
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Spring 2021

Towards Standardizing System Design and Automating Towards Standardizing System Design and Automating

Deployment Deployment

Prerana Shekhar
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Shekhar, Prerana, "Towards Standardizing System Design and Automating Deployment" (2021). Master's
Theses. 5189.
DOI: https://doi.org/10.31979/etd.9b3q-ka7u
https://scholarworks.sjsu.edu/etd_theses/5189

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/5189?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

TOWARDS STANDARDIZING SYSTEM DESIGN AND AUTOMATING
DEPLOYMENT

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Prerana Shekhar

May 2021

© 2021

Prerana Shekhar

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

TOWARDS STANDARDIZING SYSTEM DESIGN AND AUTOMATING
DEPLOYMENT

by

Prerana Shekhar

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

SAN JOSÉ STATE UNIVERSITY

May 2021

Mahima Agumbe Suresh, Ph.D. Department of Computer Engineering

Jorjeta Jetcheva, Ph.D. Department of Computer Engineering

Carlos Rojas, Ph.D. Department of Computer Engineering

ABSTRACT

TOWARDS STANDARDIZING SYSTEM DESIGN AND AUTOMATING
DEPLOYMENT

by Prerana Shekhar

System design is the foundation for software systems. A well-engineered and

well-thought-out system design leads to the development of a software system that is

scalable, reliable, extendable, and secure. It is important to be able to create a good

system design. However, current ways of creating system design are inadequate. Software

engineers resort to using tools like Microsoft Word, Lucidchart, Draw io, and so on to

create system designs. These tools provide a basic drawing interface without the support

for a standard set of system design components. There is a lack of common language for

creating system designs. With the current ways of creating system design, sharing and

working collaboratively throughout the life cycle of the software development is

impractical. A good system design should remain faithful to the deployed infrastructure

resources. To resolve these shortcomings, we propose a solution to lay the groundwork for

establishing the standard. To achieve this, we abstract out the components and aim to

provide a generalized view that acts as a common vocabulary to all the stakeholders. We

present a prototype implementation tool that has a standard, enables version control,

collaborative sharing, and automatic deployment onto multi-cloud infrastructure. The tool

also provides the ability to create a configuration file such as a YAML or JSON which is a

code equivalent of the system design. Furthermore, we also strive to provide a guided

process that helps the beginners such as students to create a scalable, extendable, and

reliable system design. The system design is then translated into a deployable entity that

allocates the infrastructure resources. These features help the stakeholders to create a

system design backed by a standard and understand the evolution of system design,

performance evaluation, cost estimation, multi-cloud deployment, and ease of

maintenance of infrastructure resources.

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor, Dr. Mahima Agumbe Suresh for

her immense guidance, patience, support, and encouragement throughout the research.

Without her guidance, this thesis would not have been possible.

I would like to express my gratitude to Professor Gopinath k Vinodh for taking the

time to provide constructive feedback. I would like to thank Dr. Jorjeta Jetcheva for

providing valuable feedback and a new perspective about the research. I would also like

to thank Dr. Anamika Megwalu for helping me in editing and proofreading. My sincere

thanks to the thesis committee members Dr. Jorjeta Jetcheva and Dr. Carlos Rojas for

taking the time to be on the committee and providing valuable feedback.

I would also like to thank all the participants of the survey for taking the time to

explain their thoughts about the research. I would like to thank all my friends for their

love and support. Special thanks to my beloved friend Deepthi Jallepalli for her

continuous support and motivation throughout the journey. My sincere thanks to my

husband Vinay R Nagar for being the greatest support I could have wished for during this

difficult year.

Last, but not least, I would like to thank my parents A V Somashekhar and Sudha

Somashekhar, my sister Pooja Shekhar, my beloved niece Saanika and the entire family

for their unconditional love, support, and encouragement. Without this, I wouldn’t have

been able to complete this thesis or pursue my dreams.

v

TABLE OF CONTENTS

List of Tables . ix

List of Figures . x

List of Abbreviations. xi

1 Introduction. 1
1.1 Research Objectives . 2
1.2 Thesis Organization . 3

2 Literature Review . 4
2.1 Software Architecture Definitions . 4

2.1.1 Perry and Wolf . 4
2.1.2 Bass et al. 5
2.1.3 Kruchten . 5
2.1.4 D. Garlan and M. Shaw . 5
2.1.5 N. Medvidovic and R. N. Taylor . 6

2.2 Analogy Between Classical Architecture and Software Architecture . 7
2.3 Importance of Software Architecture . 8

2.3.1 Architecture is the Common Ground for Communication 8
2.3.2 Architecture Provides the Developers a Set of Guidelines 9
2.3.3 Architecture Helps Manage Changes . 9

2.4 Shortcomings of Software Architecture Definitions . 9
2.5 Current Tools Used to Create System Design. 11

2.5.1 Lucidchart . 11
2.5.1.1 Advantages . 11
2.5.1.2 Disadvantages . 11

2.5.2 Draw.io . 12
2.5.2.1 Advantages . 12
2.5.2.2 Disadvantages . 12

2.5.3 Microsoft Word . 13
2.5.3.1 Advantages . 13
2.5.3.2 Disadvantages . 13

2.5.4 AWS CloudFormation . 13
2.5.4.1 Advantages . 14
2.5.4.2 Disadvantages . 14

2.5.5 Git. 14
2.5.6 Inference from Literature Review. 15

3 Our Approach to Standardizing System Design and Automating Software
Deployment. 17

vi

3.1 Survey . 17
3.1.1 Participant Information . 17
3.1.2 Participants Response . 17

3.2 System Design in Our Context. 20
3.2.1 Our Definition of System Design . 20
3.2.2 Component . 21

3.2.2.1 Types of Components . 21
3.2.2.2 Properties of Components . 21

3.2.3 Component Registry . 21
3.2.4 Connection . 21

3.2.4.1 Types of Connections . 22
3.2.4.2 Validations . 22

3.2.5 Configuration . 22
3.2.5.1 Component Configuration . 22
3.2.5.2 Deployment Configuration . 23

3.2.6 Deployment . 23
3.2.7 Multi-layer Design . 23
3.2.8 System Design Canvas. 24
3.2.9 System Design as Code. 24

3.3 Features of System Design . 24
3.3.1 Standard for System Design . 24
3.3.2 Sharing . 25
3.3.3 Version Control . 26
3.3.4 Automated Deployment . 26
3.3.5 Performance . 27
3.3.6 Cost . 27
3.3.7 Security . 27
3.3.8 Guided Process . 28

4 Prototype Implementation . 29
4.1 Components . 29
4.2 Frontend . 30
4.3 Project Management Service . 32

4.3.1 Projects . 32
4.3.2 Project Components . 33
4.3.3 Connections . 33
4.3.4 Commits . 34
4.3.5 Clone . 35

4.4 Deployment Service . 35
4.4.1 Overview of Pulumi . 36

4.4.1.1 Pulumi Programs . 36
4.4.1.2 Pulumi Setup . 37

vii

4.4.2 Why Pulumi Over Other Platforms . 38
4.4.2.1 Terraform . 38
4.4.2.2 Cloud SDKs . 38

4.5 YAML Representation . 39

5 Comparative Analysis. 41

6 Conclusion. 43

7 Future Work . 44

Literature Cited . 45

Appendix A: Prototype Tool. 48

viii

ix

LIST OF TABLES

Table 1. ComponentTypes. 30

Table 2. Components . 31

Table 3. Projects . 32

Table 4. ProjectComponents . 34

Table 5. Connections . 34

Table 6. Commits . 35

Table 7. Comparative Analysis . 42

x

LIST OF FIGURES

Fig. 1. Thesis organization. 3

Fig. 2. Percentage of participants with a range of work experience in the
field of software engineering.. 18

Fig. 3. Percentage of users using various system design tools. 18

Fig. 4. Percentage of users using existing template and no template. 19

Fig. 5. Percentage of users sharing system design as a image. 19

Fig. 6. Percentage of users who prefer to create the system using visual
representation components and configuration file. 20

Fig. 7. Prototype system architecture.. 29

Fig. 8. Pulumi system architecture. 36

Fig. 9. Home page of prototype tool . 48

Fig. 10. Standard components of prototype tool . 49

Fig. 11. System design canvas of prototype tool . 50

Fig. 12. AWS view of system design . 50

Fig. 13. GCP view of system design . 51

Fig. 14. Cost estimation of a component . 52

Fig. 15. AWS EC2 instance comparison . 53

Fig. 16. AWS resource information after deployment . 54

LIST OF ABBREVIATIONS

AWS Amazon Web Services
GCP Google Cloud Platform
CI-CD Continuous Integration - Continuous Deployment
EC2 Elastic Cloud Compute
HTTP Hypertext Transfer Protocol

xi

1 INTRODUCTION

Software systems have become an integral part of our working and personal lives.

