin of the Eagle Plutonic Complex 

The Eagle Plutonic Complex is bound on the east by a continuous 1- to 2-km-wide, 

contact-parallel zone of highly strained rocks belonging to the Nicola Group and EWm 

belt (Plate 1).  Greig et al. (1992) named these rocks the Eagle shear zone.  Next to the 

highly strained metamorphic rocks in an ~200-m-wide belt the foliation in the Eagle 

tonalite is locally deformed into close cuspate and lobate folds with wavelengths of 10-50 

cm, and the tonalite hosts meter-scale rafts of the Nicola Group and EWm belt.  Both the 

highly strained rocks of the Nicola Group and EWm belt, and the marginal Eagle tonalite 

are intruded by stocks of weakly foliated, muscovite-bearing granodiorite resembling the 

Fallslake Plutonic Suite.  

Formation of the high strain zone has been attributed to east-vergent reverse shear 

during intrusion of the Eagle tonalite into the Nicola Group (Monger, 1985; Greig, 1992).  

This interpretation is based on local kinematic indicators and down-dip lineations in the 

Nicola Group, and the westward increase in foliation intensity and metamorphic grade 

toward the tonalite in the Nicola Group and EWm belt (Greig, 1992).  Dextral shear has 

also been reported in the Nicola Group (Greig, 1992), but has been correlated with 

intrusion of the Triassic Tulameen Ultramafic Complex (Nixon and Rublee, 1988).  Greig 

(1992) also suggested that the dominant SW-dipping foliation in the high strain zone near 

the Tulameen Ultramafic Complex may have developed during intrusion of the Complex 

(Figure 35).  Given that foliations in the high strain zone are consistent for > 40 km north 

and south of the Tulameen Ultramafic Complex it is unlikely that intrusion of the 
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Complex played a large role in the development of this zone.  The available evidence 

associates formation of the high strain zone with the emplacement of the Eagle tonalite.   

A model for the high strain zone that incorporates emplacement of the Eagle tonalite 

would best account for the consistent spatial relationship of deformation between the 

Eagle tonalite and its host rocks.  During emplacement, heat from the Eagle tonalite 

presumably weakened rocks of the Nicola Group and EWm belt, which allowed strain to 

accumulate near the tonalite.  The Eagle tonalite near the margin does not show an 

increase in solid state deformation, but in the zone of rafts the tonalite is deformed into 

cuspate lobate folds and local top-to-NE shear zones may be associated with the high 

strain zone.  Thus, the high strain zone likely extends ~200 m into the Eagle tonalite and 

includes rafts of the Nicola Group and EWm belt.  The parallelism of the SW-dipping 

foliation in the high strain zone and eastern margin of the Eagle Plutonic Complex also 

supports coeval deformation.   

Oliver (2008) evaluated the potential relationship between the intrusion of the Eagle 

Plutonic Complex and the metamorphic gradient in the highly strained rocks of the EWm 

belt by modeling heat flow from intrusion of the Eagle tonalite.  Her model assumed that 

the tonalite was instantaneously emplaced along a steeply dipping contact, an assumption 

which is not compatible with the range of U-Pb ages from the Complex (Figure 34).  She 

concluded that heat from the Eagle Plutonic Complex is suitable for the observed 

metamorphic conditions in the westernmost 2 km of the EWm belt, but is insufficient for 

metamorphic temperatures in the easternmost 3 km of the belt (Oliver, 2008).   
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 Figure 35.  Caption on next page. 
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Figure 35.  Schematic geologic map of the Pasayten fault zone.  Note the location of the 
southern Canadian Cordillera Lithoprobe transect line 88-18 and zircon age locations 
from the Mount Lytton Complex, Eagle Plutonic Complex, and Eocene clastic rocks.  
Modified from Monger (1989), Monger and McMillan (1989), Friedman and van der 
Heyden (1992), Parrish and Monger (1992), and Oliver (2008).  Lineations are from this 
study and R.B. Miller, unpublished data.  ESDZ=zircon sampling location of Eocene 
clastic rocks. 

 

 

If the high strain zone formed due to intrusion of the Eagle tonalite, as discussed by 

Oliver (2008), then the timing of deformation can be refined to the crystallization ages 

(157-123 Ma) of the tonalite (Figure 32) (Greig et al., 1992).  The crystallization ages are 

from tonalites ~3 to 1 km from the host rocks (Figure 35), and since the crystallization 

ages span ~30 Ma it is unlikely that the eastern margin of the Eagle Plutonic Complex, or 

as noted by Oliver (2008) its host rocks, would retain heat this long.  Given these issues, 

the timing of deformation in the high strain zone would benefit from additional 

geochronology.  Moreover, formation of the high strain zone by 123 Ma in this model 

predates the oldest (110-105 Ma) documented ductile motion on the Pasayten fault.  So, if 

these interpretations are valid then the high strain zone and the Pasayten fault are 

probably not directly related.   