Developing reliable, stable, and safe software systems is of utmost importance. System

design plays a significant role in designing and developing good software systems. It is

the foundation for any software system development. It is analogous to designing the

architecture of a building. According to “International Standard - Systems and software

engineering – Vocabulary” [1], system design is defined as “a process of defining the

hardware and software architecture, components, modules, interfaces and data for a

system to satisfy specified requirements.”

Despite its importance, current approaches to creating system design are not efficient.

They are not backed by a standard, making them inefficient in collaborative environments.

Lack of a standard results in designers resorting to drawing tools such as Lucidchart,

Draw.io, Microsoft Word and the like, which are not meant to be used to create system

designs. These tools often export system design as an image, which makes it difficult to

track changes or versions of the design. This leads to various concerns such as lack of

version control, collaborative contribution, and maintaining the history of the system

design. This creates a gap in understanding the evolution of a system design and the

contributions of the collaborators. Furthermore, system designs are often realized when

they are deployed onto a hardware infrastructure. There is a need to understand this

end-to-end process from design to deployment seamlessly. While cloud service providers

like Amazon Web Services and Google Cloud Platform do a great job of providing

infrastructure, they do not provide the necessary tools to create system designs. Tools like

AWS CloudFormation have a steep learning curve in understanding infrastructure

components that are very specific to the cloud provider. This specificity limits their use in

multi-cloud system designs.

1

Larger organizations can afford to have a dedicated infrastructure team that works

towards deploying and maintaining infrastructure. However, this demands a lot of

resources. Beginners, such as students, refrain from deploying the application on cloud

infrastructure due to a steep learning curve. Given the drawbacks of current processes and

tools used to create system designs, there is a need to understand system designs in

modern environments and propose solutions to address them. To bridge the gap of

deployment on cloud infrastructure, we propose a way to automate deployment by

translating the system design into a deployable entity. The prototype tool enables the user

to create a system design that is backed by a standard, version control, collaborative

sharing, and automatic deployment onto multi-cloud infrastructure with minimal

knowledge of specific infrastructure resources and thus encouraging beginners to explore

more.

The proposed solution can primarily be beneficial for students who are learning to

design and develop system design. It encourages the students to create a system design

based on a standard, modify it along the process of learning, visualize the evolution of the

system design, enable version control and automate deployment on cloud infrastructure.

The system design can be deployed on various cloud services such as AWS, GCP, Azure,

and private cloud, thereby helping the users to understand and explore the equivalent

infrastructure components. Hence, the proposed prototype tool can be utilized as a guided

educational tool to motivate the students by bridging the gap.

1.1 Research Objectives

The first objective of the research is to study and understand the current definitions

and processes of creating system designs. This also involves studying existing tools and

identifying features that assist in system design or lack thereof.

The second objective is to propose solutions to the problems identified. This involves

laying the groundwork for a new standard for system designs while considering

2

extensibility. The solutions should also address requirements around deployment, version

control, shareability, and collaboration.

The third objective of the research is to implement a prototype tool based on the

proposed solutions to test the end-to-end process of creating system designs for a limited

set of features that demonstrate the feasibility of the solutions.

1.2 Thesis Organization

The rest of the paper is organized as shown in Fig. 1.

Fig. 1. Thesis organization.

3

2 LITERATURE REVIEW

We first aim to identify the various definitions of software architecture and the

analogy between classical building architecture and software architecture. We then

highlight the importance and need for the software architecture. Further, we analyze the

shortcomings of the current tools that are used to create the system design.

2.1 Software Architecture Definitions

This section aims to describe the definitions of software architecture as explained in

various papers.

2.1.1 Perry and Wolf

One of the pioneer papers [2] made the first attempt to define the software

architecture [3]. In this paper, Perry and Wolf define the software architecture as a model

that consists of three main components:

1) Elements

2) Form

3) Rationale

Furthermore, they classify “elements” into three different groups: “processing elements,

data elements and connecting elements” [2]. The processing elements are the components

that transform the data elements. The data elements contain the information that

undergoes transformation and connecting elements are components that help in holding

the entire architecture together [2]. Perry and Wolf state that the “form” comprises of

“weighted properties and relationships” [3]. The form indicates the relationship between

the elements. They explain “rationale” as the “system constraints that form the basis for

the architecture” [3]. It indicates the motivation behind the decisions and the choice of

elements.

Perry and Wolf [2] highlight the importance of software architecture. They explain

that the primary purpose of the architecture is to enable automated document analysis and

4

reveal the various problems that could have gone unnoticed. They also describe two

primary types of analyses, namely, consistency analysis and dependency analysis [2].

Consistency can be seen in various aspects of the architecture such as consistency within

the architecture and its styles, consistency with the requirements, and the design.

Dependency analysis evaluates the inter-dependency among the requirements,

architecture, and design.

2.1.2 Bass et al.

Bass et al. define [4] software architecture as “a structure of a system that comprises

of system components, their properties and the relationship between them.” They bring

about a contradicting analysis of the system design being abstract as well as specific.

They convey that the architecture must abstract away some information from the design

yet provide enough information to represent the requirements [4], the relationship

between the components.

2.1.3 Kruchten

Kruchten [5] presented the idea of software architecture by defining the following four

terms, namely, “logical view, physical view, process view and development view” [2]. The

logical view defines breaking down the system into logical sections using the given

requirements. The process view describes how the functional requirements match with the

process. The physical view [5] represents the translation of the software components onto

the hardware components. The development view focuses on the actual software

development environment [5].

2.1.4 D. Garlan and M. Shaw

D. Garlan and M. Shaw defined software architecture as a “hierarchy of software

design” [6]. They explain that the software architecture consists of “components,

connectors, ports, and roles.” They explain that the “component” can be a “class, function,

5

procedure, module, process or a group of small systems” [6]. It can represent a function

or data storage. They also explain that the larger the component, the higher the number of

features included in the component that leads to good quality systems with lower

errors [6]. The “connector” acts as a bridge between the components. A connector is

independent of the application. They connect various components and transfer data and

information between the components [6]. An example of a simple filter is a pipe-filter

whereas the client-server protocol is a connection between the database and the

application is a complex connection [6]. “Port” is described as an interactive method

between the components and the application environment. Every component can have one

or more ports. The component can represent many different interfaces through various

ports connected to them [6]. The “role” indicates the connection between the connectors

and the outside environment [6]. Each connector has at least two roles, for receiving

information and sending information. Hence it’s called a dual connector [6]. It can also

have multiple roles like broadcasting events and any number of roles for receiving

event [6]. Hence, it is called a multi-connector.