Sparse kinematic indicators and dominant flattening fabrics in the high strain zone 

make it difficult to determine the non-coaxial component of strain.  Lineations measured 

in this zone plunge moderately to shallowly NW and SE, and thus are compatible with 

strike slip or oblique motion.  The gentle lineation orientations and sparse kinematic 

indicators in the EWm belt and Nicola Group may result from partitioned transpression 
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with a major pure shear component.  In the Eagle tonalite, outcrop-scale shear zones that 

dip SW, verge NE, and are in the high strain zone indicate reverse motion.  If these shear 

zones are representative of the SW-dipping (average 62˚) high strain zone in the host 

rocks, then this implies that the Eagle Plutonic Complex was displaced over the Nicola 

Group and the EWm belt.  This interpretation applies to at least a ~75-km-long SW-

dipping segment of the zone (Figure 35).  Monger (1985) and Greig et al. (1991) 

speculated that a Late Jurassic thrust belt near Ashcroft ~180 km along strike to the 

NNW may be part of the same contractional belt.  

Similkameen Falls Fault 

The Similkameen Falls fault was proposed by Massey et al. (2008) as a structure 

separating the EWm belt from the southern end of the Nicola Group metamorphic belt on 

the basis of Permian zircon U-Pb dates from metavolcanic rocks of the EWm belt, which 

contrast with the Triassic age of the Nicola Group (Figure 2).  However, no direct 

evidence for a fault between the Nicola Group and the EWm belt, such as mylonites or 

cataclasites, has been recognized in the study area.  Motion was also inferred from 

temperature constraints determined by Oliver (2008), which indicate increased 

metamorphic temperatures in the western and eastern parts relative to the central part of 

the EWm belt.  The lack of a suitable heat source for the eastern part of the belt is 

explained by dextral transport of the EWm belt along the Similkameen Falls fault an 

unknown distance to its present location according to Oliver, (2008).  Oliver (2008) 

proposed the Okanogan Range batholith as a possible heat source for the eastern part of 
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the belt, but evidence that the EWm belt was against the batholith has not been 

recognized.   

The northern termination of the Similkameen Falls fault at the eastern contact of 

Eagle tonalite suggests that the fault is pre ~123 Ma, or potentially pre ~157 Ma (Figs. 34 

and 35), depending on the local age of the tonalite.  These age constraints are 

incompatible with the ~123 to 107 Ma Okanogan Range batholith as a heat source.  

Alternatively, the Similkameen Falls fault could be interpreted to merge with the ca ≥ 

118 Ma rocks of the high strain zone, but this arrangement does not significantly change 

the minimum age.  Furthermore, the Similkameen Falls fault probably predates the 

earliest known ductile episode of the Pasayten fault and so it is unlikely they are closely 

related. 

The contact between the EWm belt and the Nicola Group may alternatively be an 

unconformity overprinted by ductile deformation.  An unconformity is compatible with 

the ages and lack of evidence for faulting.  Given the oblique strike of the Similkameen 

Falls fault relative to other nearby structures and truncation of individual members of the 

EWm belt this is a more likely scenario in my view.   

Implications of the Southern Canadian Cordillera Lithoprobe Transect 

From a geophysical transect across the Pasayten fault zone ~80 km northwest of the 

study area the fault zone was inferred to consist of two listric, east-dipping splays 

(Varsek et al., 1993; Bustin et al., 2013) (Figure 35).  Varsek et al. (1993) and Bustin et 

al. (2013) state that dextral and reverse motion occurred on these structures during the 

mid-Cretaceous on the basis of magnetic lineaments.  Dextral motion is problematic as 
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this study and previous workers have only found evidence for sinistral motion in the mid-

Cretaceous (e.g., Lawrence, 1978; Greig, 1992; Hurlow, 1993).  In the area of the 

transect, foliations in the Mount Lytton Complex dip 40˚ to 55˚ NE (Monger, 1989) 

(Figure 35), and are interpreted to steepen at depth (Varsek et al., 1993; Bustin et al., 

2013). 