2.1.5 N. Medvidovic and R. N. Taylor

Medvidovic and R. N. Taylor [7] explain software architecture as “the set of principal

design decisions made during its development and subsequent evolution.” They state that

to develop a high quality product, a good design decision plays an important role [7]. The

quality of software systems is proportional to the system design quality. It is very rare to

notice a good software system with poor design. The paper defines that a software system

consists of structural elements: components, connectors, and configurations [7]. They

define components as “units of computation in a system,” connectors as “loci of the

interactions between software components” and configurations as “arrangements of

software components and connectors, and the rules that guide their composition” [7]. The

authors further explain that the principal design decisions consist of mapping of these

6

software components onto hardware components of deployment, by considering

reliability, scalability, security, and efficiency [7].

2.2 Analogy Between Classical Architecture and Software Architecture

Perry and Wolf [2] bring up an analogy between the classical field of building

architecture and software architecture. Although classical building architecture and

software architecture are highly distinct, they have multiple similar points of view [2].

They highlight the following four aspects that hold good for both building architecture

and software architecture: “multiple views, architectural styles, style and engineering,

style and materials” [2]. They explain the relevance of “multiple views” in building

architecture as floor plans, exterior views, top-down views [2] that are helpful to provide

explicit design details to the builder. Such a multi-view system provides specific details

about electrical, plumbing, heating, and air-conditioning [2] designs to be considered by

the builders. Similarly, in software architecture, multiple views help in thinking about the

architecture from a design and implementation perspective. The authors state that the

relationship between the architectural styles and engineering principles is of extreme

importance [2]. The look and feel of the building are closely related to the right balance

between the architectural style and engineering principles. The architectural style

emphasizes the design constraints, design decisions, and the relationship between the

elements [2]. Also, the connection between the materials and the style of the buildings are

comparable. Perry and Wolf state that “one does not build a skyscraper with wooden posts

and beams” [2]. On a similar note, the software architecture needs to be implemented on

the right set of components based on the load distribution and the application

requirements.

N. Medvidovic and R. N. Taylor [7] also highlight the analogy between the

construction building and software systems. Software architecture should be at the

heart [7] of a software design. They emphasize that the design should be given “higher

7

weightage than process, analysis, and programming” [7]. As designing a good

architecture of a building helps in the stability, durability, and strength of the building,

similarly, a well-thought-out software system design would last a lifetime. It helps in the

evolution of the software system. They also stress focusing on the architecture over its

entire lifespan instead of a limited-term [7]. Furthermore, they explain that having a good

design does not guarantee that a good building will be constructed [7] as there will be

some gaps and modifications during the course of construction. Similarly, even in

software systems, there is no validity that the system would be faithful to the design

developed due to the shortcomings along the process [7]. Hence, it is important to be able

to ensure that the implemented system remains faithful to its intended system design.

2.3 Importance of Software Architecture

The three fundamental reasons stated by Clement [8], to indicate why software

architecture is important is as follows:

1) “Mutual communication”: Software architecture is a high-level representation of the

deliverable that helps most of them understand the requirement by creating a

common basis [8] of communication.

2) “Early design decision”: The early design decisions help in keeping the components

connected and these decisions [8] weigh out far more than the individual decisions

made during the development. These decisions also help in the deployment phase

and maintenance of the system.

3) “Transferable abstraction of a system”: Software architecture has to be abstracted out

so that these components and subsystems can be used in different applications [8]

allowing reuse of the system architecture.

2.3.1 Architecture is the Common Ground for Communication

Multiple stakeholders refer to the architecture with various perspectives. The manager

looks at the architecture with the perspective of how independently the team can work on

8

the system, whether the deliverables can be implemented on schedule, and cost

estimation [8]. The programmer looks at the system architecture to work through the

strategies to develop the requirement. Hence, the software architecture acts as a common

ground to communicate the various aspects of the system with different perspectives. It

helps in understanding the complexities of a large system with ease.

2.3.2 Architecture Provides the Developers a Set of Guidelines

An architecture provides a set of structural design decisions for the implementation. It

defines the set of components and the relationship between these components that help

throughout the life cycle of the system [8]. This also helps to maintain the project.

2.3.3 Architecture Helps Manage Changes

Studies indicated that 80% [8] of the software system’s cost is involved after the

deployment of the project. Oftentimes we need to modify the software systems during

their lifetime. They need to enhance the system due to improvement in technology.

Refactoring of systems is necessary to increase efficiency, reliability, scalability of

systems [8]. It is highly important to address these changes to understand the impact of

the changes on the existing system, the impact of the changes on the relationship between

the components and the behavioral aspects of the system [8]. Clement classifies the

changes as “local, non-local and architectural changes” [8]. A local change is referred to

as the changes in the component. A non-local change refers to the changes in multiple

components. Architectural changes impact the way the system is designed and the way

the components communicate with each other.

2.4 Shortcomings of Software Architecture Definitions

Although there are numerous definitions of software architecture, concerns still exist

about the formal definition because of the nature of various parameters to be considered,

which concepts to be included, and which concepts to be excluded [3], [8]. Perry and wolf

9

summarize the shortcomings of software architecture based on Clements description in

“Software Architecture, An executive Overview” [8] as below.

1) “Advocates bring their methodological biases with them.” As seen from the various

definitions, they mostly agree at the core however differ at the fringes [8]. Some of

them state the importance of process while others emphasize on the functionality to

be allocated to the components. Hence, it is important to understand the meaning of

the definition in the given context.

2) “The study of software architecture is constantly evolving.” People refer to the

previous definitions and modify them according to their needs and broaden the

meaning of software architecture [8]. Hence, a formal definition has not been

converged yet.

3) “Although the research is ongoing, the field is pretty new.”

4) “The most common terminologies are ambiguous and do not have a clear definition.”

The concept of a “component” is highly overloaded. Oftentimes there is no clarity of

what goes inside a component. Clement refers to a top-level architecture [8] and

indicates that there is no proper understanding of these layers. The architecture also

fails to explain the importance of the “links” connecting the various components. It

also does not indicate the direction of data flow and there is a high level of

information missing [8]. Furthermore, Clement also studies layered architecture. He

explains that these layers indicate hierarchical structure between them. However, it

fails to highlight the concept of a component, and a close study of the architecture

reveals that there is a high level of overlap between the layers.

5) “The terminologies are over utilized” [3], [8] and modified according to one’s needs

and hence the meaning of these terminologies is getting diluted in software

architecture.

10

2.5 Current Tools Used to Create System Design

To create system designs, we use several tools like Microsoft Word, Lucidchart,

Draw.io, and so on. We study these tools to understand the advantages and disadvantages

of these tools, in the field of system design.

2.5.1 Lucidchart

Lucidchart is a web-based diagramming software that is used to create flowcharts,

organizational charts, website wireframes, mind maps, software prototypes, and many

other diagram types [9]. Lucidchart started in December 2008 based out of salt lake city,

Utah. Currently, Lucidchart is used in over 180 countries by more than 15 million users,

from sales managers mapping out prospective organizations to IT directors visualizing

their network infrastructure [10]. The primary purpose of using Lucidchart is to create

diagrams by utilizing the various shapes, designs, images from the component registry.

Lucidchart also allows the user to start from a specific diagram template. It is highly

focused on creating diagrams.

2.5.1.1 Advantages.

1) Primary purpose is to create diagrams such as flowcharts, organization charts, UI

workflows, developing business strategies, and so on.

2) It also allows the users to share and work collaboratively on the ongoing project.

3) It allows sharing of an image representation of the diagram on several integrated

platforms like Jira, Confluence, and Slack.

4) Lucidchart also allows the user to integrate with cloud services and create a

graphical representation of the deployed infrastructure.

2.5.1.2 Disadvantages.

1) Lucidchart can only be shared as an image and not a live document.

2) It is primarily a drawing tool and does not cater to the needs of a system design

development. Every user can take the liberty to represent the components of the

11

system design in a way that is convenient to them. A component can be represented

either as a square or a rectangle. This dilutes the concept of having a standard.

3) A code equivalent representation of the diagram is non-existent.

4) It does not maintain a history of the system design. Hence, it fails to capture the

evolution of a system design throughout the process of decision-making and the life

cycle of the application.

2.5.2 Draw.io

Draw.io or recently known as diagrams.net is another popular tool that is widely used

for creating diagrams. It is a free, high-quality drawing tool. Draw.io was founded in 2000

and its headquarters is located in Northampton, Northamptonshire, UK [11]. It allows the

users to create various types of diagrams such as flowcharts, entity-relationship diagrams,

building floor plans, electrical diagrams [12] and much more. It provides the users with 3

main components - shapes, connectors, labels [12].

2.5.2.1 Advantages.

1) Draw.io allows the users to create various types of diagrams.

2) It allows the users to share diagrams via google doc or One drive files. It also

provides the users to integrate with other tools like Atlassian Confluence Cloud,

GitHub [13].

2.5.2.2 Disadvantages.

1) As Draw.io is a generic drawing tool, it does not account for the standardization of

system design components.

2) Draw.io allows the users to share files via Google doc or One drive files [14].

However, sharing a system design via these files is not efficient as it is shared in the

form of an image. It defies the ability of the user to be able to keep track of the

changes made by multiple users. Also, it does not support collaborative work.

3) Keeping track of different versions is not possible.

12

4) It is not a deployable entity.

5) It does not estimate the performance of the system and the cost involved when

deployed on cloud infrastructure.

2.5.3 Microsoft Word

The first version of Microsoft Word was released in 1983, primarily as a text editor,

and developed further to support various fonts, images, WordArt, undo, redo and many

more features [15]. Microsoft Word provides a plain slate to draw diagrams using various

standard shapes, arrows, and images.

2.5.3.1 Advantages.

1) Microsoft Word is very popular and widely used.

2) Integration of Microsoft Word with other tools is seamless.

3) It can be shared and allows for collaboration.

2.5.3.2 Disadvantages.

1) Microsoft Word is not meant for creating system designs as it does not provide

standard system design components.

2) Although it can be shared, it does not keep track of the changes made by different

people in a true sense. Hence, it does not support collaboration and version control

of the created system design.

3) It does not convert the created system design into a deployable entity.

4) It does not take into account the performance, security, and cost involved when the

application is deployed on cloud infrastructure.

2.5.4 AWS CloudFormation

AWS CloudFormation is a service provided by Amazon Web Services to create

infrastructure diagrams for the application [16]. The user can create an infrastructure

diagram either by choosing a set of AWS services from the resources registry or by using

13

a JSON/YAML configuration file. The user can save a version of the template on AWS S3.

Hence it provides version control to the user. Once the template is ready, the user can

provision AWS resources.

2.5.4.1 Advantages.

1) AWS CloudFormation allows the user to create infrastructure templates by utilizing

aws resources. Both graphical, as well as infrastructure as a code representation, are

available.

2) It helps the users to estimate the cost involved for the resources created [17].

3) It allows sharing and editing the template with the collaborators by keeping track of

the changes made to the system design.

4) The user can provision and maintain the resources using the template created.

2.5.4.2 Disadvantages.

1) AWS CloudFormation does not provide an abstraction of the components deployed.

It is very closely tied to the AWS cloud infrastructure. It is highly necessary to have

a good understanding of the AWS infrastructure resources, the various type of

resources, specific components, their configurations, and so on. Hence the learning

curve is pretty high.

2) The graphical representation of the infrastructure resources corresponds purely to the

deployed infrastructure. It is an infrastructure diagram and not a system design.

3) It does not integrate with other cloud providers. Hence, the users are mandated to

use AWS infrastructure.

2.5.5 Git

Git is free and open-source software that is used to track changes of any file and help

software developers to work collaboratively [18]. Git aims to provide speed, data integrity,

parallel workflows, version control, and collaboration. Git helps the programmers to have

a complete history of the code developed and version tracking of all the changes made

14

along the lifecycle of development of the project [18]. It helps to roll back to an earlier

version in case of failure and protects the application from failing in the production

environment. It also helps in parallel workflows by enabling the users to create multiple

branches. The following are the advantages for system design.

1) Git provides a history of all the changes made to the code.

2) Git keeps track of all the changes made by collaborators.

3) Git helps to roll back to a previous version.

4) Git helps to maintain private and public repositories.

5) Git provides integration with several services to set up CI-CD pipeline and enables

to automatically push the changes to production.

6) It also helps in maintaining different environments such as development, staging, and

production. Therefore, it maintains different versions of code in different

environments.

2.5.6 Inference from Literature Review

From the literature survey, it is clear that a system design is a highly overloaded term.

It is used in several different perspectives. There is no standard way of defining or

representing a system design. System design created using Lucidchart, Draw.io, and

Microsoft Word files is not the ideal way of creating it. They have numerous challenges

and do not cater to the needs of creating a system design.

One of the drawbacks of current ways of creating system design is not having the

history of the system design. This creates a gap in understanding the progression of the

system design throughout the lifecycle of the application. Having a good understanding of

the various decisions and modifications made during the journey of a system design is

vital. This helps to overcome the flawed decisions and incorporate the right set of

decisions for future work.

15

Oftentimes, the deployed infrastructure does not remain faithful to the system design

created due to the changes during the development of the application. Hence, this creates

a gap between the system design and the deployed infrastructure resources. Therefore, to

overcome all the above-mentioned challenges, it is important to have a system that

encourages the creation of a system design based on a standard that has the capability of

version control, collaboration, and automated deployment. In the further sections, the

paper strives to propose an approach and a prototype implementation to resolve these

issues.

16

3 OUR APPROACH TO STANDARDIZING SYSTEM DESIGN AND
AUTOMATING SOFTWARE DEPLOYMENT

As described in the literature review, there are several shortcomings of the current

ways of creating system design. There is a need to develop a standard for system design,

paving the way for a more streamlined and portable design process and automated

deployment. We achieve this goal by providing the first steps towards achieving a

standard and demonstrate it with a prototype implementation.

First, to identify the gaps in current tools as seen by users, a survey was conducted to

determine if these shortcomings are currently prevalent to this day. In this section, we first

provide the results of the survey conducted and then introduce a set of concepts in the

context of the research. Furthermore, we strive to propose an approach to overcome the

problems stated in the literature survey.

3.1 Survey

We surveyed to validate the shortcomings of the system design on 65 individuals.

Below are the details of the participants and their responses about the current ways of

creating system design.

3.1.1 Participant Information

1) The survey was conducted on 65 individuals of which 63% were master’s students in

the field of software engineering, 34% were software engineers and the rest included

professors, data scientists and hardware design engineers.

2) The participants’ experience in the field of software engineering varied from less

than a year to up to 25+ years. Fig. 2 shows the percentage of participants with a

range of work experience in the field of software engineering

3.1.2 Participants Response

1) Among the participants, 98.5% of the individuals stated that they create a system

design before developing an application.

17

Fig. 2. Percentage of participants with a range of work experience in the field of software
engineering.

2) To create a system design, 55% use Draw.io, 37% use LucidChart, 24% use

Microsoft Word Document, and 21% use various miscellaneous tools like Visio,

Microsoft PowerPoint Presentation, Quip etc. Fig. 3 shows the percentage of users

using various tools for system design.

Fig. 3. Percentage of users using various system design tools.

3) Among the participants, 70% said that they prefer creating a system design from an

existing template and 30% said that they prefer to create from the beginning without

a template. Fig. 4 shows the percentage of users starting the system design from a

template or without a template.

18

Fig. 4. Percentage of users using existing template and no template.

4) Among the participants, 90% stated that they share the system design in an image

format and the rest shared the document links, for example, sharing PDF files,

Microsoft Word files, PowerPoint presentations, Visio links, Lucidchart links. Fig. 5

shows the percentage of users sharing the system design in the format of an image.