In the study area, mylonitic foliations in the Fallslake Plutonic Suite dip 75˚ to 85˚ 

SW in a zone that extends ~200 m from the Pasayten fault (Plate 1).  Lineations in this 

zone plunge obliquely, 45˚ to 11˚ S-SSE (Figure 35; Plate 1).  The different foliation 

orientations in the Lithoprobe transect and study area, and the combination of strike slip 

and reverse slip along different segments, may indicate that the fault zone is 

transpressional.  Moreover, transpression commonly results in flattening fabrics which is 

compatible with this fault zone in the study area where lineations are weakly developed.  

The normal shear component in the study area is problematic.   

The eastern fault splay is situated near the eastern margin of the Mount Lytton 

Complex.  Foliations near this splay dip moderately to steeply SW and NE, which given 

the limited data probably provides little evidence of the subsurface geometry (Figure 35) 

(Monger, 1989; Varsek et al., 1993).  The eastern margin of the Eagle Plutonic Complex 

dips SW and so is not compatible with the geophysical interpretation (Plate 1).  A 

satisfactory resolution clearly requires additional study of the Mount Lytton Complex. 

Emplacement Depth of the Eagle Tonalite 

The Eagle tonalite contains epidote with textures that match criteria presented by Zen 

and Hammarstrom (1984) for magmatic crystallization, which occurs at a minimum of 5-
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6 kbar.  Greig (1992) interpreted the epidote as magmatic, but discounted deep 

emplacement of the tonalite due to the lack of medium- to high-pressure metamorphic 

assemblages in host rocks of the Nicola Group.  He instead favored partial crystallization 

of the Eagle tonalite and growth of epidote at depth followed by ascent to shallower 

crustal levels.  More recently, Oliver (2008) analyzed plagioclase and amphibole 

compositions to determine metamorphic conditions across the EWm belt.  She compared 

these compositions with the results of Laird and Albee (1981) and concluded that the 

EWm belt plots in their experimentally derived, medium-pressure zone.  Some of the 

compositions corresponded to pressures of 4-9 kbars (Laird and Albee, 1981), and 

therefore, metamorphism may have reached pressures suitable for crystallization of 

magmatic epidote in the Eagle tonalite.  Thus, crystallization of the Eagle tonalite at 

depths of ≥15 km is reasonable and the two-stage model of Greig (1992) is not needed.   

Primary magmatic epidote has not been recognized in the Triassic Mount Lytton 

Complex (Friedman and van der Heyden, 1992; Parrish and Monger, 1992) to the north 

or in the Okonagan Range batholith (Hurlow et al., 1993) to the south.  The absence of 

magmatic epidote in the Fallslake Plutonic Suite of the study area may indicate that the 

Eagle tonalite was partially exhumed before intrusion of the Suite.  This interpretation is 

compatible with the K-Ar cooling ages (Figure 34).  Alternatively, this may reflect the 

composition of the Fallslake rocks.   

The unconformity between the Spences Bridge Group and the Eagle Plutonic 

Complex indicates that the Complex was at the surface by ~104 Ma (Thorkelson and 
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Rouse, 1989).  Crystallization of the Complex at ~157 Ma to 123 Ma thus implies an ~20 

Ma time span to ascend from ≥15 km to the surface.  

Age Distribution of Plutons Adjacent to the Pasayten Fault 

Compilation of zircon U-Pb ages from plutons cut by the Pasayten fault shows a 

general decrease in age by at least 100 Ma from NW to SE (Figs. 2 and 34).  The oldest 

ages are from the Mount Lytton Complex, from which Friedman and van der Heyden 

(1992) determined a U-Pb zircon age of 250±5 Ma, and Parrish and Monger (1992) 

reported a U-Pb zircon age of 212±1 Ma (Figs. 2 and 35).  The youngest ages in the belt 

come from the southern end of the Okanogan Range batholith in northern Washington 

~250 km to the SE, where Hurlow (1993) reported a zircon U-Pb age of 107±1.1 (Figs. 2 

and 35).   

In this study, zircons from a screen of medium-grained weakly foliated tonalite 

enclosed within the Eagle tonalite yielded a U-Pb age of 207±8 Ma (Plate 1).  This screen 

is similar in age to the Mount Lytton Complex, ~100 km to the NW, and to Triassic 

inclusions near the Complex (Monger, 1989) (Figure 35).  Thus, the Mount Lytton 

Complex may be part of a belt of Triassic plutons that extended a distance of more than 

100 km to the SE of its present distribution and was largely obliterated during the 

intrusion of the Eagle Plutonic Complex.  