Fig. 5. Percentage of users sharing system design as a image.

5) Among the participants 93% of the participants said that it would be helpful to have

a tool that allows sharing, helps to work collaboratively and enables version control.

6) Given a choice to draw a system design from the graphical components or to create

it using a configuration file, 75.4% of the participants preferred to draw and 21.5%

19

preferred to use the configuration file and the rest opted for both. Fig. 6 shows the

percentage of users who prefer to create the system design using visual

representation of components and configuration file.

Fig. 6. Percentage of users who prefer to create the system using visual representation
components and configuration file.

7) All the participants agreed that it is important to have a good system design that

helps in achieving the end goal.

3.2 System Design in Our Context

From the literature survey, we understand that there are several shortcomings of the

current ways of creating system design. To address these problems, we first introduce a

set of concepts and their meanings in the context of this research. The below section aims

to introduce these concepts.

3.2.1 Our Definition of System Design

A system design is a graphical or configuration representation of the standard

components, their relationships, and dependencies, which can be translated into a

deployable entity by mapping them to the infrastructure resources. A system design is

expected to be secure, collaborative, based on a standard, allowing version control,

20

cost-efficient, provide high performance, and easily deployable. The terms used in this

definition are explained in the below sections.

3.2.2 Component

A “component” is an entity that represents an infrastructure resource. A component is

independent or dependent on another component. A component has relationships with

other components. It is an abstract representation of the equivalent resources provided by

different cloud service providers.

3.2.2.1 Types of Components. A database server, web server, Kubernetes cluster,

load balancer, pub-sub service, queue component, API gateway are some of the examples

of a component. These components are configurable and the details of the “configuration”

are defined in the further sections.

3.2.2.2 Properties of Components. A component has the following properties:

1) Name: Indicates the name of the component.

2) Description: Describes the component.

3) Component Type: Indicates the type of the component. For example, a “server”

component, a “database” component.

3.2.3 Component Registry

A “component registry” is a collection of components that are used to create a system

design. This paper attempts to define a set of standard components that are mentioned in

the above section. Every component in the component registry has a description that

indicates the purpose of the component.

3.2.4 Connection

A “connection” is an entity that connects various components. It indicates the data

flow between the components or the dependency between the components. It is

represented by an arrow that can be unidirectional or bidirectional.

21

3.2.4.1 Types of Connections. As part of this research, we define 2 main types

of connections between the components.

1) Data flow connections: This indicates that there is the data flow between the

components and also indicates the direction of data flow among the components.

2) Dependency connections: This indicates the dependency between the various

components. This type of dependency indicates a hard dependency on another

component. They are functional and sub-component dependencies. For example, a

connection between a load balancer and its dependent servers.

3.2.4.2 Validations. The connections between the components are validated to

verify if it represents a logical connection among the components. The direction of the

connection is also verified to represent a valid data flow or a valid dependency between

the components. For instance, a server cannot be connected in front of a load balancer. It

defies the meaning of the load balancer component.

3.2.5 Configuration

A “configuration” is a setting of the component that acts as a set of rules or guiding

principles. It specifies the details of a component. Every component has a default setting

and a custom setting. Based on the most appropriate configuration possible, the

components are provided a set of default configurations. It also provides the ability to

modify the default configuration according to the needs of the application. The

configuration can be classified into two types.

3.2.5.1 Component Configuration. Component configuration indicates the

specifications of a component. In a multi-layered approach, the different specifications of

a component are specified in multiple stages. The concept of multi-layered design is

explained in the below section. A configuration is a setting of the input and output ports

for the servers, specifying the type of database, the type of load balancer to be used, the

details of a Kubernetes cluster. For example, in the first level a “database component” is

22

added to the system design. In the second level, the type of database such as a mongo DB,

Postgresql, MySQL is configured. In the third level, the component is configured to an

appropriate infrastructure resource. The component can also be configured to deploy the

application on the infrastructure resources using a containerized application URL like

docker.

3.2.5.2 Deployment Configuration. Every component of the system design is

configured to map to an infrastructure resource. It enables the system design to be

converted into a deployable entity. The configuration of the deployment represents the

type of resources to be used to create an infrastructure resource. Validations are made

using meta-data information to ensure that these components are connected to a logical

equivalent component on the infrastructure.

3.2.6 Deployment

A “deployment” is a configuration in the last level of the multi-layer design. This

provides the user to select the type of deployment service providers such as Amazon Web

Services, Google Cloud Platform, Azure, and any private cloud service. This enables to

choose the type of service based on several parameters like the cost involved,

performance evaluation, security, reliability of the infrastructure. At this level, the system

design components are mapped to the infrastructure resources based on the type of cloud

service provider chosen. The deployment level is a translation of the system design

components to its respective infrastructure resources. All the components of the system

design are mapped to the default infrastructure resources based on metadata configuration.

These default configurations can also be modified to have a set of custom configurations.

3.2.7 Multi-layer Design

A “multi-layer design” is a concept in the process of creating a system design. There

are 3 main levels. The first level enables the provision of a set of components and

connections. In the second level, various configurations of the components can be set. In

23

the third level, deployment configurations are set and the deployable system design

provisions the respective infrastructure resources.

3.2.8 System Design Canvas

A “system design canvas” is a graphical representation of the prototype model that

helps to create a system design by selecting the components from the component registry,

creating connections, and setting the configurations for each of the components. The

system design canvas is present in each layer of the prototype model.

3.2.9 System Design as Code

A “System design as Code” is a configuration file representation of the system design

created by adding the components and their configurations on the system design canvas. It

can be represented in 2 ways, JSON and YAML configuration files. The configuration

files indicate the components of a project, their relationship among the components,

dependency among the components, their configuration specifications, the type of

infrastructure resources mapped to it and so on. These configuration files can be used to

create a graphical representation of the system design and vice versa.

3.3 Features of System Design

In this section, we propose the following features of system design. These features

have been implemented in the prototype model that is discussed in the following section.

3.3.1 Standard for System Design

From the literature survey, it is known that the current ways of creating system design

lack standards. The term system design is overloaded and has multiple perspectives.

Hence, It is important to create a standard for system design. Standards provide people

and organizations with a basis for mutual understanding and are used as tools to facilitate

communication [19]. ISO defines a standard as “A standard is a document that provides

24

requirements, specifications, guidelines or characteristics that can be used consistently to

ensure that materials, products, processes, and services are fit for their purpose” [20].

Benefits of having a standard:

1) Common language of communication and performance evaluation [20]

2) Increases security

3) Easy to maintain

4) A comprehensive look

5) Cost efficient

6) Bug rectification

As part of this research, we aim to define a standard by defining the standard

components, standard configurations, a standard way of representation of system design

in a configuration file.

3.3.2 Sharing

“Sharing” is an important concept in software engineering. It helps multiple

collaborators to work on the same document, file, or code. It also refers to the process of

having the ability to share one’s work with the community. Having a reliable system

design management software allows for real-time collaboration. One should be able to

create a system design and share it with collaborators. It helps all the collaborators to be

in sync. Furthermore, the system design can be shared by adding collaborators on the

prototype model, using URL or by exporting the information to a file. The user can enable

“read” or “edit” permissions to the collaborators. The collaborators of the system design

are notified when there is an update on the document. The created system design can be

embedded in other products like Microsoft Word document, quip, and so on thereby

keeping all the documents in sync with the latest version of the document. An analysis of

the shared document can bring about profitability to the organization [21].

Sharing of documents has the following benefits:

25

1) Common language of communication and performance evaluation [20]

2) Enhances efficiency

3) Considerable transparency

4) Gives an overview of the flow of ideas

5) Helps to determine drawbacks

6) Efficient time management

3.3.3 Version Control

“Version control” is another important feature in software engineering. It refers to the

ability to track changes in a file, code, or system. In this paper, we aim to propose a

solution that enables version control of the system design. The concept of version control

is the same as the version control feature of git as described in the literature survey.

Version control helps to keep track of all the changes made to the system design by

various users. This helps to understand the evolution of the system design during its life

cycle. Version control is beneficial for the following reasons [22]:

1) Collaboration

2) Storing versions properly

3) Restoring previous versions

4) Understanding what changes were made in every version

5) Backup

3.3.4 Automated Deployment

Automation is an essential part of software engineering. In this paper, we bridge the

gap between the system design and software infrastructure resources. In the prototype

implementation model, we see that the users create infrastructure resources from the

system design.

Benefits of automated deployment:

26

1) One does not have to maintain the infrastructure resources manually

2) Reliability of the system can be increased with efficient monitoring tools

3) Reduces efforts and human errors

4) Faster deployment

5) Increases developer productivity and efficiency

6) Maintenance of the infrastructure is easier

7) Ability to have multiple environments - staging, production

8) Ability to deploy on multi-cloud services

3.3.5 Performance

Analyzing the performance of any system is important. In this paper, we strive to

analyze the performance of the system by taking into consideration the type of application

that is deployed. It is important to understand the load of the application, data involved in

processing to understand the required specifications of the resources. By collecting

application-specific information and evaluating the capabilities of the infrastructure

resources, we can measure the performance of the system.

3.3.6 Cost

The cost of the deployment of infrastructure resources varies based on how small or

large infrastructure is needed for the application. Infrastructure cost is calculated based on

hourly, monthly, yearly, no of hits, data volumes, and so on. Considering these factors we

can evaluate the approximate total cost involved. Since the prototype model supports

multi-cloud service providers, the user can choose the most cost-efficient cloud service

provider.

3.3.7 Security

Security is one of the most important concerns of any organization. It is highly

important to have a secure infrastructure. By configuring the components in private

subnets, adding security group configurations, the system is made secure.

27

3.3.8 Guided Process

One of the applications of the prototype implementation of the tool is to present it as

an educational tool. This tool can be used by students who are starting to learn system

design and infrastructure deployment. The students can begin by adding components to

the canvas in the first level. The tooltip provided against each component helps the

student to learn more about the component and its usage. The tool also provides a list of

standard components and their purpose. When the student chooses a load balancer

component, we guide them by indicating the need for additional servers. This educates the

student about load balancer, its purpose, and the importance of having scaling and

reliability in the system design.

In the second level, the student can configure additional parameters such as the type

of database to be used, port numbers, type of load balancer, and so on. We guide the

student by setting all the default parameters.

In the third level, the student can choose the type of cloud infrastructure elements. All

the standard components are mapped to their respective default infrastructure resources.

Once the student clicks on the deploy job, the infrastructure resources get created on the

cloud account, whose credentials are set by the user. Thereby it solves for the high

learning curve. The entire process acts as a guided process to encourage the students to

learn more.

28

4 PROTOTYPE IMPLEMENTATION

Fig. 7 shows the overall system architecture of the prototype implementation.

Fig. 7. Prototype system architecture.

The following sections describe the main concepts of the prototype architecture.

4.1 Components

Components are the fundamental units used in system design. A component roughly

has a mapping to an actual infrastructure component when deployed to the cloud. Every

component is self-represented and provides a clear description of its purpose and usage. It

also has a type that mainly indicates its function. For the prototype, the following

component types are supported.

1) Server: representation of a machine that can satisfy HTTP requests on public and

private clouds

29

2) Database: representation of a database management system. For prototype, only

relational databases are supported

3) Load balancer: representation of software or hardware used to automatically

distribute incoming traffic across multiple targets, such as server instances in one or

more geographically distributed areas

4) Kubernetes cluster: representation of a set of nodes that run containerized

applications

The components are represented in the database in a table called, Components

through foreign key relationships to table ComponentTypes as shown in Table 1 and

Table 2, respectively.

Table 1
ComponentTypes

Column Column Type

id integer

name text

created at datetime

updated at datetime

deleted at datetime

deleted why text

4.2 Frontend

This is the frontend application the user interacts to perform all user activities.

The application is built using React [23] which is an open-source, frontend, JavaScript

library for building user interfaces. The main features of the frontend application are

listed below.

30

Table 2
Components

Column Column Type

name type

id integer

name text

level integer

type id integer foreign key references ComponentTypes(id)

image text

description text

created at datetime

updated at datetime

deleted at datetime

deleted why text

1) Projects: Users can create projects to maintain their system designs. Every system

design will be associated with one project and one project contains only one system

design. This is the highest-level entity the user interacts with.

2) Layered Visual Canvas: The main interacting entity to create system designs. It is a

layered visual representation guiding the user from an abstract representation of the

system to an exact representation of the cloud infrastructure.

3) Project Commits: User saved changes are called commits. Every commit is

accompanied by a message that represents the state of the project at that time.

4) Deployment: Projects can be deployed onto cloud infrastructure to create actual

infrastructure components. The prototype supports AWS and GCP platforms. One

project could be deployed to both platforms and any number of times.

31

5) YAML processor: System designs can be created from a YAML representation. A

processor converts the YAML representation into a visual representation.

4.3 Project Management Service

This is the backend service for most user actions done in a project except for

deployment.

The service is implemented using Django Rest Framework [24], a framework for web

Restful Web APIs. It is implemented on top of Django [25] which is a Python-based free

and open-source web framework that follows the model-template-views (MTV)

architectural pattern. The following are the high-level concepts under the project

management service.

4.3.1 Projects

A user created project that contains the system design. A project is represented in the

database as show in Table 3.

Table 3
Projects

Column Column Type

name type

id integer

name text

description text

is template bool

cloned from integer foreign key references Projects(id)

created by integer foreign key references Users(id)

created at datetime

32

4.3.2 Project Components

The standard components that are used in a project are represented as project

components. A project component is a binding of a standard component to a project.

Every component can contain additional user-supplied configuration parameters. This

configuration is used while deploying a project component onto the cloud infrastructure.

The prototype supports the following configuration parameters.

1) database selection

2) database tag

3) instance tag

4) input port number

5) output port number

6) load balancer name

7) load balancer selection

8) cluster name

9) cluster docker image

10) cluster minimum size

11) cluster maximum size

Project components are represented in the database as shown in Table 4.

4.3.3 Connections

Connections represent dependencies or data flow between project components. Some

connectors are purely representational like between a backend and database server while

certain imply actual dependencies like between a load balancer and connected backend

servers.

Connections are represented in the database as shown in the Table 5.

33

Table 4
ProjectComponents

Column Column Type

id integer

standard component id integer foreign key references Components(id)

project id integer foreign key references Projects(id)

config json

created at datetime

updated at datetime

deleted at datetime

deleted why text

Table 5
Connections

Column Column Type

id integer

from project component id integer foreign key references ProjectComponents(id)

to project component id integer foreign key references ProjectComponents(id)

created at datetime

updated at datetime

deleted at datetime

deleted why text

4.3.4 Commits

Commits can be thought of as snapshots or milestones along the timeline of the

project. They capture the state of the system at that particular point in time. Users can

34

save the project with a commit message. They can also see all versions of the project

saved over a period of time.

Commits are represented in the database as shown in the Table 6.

Table 6
Commits

Column Column Type

id integer

config json

committed at datetime

commit message text

project id integer foreign key references Projects(id)

committed by integer foreign key references Users(id)

4.3.5 Clone

Projects can be cloned from other projects. A project that can be cloned is called a

template and it is represented with the is template flag in the Projects table.

4.4 Deployment Service

This is the backend service that is responsible for deploying a project onto the cloud

infrastructure.