Eocene Clastic Rocks 

The distinctive dark-red Eocene clastic rocks exposed west of the Pasayten fault 

yielded predominantly Jurassic to Cretaceous detrital zircon U-Pb ages with peaks at 

circa 93, 130, and 150 Ma, and a smaller number of Triassic grains (Figure 36).  One 
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zircon yielded an Eocene age of 53±1 Ma that is compatible with the middle Eocene 

epositional age derived from a palynmorph collected in the unit (Figure 2) (Greig et al., 

1992).   

The sediments in the study area may be coeval with those deposited in other Eocene 

basins within the Intermontane belt east of the Pasayten fault (Figure 37).  Rubino (2018) 

analyzed several thousand zircons from these basins.  Zircons from an ~30 km2 isolated 

basin of Eocene sedimentary rocks near Blakeburn and the Princeton basin are the closest 

to the study area (Figure 37).  Eocene rocks sampled near Blakeburn (Figs. 36 and 37) 

yielded only Eocene ages, which is attributed to nearby Eocene intrusive and volcanic 

rocks of the Princeton Group (Rubino, 2018).  The sediments near Princeton contain 

primarily Jurassic through Cretaceous zircons with a peak at ~160 Ma (Figs. 36 and 37) 

(Rubino, 2018).  The strong Jurassic-Cretaceous signal matches broadly with the results 

of this study (Figure 36), although the peaks are different. Rare Eocene zircons in the 

Figure 36.  Zircon distributions from Eocene clastic rocks in the study area, nearby 
Eocene basins, and the Winthrop Formation.  Data from DeGraaff-Surpless et al. (2003), 
Rubino (2018), and this study. 
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Princeton sample and single Eocene zircon in my study is unusual as regionally most of 

the Eocene basins contain abundant Eocene zircons derived from local sources (Rubino, 

2018).  All three basins lack Precambrian zircons indicating the basins were cut off from 

older material to the east and south, and that recycled Precambrian zircons were not in the 

source region.   

The dated body of Eocene clastic rocks in this study is in contact with the Winthrop 

Formation of the Pasayten Group to the west (Monger, 1989).  Thus, given the lack of a 

strong Eocene peak it is useful to evaluate the validity of the palynmorph age and to 

compare the detrital zircon age signatures of each body to evaluate whether the “Eocene 

clastic rocks” are a part of the Pasayten Group.  DeGraaff-Surpless et al. (2003) analyzed 

several hundred zircons from a ~600 m section of the Winthrop Formation ~30 km 

southeast of the study area in Manning Park.  The bulk of zircons from the Manning Park 

strata yield ages from the Early Cretaceous to the Late Triassic (DeGraaff-Surpless et al., 

2003).  Eocene clastic rocks in the study area also contain zircons of this age range, but 

the age peaks (Figure 36) do not match and the strong circa 93 Ma peak in the Eocene 

rocks is younger than the depositional age of the Winthrop Formation.  The Midnight 

Peak Formation of the Methow basin may have accumulated at ca. 90 Ma, but no nearby 

exposures have been recognized, and zircons are sparse or absent in samples of 

intermediate volcanic rocks in the Formation (Shea et al., 2016; R.B. Miller, written 

communication).  Plutons of approximately this age occur in the North Cascades >60 km 

to the SE and west of the Fraser fault (e.g., Brown et al., 2000), but have not been 

recognized locally or east of the Pasayten fault.   



90 
 

 

 

 
Figure 37.  Caption on next page 



91 
 

Mapping by Greig (1992) shows that the belt of Eocene clastic rocks, including the 

dated sample, is in depositional contact with the Zoa Complex to the east (Figure 35), and 

locally the Eocene clastic rocks are separated from the Fallslake Plutonic Suite by the 

Pasayten fault (Greig, 1992).  Zircons in the Zoa Complex are ~150 Ma, which matches 

one of the smaller peaks from the Eocene clastic rocks.  Rocks of approximately this age 

also occur in the Eagle Plutonic Complex (Greig et al., 1992) (Figs. 2, and 37).  Thus, the 

Zoa Complex and/or the Eagle Plutonic Complex may be an additional source for the 

Eocene strata.  If they are solely derived the Zoa Complex, then the Eocene clastic rocks 

may have been cutoff from the Eagle Plutonic Complex by the Zoa rocks.  Plutonic clasts 

were observed in the Eocene clastic rocks, but magmatic epidote was not identified in 

them, and makes it uncertain whether they are derived from the Eagle Plutonic Complex.  

Otherwise the range (~157-123 Ma) of zircon ages in the Eagle tonalite make it a likely 

source.   