The service is built using Flask [26], a micro web framework written in Python. It is

lightweight and using a framework like Django seemed unneeded for this service. To

create components on cloud infrastructure, the service uses Pulumi, an open-source

software that can create, deploy, and manage infrastructure on any cloud using

programming languages and tools. Since the service is written in Python, it makes use of

Pulumi’s Python SDK. The prototype allows the project to be deployed onto Amazon

Web Services and Google Cloud Platform cloud providers.

35

4.4.1 Overview of Pulumi

Pulumi is a modern infrastructure as a code platform. It leverages existing

programming languages like TypeScript, JavaScript, Python, Go, and their native

ecosystem to interact with cloud resources through the Pulumi SDK. Fig. 8 describes the

high-level architecture of Pulumi [27].

Fig. 8. Pulumi system architecture.

4.4.1.1 Pulumi Programs. These programs are written in a general-purpose

language which is Python in our implementation. They describe how cloud infrastructure

should be created. The program allocates resource objects whose properties correspond to

the desired state of the cloud infrastructure. Pulumi programs reside in a project. Each

project contains various stacks which is an instance of a Pulumi program. A stack is

similar to different deployment environments that can be used when testing and rolling

36

out application updates. The below code shows an example of creating a security group

and an EC2 instance on AWS cloud infrastructure.

import pulumi

import pulumi_aws as aws

group = aws.ec2.SecurityGroup('web-sg',

description='Enable HTTP access',

ingress=[{

'protocol': 'tcp',

'from_port': 80,

'to_port': 80,

'cidr_blocks': ['0.0.0.0/0']

}])

server = aws.ec2.Instance('web-server',

ami='ami-6869aa05',

instance_type='t2.micro',

vpc_security_group_ids=[group.name]

)

4.4.1.2 Pulumi Setup. The Deploy backend service talks to Pulumi through a

binary installed on the server node locally and Pulumi talks to the cloud infrastructure.

For the end-to-end flow to work, both Pulumi and cloud service credentials need to be set

up as follows.

1) Create a user account on Pulumi

2) Install Pulumi locally on the server node

3) Log into Pulumi account

37

4) Setup cloud credentials through ENV variables that the local Pulumi program can

access. For example, for Amazon Web Services they are AWS ACCESS KEY ID

and AWS SECRET ACCESS KEY

For the project created from the prototype to be in sync with the Pulumi project, there

is a one-to-one mapping set up through the project’s ID. For simplicity, the stack name on

a Pulumi project is always called “production” which roughly means production

environment.

4.4.2 Why Pulumi Over Other Platforms

This section briefly talks about why Pulumi was chosen over other infrastructure as

code services. It compares Pulumi against the two most popular ways used to manage

infrastructure resources.

4.4.2.1 Terraform.

1) Terraform requires users to learn a new custom language, the HashiCorp

Configuration Language. In contrast, Pulumi programs are written in familiar

languages like Python, Javascript etc. This cuts down the learning curve steeply.

2) Terraform, by default, requires that you manage concurrency and state manually, by

way of its state files.

3) Concurrency and state management are significantly easier in Pulumi. Terraform, by

default, requires the user to manage it through state files. Pulumi eliminates these

concerns for the user by managing them internally.

4) Pulumi supports cloud-native technologies like Kubernetes and supports advanced

deployment services which cannot be expressed with Terraform.

4.4.2.2 Cloud SDKs. Cloud providers like Amazon Web Services and Google

Cloud Platform offer SDKs like AWS Boto in familiar languages to create and manage

cloud resources. However, managing concurrency, failures, and recovery is left to the

38

users to manage. Also deploying multi-cloud environments would require a considerable

amount of effort and is very hard to build a robust solution.

4.5 YAML Representation

As mentioned in the frontend application section, users can create system design from

a YAML file. The structure of the file is shown below.

project:

name:

description:

standard_components:

- id:

description:

image:

name:

type:

project_components:

- id:

standard_component_id:

config:

database_selection:

database_tag:

instance_tag:

input_port_number:

output_port_number:

load_balancer_name:

load_balancer_selection:

cluster_name:

39

cluster_docker_image:

cluster_minimum_size:

cluster_maximum_size:

connections:

- from_project_component_id:

to_project_component_id:

40

5 COMPARATIVE ANALYSIS

From the literature survey and prototype tool developed, we now present a

comparative analysis of all the features that defines a good system design. The below

Table 7 indicates the features against multiple tools that were analyzed as part of this

research.

1) Yes - Indicates the support of the feature

2) No - Indicates it does not support the feature

3) Partially yes - Indicates it does not completely support this feature with respect to

system design

4) Future Work - This feature has been taken into consideration but yet to be

implemented.

41

Table 7
Comparative Analysis

Features/Tools Microsoft
Word

LucidchartDraw.io AWS
Cloud
Forma-
tion

Prototype
tool

Based on a Standard No No No No Yes

Sharable Partially
yes

Partially
yes

Partially
yes

Yes Yes

Version control Partially
yes

Partially
yes

Partially
yes

Yes Yes

Collaborative Partially
yes

Partially
yes

Partially
yes

Yes Yes

Multi-level architecture No No No No Yes

Cost evaluation No No No Yes Yes

Performance estimation No No No Yes Future
Work

Abstract components No No No No Yes

Automated deployment No No No Yes Yes

Guided Process No No No No Yes

System design as Code No No No No Yes

Infrastructure as Code No No No Yes Yes

Graphical representation from
configuration file

No No No Yes Yes

Multi-cloud deployment No No No No Yes

Integration with other tools Yes Yes Yes No Future
Work

Infrastructure maintenance No No No Yes Yes

42

6 CONCLUSION

As part of this research, we aim to understand the shortcomings of system design. To

understand the shortcomings, we first understand the various definitions of system design

and how they differ from each other. The term “system design” is highly overloaded and

people often exploit this to modify the representation of the system design accordingly.

As a result, there is a lack of a standard. To understand the state of the art ways of

creating system designs a survey was conducted on the current tools used to create system

design. Analyzing the drawbacks of the tools led to the motivation of providing a standard

for creating system designs along with modern-day features like enabling version control,

sharing, collaboration, and automated deployment. The implemented prototype tool

supports all the features that are stated as part of the solution. This enables the users to

create a system design backed by a standard, enable version control, sharing, multi-cloud

deployment, and also enables to create a system design from code. Overall, the prototype

model aims to enable the creation of a modern system design.

43

7 FUTURE WORK

As part of this research, we have taken the first step towards standardizing the system

design. However, defining a standard that can be universally accepted requires

consideration of a wide variety of parameters, evaluating multiple use cases, higher

security, increased configuration parameters, and constraints. The end-to-end application

support will be highly beneficial as the application can be deployed via the tool. A set of

performance test suites can be developed to enable stakeholders to make better decisions

about the infrastructure requirements. As the infrastructure components increase it is

important to keep up with the growing technology to meet the industry requirements. As

an educational tool, additional features like enabling grading of the system design,

detailed guided procedure can be beneficial. In organizations, program managers can

benefit by tracking the development progress with the deadlines and providing feedback

to the engineers. Improved notifications system will help all the teams to keep up with the

upcoming deadlines. It is important to enabling the accessibility feature of the prototype

tool. Currently, we allow for graphical and textual ways of creating system design. To

enable accessibility, features like audio inputs, language translation, speech to system

design creation can be implemented. Therefore, we conclude that there is always scope

for improvement and development of newer features. However, this paper tries to address

the core features of the system design by proposing a prototype model that initiates a way

to solve the above-mentioned issues.

44

Literature Cited

[1] I. ISO, “Ieee, systems and software engineering–vocabulary,” IEEE computer society,
Piscataway, NJ, vol. 8, p. 9, 2010.

[2] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,”
ACM SIGSOFT Software engineering notes, vol. 17, no. 4, pp. 40–52, 1992.