Overall, source areas for zircons in the Eocene clastic rocks of this study are not well 

constrained.  The main peak at ~90 Ma has not been recognized in nearby units, and the 

closest reasonable source is ~40 km west of the Fraser River (Brown et al., 2000).  

Moreover, logical nearby sources in the Fallslake Plutonic Suite are 110 Ma (e.g., Greig 

et al., 1992), an age which is missing in the Eocene clastic rocks.  Eocene basins east of 

Figure 37.  Map of dated Eocene basins in south-central British Columbia near the 
study area.  Location of closest dated Winthrop Formation is also shown.   Modified 
from Monger (1989), DeGraff-Surpless et al. (2003) and Rubino (2018). Location of 
Similkameen Falls fault from Massey et al. 2008.  B=Blakeburn, FF-SF=Fraser-Straight 
Creek fault, SFF=Similkameen falls fault, Mp=Manning Park, P=Princeton. 
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the Eagle Plutonic Complex have a peak at 160 Ma (Rubino, 2018) and the Methow basin 

has one at 110 Ma (DeGraaff-Surpless et al., 2003).  One possibility is that an eastward 

flowing stream network operated in the Eocene that was separate from the Methow basin 

and largely cutoff from material to the east in the Eagle Plutonic Complex.   

Rubino (2018) interpreted the age distributions of detrital zircons in Eocene strata 

throughout the region to indicate deposition in local isolated basins.  Given the elongate 

geometry of the Eocene strata and the eastern fault contact, deposition of the rocks in this 

study may also have been fault-controlled.  However, the lack of nearby sources for the 

basin of this study is not supportive of this interpretation.  

Implication of Pasayten Fault Movement History for the Baja BC Hypothesis and 

Strike-Slip in the Northern Cordillera 

The Baja BC hypothesis requires that a large amount of dextral slip occurred between 

~90 Ma and 50 Ma near the Pasayten fault.  However, evidence from this study suggests 

sinistral and normal ductile shear between 110 Ma and 104 Ma (Figure 34).  Any 

subsequent dextral motion along the fault would have been brittle.  Brittle shear occurred 

sometime after 104 Ma, but the slip was likely SW-side down normal shear; thus no 

direct field evidence for dextral slip was found in this study nor reported by Greig et al. 

(1992) or Hurlow (1993) along strike to the NW and SE, respectively.   

The sinistral motion on the Pasayten fault also supports the hypothesis that in the 

Early Cretaceous the northern Cordillera was marked by left-lateral strike slip (e.g., 

Monger et al., 1994; Umhoefer et al., 1996; 2002).  Regionally, sinistral motion in the 

Cordillera occurred from ~155 Ma (Monger et al., 1994) to 105 Ma and thus, the 
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Pasayten fault records some of the youngest documented sinistral slip in southern British 

Columbia and Washington.   
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CONCLUSIONS 

1. Mylonites from the Fallslake Plutonic Suite record low- to medium-temperature 

sinistral and normal ductile shear across the Pasayten fault in the study area.  One 

EBSD analysis from a mylonite in the Fallslake Plutonic Suite is compatible with 

this motion.  

2. Mylonitization occurred between the ~110 Ma U-Pb, zircon and ~104 Ma Rb-Sr 

muscovite ages for the Fallslake Plutonic Suite. 

3. Deformation in host rocks of the Eagle tonalite was likely facilitated by thermal 

weakening during emplacement.  Thermal weakening caused strain to accumulate 

in the host rocks, and gentle lineations and sparse kinematics therein suggest 

partitioned transpression with a major pure shear component. 

4. Primary magmatic epidote in the Eagle tonalite probably indicates that the Eagle 

tonalite crystallized at ≥15 km.   

5. The change in recorded motion along the Pasayten fault from sinistral with a 

normal component in the study area, to reverse along strike to the NW, and the 

decrease in foliation dips to the NW in the Eagle Plutonic Complex and Mount 

Lytton Complex may suggest transpression.   

6. The U-Pb age of 207.9±2.1 determined from an inclusion in the Eagle Plutonic 

Complex implies that Triassic rocks extend ~100 km SE of the main body of the 

Triassic Mount Lytton Complex.  

7. Detrital zircon results from the Eocene clastic rocks do not definitively constrain 

the age of the unit, but are clearly different than those from the adjacent Methow 
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basin.  The closest source for the main peak of ~90 Ma in the Eocene clastic rocks 

is ~40 km to the west.  

8. The Pasayten fault records some of the youngest documented sinistral motion in 

the northern Cordillera, but this ductile shear predates the large dextral motion 

required by the Baja BC hypothesis. 
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