[3] J. Baragry and K. Reed, “Why we need a different view of software architecture,” in
Proceedings Working IEEE/IFIP Conference on Software Architecture, pp. 125–134,
IEEE, 2001.

[4] L. Bass, P. Clements, and R. Kazman, “Architecture in practice, sei series in software
engineering,” 1998.

[5] P. B. Kruchten, “The 4+ 1 view model of architecture,” IEEE software, vol. 12, no. 6,
pp. 42–50, 1995.

[6] C. Hai-Shan, “Survey on the style and description of software architecture,” in 8th
International Conference on Computer Supported Cooperative Work in Design,
vol. 1, pp. 698–700, IEEE, 2004.

[7] N. Medvidovic and R. N. Taylor, “Software architecture: foundations, theory, and
practice,” in 2010 ACM/IEEE 32nd International Conference on Software
Engineering, vol. 2, pp. 471–472, IEEE, 2010.

[8] P. C. Clements and L. M. Northrop, “Software architecture: An executive overview.,”
tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE
ENGINEERING INST, 1996.

[9] “Lucidchart - edutech wiki.” http://edutechwiki.unige.ch/en/Lucidchart.

[10] “Lucidchart.” https://www.lucidchart.com/pages/examples/uml diagram tool.

[11] “draw.io - crunchbase company profile & funding.”
https://www.crunchbase.com/organization/draw-io.

[12] “Introduction to diagrams.net and types of diagrams.”
https://www.diagrams.net/doc/getting-started-diagram-types.

45

http://edutechwiki.unige.ch/en/Lucidchart
https://www.lucidchart.com/pages/examples/uml_diagram_tool
https://www.crunchbase.com/organization/draw-io
https://www.diagrams.net/doc/getting-started-diagram-types

[13] “diagrams.net documentation.” https://www.diagrams.net/doc/.

[14] “diagrams.net.” https://app.diagrams.net/.

[15] “History of microsoft word - wikipedia.”
https://en.wikipedia.org/wiki/History of Microsoft Word.

[16] “Aws cloudformation.” https:
//docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html.

[17] “Estimating the cost of your aws cloudformation template project.”
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/
tkv-cfn-editor-estimate-cost.html.

[18] “Git - wikipedia.” https://en.wikipedia.org/wiki/Git.

[19] “The importance of standards - cen-cenelec.”
https://www.cencenelec.eu/research/tools/ImportanceENs/Pages/default.aspx#:∼:
text=Standards%20provide%20people%20and%20organizations,facilitating%
20business%20interaction.

[20] “Standards: What are they and why are they important - standards - libguides at
university of massachusetts amherst.”
https://guides.library.umass.edu/c.php?g=719645&p=5126968.

[21] “The advantages and disadvantages of shared documents.”
https://blog.mesltd.ca/the-advantages-and-disadvantages-of-shared-documents#:∼:
text=Document%20sharing%20saves%20time%2C%20and,development%20and%
20flow%20of%20ideas.

[22] “Why use version control? — learn version control with git.” https://www.git-tower.
com/learn/git/ebook/en/command-line/basics/why-use-version-control/.

[23] “React – a javascript library for building user interfaces.” https://reactjs.org/.

[24] “Home - django rest framework.” https://www.django-rest-framework.org/.

[25] “The web framework for perfectionists with deadlines — django.”
https://www.djangoproject.com/.

46

https://www.diagrams.net/doc/
https://app.diagrams.net/
https://en.wikipedia.org/wiki/History_of_Microsoft_Word
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/tkv-cfn-editor-estimate-cost.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/tkv-cfn-editor-estimate-cost.html
https://en.wikipedia.org/wiki/Git
https://www.cencenelec.eu/research/tools/ImportanceENs/Pages/default.aspx#:~:text=Standards%20provide%20people%20and%20organizations,facilitating%20business%20interaction
https://www.cencenelec.eu/research/tools/ImportanceENs/Pages/default.aspx#:~:text=Standards%20provide%20people%20and%20organizations,facilitating%20business%20interaction
https://www.cencenelec.eu/research/tools/ImportanceENs/Pages/default.aspx#:~:text=Standards%20provide%20people%20and%20organizations,facilitating%20business%20interaction
https://guides.library.umass.edu/c.php?g=719645&p=5126968
https://blog.mesltd.ca/the-advantages-and-disadvantages-of-shared-documents#:~:text=Document%20sharing%20saves%20time%2C%20and,development%20and%20flow%20of%20ideas
https://blog.mesltd.ca/the-advantages-and-disadvantages-of-shared-documents#:~:text=Document%20sharing%20saves%20time%2C%20and,development%20and%20flow%20of%20ideas
https://blog.mesltd.ca/the-advantages-and-disadvantages-of-shared-documents#:~:text=Document%20sharing%20saves%20time%2C%20and,development%20and%20flow%20of%20ideas
https://www.git-tower.com/learn/git/ebook/en/command-line/basics/why-use-version-control/
https://www.git-tower.com/learn/git/ebook/en/command-line/basics/why-use-version-control/
https://reactjs.org/
https://www.django-rest-framework.org/
https://www.djangoproject.com/

[26] “Welcome to flask — flask documentation (1.1.x).”
https://flask.palletsprojects.com/en/1.1.x/.

[27] “Architecture & concepts — pulumi.” https://www.pulumi.com/docs/intro/concepts/.

47

https://flask.palletsprojects.com/en/1.1.x/
https://www.pulumi.com/docs/intro/concepts/

Appendix A

PROTOTYPE TOOL

The below are the screenshots of the creating a system design using the prototype tool.

Fig. 9. Home page of prototype tool

48

Fig. 10. Standard components of prototype tool

49

Fig. 11. System design canvas of prototype tool

Fig. 12. AWS view of system design

50

Fig. 13. GCP view of system design

51

Fig. 14. Cost estimation of a component

52

Fig. 15. AWS EC2 instance comparison

53

Fig. 16. AWS resource information after deployment

54

	Towards Standardizing System Design and Automating Deployment
	Recommended Citation

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Research Objectives
	Thesis Organization

	Literature Review
	Software Architecture Definitions
	Perry and Wolf
	Bass et al.
	Kruchten
	D. Garlan and M. Shaw
	N. Medvidovic and R. N. Taylor

	Analogy Between Classical Architecture and Software Architecture
	Importance of Software Architecture
	Architecture is the Common Ground for Communication
	Architecture Provides the Developers a Set of Guidelines
	Architecture Helps Manage Changes

	Shortcomings of Software Architecture Definitions
	Current Tools Used to Create System Design
	Lucidchart
	Advantages
	Disadvantages

	Draw.io
	Advantages
	Disadvantages

	Microsoft Word
	Advantages
	Disadvantages

	AWS CloudFormation
	Advantages
	Disadvantages

	Git
	Inference from Literature Review

	Our Approach to Standardizing System Design and Automating Software Deployment
	Survey
	Participant Information
	Participants Response

	System Design in Our Context
	Our Definition of System Design
	Component
	Types of Components
	Properties of Components

	Component Registry
	Connection
	Types of Connections
	Validations

	Configuration
	Component Configuration
	Deployment Configuration

	Deployment
	Multi-layer Design
	System Design Canvas
	System Design as Code

	Features of System Design
	Standard for System Design
	Sharing
	Version Control
	Automated Deployment
	Performance
	Cost
	Security
	Guided Process

	Prototype Implementation
	Components
	Frontend
	Project Management Service
	Projects
	Project Components
	Connections
	Commits
	Clone

	Deployment Service
	Overview of Pulumi
	Pulumi Programs
	Pulumi Setup

	Why Pulumi Over Other Platforms
	Terraform
	Cloud SDKs

	YAML Representation

	Comparative Analysis
	Conclusion
	Future Work
	Literature Cited
	Appendix A: Prototype Tool

